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Abstract: We are interested in a numerical method for solving extended multifacility
minimax location problems introduced by Drezner in 1991. For this purpose, we present
some formulae of projections onto the epigraphs of the sum of powers of weighted norms
and onto the epigraphs of gauges. By bringing the extended multifacility location problem
into a form of an unconstrained optimization problem where its objective function is a
sum of functions allows us then to use the parallel splitting algorithm in combination with
the introduced projection formulae to solve this kind of location problems. Numerical
experiments document the usefulness of our approach for the discussed location problems.
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1 Introduction and Preliminaries

As argued in a large number of papers, the proximal method is an excellent tool for solving in
an efficient way optimization problems of the form

min
x∈H

{
n∑
i=1

fi(x)

}
, (1)

where H is a real Hilbert space equipped with the scalar product 〈·, ·〉H, where the associated
norm ‖ · ‖H is defined by ‖y‖H :=

√
〈y, y〉H for all y ∈ H and fi : H → R is a proper, lower

semicontinuous and convex function, i = 1, ..., n. At this point let us recall that for a given
function f : H → R, its effective domain is dom f = {x ∈ H : f(x) ≤ +∞} and its epigraph
epi f = {(x, r) ∈ H × R : f(x) ≤ r}. We call the function f proper when f(x) > −∞ for all
x ∈ H and dom f 6= ∅, lower semicontinuous at x ∈ X if lim infx→x f(x) ≥ f(x) and when the
function f is lower semicontinuous at all x ∈ X, then we call it lower semicontinuous (l.s.c. for
short).
Optimization problems of the form 1 occur for instance in areas like image processing [2,8,9,12],
portfolio optimization [4, 17], cluster analysis [3, 11], statistical learning theory [10], machine
learning [6] and location theory [4, 7, 14, 16]. In the main step of the proximal method it is
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necessary to determine the proximity operators of the functions involved in the formulation of
the associated optimization problem. The proximity operator (a.k.a. proximal mapping) of a
proper, lower semicontinuous and convex function f : H → R denoted by proxf is defined by

proxf x : H → H, proxf x := arg min
y∈H

{
f(y) +

1

2
‖x− y‖2H

}
∀x ∈ H. (2)

The proximity operator can be understood as a generalization of the projection onto a convex
set, as for a non-empty, closed and convex set A ⊆ H we have

proxδA x = PA x ∀x ∈ H, (3)

where δA : H → R defined by

δA(x) :=

{
0, if x ∈ A,
+∞, otherwise,

(4)

is a proper, convex and lower semicontinuous indicator function and PA is the projection operator
which maps every point x in H to its unique projection onto the set A (see [1]).
From (2) follows that the determination of the proximity operators of the functions fi, i = 1, ..., n,
of (1) requires the solving of n subproblems, where a favorable situation exists, when a closed
formula of a proximity operator can be given. This in turn has a positive effect on the solving
of optimization problems from the numerical point of view.
Motivated by this background, our aim is to solve numerically extended multifacility minimax
location problems (see [15]) given by

(EPM,β
N ) min

(x1,...,xm)∈Rd×...×Rd
max
1≤i≤n


m∑
j=1

wij‖xj − pi‖βi

 , (5)

where wij > 0 and pi ∈ Rd are distinct points, j = 1, ...,m, i = 1, ..., n. In this framework
we first need to rewrite this kind of location problems into the form of (1) where the objective
function is a sum of lower semicontinuous convex functions. For this purpose we introduce an
additional variable and obtain for (EPM,β

N ) the following formulation

(EPM,β
N ) min

(x1,...,xm,t)∈Rd×...×Rd×R,
m∑
j=1

wij‖xj−pi‖
βi≤t, i=1,...,n

t = min
(x1,...,xm,t)∈Rd×...×Rd×R,

(x1,...,xm,t)∈epi

 m∑
j=1

wij‖·−pi‖
βi

, i=1,...,n

t

= min
(x1,...,xm,t)∈Rd×...×Rd×R

t+
n∑
i=1

δ
epi

(
m∑
j=1

wij‖·−pi‖βi
)(x1, ..., xm, t)

 . (6)

Now, to apply the proximal method to (EPM,β
N ) one needs to calculate the proximity operators

of the functions involved in the objective function of (6). For this reason and especially in the
context of (3), we give in Section 2 formulae for the projection onto the epigraph of the sum of
powers of weighted norms. As the power of norm in (6) can be replaced by a gauge function,
we present also formulae of projections onto the epigraphs of gauges.
To point out the benefits of the presented formulae we consider then examples of location
problems in different settings and compare the numerical results with a method proposed by
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Cornejo and Michelot in [14]. The difference between these two methods is that the one given by
Cornejo and Michelot splits the sum of powers of weighted norms by introducing n ·m additional
variables. In this situation one gets the following presentation of the extended multifacility
minimax location problem

(EPM,β
N ) min

t, tij∈R, xj∈Rd,
j=1,...,m,i=1,...,n

t+

m∑
j=1

n∑
i=1

δepi(wij‖·−pi‖βi)(xj , tij) +

n∑
i=1

δepi τi(ti1, ..., tim, t)

 , (7)

where τi(ti1, ..., tim) :=
∑m

j=1 tij , i = 1, ..., n. In Section 3 we show that this concept makes the
solving process for the considered examples of location problems very slow and the advantage
of our approach more clear. The numerical tests are based on the parallel splitting algorithm,
which can be found for instance in [1].

Finally, we collect some properties of Hilbert spaces, which can be found with proofs for instance
in [1] and [13].
If for a function f : H → R we take an arbitrary x ∈ H such that f(x) ∈ R, then we call the set

∂f(x) := {x∗ ∈ H : f(y)− f(x) ≥ 〈x∗, y − x〉 ∀y ∈ H}

the (convex) subdifferential of f at x, where the elements are called the subgradients of f at x.
Moreover, if ∂f(x) 6= ∅, then we say that f is subdifferentiable at x and if f(x) /∈ R, then we make
the convention that ∂f(x) := ∅.If f is Gâteaux-differentiable at x ∈ H, then ∂f(x) = {∇f(x)}.
The set of global minimizers of the function f is denoted by Argmin f and if f has a unique
minimizer, it is denoted by arg minx∈H f(x). It holds

x ∈ Argmin f ⇔ 0H ∈ ∂f(x) ∀x ∈ H. (8)

It holds

y = proxf x⇔ x− y ∈ ∂f(y) ∀x ∈ H, ∀y ∈ H. (9)

In addition, we make for the rest of this paper the convention that 0
0 = 0 and 1

0 · 0H = 0H.

In the following let H1× ...×Hn be a real Hilbert space endowed with inner product and norm,
respectively defined by

〈(x1, ..., xn), (y1, ..., yn)〉H1×...×Hn =

n∑
i=1

〈xi, yi〉Hi and ‖(x1, ..., xn)‖H1×...×Hn =

√√√√ n∑
i=1

‖xi‖2Hi ,

where (x1, ..., xn) ∈ H1 × ...×Hn and (y1, ..., yn) ∈ H1 × ...×Hn.
We close this section with a lemma, which presents a formula for the projection onto a unit
ball generated by the weighted sum of norms and generalizes the results given in [18] to real
Hilbert spaces Hi, i = 1, ..., n. Let wi > 0, i = 1, ..., n, and C := {(x1, ..., xn) ∈ H1 × ... ×Hn :∑n

i=1wi‖xi‖Hi ≤ 1}, then the following statement holds.

