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Formulae of Epigraphical Projection for Solving Minimax
Location Problems*

Gert Wanka! Oleg Wilfer?

Abstract: We are interested in a numerical method for solving extended multifacility
minimax location problems introduced by Drezner in 1991. For this purpose, we present
some formulae of projections onto the epigraphs of the sum of powers of weighted norms
and onto the epigraphs of gauges. By bringing the extended multifacility location problem
into a form of an unconstrained optimization problem where its objective function is a
sum of functions allows us then to use the parallel splitting algorithm in combination with
the introduced projection formulae to solve this kind of location problems. Numerical
experiments document the usefulness of our approach for the discussed location problems.
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1 Introduction and Preliminaries

As argued in a large number of papers, the proximal method is an excellent tool for solving in
an efficient way optimization problems of the form

;%171_[1{2 fi($)}> (1)
i=1

where H is a real Hilbert space equipped with the scalar product (-, )4, where the associated
norm || - || is defined by |yll3 = /(y,y)n for all y € H and f; : H — R is a proper, lower
semicontinuous and convex function, ¢ = 1,...,n. At this point let us recall that for a given
function f : H — R, its effective domain is dom f = {x € H : f(z) < +oo} and its epigraph
epif = {(x,r) € H xR : f(z) < r}. We call the function f proper when f(x) > —oo for all
x € H and dom f # 0, lower semicontinuous at T € X if liminf,_,z f(z) > f(Z) and when the
function f is lower semicontinuous at all x € X, then we call it lower semicontinuous (1.s.c. for
short).

Optimization problems of the form [1joccur for instance in areas like image processing [2,8,9}(12],
portfolio optimization [4,/17], cluster analysis [3,|11], statistical learning theory [10], machine
learning [6] and location theory [4,7,/14,|16]. In the main step of the proximal method it is
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necessary to determine the proximity operators of the functions involved in the formulation of
the associated optimization problem. The prozimity operator (a.k.a. proximal mapping) of a
proper, lower semicontinuous and convex function f : H — R denoted by prox; is defined by

1
proxgx : H — H, prox;x = arggin {f(y) + §||x - y||?{} Vo e H. (2)
ye

The proximity operator can be understood as a generalization of the projection onto a convex
set, as for a non-empty, closed and convex set A C ‘H we have

proxs, * = Pz Vo € H, (3)
where 64 : H — R defined by

0, ifzeA,
400, otherwise,

o) = { ()
is a proper, convex and lower semicontinuous indicator function and P 4 is the projection operator
which maps every point z in H to its unique projection onto the set A (see [1]).

From ([2)) follows that the determination of the proximity operators of the functions f;, 7 =1, ..., n,
of requires the solving of n subproblems, where a favorable situation exists, when a closed
formula of a proximity operator can be given. This in turn has a positive effect on the solving
of optimization problems from the numerical point of view.

Motivated by this background, our aim is to solve numerically extended multifacility minimax
location problems (see [15]) given by

m

M,B . B

BEXT) o a2 2l —2l™ o 6)
yrry M == le

where w;; > 0 and p; € R? are distinct points, j = 1,....,m, i = 1,...,n. In this framework
we first need to rewrite this kind of location problems into the form of where the objective
function is a sum of lower semicontinuous convex functions. For this purpose we introduce an
additional variable and obtain for (EPJ]\\,/[ B ) the following formulation

M . .
(EPy ”6) min t= min t
(T15ees acm,t)e]Rdxmede, (T15ees xm,t)e]Rdxmede,
m
o —pr 1Bi <t i m .
].21“’11“13 pill7ist, i=1,..n (@1 5ees a:m,t)Eepi< > wi].\|<_pi”31>, i=1,...,n
=1

n
= min t+ E o /o
(21T, t) EREX ... XRIXR 1 epi<zlwij~—pi|3i

Jj=

(T1yeeey T,y t) o - (6)
)

Now, to apply the proximal method to (EP% B ) one needs to calculate the proximity operators
of the functions involved in the objective function of (@ For this reason and especially in the
context of , we give in Section [2| formulae for the projection onto the epigraph of the sum of
powers of weighted norms. As the power of norm in @ can be replaced by a gauge function,
we present also formulae of projections onto the epigraphs of gauges.

To point out the benefits of the presented formulae we consider then examples of location
problems in different settings and compare the numerical results with a method proposed by



Cornejo and Michelot in [14]. The difference between these two methods is that the one given by
Cornejo and Michelot splits the sum of powers of weighted norms by introducing n -m additional
variables. In this situation one gets the following presentation of the extended multifacility
minimax location problem

m n n
M, .
(BPY) | min Q8 DD G ) (@5510) + D G Bt ) o (7)
j:l,l...,m,,z‘:1 ,,,,, n Jj=1li=1 1=1

where 7;(ti1, .., tim) = Z;"zl tij, i =1,...,n. In Section [3| we show that this concept makes the
solving process for the considered examples of location problems very slow and the advantage
of our approach more clear. The numerical tests are based on the parallel splitting algorithm,
which can be found for instance in [1].

Finally, we collect some properties of Hilbert spaces, which can be found with proofs for instance
in |1] and [13].
If for a function f : H — R we take an arbitrary x € H such that f(z) € R, then we call the set

Of(x) :={a" €M : f(y) — f(z) = (z",y —x) Vy € H}

the (convex) subdifferential of f at z, where the elements are called the subgradients of f at x.
Moreover, if 0 f(z) # (), then we say that f is subdifferentiable at x and if f(x) ¢ R, then we make
the convention that df(x) := 0.If f is Gateaux-differentiable at x € H, then df(x) = {V f(x)}.
The set of global minimizers of the function f is denoted by Argmin f and if f has a unique
minimizer, it is denoted by argmin, 4, f(x). It holds

x € Argmin f < 0y € 0f (z) Vo € H. (8)
It holds
y=prox;zr < —y € df(y) Vz € H, Yy € H. (9)

In addition, we make for the rest of this paper the convention that 8 =0 and % -0y = 04.