Lemma 1.1. For all (x1, ..., xn) ∈ H1 × ...×Hn it holds

PC(x1, ..., xn) =

 (x1, ..., xn), if
n∑
i=1

wi‖xi‖Hi ≤ 1,

(y1, ..., yn), otherwise,

3



where

yi =
max{‖xi‖Hi − λwi, 0}

‖xi‖Hi
xi, i = 1, ..., n,

with

λ =

n∑
i=k+1

w2
i τi − 1

n∑
i=k+1

w2
i

and k ∈ {0, 1, ..., n− 1} is the unique integer such that τk ≤ λ ≤ τk+1, where the values τ0, ..., τn
are defined by τ0 := 0 and τi := ‖xi‖Hi/wi, i = 1, ..., n, and in ascending order.

Proof. In order to determine the projection onto the set C, we consider for fixed (x1, ..., xn) ∈
H1 × ...×Hn the following optimization problem

min
(y1,...,yn)∈H1×...×Hn,

n∑
i=1

wi‖yi‖Hi≤1

{
n∑
i=1

1

2
‖yi − xi‖2Hi

}
. (10)

Obviously, if
∑n

i=1wi‖xi‖Hi ≤ 1, i.e. (x1, ..., xn) ∈ C, then the unique solution is yi = xi,
i = 1, ..., n. In the following we consider the non-trivial situation where

∑n
i=1wi‖xi‖Hi > 1, i.e.

(x1, ..., xn) /∈ C and define the function f : H1× ...×Hn → R by f(y1, ..., yn) :=
∑n

i=1(1/2)‖yi−
xi‖2Hi and the function g : H1 × ... × Hn → R by g(y1, ..., yn) :=

∑n
i=1wi‖yi‖Hi − 1. Hence,

by [1, Proposition 26.18] it holds for the unique solution (y1, ..., yn) of (10) that

∇f(y1, ..., yn) ∈ −λ∂g(y1, ..., yn)⇔ yi − xi ∈ −λ∂ (wi‖ · ‖Hi) (yi), i = 1, ..., n,

as well as

λ

(
n∑
i=1

wi‖yi‖Hi − 1

)
= 0 and

n∑
i=1

wi‖yi‖Hi ≤ 1,

where λ ≥ 0 is the associated Lagrange multiplier of (y1, ..., yn). If λ = 0, then yi = xi,
i = 1, ..., n, and by the feasibility condition we obtain

∑n
i=1wi‖xi‖Hi ≤ 1, which contradicts our

assumption. Therefore, λ > 0 and we get by (9) that

yi − xi ∈ −λ∂ (wi‖ · ‖Hi) (yi)⇔ xi − yi ∈ ∂(λwi‖ · ‖Hi)(yi)⇔ yi = proxλwi‖·‖Hi
xi, i = 1, ..., n.

Using [13, Proposition 2.8] reveals that

yi =

{
xi − λwi

‖xi‖Hi
xi, if ‖xi‖Hi > λwi,

0Hi , if ‖xi‖Hi ≤ λwi
=

max{‖xi‖Hi − λwi, 0}
‖xi‖Hi

xi, i = 1, ..., n,

and as
∑n

i=1wi‖yi‖Hi = 1, we conclude that

n∑
i=1

wi max
{
‖xi‖Hi − λwi, 0

}
= 1. (11)
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Now, we define the function κ : R→ R by κ(λ) =
∑n

i=1w
2
i max{τi − λ, 0} − 1. Note, that there

exists λ̃ ≥ τi for all i = 1, ..., n, such that κ(λ̃) = −1 < 0. Moreover, κ is a piecewise linear
function with κ(0) = w2

i τi−1 and its slope changes at λ = τi, i = 1, ..., n. To be more precise, at
λ = 0 the slope of κ is −

∑n
i=1w

2
i and increases by w2

1 when λ = τ1. If we continue in this matter
for i = 2, ..., n, the slope keeps increasing and when λ ≥ τn, κ(λ) = −1 such that the slope is 0.
In summary, to find the zero of κ one needs to determine the unique integer k ∈ {0, 1, ..., n− 1}
such that κ(τk) ≥ 0 and κ(τk+1) ≤ 0. In the light of the above, it holds

κ(λ) =
n∑

i=k+1

w2
i τi − λ

n∑
i=k+1

w2
i − 1,

where τk ≤ λ ≤ τk+1, and hence, one gets for λ such that κ(λ) = 0,

λ =

n∑
i=k+1

w2
i τi − 1

n∑
i=k+1

w2
i

.

2 Formulae of epigraphical projection

The first aim of this section is to give formulae for the projection operators onto the epigraph of
the sum of powers of weighted norms. For this purpose, we give a general formula in our central
theorem, from which we deduce special cases used in our numerical tests.
The second aim is to present formulae of the projection operators onto the epigraphs of gauges.
By using the fact that the sum of gauges is again a gauge (see [21]), we also present a formula
of the projector onto the epigraph of the sum of gauges.

2.1 Sum of weighted norms

Let us consider the following function h : H1 × ...×Hn → R defined as

h(x1, ..., xn) :=

n∑
i=1

wi‖xi‖βiHi , (12)

where wi > 0 and βi ≥ 1, i = 1, ..., n. By defining the sets

L := {l ∈ {1, ..., n} : βl > 1} and R := {r ∈ {1, ..., n} : βr = 1},

we can state the following formula for the projection onto the epigraph of the sum of powers of
weighted norms, which generalizes the results given for instance in [1, 12,13,17].

Theorem 2.1. Assume that h is given by (12). Then, for every (x1, ..., xn, ξ) ∈ H1×...×Hn×R
one has

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑
i=1

wi‖xi‖βiHi ≤ ξ,

(y1, ..., yn, θ), otherwise,
(13)
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with

yr =
max{‖xr‖Hr − λwr, 0}

‖xr‖Hr
xr, r ∈ R,

yl =
‖xl‖Hl − ηl(λ)

‖xl‖Hl
xl, l ∈ L,

θ = ξ + λ,

where ηl(λ) is the unique non-negative real number that solves the equation

ηl(λ) +

(
ηl(λ)

λwlβl

) 1
βl−1

= ‖xl‖Hl , l ∈ L, (14)

and λ > 0 is a solution of the equation∑
r∈R

wr max{‖xr‖Hr − λwr, 0}+
∑
l∈L

wl(‖xl‖Hl − ηl(λ))βl = λ+ ξ. (15)

Proof. For given ξ ∈ R and (x1, ..., xn) ∈ H1×...×Hn, let us consider the following optimization
problem

min
(y1,...,yn,θ)∈H1×...×Hn×R

n∑
i=1

wi‖yi‖
βi
Hi
≤θ

{
1

2
(θ − ξ)2 +

n∑
i=1

1

2
‖yi − xi‖2Hi

}
. (16)

It is clear that in the situation when
∑n

i=1wi‖xi‖
βi
Hi ≤ ξ, i.e. (x1, ..., xn, ξ) ∈ epih, the unique

solution of (16) is yi = xi, i = 1, ..., n, and θ = ξ. Therefore, we consider in the following the

non-trivial case where
∑n

i=1wi‖xi‖
βi
Hi > ξ, i.e. (x1, ..., xn, ξ) /∈ epih.