In the following let Hy x ... X H,, be a real Hilbert space endowed with inner product and norm,
respectively defined by

n

(@15 o0 ), (U1, o Un) ) et = D (@i Ui, A0 (|1, eees )70y ., =
i=1

where (z1,...,2,) € H1 X ... X Hp and (y1, ..., yn) € Hi X ... X Hy.

We close this section with a lemma, which presents a formula for the projection onto a unit
ball generated by the weighted sum of norms and generalizes the results given in [18] to real
Hilbert spaces H;, i = 1,...,n. Let w; >0, i =1,...,n, and C := {(x1,...,2n) € H1 X ... X Hy :
Sy willzi||la, < 1}, then the following statement holds.

Lemma 1.1. For all (xy,...,2y) € H1 X ... X Hy, it holds

n
Po(en,an) = 4 @0 i L willedla <1,

(U1 Y,,), otherwise,



where

maxflel, A0}
_ i=1,..
! [l %, ’ T

with

and k € {0,1,...,n — 1} is the unique integer such that 7, < X\ < 711, where the values Ty, ..., Ty
are defined by 19 := 0 and 7; := ||x;||p, /wi, i = 1,...,n, and in ascending order.

Proof. In order to determine the projection onto the set C, we consider for fixed (z1,...,2,) €
Hi X ... X Hy the following optimization problem

n
. 1 ,
(Y15eees yn)I?’:Ltllx.”an, {Z §||yl a xz”Hl} : (10)

n =1
'21 willysllgg, <1
i=

Obviously, if Y 1" | willzil|ln, < 1, ie. (z1,...,xn) € C, then the unique solution is 7; = x;,

i=1,...,n. In the following we consider the non-trivial situation where Y ; w;||z;|l2, > 1, i.e.
(@1, ..., xn) ¢ C and define the function f : Hi x ... x Hy, = R by f(y1,...,un) = Dy (1/2)|lyi —
a;,||§{l and the function g : Hy X ... x Hp, = R by g(y1,...syn) = D g willyillz, — 1. Hence,
by |1, Proposition 26.18] it holds for the unique solution (g, ..., %,,) of that

Vi@ Tn) € =29(T1, -, Tp) © T — 2 € =20 (wil| - [lg) (7), i = 1,...,m,
as well as
X (Z w7l - 1) =0and ) willGilln, <1,
i=1 =1

where X > 0 is the associated Lagrange multiplier of (%y,...,%,). If X = 0, then 7, = x,
i =1,...,n, and by the feasibility condition we obtain 3 7" ; w;|x;][3, < 1, which contradicts our
assumption. Therefore, A > 0 and we get by @ that

B — a0 € 20wl - ) G) 21— 5 € 00wl - 3} (@) T = prosgy gy @10 i = L.
Using [13, Proposition 2.8] reveals that
Awi . ; ) YT BY
S Tl @i i il > Awiy _ max{||ilp, szwo}xi’ i=1...n
034, if (|2 ]|2, < Aw; [E (T8

and as >, w;||g;|ln, = 1, we conclude that
n
Zwi max { |||, — Aw;,0} = 1. (11)
i=1
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Now, we define the function x : R — R by x(\) = > I, w? max{r; — X, 0} — 1. Note, that there
exists A > 7; for all i = 1,...,n, such that K,(X) = —1 < 0. Moreover, k is a piecewise linear
function with £(0) = wizn —1 and its slope changes at A = 7;, 2 = 1, ...,n. To be more precise, at
A =0theslopeof kis —> 1" | wf and increases by w? when \ = 1. If we continue in this matter
for i = 2, ...,n, the slope keeps increasing and when A > 7,,, K(\) = —1 such that the slope is 0.
In summary, to find the zero of x one needs to determine the unique integer k € {0,1,...,n — 1}

such that x(7;) > 0 and k(7x+1) < 0. In the light of the above, it holds
n n
k() = Z wiT — A Z w? — 1,
i=k+1 i=k+1
where 7, < A < 7141, and hence, one gets for A such that x(\) = 0,
n
owin—1

N o i=kt

2 Formulae of epigraphical projection

The first aim of this section is to give formulae for the projection operators onto the epigraph of
the sum of powers of weighted norms. For this purpose, we give a general formula in our central
theorem, from which we deduce special cases used in our numerical tests.

The second aim is to present formulae of the projection operators onto the epigraphs of gauges.
By using the fact that the sum of gauges is again a gauge (see [21]), we also present a formula
of the projector onto the epigraph of the sum of gauges.

2.1 Sum of weighted norms

Let us consider the following function h : Hi X ... X H,, = R defined as
n
W@y, ey mn) = D willzill; (12)
i=1

where w; > 0 and 8; > 1,7 =1,...,n. By defining the sets
L:={le{l,..,n}: B >1}and R:={re{l,...,n}: B, =1},

we can state the following formula for the projection onto the epigraph of the sum of powers of
weighted norms, which generalizes the results given for instance in [1,12}/13,/17].

Theorem 2.1. Assume that h is given by (19). Then, for every (1, ..., Tpn, &) € Hi X ... x Hy xR
one has

n
Tlyeeey Ty &)y 4 wil|zily <&,
( €), if 3 willzill, <€
=1

Pepih(xl)"wxnaé) = (13)

(U157, 0), otherwise,



with

— max{lJa,llx, — 2w, 0}

= T., T E€R,
' [ |34, '
7= lzillse =N g
]|, ’ ’
0=¢+ ),

where m(A) is the unique non-negative real number that solves the equation

1
_ by By —1
a0+ (2Ol 1€ L. (1)
Aw By
and X > 0 is a solution of the equation
> wymax{[|z, ||y, — Awp, 0} + > willzllr, —m(A)* = A+&. (15)
reER leL

Proof. For given £ € R and (21, ..., zp,) € H1 X ... X Hy, let us consider the following optimization
problem

: 1 b =1 )
W1sns yn,e)renélllxmxﬂnxm {2(9 -7+ ; 5”91 - mz”?—u} : (16)

2 willyillyf, <0
i=1 i

It is clear that in the situation when )", wszlH%l < ¢, ie. (x1,...,20,&) € epih, the unique
solution of (16) is 7, = @, i = 1,...,n, and § = £. Therefore, we consider in the following the
non-trivial case where y ;" | wZHle%l > & Le (T1,...,2n,&) & epih.