Let us now define the function f : H1 × ... × Hn × R → R by f(y1, ..., yn, θ) := (1/2)(θ −
ξ)2 +

∑n
i=1(1/2)‖yi − xi‖2Hi and the function g : H1 × ... × Hn × R → R by g(y1, ..., yn, θ) :=∑n

i=1wi‖yi‖
βi
Hi − θ, then by [1, Proposition 26.18] there exists λ ≥ 0, such that for the unique

solution (y1, ..., yn, θ) of (16) it holds

∇f(y1, ..., yn, θ) ∈ −λ∂g(y1, ..., yn, θ)⇔

{
yi − xi ∈ −λ∂(wi‖ · ‖βiHi)(yi), i = 1, ...n,

θ − ξ = λ,
(17)

where λ is the associated Lagrange multiplier of (y1, ..., yn, θ). If λ = 0, then one gets by
(17) that yi = xi, i = 1, ..., n, and θ = ξ and by the feasibility of the solution it follows that∑n

i=1wi‖xi‖
βi
Hi ≤ ξ, which contradicts our assumption. Hence, it holds λ > 0 and by (9) and

(17) we have{
xi − yi ∈ ∂(λwi‖ · ‖βiHi)(yi), i = 1, ...n,

θ = λ+ ξ,
⇔

yi = prox
λwi‖·‖

βi
Hi
xi, i = 1, ...n,

θ = λ+ ξ.

Further, from [13, Proposition 2.8] it follows for the case r ∈ R, i.e. βr = 1, that

yr =

{
xr − λwr

‖xr‖Hr
xr, if ‖xr‖Hr > λwr,

0Hr , if ‖xr‖Hr ≤ λwr
=

max{‖xr‖Hr − λwr, 0}
‖xr‖Hr

xr, (18)
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and for the case l ∈ L, i.e. βl > 0, that

yl = xl −
ηl(λ)

‖xl‖Hl
xl =

‖xl‖Hl − ηl(λ)

‖xl‖Hl
xl, (19)

where ηl(λ) is the unique non-negative real number that solves the following equation

ηl(λ) +

(
ηl(λ)

λwlβl

) 1
βl−1

= ‖xl‖Hl (20)

(notice that by (20) follows that ‖xl‖Hl−ηl(λ) ≥ 0). Furthermore, the complementary slackness
condition

λ

(
n∑
i=1

wi‖yi‖
βi
Hi − θ

)
= 0 (21)

implies that
n∑
i=1

wi‖yi‖
βi
Hi = θ, (22)

and from here follows by (18) and (19) that

n∑
i=1

wi‖yi‖
βi
Hi =

∑
r∈R

wr max{‖xr‖Hr − λwr, 0}+
∑
l∈L

wl(‖xl‖Hl − ηl(λ))βl = λ+ ξ. (23)

Remark 2.1. In the situation when βi > 1 for all i=1,...,n, we get by summarizing the formulae
(14) and (15)

ηi(λ) +

 ηi(λ)

wiβi

(∑n
j=1wj(‖xj‖Hj − ηj(λ))βj

)
− wiβiξ

 1
βi−1

= ‖xi‖Hi

⇔ ηi(λ)

wiβi

(∑n
j=1wj(‖xj‖Hj − ηj(λ))βj

)
− wiβiξ

= (‖xi‖Hi − ηi(λ))βi−1, i = 1, ..., n. (24)

By setting χi = ‖xi‖Hi − ηi(λ) ≥ 0, i = 1, ..., n, formula (24) can be expressed by

‖xi‖Hi − χi
wiβi

(∑n
j=1wjχ

βj
j

)
− wiβiξ

= χβi−1i

⇔ wiβiχ
βi−1
i

n∑
j=1

wjχ
βj
j − ξwiβiχ

βi−1
i + χi = ‖xi‖Hi

⇔ w2
i βiχ

2βi−1
i + wiβiχ

βi−1
i

n∑
j=1
j 6=i

wjχ
βj
j − ξwiβiχ

βi−1
i + χi = ‖xi‖Hi , i = 1, ..., n.

Hence, it holds for every (x1, ..., xn, ξ) ∈ H1 × ...×Hn × R

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑
i=1

wi‖xi‖βiHi ≤ ξ,

(y1, ..., yn, θ), otherwise,
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with

yi =
χi
‖xi‖Hi

xi, i = 1, ...n, and θ =
n∑
i=1

wiχ
βi
i ,

where χi ≥ 0, i = 1, ..., n, are the unique real numbers that solve a polynomial equation system
of the form

w2
i βiχ

2βi−1
i + wiβiχ

βi−1
i

n∑
j=1
j 6=i

wjχ
βj
j − ξwiβiχ

βi−1
i + χi = ‖xi‖Hi , i = 1, ..., n.

Let us additionally mention that the case where n = 1 was considered for instance in [12].

An important consequence of Theorem 2.1 where βi = 1 for all i = 1, ..., n, follows.

Corollary 2.1. Let h be given by (12) where βi = 1 for all i = 1, ..., n. Then for all (x1, ..., xn, ξ) ∈
H1 × ...×Hn × R it holds

Pepih(x1, ..., xn, ξ) =


(x1, ..., xn, ξ), if

n∑
i=1

wi‖xi‖Hi ≤ ξ,

(0H1 , ..., 0Hn , 0), if ξ < 0 and ‖xi‖Hi ≤ −ξwi, i = 1, ..., n,

(y1, ..., yn, θ), otherwise,

(25)

where

yi =
max{‖xi‖Hi − λwi, 0}

‖xi‖Hi
xi, i = 1, ..., n, and θ = ξ + λ,

with

λ =

n∑
i=k+1

w2
i τi − ξ

n∑
i=k+1

w2
i + 1

(26)

and k ∈ {0, 1, ..., n− 1} is the unique integer such that τk ≤ λ ≤ τk+1, where the values τ0, ..., τn
are defined by τ0 := 0 and τi := ‖xi‖Hi/wi, i = 1, ..., n and in ascending order.

Proof. As βi = 1 for all i = 1, ..., n, Theorem 2.1 yields

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑
i=1

wi‖xi‖Hi ≤ ξ,

(y1, ..., yn, θ), otherwise,

with

yi =
max{‖xi‖Hi − λwi, 0}

‖xi‖Hi
xi, i = 1, ..., n, and θ = ξ + λ,

where λ > 0 is a solution of the equation

n∑
i=1

wi max{‖xi‖Hi − λwi, 0} = λ+ ξ.
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Now, we consider the case where
∑n

i=1wi‖xi‖Hi > ξ and distinguish two cases.
(a) Let ξ < 0. If ‖xi‖Hi + ξwi ≤ 0 for all i = 1, ..., n, we have by 0 ≤ θ = ξ+λ, i.e. ξ ≥ −λ, that

0 ≥ ‖xi‖Hi + ξwi ≥ ‖xi‖Hi − λwi ∀i = 1, ..., n, (27)

and from here follows that

λ+ ξ =
n∑
i=1

wi max{‖xi‖Hi − λwi, 0} = 0, i.e. λ = −ξ. (28)

But this means that (y1, ..., yn, θ) = (0H1 , ..., 0Hn , 0), which verifies the second case of (25).

If we now assume that there exists j ∈ {1, ..., n} such that ‖xj‖Hj + ξwj > 0, then we define the
function g : R→ R by

g(λ) :=
n∑
i=1

w2
i max {τi − λ, 0} − λ− ξ. (29)

Moreover, this assumption yields

g(λ) =

n∑
i=1

w2
i max{τi − λ, 0} − λ− ξ <

n∑
i=1

w2
i max{τi − λ, 0} − λ+

‖xj‖Hj
wj

.

Now, we choose λ̃ > 0 such that ‖xi‖Hi − wiλ̃ < 0 for all i = 1, ..., n, and get

g(λ̃) < −λ̃+
‖xj‖Hj
wj

< 0.

(b) Let ξ ≥ 0. If there exists j ∈ {1, ..., n} such that ‖xj‖Hj +ξwj < 0, we derive a contradiction.
Therefore, it holds ‖xi‖Hi + ξwi ≥ 0 for all i = 1, ..., n, and for the function g we have

g(λ) =

n∑
i=1

w2
i max{τi − λ, 0} − λ− ξ ≤

n∑
i=1

w2
i max{τi − λ, 0} − λ.

Now, we can take λ̃ > 0 such that ‖xi‖Hi − wiλ̃ < 0 for all i = 1, ..., n, and derive that

g(λ̃) ≤ −λ̃ < 0.
In summary, we can secure the existence of λ̃ > 0 such that g(λ̃) < 0. Additionally, take note
that, if λ = 0, then g(0) =

∑n
i=1wi‖xi‖Hi − ξ > 0. The rest of the proof is oriented on the

Algorithm I given in [18] to determine the projection onto an l1-norm ball.
Since, the values τ0, ..., τn are in ascending order, g is a piecewise linear function in λ, where the
slope of g changes at λ = τi, i = 0, ..., n. More precisely, at λ = 0 the slope of g is −(

∑n
i=1w

2
i +1)

and increases by w2
1 when λ = τ1. If we proceed in this way, one may see that the slope keeps

increasing when λ takes the values τk, k = 2, ..., n. In the case when λ ≥ τn the slope of g is −1.
Hence, to determine λ such that g(λ) = 0, we have to locate the interval where g changes its
sign from a positive to a negative value. In other words, we have to find the unique integer
k ∈ {0, ..., n− 1} such that g(τk) ≥ 0 and g(τk+1) ≤ 0. Hence, we have

g(λ) = −

(
n∑

i=k+1

w2
i + 1

)
λ+

n∑
i=k+1

w2
i τi − ξ,

9



where τk ≤ λ ≤ τk+1. Finally, we can determine λ such that g(λ) = 0:

λ =

n∑
i=k+1

w2
i τi − ξ

n∑
i=k+1

w2
i + 1

.

Remark 2.2. From the ideas of the previous proof, we can now construct an algorithm to
determine λ of Corollary 2.1.
Algorithm:

1. If
∑n

i=1wi‖xi‖Hi ≤ ξ, then λ = 0.

2. If ξ < 0 and ‖xi‖Hi ≤ −ξwi for all i = 1, ..., n, then λ = −ξ.

3. Otherwise, define τ0 := 0, τi := ‖xi‖Hi/wi, i = 1, ..., n, and sort τ0, ..., τn in ascending
order.

4. Determine the values of g defined in (29) at λ = τi, i = 0, ..., n.

5. Find the unique k ∈ {0, ..., n− 1} such that g(τk) ≥ 0 and g(τk+1) ≤ 0.

6. Calculate λ by (26).

Corollary 2.2. Let h be given by (12) where βi = 2 and wi = 1 for all i = 1, ..., n, then it holds

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑
i=1
‖xi‖2Hi ≤ ξ,

(y1, ..., yn, θ), otherwise,

where

yi =
1

2λ+ 1
xi, i = 1, ..., n, and θ = ξ + λ,

and λ > 0 is a solution of a cubic equation of the form

λ3 + (1 + ξ)λ2 +
1

4
(1 + 4ξ)λ+

1

4

(
ξ −

n∑
i=1

‖xi‖2Hi

)
= 0. (30)

Proof. By Theorem 2.1 we get that

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑
i=1
‖xi‖2Hi ≤ ξ,

(y1, ..., yn, θ), otherwise,

with

yi =
‖xi‖Hi − ηi(λ)

‖xi‖Hi
xi, i = 1, ..., n, and θ = ξ + λ, (31)
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where ηi(λ) is the unique non-negative real number that solves the equation

ηi(λ) +
ηi(λ)

2λ
= ‖xi‖Hi , i = 1, ..., n, (32)

and λ > 0 is a solution of the equation

n∑
i=1

(‖xi‖Hi − ηi(λ))2 = λ+ ξ. (33)

From (32) we get immediately

ηi(λ)

(
1 +

1

2λ

)
= ‖xi‖Hi ⇔ ηi(λ) =

2λ

2λ+ 1
‖xi‖Hi , i = 1, ..., n, (34)

and in combination with (33) we derive

n∑
i=1

(
‖xi‖Hi −

2λ

2λ+ 1
‖xi‖Hi

)2

= λ+ ξ ⇔ 1

(2λ+ 1)2

n∑
i=1

‖xi‖2Hi = λ+ ξ

⇔ (2λ+ 1)2(λ+ ξ)−
n∑
i=1

‖xi‖2Hi = 0⇔ 4λ
3

+ 4(1 + ξ)λ
2

+ (1 + 4ξ)λ+ ξ −
n∑
i=1

‖xi‖2Hi = 0.

In the end, formula (34) implies that

yi =
‖xi‖Hi − 2λ

2λ+1
‖xi‖Hi

‖xi‖Hi
xi =

1

2λ+ 1
xi, i = 1, ..., n, (35)

which completes the proof.

The next remark discusses the question whether the solution λ > 0 of Corollary 2.2 is unique.

Remark 2.3. Let (x1, ..., xn, ξ) ∈ H1× ...×Hn×R be such that
∑n

i=1 ‖xi‖2Hi > ξ and g : R→ R
be defined by g(λ) := λ3 + (1 + ξ)λ2 + (1/4)(1 + 4ξ)λ + (1/4)(ξ −

∑n
i=1 ‖xi‖2Hi), then g′(λ) =

3λ2 + 2(1 + ξ)λ+ (1/4)(1 + 4ξ) as well as g′′(λ) = 6λ+ 2(1 + ξ). From the zeros of g′ we derive
the local extrema of g as follows

λ1/2 = −1

3
(1 + ξ)±

√
(1 + ξ)2

9
− 1 + 4ξ

12
= −1

3
(1 + ξ)±

√
4(1 + 2ξ + ξ2)− 3(1 + 4ξ)

36

= −1

3
(1 + ξ)±

√
1− 4ξ + 4ξ2

36
= −1

3
(1 + ξ)± 1

6
(1− 2ξ)

and hence, λ1 = −(1/6)(1 + 4ξ) and λ2 = −(1/2).
Further, if ξ > 1/2 ⇔ −1 + 2ξ > 0, then g is strongly monotone increasing on R+, g′′(λ1) =
1− 2ξ < 0 and g′′(λ2) = −1 + 2ξ > 0, which means that g has in λ1 a local maximum and in λ2
a local minimum. As λ1 < λ2 < 0 and g(0) = (1/4)(ξ −

∑n
i=1 ‖xi‖2Hi) < 0, the function g has

exactly one positive zero in this situation.
If ξ < 1/2 ⇔ 1− 2ξ > 0, then g′′(λ1) = 1− 2ξ > 0 and g′′(λ2) = −1 + 2ξ < 0 and we derive a
local minimum in λ1 and a local maximum in λ2. From g(0) < 0 and λ2 < λ1 we conclude that
g has also in this situation exactly one positive zero.