Let us now define the function f : Hy X ... x Hp Xx R = R by f(y1,...,yn,0) := (1/2)(0 —
§)% 4+ 21 (1/2)[lyi — i]l3,, and the function g : Hy X ... X Hp X R = R by g(y1, .. yn, 0) :=
oy wl||yl\|%l — 6, then by [1, Proposition 26.18] there exists A > 0, such that for the unique
solution (7, ..., ¥, 0) of (16) it holds

7 — i € —N(will - 15) @), i =1,..n,

o= (17)

Vi@, Un0) € =209y, ., Uy, 0) & {

where ) is the associated Lagrange multiplier of W1, Up,0). If X = 0, then one gets by
that ¥, = 3, = 1,...,n, and 6 = £ and by the feasibility of the solution it follows that
S wzHZEzH%Z < ¢, which contradicts our assumption. Hence, it holds A > 0 and by @) and

we have

{ — e 00l 1)@, i=Lm

Y = prowaﬂLHfj_ xi, i=1,..n,
0=X+¢, 0=X\+¢

Further, from |13, Proposition 2.8] it follows for the case r € R, i.e. 8, = 1, that

Yr =

~ Terll, = Ty, (18)

Ty — 2 if |23, > Moy, max{ ||z, ||z, — Aw,,0}
On,., if (|22, < Aw, [E E8



and for the case | € L, i.e. 5; > 0, that

_ (A zy)|3, — m(A
A ﬁ()x:H 4, —m(A)
|12, 1|3,

xy, (19)

where 7;()) is the unique non-negative real number that solves the following equation

w0+ (foz) = et (20

(notice that by follows that ||z;]|3;, —m(A) > 0). Furthermore, the complementary slackness

condition
n
A (Z wz”@z”% - 9) =0 (21)
i=1
implies that
n
> willgllz, =1, (22)
i=1

and from here follows by and that

> will gl = wemax{ |z, g, — Awp, 0} + > wi(zlla, —m))* =X+¢& O (23)
i=1 reR leL

Remark 2.1. In the situation when B; > 1 for all i=1,...,n, we get by summarizing the formulae

(@) and [13)

_1
Bi—1

ni(A)

iy (5wl = mi (V)% ) = wibié
ni(A)

wil (S wi (sl — ()% ) = wiBig

By setting x; = ||zill, —mi(A) >0, i =1,...,n, formula can be expressed by

m:(A) +

= [l

=

= (lzillye, —m)* 7 i=1,n (24)

lzill#; — xi 8i—1

w; B (2?21 ij?) — wiBi§ o

n
1 : 1
S wiBix; T > wix; = EwiBix T+ xi = Izl
=1

n
28;—1 i —1 j i —1 .
& wBix}" T+ wibix; ijXj] —&wiBix;" " +xi = @il t=1,...,n.
j=1
i

Hence, it holds for every (x1,...,xn,§) € H1 X ... X Hp X R

n
(@1, oo s &), if Y willaallhy, <€
=1

Pepih(ffl, ey Ty &) = -
(T1y -y Up, 0), otherwise,



with

P n
o Xi ; ) —Bi
Y, = ——x;, i=1,..n, and 0 = E wiXs ",

! ||£BZHH'L ’ ’ i=1 e

where }; > 0, i = 1,...,n, are the unique real numbers that solve a polynomial equation system
of the form

n
wBix? T+ wiBi) Y D winy — GwiBx T+ xi = il i =1,
e
Let us additionally mention that the case where n =1 was considered for instance in [12].
An important consequence of Theorem where 3; = 1 for all i = 1, ..., n, follows.

Corollary 2.1. Let h be given by @ where B; =1 foralli =1,...,n. Then for all (x1,...,x,,§) €
Hi X ... Xx Hp X R it holds

n
(:rlw")‘,rnaé)v Zf Z leleHz S 67
i=1

Pepih(l'l; ..-,-’L'rug) = (O’HU ..-,OHJL,O), Zf§ < 0 and ||$Z||H1 < —gwi7 i=1,..,n, (25)
(U1 -y Up, 0), otherwise,
where
i, — Aw;, 0 _ B
.- max{||zily; — Aw, }x@-, i=1,..,n, and = £ + X,
i |7,
with
= 2
Soowiti— €&
~ =kt
A== (26)
> w1l
i=k+1

and k € {0,1,....,n — 1} is the unique integer such that 7u < X\ < Tp11, where the values To, ..., Tn
are defined by 10 :== 0 and 7; := ||zi||, /wi, i = 1,...,n and in ascending order.

Proof. As 3; =1 for all i = 1, ...,n, Theorem [2.7] yields

n
(xlu '“71"77,75)7 if Z wZHleHZ S g’
i=1

Pepih(xla”wmnag) = =
(Ui -y Yy, 0), otherwise,
with

il — Aw;, 0 _ _
y; = max{(|zi7 Wiy }:ci, i=1,...,n, and 0 = £ + A,

|zl 7,

where A > 0 is a solution of the equation

Zwi max{||zi||y, — Awi, 0} = A+ &.
=1



Now, we consider the case where » i" | wj||zi||l3, > & and distinguish two cases. B
(a) Let € < 0. If ||aj||, +&w; <O0foralli=1,..,n, we have by 0 < 8 =&+ A, i.e. £ > —\, that

0> [l2illp, + Ewi > il — Aw; Vi =1,...,n, (27)

and from here follows that

N+ &= wimax{|zi[lp, — Mw;, 0} =0, ie. X =~ (28)
=1

But this means that (7, ...,7,,0) = (03, ..., 031, ,0), which verifies the second case of .