11



Finally, let us consider the case where ξ = 1/2, then g is strongly monotone increasing on R+,
λ1 = λ2 = −1/2 and g′′(λ1) = 0, i.e. g has at the point −(1/2) a saddle point. From the fact
that g′′(λ) ≤ 0 for all λ ∈ (−∞,−(1/2)] and g′′(λ) > 0 for all λ ∈ (−(1/2),+∞), it is clear that
g has again exactly one positive zero.
In conclusion, the function g has in all situations exactly one positive zero, i.e. λ > 0 is unique.

Remark 2.4. In the framework of Corollary 2.2, let us consider the case where n = 1. Then,
by Remark 2.1 we have to find a real number χ ≥ 0 that solves the equation

2χ3 + (1− 2ξ)χ− ‖x‖H = 0, (36)

to get a formula of the projection onto the epigraph of h.
As one may see by (30), the arithmetic effort for the case n > 1 is not much higher compared
to the case n = 1. In both situations we have to solve a cubic equation to derive a formula for
the projection onto the epigraph of h.

As a direct consequence of Corollary 2.1 one gets the following well-known statement (see for
instance [1] or [12]).

Corollary 2.3. Let h be given by (12) where n = 1, w1 = w ≥ 1 and β1 = 1, i.e. h(x) = w‖x‖H.
Then, for every (x, ξ) ∈ H × R

Pepiw‖·‖H(x, ξ) =


(x, ξ), if w‖x‖H ≤ ξ,
(0, 0), if ‖x‖H ≤ −wξ,(
‖x‖H+wξ
‖x‖H(w2+1)

x, w‖x‖H+w2ξ
w2+1

)
, otherwise.

For our numerical tests we need two lemmas more.

Lemma 2.1. For pi ∈ H, i = 1, ..., n, it holds

P
epi

(
n∑
i=1

wi‖·−pi‖
βi
Hi

)(x1, ..., xn, ξ) = P
epi

(
n∑
i=1

wi‖·‖
βi
Hi

)(x1 − p1, ..., xn − pn, ξ) + (p1, ..., pn, 0).

Proof. For pi ∈ Hi, i = 1, ..., n one has

(x1, ..., xn, ξ) ∈ epi

(
n∑
i=1

wi‖ · −pi‖βiHi

)
⇔

n∑
i=1

wi‖xi − pi‖βiHi ≤ ξ

⇔ (x1 − p1, ..., xn − pn, ξ) ∈ epi

(
n∑
i=1

wi‖ · ‖βiHi

)

⇔ (x1, ..., xn, ξ) ∈ epi

(
n∑
i=1

wi‖ · ‖βiHi

)
+ (p1, ..., pn, 0).

Thus, by [1, Proposition 3.17] follows

P
epi

(
n∑
i=1

wi‖·−pi‖
βi
Hi

)(x1, ..., xn, ξ) = P
epi

(
n∑
i=1

wi‖·‖
βi
Hi

)
+(p1,...,pn,0)

(x1, ..., xn, ξ)

= P
epi

(
n∑
i=1

wi‖·‖
βi
Hi

)(x1 − p1, ..., xn − pn, ξ) + (p1, ..., pn, 0).

12



Lemma 2.2. Let w > 0 and A : K → H be a linear operator with AA∗ = µId, µ > 0, where K
is a real Hilbert space. Then,

Pepiw‖A·‖H(x, ξ) = (x, ξ) +

(
1
√
µ
A∗ × Id

)(
Pepiw

√
µ‖·‖H

(
1
√
µ
Ax, ξ

)
−
(

1
√
µ
Ax, ξ

))
,

where 1√
µA
∗ × Id : H× R→ K× R is defined as

(
1√
µA
∗ × Id

)
(y, ζ) =

(
1√
µA
∗y, ζ

)
.

Proof. We have

δepi(w‖A·‖H)(x, ξ) = δepi(w√µ‖·‖H)

(
1
√
µ
Ax, ξ

)
=

(
δepi(w√µ‖·‖H) ◦

(
1
√
µ
A× Id

))
(x, ξ).

By [1, Proposition 23.32] (with L = (1/
√
µ)A× Id) it follows that

proxδepiw‖A·‖H
(x, ξ) = prox

δepi(w√µ‖·‖H)◦
(

1√
µ
A×Id

)(x, ξ)

= (x, ξ) +

(
1
√
µ
A× Id

)∗(
proxδepiw√µ‖·‖H

(
1
√
µ
Ax, ξ

)
−
(

1
√
µ
Ax, ξ

))
⇔ Pepiw‖A·‖H(x, ξ) = (x, ξ) +

(
1
√
µ
A∗ × Id

)(
Pepiw

√
µ‖·‖H

(
1
√
µ
Ax, ξ

)
−
(

1
√
µ
Ax, ξ

))
.

2.2 Gauges

The next considerations are devoted to gauge functions (a.k.a. Minkowski functional) of a closed,
convex and non-empty subset C ⊆ H, γC : H → R defined by

γC(x) :=

{
inf{λ > 0 : x ∈ λC}, if {λ > 0 : x ∈ λC} 6= ∅,
+∞, otherwise.

Theorem 2.2. Let C be a closed convex subset of H such that 0H ∈ C, then it holds for every
(x, ξ) ∈ H × R

Pepi γC (x, ξ) =


(x, ξ), if γC(x) ≤ ξ,(
Pcl(dom γC)(x), ξ

)
, if x /∈ dom γC and γC

(
Pcl(dom γC)(x)

)
≤ ξ < γC(x),

(y, θ), otherwise,

where

y = x− λPC0

(
1

λ
x

)
and θ = λ+ ξ

and λ > 0 is a solution of an equation of the form

λ+ ξ =

〈
x,PC0

(
1

λ
x

)〉
H
− λ

∥∥∥∥PC0

(
1

λ
x

)∥∥∥∥2
H
.

Proof. Let us consider for fixed (x, ξ) ∈ H × R the following optimization problem

min
(y,θ)∈H×R,
γC (y)≤θ

{
1

2
(θ − ξ)2 +

1

2
‖y − x‖2H

}
. (37)
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If γC(x) ≤ ξ, i.e. (x, ξ) ∈ epi γC , then it is obvious that (y, θ) = (x, ξ). In the following we
consider the non-trivial situation where γC(x) > ξ.
We define the function f : H × R → R by f(y, θ) := (1/2)(θ − ξ)2 + (1/2)‖y − x‖2H and the
function g : H×R→ R by g(y, θ) = γC(y)− θ, then it is clear that f is continuous and strongly
convex and g is proper, lower semicontinuous and convex by [22, Theorem 2.1]. As γC(0) < 1,
it follows by [5, Theorem 3.3.16] (see also [5, Remark 3.3.8]) that

0 ∈ ∂(f + (λg))(y, θ) (38)

and {
(λg)(y, θ) = 0,

g(y, θ) ≤ 0,
⇔

{
λ(γC(y)− θ) = 0,

γC(y) ≤ θ.
(39)

where (y, θ) is the unique solution of (37) and λ ≥ 0 the associated Lagrange multiplier. Fur-
thermore, from [5, Theorem 3.5.13] one gets that

0 ∈ ∂(f + (λg))(y, θ)⇔ 0 ∈ ∂f(y, θ) + ∂(λg)(y, θ). (40)

If λ = 0, then it follows by (9) and (3)

0 ∈ ∂f(y, θ) + ∂δdom g(y, θ)⇔ 0 ∈ (y − x, θ − ξ) + ∂δdom γC×R(y, θ)

⇔ 0 ∈ (y − x, θ − ξ) + ∂δcl(dom γC)×R(y, θ)⇔ (x− y, ξ − θ) ∈ ∂δcl(dom γC)×R(y, θ)

⇔ (y, θ) = Pcl(dom γC)×R(x, ξ)⇔

{
y = Pcl(dom γC)(x),

θ = ξ,

and thus, it holds by the feasibility condition (39) that γC(Pcl(dom γC)(x)) ≤ ξ, from which follows
that Pcl(dom γC)(x) ∈ dom γC . If x ∈ dom γC , this means that Pcl(dom γC)(x) = x and again by the
feasibility condition (39) that γC(x) ≤ ξ, which contradicts our assumption. Therefore, if x /∈
dom γC and the inequalities γC(Pcl(dom γC)(x)) ≤ ξ < γC(x) hold, then (y, θ) =

(
Pcl(dom γC)(x), ξ

)
.

Now, let λ > 0, then it follows from (40) and (9)

0 ∈ ∂(f + (λg))(y, θ)⇔ 0 ∈ ∂f(y, θ) + λ∂g(y, θ)

⇔ ∇f(y, θ) ∈ −λ∂g(y, θ)⇔

{
y − x ∈ −λ∂γC(y),

θ − ξ = λ
⇔

{
y = proxλγC x,

θ = ξ − λ,
(41)

by combining (41) and (39) we derive that γC(y) = ξ + λ. Finally, as by [22, Lemma 2.1]
and [22, Remark 2.2] it holds that γ∗C = δC0 , one gets by [1, Theorem 14.3(iii)] the following
equivalences

γC(y) = ξ + λ (42)

⇔ ξ + λ = γC

(
proxλγC x

)
+ δC0

(
PC0

(
1

λ
x

))
=

〈
proxλγC x,PC0

(
1

λ
x

)〉
H

⇔ ξ + λ =

〈
x− λPC0

(
1

λ
x

)
,PC0

(
1

λ
x

)〉
H
.

Corollary 2.4. Let C ⊆ H be a closed convex cone, then γC = δC and

Pepi γC (x, ξ) = PC×R+(x, ξ) =

{
(x, ξ), if x ∈ C and ξ ≥ 0,

(PC x,max{0, ξ}) , otherwise.
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Proof. We use Theorem 2.2. Let x ∈ dom γC such that γC(x) > ξ, then one has from [1,
Proposition 28.22] and [1, Theorem 6.29] that

y = x− λPC0

(
1

λ
x

)
= x− PC0 x = PC x. (43)

Moreover, as γC = δC it holds that dom γC = C and by (39) we have γC(y) = θ, which yields
Pepi γC (x, ξ) = (PC x, γC (PC x)) = (PC x, 0).
If x /∈ dom γC = C, then 0 = γC

(
Pcl(dom γC)(x)

)
≤ ξ < γC(x) = +∞ and so, Pepi γC (x, ξ) =

(Pcl(dom γC)(x), ξ) = (PC x, ξ), which implies the statement.

Corollary 2.5. Let Ci be a closed convex subset of Hi such that 0Hi ∈ intCi, i = 1, ..., n, and
the gauge γC : H1 × ...×Hn → R be defined by γC(x1, ..., xn) =

∑n
i=1 γCi(xi). Then it holds for

every (x1, ..., xn, ξ) ∈ H1 × ...×Hn × R

Pepi γC (x1, ..., xn, ξ) =

(x1, ..., xn, ξ), if
n∑
i=1

γCi(xi) ≤ ξ,

(y1, ..., yn, θ), otherwise,

where

yi = xi − λPC0
i

(
1

λ
xi

)
, i = 1, ..., n, and θ = λ+ ξ (44)

and λ > 0 is a solution of an equation of the form

λ+ ξ =

n∑
i=1

[〈
xi,PC0

i

(
1

λ
xi

)〉
Hi
− λ

∥∥∥∥PC0
i

(
1

λ
xi

)∥∥∥∥2
Hi

]
. (45)

Proof. As 0Hi ∈ intCi, i = 1, ..., n, it is clear that the gauges are well-defined, i.e. dom γCi = Hi,
i = 1, ..., n, and so, dom γC = H1 × ...×Hn. Further, let us recall that the polar set C0 of the
set C can be characterized by the dual gauge γC0 as

C0 = {x = (x1, ..., xn) ∈ H1 × ...×Hn : γC0(x) = γC0(x1, ..., xn) ≤ 1}. (46)

This relation holds also for the polar set C0
i and its associated dual gauge γC0

i
, i = 1, ..., n.

Moreover, in [21] it was shown that γC0(x) = max1≤i≤n{γC0
i
(xi)} and hence, the polar set in

(46) can be written as

C0 =

{
(x1, ..., xn) ∈ H1 × ...×Hn : max

1≤i≤n
{γC0

i
(xi)} ≤ 1

}
=

{
(x1, ..., xn) ∈ H1 × ...×Hn : γC0

i
(xi) ≤ 1, i = 1, ..., n

}
= {x1 ∈ H1 : γC0

1
(x1) ≤ 1} × ...× {xn ∈ Hn : γC0

n
(xn) ≤ 1} = C0

1 × ...× C0
n.

From here follows that

PC0(x) = PC0
1×...×C0

n
(x1, ..., xn) = PC0

1
(x1)× ...× PC0

n
(xn),

which by using Theorem 2.2 directly implies (44) and (45).
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Remark 2.5. Like in Lemma 2.2, one can give a formula for the projection onto the epigraph
of a gauge composed with a linear operator A : K → H with AA∗ = µId, µ > 0,

Pepi γC(A·)(x, ξ) = (x, ξ) +

(
1
√
µ
A∗ × Id

)(
Pepi

√
µγC(·)

(
1
√
µ
Ax, ξ

)
−
(

1
√
µ
Ax, ξ

))
.

Moreover, it can easily be observed that for p ∈ H holds (similar to the proof of Lemma 2.1)

Pepi γC(·−p)(x, ξ) = Pepi γC (x− p, ξ) + (p, 0).

We close this section with a characterization of the subdifferential of a gauge function by the
projection operator.