If we now assume that there exists j € {1,...,n} such that ||z;]|3;, +&w; > 0, then we define the
function g : R — R by

:Zw?max{n—)\,O}—)\—ﬁ. (29)

i=1

Moreover, this assumption yields

51,
E i — A A— E i — A A4 —
w? max{r; — \,0} — €<y wimax{r; — 0} — A+ w;

Now, we choose A > 0 such that lwilla, — wix < 0 for all i = 1,...,n, and get

g(\) < —)\+w <0.
wj
(b) Let £ > 0. If there exists j € {1, ...,n} such that ||z;||3, +&w; < 0, we derive a contradiction.
Therefore, it holds ||x;||%, + &w; > 0 for all i = 1,...,n, and for the function g we have

:wamax{Ti—)\,O}—/\—fg Zw?maX{Ti—/\,O}—)\.

i=1 =1

Now, we can take A > 0 such that llillm, — wix < 0 for all i = 1,...,n, and derive that
g < =X <0. B B

In summary, we can secure the existence of A > 0 such that g(\) < 0. Additionally, take note
that, if A = 0, then ¢g(0) = > ; wil|zi|ln, — & > 0. The rest of the proof is oriented on the
Algorithm I given in [18] to determine the projection onto an /;-norm ball.

Since, the values 79, ..., 7,, are in ascending order, g is a piecewise linear function in A, where the
slope of g changes at A = 7, i = 0, ..., n. More precisely, at A = 0 the slope of g is —(3>_1; w?+1)
and increases by w% when A\ = 71. If we proceed in this way, one may see that the slope keeps
increasing when A takes the values 7¢, k = 2, ...,n. In the case when A > 7, the slope of g is —1.
Hence, to determine A such that g(A\) = 0, we have to locate the interval where g changes its
sign from a positive to a negative value. In other words, we have to find the unique integer
k €{0,...,n — 1} such that g(7) > 0 and ¢g(7%+1) < 0. Hence, we have

——(i w?+1>A+ Zn: wr; — €,

i=k+1 i=k+1

9



where 7, < A < 7j41. Finally, we can determine \ such that g()\) = 0:

n

> owiTi—¢
i=k+1
_

>owi+l
i=k+1

A=

O

Remark 2.2. From the ideas of the previous proof, we can now construct an algorithm to
determine X of Corollary .
Algorithm:

1. [f Z?:l le.%}H'Hl S f, then X =0.
2. If € <0 and ||lz;||ln, < —€w; for alli =1,...,n, then X = —€.

3. Otherwise, define 19 := 0, 7; = ||zil|n, /wi, © = 1,...,n, and sort 79,..., T, in ascending
order.

4. Determine the values of g defined in (@ atA=7;,1=0,..,n.
5. Find the unique k € {0, ...,n — 1} such that g(73) > 0 and g(7x+1) < 0.
6. Calculate \ by (@

Corollary 2.2. Let h be given by (@ where B; =2 and w; = 1 for alli =1,...,n, then it holds

n
(I‘l, "'7$na€)a /I’f Z ||:):"LH’2;'-[Z S 57
i=1

Pepih(xlw'wxrwf) = =
(G1s -y Ups ), otherwise,

where
1

U= ——x;, i=1,...n, and 0 = £ + X\,
T W :

and X > 0 is a solution of a cubic equation of the form
NN+ T L (e g, ) —o. (30)
4 4 i=1 .
Proof. By Theorem [2.1] we get that

n
(x17---,xn7€>7 if Z Hxl”%{ <¢,
- i
1=

Pepin(®1, o ¥, §) =
(U1y -y Uy, 0), otherwise,

with

_ il — m(N)

s zi, i=1,..,n, and 0 = £ + X, (31)
[EAIE

10



where 7;(\) is the unique non-negative real number that solves the equation

< i (A .
i+ 5 i, =1, (32
2\
and A > 0 is a solution of the equation
> (il —m(N)* = A+ €. (33)
i=1
From we get immediately
0 (14 55 ) = ol w0 = 22l =1 (34)
i — | = [I%illH; i = = Til|Hsy 0= L,y
n X Hi n ™1 Hi

and in combination with we derive

n

-~ 2 n
22} - 1 ,
Tilly, — —= il =A+éss — zill5, = A+
E <| [E7 2)\+1H ||Hz> 3 @11 ;:1 |zill3, 3

=1

& @AFD20+6 =D ailll, =06 A + 40+ ON + (L +4OX+E - |laillZ, =0.
i=1 =1

In the end, formula implies that

Ui = Ti= oy
220 +1

i= 1, 35
HxZHHL :U'H 1 9 7n7 ( )

which completes the proof. O

The next remark discusses the question whether the solution A > 0 of Corollary is unique.

Remark 2.3. Let (21, ..., 2, &) € Hi X ... X Hp X R be such that Y7 ||2il|3, > € and g : R — R
be defined by g(A) == X’ + (1 + €N + (1/4)(1 + 4)A + (1/4) (6 — 7y llwallF,,), then g'(N) =
SAZ 421+ N+ (1/4)(1+4€) as well as g"(N\) = 6\ +2(1 +€). From the zeros of ¢ we derive
the local extrema of g as follows

1 (1+8> 144 1 \/4(1+2§+§2)—3(1+4§)
Aijz = _3(1+§)i\/ 9 o~ 3t oE 36

1 1-464+42 1 1.
= 0+9+——F— =20+ * (1-%)

and hence, A\j = —(1/6)(1 + 4£) and Ao = —(1/2).