Remark 2.6. Let C ⊆ H be closed and convex such that 0H ∈ C, then it holds by (3), (9), [22,
Lemma 2.1], [22, Remark 2.2] and [1, Theorem 14.3(ii)] for all x, y ∈ H that

x ∈ ∂γC(y)⇔ x+ y − y ∈ ∂γC(y)⇔ y = proxγC (x+ y)

⇔ y = x+ y − proxγ∗C (x+ y)⇔ y = x+ y − proxδC0
(x+ y)

⇔ x = PC0(x+ y).

From which follows that

∂γC(y) = {x ∈ H : x = PC0(x+ y)} .

In addition, if C is a closed convex cone, then it follows from [1, Theorem 6.29] that

∂γC(y) = {x ∈ H : x = x+ y − PC(x+ y)} = {x ∈ H : y = PC(x+ y)} .

3 Numerical experiments

Our numerical tests are implemented on a PC with an Intel Core i7-6700HQ CPU with 2.6GHz
and 12 GB RAM. While the numerical tests in [14] were based on the partial inverse algorithm
introduced by Spingarn in [19], we use here the parallel splitting algorithm from [1, Proposition
27.8].

Theorem 3.1. (parallel splitting algorithm) Let n be an integer such that n ≥ 2 and fi : Rs → R
be a proper, lower semicontinuous and convex function for i = 1, ..., n. Suppose that the problem

(PDR) min
x∈Rs

{
n∑
i=1

fi(x)

}

has at least one solution and that dom f1 ∩
⋂n
i=2 int dom fi 6= ∅. Let (µk)k∈N be a sequence in

[0, 2] such that
∑

k∈N µk(2− µk) = +∞, let ν > 0, and let (xi,0)
n
i=1 ∈ Rs × ...× Rs. Set

(∀k ∈ N) rk = 1
n

n∑
i=1

xi,k,

yi,k = proxνfi xi,k, i = 1, ..., n,

qk = 1
n

n∑
i=1

yi,k,

xi,k+1 = xi,k + µk(2qk − rk − yi,k), i = 1, ..., n.
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Then (rk)k∈N converges to a solution of problem (PDR).

In order to use the parallel splitting algorithm given in the previous theorem, we need to rewrite
the extended multifacility location problem (EPM,β

N ) in (5) into an optimization problem with
an objective function, which is a sum of proper, convex and lower semicontinuous functions.
The first way to reformulate this location problem is based on the introduction of an additional
variable as presented in (6):

(EPM,β
N ) min

(x1,...,xm,t)∈Rd×...×Rd×R

t+
n∑
i=1

δ
epi

(
m∑
j=1

wij‖·−pi‖βi
)(x1, ..., xm, t)

 . (47)

We define the functions

f1 : Rd × ...× Rd × R→ R, f1(x1, ..., xm, t) = t and

fi : Rd × ...× Rd × R→ R, fi(x1, ..., xm, t) = δ
epi

(
m∑
j=1

wij‖·−pi‖βi
)(x1, ..., xm, t),

i = 2, ..., n+ 1, then dom f1 = Rd × ...× Rd × R and0Rd , ..., 0Rd , max
1≤i≤n


m∑
j=1

wij‖pi‖βi

+ 1

 ∈ int dom fi = int epi

 m∑
j=1

wij‖ · −pi‖βi


for all i = 2, ..., n+ 1, i.e., it holds that dom f1 ∩

⋂n+1
i=2 int dom fi 6= ∅. Therefore, the sequences

generated by the algorithm from Theorem 3.1 converges to a solution of the location prob-
lem (EPM,β

N ) and the following formulae for the proximal points associated to the functions
f1, ..., fn+1 can be formulated by using (9) and Lemma 2.1

(y1, ..., ym, θ) = proxνf1(x1, ..., xm, t)

⇔ (x1, ..., xm, t)− (y1, ..., ym, θ) ∈ ∂(νf1)(y1, ..., ym, θ) = (0Rd , ..., 0Rd , ν)

⇔ xi = yi, i = 1, ...,m, and θ = t− ν ⇔ (y1, ..., ym, θ) = (x1, ..., xn, t− ν)

and

(y1, ..., ym, θ) = proxνfi(x1, ..., xm, t) = proxνδ
epi

 m∑
j=1

wij‖·−pi‖
βi

(x1, ..., xm, t)

= P
epi

(
m∑
j=1

wij‖·−pi‖βi
)(x1, ..., xm, t)

= P
epi

(
m∑
j=1

wij‖·‖βi
)(x1 − pi, ..., xm − pi, t) + (pi, ..., pi, 0). (48)

The second way to rewrite the extended multifacility location problem (EPM,β
N ) into an opti-

mization problem of the form of (PDR) makes use of the ideas of Cornejo and Michelot given
in [14] and splits the sums of weighted norms by n ·m additional variables (see also (7)):

(EPM,β
N ) min

t, tij∈R, xj∈Rd,
j=1,...,m,i=1,...,n

t+

m∑
j=1

n∑
i=1

δepi(wij‖·−pi‖βi)(xj , tij) +
n∑
i=1

δepi τi(ti1, ..., tim, t)

 , (49)
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where τi(ti1, ..., tim) :=
∑m

j=1 tij , i = 1, ..., n. Now, let x̃ := (x1, ..., xm) ∈ Rd × ... × Rd,
t̃ := (tij)i=1,...,n,j=1,...,m,

f1 : Rd × ...× Rd︸ ︷︷ ︸
m−times

×Rmn × R→ R, f1(x̃, t̃, t) := t,

fij : Rd × ...× Rd × Rmn × R→ R, fij(x̃, t̃, t) := δepi(wij‖·−pi‖βi)(xj , tij),

j = 1, ...,m, i = 1, ..., n, and

f̃i : Rd × ...× Rd × Rmn × R→ R, f̃i(x̃, t̃, t) := δepi τi(ti1, ..., tim, t), i = 1, ..., n.

As

dom f1 = Rd × ...× Rd × Rmn × R,

dom fij =
{

(x̃, t̃, t) ∈ Rd × ...× Rd × Rmn × R : (xj , tij) ∈ epi(wij‖ · −pi‖βi)
}
,

i = 1, ..., n, j = 1, ...,m,

dom f̃i =
{

(x̃, t̃, t) ∈ Rd × ...× Rd × Rmn × R : (ti1, ..., tim, t) ∈ epi τi

}
,

i = 1, ..., n

and(
0Rd , ..., 0Rd , max

1≤i≤n,
1≤j≤m

{wij‖pi‖βi}+ 1, ..., max
1≤i≤n,
1≤j≤m

{wij‖pi‖βi}+ 1,m max
1≤i≤n,
1≤j≤m

{wij‖pi‖βi}+m+ 1

)

∈ dom f1 ∩

 ⋂
1≤i≤n,
1≤j≤m

int dom fij

 ∩
 ⋂

1≤i≤n
int dom f̃i

 ,

convergence in the sense of Theorem 3.1 can be guaranteed. Now, let ỹ := (y1, ..., ym) and

θ̃ := (θij)1≤i≤n, 1≤j≤m, then one has by (9) for the corresponding proximal points of the functions

f1, fij , j = 1, ...,m, i = 1, ..., n, and f̃i, i = 1, ..., n,

(ỹ, θ̃, θ) = proxνf1(x̃, t̃, t) = (0Rd , ..., 0Rd︸ ︷︷ ︸
m−times

, 0, ..., 0︸ ︷︷ ︸
mn−times

, t− ν)

and by (9) and Lemma 2.1

(ỹ, θ̃, θ) = proxνfij (x̃, t̃, t)⇔ (x̃, t̃, t)− (ỹ, θ̃, θ) ∈ ∂(νfij)(ỹ, θ̃, θ)

⇔ (xj , tij)− (yj , θij) ∈ ∂(νδepi(wij‖·−pi‖βi ))(yj , θij) and

yl = xl, θsl = tsl, θ = t, s = 1, ..., n, l = 1, ...,m, sl 6= ij,

⇔ (yj , θij) = proxνδ
epi(wij‖·−pi‖

βi )
(xj , tij) = Pepi(wij‖·−pi‖βi )(xj , tij)

= Pepi(wij‖·‖βi )(xj − pi, tij) + (pi, 0) and

yl = xl, θsl = tsl, θ = t, s = 1, ..., n, l = 1, ...,m, sl 6= ij, (50)
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j = 1, ...,m, i = 1, ..., n. Moreover, by (9) and [1, Example 28.17] follows

(ỹ, θ̃, θ) = prox
νf̃i

(x̃, t̃, t)⇔ (x̃, t̃, t)− (ỹ, θ̃, θ) ∈ ∂(νf̃i)(ỹ, θ̃, θ)

⇔ (ti1, ..., tim, t)− (θi1, ..., θim, θ) ∈ ∂ (νδepi τi) (θi1, ..., θim, θ) and

(tl1, ..., tlm, t) = (θl1, ..., θlm, θ), l = 1, ..., n, l 6= i, (x1, ..., xm) = (y1, ..., ym)

⇔ (θi1, ..., θim, θ) = proxνδepi τi
(ti1, ..., tim, t) = Pepi τi(ti1, ..., tim, t)

=


(θi1, ..., θim, θ)

T , if
m∑
j=1

tij − t ≤ 0,

(θi1, ..., θim, θ)
T −

m∑
j=1

tij−t

m+1 (1, ..., 1,−1)T , if
m∑
j=1

tij − t > 0,

and (tl1, ..., tlm, t) = (θl1, ..., θlm, θ), l = 1, ..., n, l 6= i, (x1, ..., xm) = (y1, ..., ym),

i = 1, ..., n.

The tables below illustrate the performance of our method using the formulae from Corollary 2.1
and 2.2 for the projection onto the epigraph of the sum of powers of weighted norms (EpiSum-
Norms) compared with the concept proposed by Cornejo and Michelot in [14], where only the
projection onto the epigraph of a weighted norm (EpiNorm) is needed (see Corollary 2.3). We

solved the problem (EPM,β
N ) in R2 and R3 for different choices of given and new facilities. The

performance results are visualized by the associated figures, where we use the following notations:

NumGivFac: Number of given facilities
NumNewFac: Number of new facilities

NumIt: Number of Iterations of the algorithm
CPUtime: CPU time in seconds.

We used the following parameters for initialization: µn = 1 for all n ∈ N. Moreover, let us point
out that we tested the algorithm of Theorem 3.1 for different values of the parameter ν, where
the most remarkable results are printed in the tables and the best of them concerning the CPU
time and number of iterations are visualized in the corresponding figures. Notice also that in the
context of the problem (EPM,β

N ) the iterate rk of Theorem 3.1 is of the form rk = (x1, ..., xm, t)

and in the framework of (EPM,β
N ) of the form rk = (x1, ..., xm, t̃, t) with t̃ = (tij)i=1,...,n, j=1,...,m,

where x1, ..., xm converge to the optimal locations and t to the optimal objective value.

First, we consider the situation where βi = 1 for all i = 1, ..., n.

Table 1: Performance evaluation for NumGiFac 25 and NumNewFac 5 in R2

ν = 5 ν = 30 ν = 50
NumIt CPUtime NumIt CPUtime NumIt CPUtime

EpiSumNorms 989 1.92 185 0.45 306 0.73
EpiNorm 21171 193.57 2179 17.89 2543 19.69
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Figure 1: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed line) in R2

for ν = 30

Table 2: Performance evaluation for NumGiFac 30 and NumNewFac 10 in R2

ν = 18 ν = 50 ν = 82
NumIt CPUtime NumIt CPUtime NumIt CPUtime

EpiSumNorms 269 0.87 535 1.53 909 2.51
EpiNorm 14341 335.45 3478 71.69 4312 92.93
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Figure 2: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed line) in R2

for ν = 18

20



Table 3: Performance evaluation for NumGiFac 60 and NumNewFac 20 in R3

ν = 98 ν = 205 ν = 275
NumIt CPUtime NumIt CPUtime NumIt CPUtime

EpiSumNorms 592 4.2 1129 7.53 1496 10.38
EpiNorm 28920 5653.66 15697 2951.28 15987 2983.45

iterations (log scale)

100 101 102 103 104 105

t-
c
o
m

p
o
n
e
n
t 
o
f 
th

e
 i
te

ra
te

 r
k

20

25

30

35

40

45

EpiSumNorm

EpiNorm

iterations ×104

0 0.5 1 1.5 2 2.5 3 3.5

g
a
p
 f
ro

m
 t
h
e
 o

p
ti
m

a
l 
s
o
lu

ti
o
n

0

1

2

3

4

5

6

7

8

9

EpiSumNorm

EpiNorm

Figure 3: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed line) in R3

for ν = 98

In Table 1 it is shown that the parallel splitting algorithm converges very slow when employed
in connection with the method proposed in [14], while our method performs much better. To be
more precise, we used here the value 0.001 as the maximum bound from the optimal location(s)
x = (x1, ..., xm), i.e. ‖x−x‖ ≤ 0.001. The corresponding figure shows that our method EpiSum-
Norms generates after 185 iterations a solution which is within the maximum bound from the
optimal solution, while the method EpiNorm needs 2179 iterations. Take also note that in this
example the location problem has in the form of EpiNorm 125 additional variables, while the
examples in the Table 2 and 3 have 300 and 1200 additional variables, respectively. For this
reason our method by far outperforms the concept EpiNorm on such optimization problems
regarding the accuracy as well as the CPU speed and number of iterations.

Finally, we consider the situation where wi = 1 and βi = 2 for all i = 1, ..., n.

Table 4: Performance evaluation for NumGiFac 25 and NumNewFac 5 in R2

ν = 5 ν = 39 ν = 72
NumIt CPUtime NumIt CPUtime NumIt CPUtime

EpiSumNorms 398 0.47 2664 2.58 4877 4.89
EpiNorm 10377 90.34 2782 23.51 5035 42.72
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Figure 4: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed line) in R2

for ν = 5

Table 5: Performance evaluation for NumGiFac 60 and NumNewFac 10 in R3

ν = 110 ν = 445 ν = 495
NumIt CPUtime NumIt CPUtime NumIt CPUtime

EpiSumNorms 1684 3.78 6468 13.68 7433 17.01
EpiNorm 15131 970.24 5154 326.78 5713 356.06
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Figure 5: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red dashed line) in R3

for ν = 110

The examples in the last two tables draw a similar picture as the examples in the previous
ones. While the method EpiSumNorms generates a solution within the maximum bound from
the optimal solution after few seconds, the method EpiNorm needs several minutes. This also
points up the usefulness of our approach made in Section 2.
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