Further, if £ > 1/2 & —142¢ > 0, then g is strongly monotone increasing on Ry, g"(\1) =
1—-2¢ <0 and g"(A2) = —1+42€ > 0, which means that g has in A1 a local mazimum and in Ay
a local minimum. As A\ < X2 < 0 and g(0) = (1/4)(& = X1, |2llF,,) <0, the function g has
exactly one positive zero in this situation.

If€E<1/21-2>0, then ¢"(M) =1—2£ >0 and ¢"(X2) = =1+ 2£ < 0 and we derive a
local minimum in A1 and a local mazimum in Ay. From g(0) < 0 and Ag < A1 we conclude that
g has also in this situation exactly one positive zero.

11



Finally, let us consider the case where & = 1/2, then g is strongly monotone increasing on R4,
A =X =—1/2 and ¢"(A\1) =0, i.e. g has at the point —(1/2) a saddle point. From the fact
that ¢"(\) <0 for all X € (—o0, —(1/2)] and g"(N\) > 0 for all X € (—(1/2),4+00), it is clear that
g has again exactly one positive zero.

In conclusion, the function g has in all situations exactly one positive zero, i.e. X > 0 is unique.

Remark 2.4. In the framework of Corollary[2.3, let us consider the case where n = 1. Then,
by Remark [2.1) we have to find a real number X > 0 that solves the equation

20 + (1= 26)x — ||zl =0, (36)

to get a formula of the projection onto the epigraph of h.

As one may see by (@), the arithmetic effort for the case n > 1 is not much higher compared
to the case n = 1. In both situations we have to solve a cubic equation to derive a formula for
the projection onto the epigraph of h.

As a direct consequence of Corollary one gets the following well-known statement (see for
instance [1] or [12]).

Corollary 2.3. Let h be given by (13) wheren =1, w1 =w > 1 and 1 = 1, i.e. h(z) = wl|z||x.
Then, for every (z,§) € H xR

(@), Fullelx <&,
Popiu (@, €) = § (0,0). if llll3 < —we,
lzllztwe . wlzl+w .
(Hx”’;{?w2+1)x7 w;d“ ) ) otherwise.

For our numerical tests we need two lemmas more.

Lemma 2.1. Forp, € H,i1=1,...,n, it holds

P n . (xlv-“ax )f):P n ) (xliplw"?x — P 7£)+(p17"'7p ’0)
evi (£ wil-mil,) " evi (£ il ) non "

i=1

i=1

Proof. For p; € H;, © =1, ...,n one has

n n
(@1, 001, §) € epi (Z wil| - pi”%;) < ZwiH%’ *piH%i <¢
i=1 P
n
& (@ =Pt = pn6) € opi <Z il u%;)
i=1

n
Aad (xb"vxnag) € epl <Z wz” : H’}IB-Z,L> + (p17"'7pn70)'

i=1

Thus, by [1, Proposition 3.17] follows

P n N (1, ey, &) =P n , T1yeeey Ty, &
epi(z le_plnf{ZZ) ( " ) epi<lzlwi”'f-zi)—"_(pl?"'vpnvo)( " )

i=1 i=

>
1

=P /. 5 (1 —p1y ey Ty, — Py &) + (P14 vy Py 0).
eni (32 will1%,)
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Lemma 2.2. Let w > 0 and A : K — H be a linear operator with AA* = uld, u > 0, where K
1s a real Hilbert space. Then,

Pt 0= 00 (2o 210) (Pusnsg (o) - (L ane)).

where ﬁA* xId:H xR — K xR is defined as (#A* X Id) (y,¢) = (#A*y, C).

Proof. We have
1 1
Oepi(w]|A-[l2¢) (€5 €) = Gepi(w - I70) (\/ﬁA%f) = (5epi(w\/ﬁ|~llﬁ) ° <\/ﬁf4 x Id>) (, ).
By [1, Proposition 23.32] (with L = (1/,/)A x 1d) it follows that

Prox, (z,£) = prox )(93, £)

. 1
eplw”A-HfH 5ep1(w\/ﬁ|H|H)o(ﬁAXId

e (i) (o, (o) - (nd))
o P~ 0.0 (1 510) (P (o) - (o))

2.2 Gauges

The next considerations are devoted to gauge functions (a.k.a. Minkowski functional) of a closed,
convex and non-empty subset C C H, v¢o : H — R defined by

o) = {inf{A>O:xe)\C’}, if {A>0:2€A\C}#0D,

400, otherwise.

Theorem 2.2. Let C be a closed conver subset of H such that 0y € C, then it holds for every
(x, ) e H xR

(xaé)a if’YC(:C) < fa
Pepi'yc (:U7§) - (Pcl(dom'YC)(m)7§) ) fo ¢ dom’YC’ and (el (Pcl(dom'yc)(x)) < f < fYC(x)a

(y,0), otherwise,

where

1

J=x— APco (m) and 0 = X+ ¢
and X > 0 is a solution of an equation of the form

A
A+E= <x,PCo (ix>> - A ‘ Peo (ix)
H

Proof. Let us consider for fixed (z,£) € H x R the following optimization problem

2

H

S {507+ Sl ali}. (37)
Yo (y)<o

13



If vo(z) < &, ie. (z,€) € epivyc, then it is obvious that (7,0) = (z,£). In the following we
consider the non-trivial situation where yo(z) > &.

We define the function f : # x R = R by f(y,6) := (1/2)(0 — £)* + (1/2)||y — z||3, and the
function g : H x R — R by ¢(y,0) = 7o (y) — 0, then it is clear that f is continuous and strongly
convex and g is proper, lower semicontinuous and convex by [22, Theorem 2.1]. As v¢(0) < 1,
it follows by [5, Theorem 3.3.16] (see also [5, Remark 3.3.8]) that

0€d(f +(7\9)(.0) (38)

and

(39)

where (7, 5) is the unique solution of and A > 0 the associated Lagrange multiplier. Fur-
thermore, from [5, Theorem 3.5.13] one gets that

0€d(f+(A\g)(@0) ©0edf(y,0)+ () (7, 0). (40)
If A = 0, then it follows by @ and

0e 8f(ﬂ,§) + 85domg(yv 9) <0¢ (? - 3379 - g) + aédom'ych(g7§)
< 0€ (? - Z, 0 — g) + aécl(domyc)xR(g7 9) g (:Z: - gv& - 9) € aécl(dom"/c)XR(ga 0)
y= Pcl(domvc)(l‘)a
0=¢,
and thus, it holds by the feasibility condition that vc (Pei(dom 1o) (7)) < &, from which follows
that Pej(dom~e) (7) € dom~ye. If 2 € dom ¢, this means that Pjqom 4.)(2) = = and again by the
feasibility condition that yo(z) < £, which contradicts our assumption. Therefore, if = ¢

dom ¢ and the inequalities Yo (Pci(dom yo)(x)) < § < e (z) hold, then (7, 0) = (Pd(domw)(x), £).
Now, let A > 0, then it follows from and @

0€d(f+(Xg)[®,0) < 0edf(y,0)+ Ng(y,0)

& Vi@E) e Myg0) o LE AW T o,
0—¢&=2\ f=¢—N,

A (?7 6) = Pcl(dom'yc)XR(l‘7€) A {

(41)

by combining and we derive that v¢(y) = & + A. Finally, as by [22, Lemma 2.1]
and [22, Remark 2.2] it holds that 7% = dco, one gets by [1, Theorem 14.3(iii)] the following
equivalences

o) =&+ X (42)

_ 1 1
&S E+ A= (proxch x) + dco <Pco <)\x>) = <pr0}><;)\,yc z,Pco ()\x) >7{
_ - 1 1
& §+)\:<:1:—/\Pco (x),PCo <x>> . g
A A 2y

Corollary 2.4. Let C CH be a closed convex cone, then yo = éc and

(2,€), ifz€C and § >0,

Pepive (7,8) = Poxr, (z,8) = {(PC x,max{0,{}), otherwise.
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Proof. We use Theorem Let x € dom~¢ such that yo(x) > &, then one has from [l
Proposition 28.22] and [1, Theorem 6.29] that

~ 1
y=x—APco <)\:L’>::E—PCOSL'=P0$. (43)

Moreover, as o = d¢ it holds that dom vz = C and by we have y¢(y) = 0, which yields
Pepine (2,€) = (Pcx,7¢ (P x)) = (P x,0).

If x ¢ dom~yo = C, then 0 = 7¢ (Pd(dom%)(fv)) <& < vo(z) = +oo and so, Pepiqy(2,€) =
(Pei(domne) (%), €) = (Po w,§), which implies the statement. O

Corollary 2.5. Let C; be a closed conver subset of H; such that Oy, € intC;, i =1,...,n, and
the gauge yo : Hi X ... X Hp, — R be defined by yo(x1, ..., xn) = Yy Yo, (xi). Then it holds for
every (L1, ...,Tn,&) € H1 X ... X Hpy xR

(l’l,...,l’n,é.), Zf il'YCz(eTz) §§7

Peping (T15 0y 70, §) =
(U1s -, Yp, 0), otherwise,

where

_ 1 o
Ui =xi — APgo <)\xi>, i=1,...,n, and = X+ & (44)
and X > 0 is a solution of an equation of the form

" 1 1
= (s (59)),, = e (50)
i=1 Hi

Proof. As 0y, € int C;, i = 1, ..., n, it is clear that the gauges are well-defined, i.e. dom ¢, = H;,
i=1,...,n, and so, domyc = Hq X ... x H,. Further, let us recall that the polar set C° of the
set C can be characterized by the dual gauge yoo as

2 ] | 5)

H;

CO = {2 = (x1,...,2n) € H1 X .. X Hp 1 Y0 () = Yoo (21, .oy ) < 1} (46)

This relation holds also for the polar set C’ZQ and its associated dual gauge vco, 1 = 1,...,n.
Moreover, in [21] it was shown that vco(z) = maxi<i<n{7co(zi)} and hence, the polar set in
can be written as

o0 {(wl,...,xn) € M1 X v x Hy  max {1cp(w1)} < 1}
= {(:L’l, vy @) € Hy X oo X Hoyy ’ch(xi) <1, i=1, ,n}
= {z1 € "1 yeo(ar) S 1} x o x {an € Hy oo (an) < 1} = CY x ... x CY.
From here follows that
Poo(2) = Peoy xog (@1, 2n) = Poo(21) X .. X Pog (),

which by using Theorem directly implies and . O
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Remark 2.5. Like in Lemma|2.4, one can give a formula for the projection onto the epigraph
of a gauge composed with a linear operator A : I — H with AA* = uld, p > 0,

1, 1 1
Pepi'yc(A~)($7§) = (Cl?,f) + (\/EA X Id) (Pepi\/ﬁvc(-) <\/IEA:E7£> - <\/,EA:L‘7£>> .

Moreover, it can easily be observed that for p € H holds (similar to the proof of Lemma

Pepi’yc(~—p)(x>£) = Pepiwc(x - paf) + (p, 0)'

We close this section with a characterization of the subdifferential of a gauge function by the
projection operator.

Remark 2.6. Let C' C H be closed and convex such that Oy € C, then it holds by (@, (@, 122,
Lemma 2.1], [22, Remark 2.2] and [1, Theorem 14.3(i1)] for all x,y € H that

redvc(y) & rty—ycdcly) & y=prox,,(r+y)
& y=z+y—prox,. (r+y) < y=z+y—proxs (v +y)
& x=Pro(z+y).

From which follows that
Ocly) ={reH:x=Pu(z+y)}.
In addition, if C is a closed convex cone, then it follows from [1, Theorem 6.29] that

Oely) ={zeH:z=a+y—-Polx+y}={zeH:y=Polz+y)}.

3 Numerical experiments

Our numerical tests are implemented on a PC with an Intel Core i7-6700HQ CPU with 2.6GHz
and 12 GB RAM. While the numerical tests in [14] were based on the partial inverse algorithm

introduced by Spingarn in [19], we use here the parallel splitting algorithm from [1, Proposition
27.8].

Theorem 3.1. (parallel splitting algorithm) Let n be an integer such thatn > 2 and f; : R® — R
be a proper, lower semicontinuous and conver function fori=1,...,n. Suppose that the problem

(PP) min {Z fl-<:c>}
=1

has at least one solution and that dom f1 N () _yintdom f; # 0. Let (ug)ren be a sequence in
[0,2] such that Yoyt (2 — px) = +00, let v > 0, and let (x;0)j-; € R® x ... x R®. Set

(VkeN) | rp=5 2 @ik,
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Then (ri)ren converges to a solution of problem (PPT).

In order to use the parallel splitting algorithm given in the previous theorem, we need to rewrite
the extended multifacility location problem (EP]]\\,/I’B) in into an optimization problem with
an objective function, which is a sum of proper, convex and lower semicontinuous functions.
The first way to reformulate this location problem is based on the introduction of an additional
variable as presented in @:

(EP]]\\,/I”B) min t+>» 6 /.. (T1yeeey Tpny t) o - (47)
(Z1,eeyTm,t) EREX ... XRIXR =1 epi<zl wij'piﬁi>
J=

We define the functions

fi:Rix ... xRYxR— R, fi(z1,...,zm,t) =t and
fi:REx X REXR =R, fi(zy, o @mt) =6 /. (T1, ey Tyns 1),
9pi<21wij|'—mllﬁi>
=

i=2,...,n+1, then dom f; = R% x ... x R? x R and

m m
N | Bi 1 int d . — int eni A —p. 1B
Ogd, -, Opa, 11;1@;2}% Z;wUleH + € int dom f; = int epi Z;wUH pill
j= j=

for all t = 2,...,n + 1, i.e., it holds that dom f; N ﬂ?;; int dom f; # (). Therefore, the sequences
generated by the algorithm from Theorem [3.1] converges to a solution of the location prob-

lem (EP]]\% P ) and the following formulae for the proximal points associated to the functions
f1, -y fnt1 can be formulated by using @D and Lemma

W1y s Y 0) = Prox, ¢, (21, ..., Ty, t)

S (X1, ey Ty t) — (G ooy Uy 0) € OWf1)(U1y vy U 0) = (Opa, ..., Oga, V)
& xi=7, i=1,..,m,and 0 =t —v & (Gq, ..., Yy, 0) = (21, ..., Ty t — V)

and

(Y15 Tms0) = DProx, s, (w1, ..., T, t) = Prox, N
epi(zl wun-—piwl‘)
i=

= P m (xl,...,xm,t)
()

(iL‘l, ...,l’m,t)

> wijll-—pill®i
j=1

= P m (.’171 _pla7xm_plat)+(p’bvvpho) (48)
epi(.z wij||~||6i>
j=1
The second way to rewrite the extended multifacility location problem (EP]]\\,/[ B ) into an opti-
mization problem of the form of (PP%) makes use of the ideas of Cornejo and Michelot given
in [14] and splits the sums of weighted norms by n - m additional variables (see also ([7))):

m n n
M., .
LT Y (35 5 Y MRNISRRES  SHISAT] ST
J=1,0myi=1,..,n j=li= iz
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where 7;(ti1, ..., tim) = Z;”:ltij, i = 1,..,n. Now, let ¥ := (21,...,2,) € R? x ... x R%,

/tv;: (tij)i:17_”,n7j:17...,m7

fi:RIx .. xREXR™ xR — R, f1(T,t,1) :=t,
~—_——
m—times
fz'j : Rd X ..o X Rd X R™ x R — R, fij(.%,t,t) = 6epi(wij||-—pi||ﬁi)(xj’tij)’

j=1,...m, t=1,...,n, and

ﬁ : Rd X ..o X Rd x R™ xR — @, ﬁ(f,;{,t) = 6epi’ri(ti17 ...,tim,t), 1= 1, sy N

As
dom fi =R% x ... x R x R™ x R,
dom fij = {(7,7,t) € RY x ... x RT x R™ x R : (1, i5) € epi(uwy | - —pil|*) }
1=1,...,n, j=1,....,m,
domﬁ- = {(5,’{,15) S Rd X ... X Rd X R™ x R : (tih ...,tim,t) S epin},
1=1,...,n

and

<0Rd7 o Oga, max {uwg|pill*} + 1, .., maxx {wijlps]| 7} +1,m max {wij|pil*} +m + 1)

1<i<m 1<<m 1<i<m

€ dom f1 N ﬂ intdom f;; | N ﬂ int domﬁ ,
1<i<n, 1<i<n
1<5<m
convergence in the sense of Theorem can be guaranteed. Now, let § := (7y,...,%,,) and
g := @ij)lgign, 1<j<m, then one has by @i for the corresponding proximal points of the functions
fi, fij, 7=1,..,m,i=1,...,n,and f;, i=1,...,n,

(g757§) = prOXVfl(%a%;t) = (ORd7 ey Oga, 0,..,0 ,t — V)
—_———— ——

m—times mn—times

and by @D and Lemma

(7,0.0) = prox, ;. (#.5,1) & (3,4.t) — (7.0,0) € 9(v;1)(7,6.0)

& (), ti;) = (1), 055) € OWepitu,, |—pili5i)) ¥y 0ij) and
Y, = Ty, Og=tg, 0=t s=1,...,n, l=1,..,m, sl #ij,

& (Y),0i5) = prox, llﬁi)(ﬂﬁj,tzj) = Pepiws; |-—pa)#) (T4> tij)

epi(wijll-—p;

=P iy, 1) (T — Pis tij) + (pi, 0) and
Y=, Og=tg, 0=t s=1,...n, I=1,...m, sl#ij, (50)
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7=1,....m, ¢ =1,...,n. Moreover, by @ and |1, Example 28.17] follows

0.0) = prox, : (7.1.1) & (7,1.t) — (7.0.0) € 0(v[)(7.6.0)

(¥,

= (tzl,.. tlm, )— (@il,.. g 9) & 8(7/5epin) (gil,...,gim,g) and
( .0
(0in

~—

tils oo Tim, ) (9;1, . lm,@), l=1,...n, | #i, (:L‘l, ,xm) = (gl, ,ym)

= 1m7§) = pl“OXl,(;epiTi (tﬂ, ceey tim, t) = Pepi‘ri (tila ceny tim, t)
i1, .oy Qi 0)T, if i tij —t <0,
j=
- _ L g Lij—t m
(91‘1, ...,Qim,Q)T — %(1, e 1y —1)T, if ];1 tij —t >0,
and (tlly ...,tlm,t) = (511,...,51771,5), l=1,...n,1 75 7, (xl,...,xm) = (@1, ...,ym),
1=1,...,n.

The tables below illustrate the performance of our method using the formulae from Corollary [2.]
and for the projection onto the epigraph of the sum of powers of weighted norms (EpiSum-
Norms) compared with the concept proposed by Cornejo and Michelot in |14], where only the
projection onto the epigraph of a weighted norm (EpiNorm) is needed (see Corollary . We
solved the problem (EP% A ) in R? and R? for different choices of given and new facilities. The
performance results are visualized by the associated figures, where we use the following notations:

NumGivFac: Number of given facilities
NumNewFac: Number of new facilities
Numlt: Number of Iterations of the algorithm
CPUtime: CPU time in seconds.

We used the following parameters for initialization: u, = 1 for all n € N. Moreover, let us point
out that we tested the algorithm of Theorem for different values of the parameter v, where
the most remarkable results are printed in the tables and the best of them concerning the CPU
time and number of iterations are visualized in the corresponding figures. Notice also that in the
context of the problem (EP]]\\,/["B) the iterate rp of Theorem is of the form ry = (21, ..., T, t)
and in the framework of (EP]]\\?”B) of the form ry = (x4, ..., o t) with t= (tij)i=1,...n, j=1,..m
where x1, ..., x,, converge to the optimal locations and ¢ to the optimal objective value.

First, we consider the situation where 5; =1 for alli =1,....n

Table 1: Performance evaluation for NumGiFac 25 and NumNewFac 5 in R?

v=>5 v =230 v =250
Numlt | CPUtime | Numlt | CPUtime | Numlt | CPUtime
EpiSumNorms 989 1.92 185 0.45 306 0.73
EpiNorm 21171 193.57 2179 17.89 2543 19.69
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Figure 1: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed line) in R?

t-component of the iterate r,

for v = 30

Table 2: Performance evaluation for NumGiFac 30 and NumNewFac 10 in R?

v=18 v =50 v =82
Numlt | CPUtime | Numlt | CPUtime | Numlt | CPUtime
EpiSumNorms 269 0.87 535 1.53 909 2.51
EpiNorm 14341 335.45 3478 71.69 4312 92.93
3{“ 1
Y |
v e == |
‘ ‘ ‘ : A T .
o vatons (g sty “ - ’ T e o

Figure 2: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed line) in R?

for v =18
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Table 3: Performance evaluation for NumGiFac 60 and NumNewFac 20 in R®

v =098 v =205 v =275
Numlt | CPUtime | Numlt | CPUtime | Numlt | CPUtime
EpiSumNorms 592 4.2 1129 7.53 1496 10.38
EpiNorm 28920 5653.66 15697 2951.28 15987 2983.45

w N
& 3
,/

@
3

t-component of the iterate M

N
X
T

20

. .
10° 10 10%

.
10°

iterations (log scale)

Figure 3: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed line) in R®

for v = 98

In Table |1} it is shown that the parallel splitting algorithm converges very slow when employed
in connection with the method proposed in [14], while our method performs much better. To be
more precise, we used here the value 0.001 as the maximum bound from the optimal location(s)
Tm), 1.e. ||[T—x|| <0.001. The corresponding figure shows that our method EpiSum-
Norms generates after 185 iterations a solution which is within the maximum bound from the
optimal solution, while the method EpiNorm needs 2179 iterations. Take also note that in this
example the location problem has in the form of EpiNorm 125 additional variables, while the
examples in the Table [2] and |3| have 300 and 1200 additional variables, respectively. For this
reason our method by far outperforms the concept EpiNorm on such optimization problems

T = (71,...,

.
10* 10°

> ~

2]

gap from the optimal solution

S

IS
T

w

L
0 0.5 1

iterations

L L
25 3

regarding the accuracy as well as the CPU speed and number of iterations.

Finally, we consider the situation where w; =1 and 8; =2 for all ¢ =1, ..., n.

Table 4: Performance evaluation for NumGiFac 25 and NumNewFac 5 in R?

v=>5 v =239 v="T2
Numlt | CPUtime | Numlt | CPUtime | Numlt | CPUtime
EpiSumNorms 398 0.47 2664 2.58 4877 4.89
EpiNorm 10377 90.34 2782 23.51 5035 42.72
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Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed line) in R?

Table 5: Performance evaluation for NumGiFac 60 and NumNewFac 10 in R®

v =110 v =445 v =495
Numlt | CPUtime | Numlt | CPUtime | Numlt | CPUtime
EpiSumNorms | 1684 3.78 6468 13.68 7433 17.01
EpiNorm 15131 970.24 5154 326.78 5713 356.06
0 \ i
\\ / % ! ‘!\
Vo R
: y al
\ / 04 :"‘
iterations (log scale) iterations

Figure 5: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed line) in R?

for v = 110

The examples in the last two tables draw a similar picture as the examples in the previous
ones. While the method EpiSumNorms generates a solution within the maximum bound from
the optimal solution after few seconds, the method EpiNorm needs several minutes. This also
points up the usefulness of our approach made in Section
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