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LAYOUT OF RANDOM CIRCULANT GRAPHS

SEBASTIAN RICHTER AND ISRAEL ROCHA

Abstract. A circulant graphH is defined on the set of vertices V = {1, . . . , n}
and edges E = {(i, j) : |i− j| ≡ s (modn) , s ∈ S} , where S ⊆

{
1, . . . , dn−1

2
e
}
.

A random circulant graph results from deleting edges of H with probability
1−p. We provide a polynomial time algorithm that approximates the solution
to the minimum linear arrangement problem for random circulant graphs. We
then bound the error of the approximation with high probability.

1. Introduction

A layout on the graph G = (V,E) is a bijection function f : V → {1, . . . , |V |}.
Layout problems can be used to formulate several well-known optimization prob-
lems on graphs. Also known as linear ordering problems or linear arrangement
problems, they consist on the minimization of specific metrics. Such metrics would
provide the solution to problems as linear arrangement, bandwidth, modified cut,
cut width, sum cut, vertex separation and edge separation. All these problems are
NP-hard in the general case.

The Minimum Linear Arrangement (MinLA) problem is to find a function f
that minimizes the sum

∑
uv∈E |f(u)− f(v)| . A layout is also called a labeling, a

ordering, or a linear arrangement. The MinLA is one of the most important graph
layout problems and was introduced in 1964 by Harper to develop error-correcting
codes with minimal average absolute errors. In fact, MinLA appear in a vast domain
of problems: VLSI circuit design, network reliability, topology awareness of overlay
networks, single machine job scheduling, numerical analysis, computational biology,
information retrieval, automatic graph drawing, etc. For instance, layout problems
appear in the reconstruction of DNA sequences [6], using overlaps of genes between
fragments. Also, MinLA has been used in brain cortex modelling [7]. In [5] it is
presented a good survey on graph layout problems and its applications.

The main contribution of this paper is a polynomial time algorithm that approx-
imates the solution to the MinLA problem for a random circulant graph. First,
a circulant graph H is defined on the set of vertices V = {1, . . . , n} and edges
E = {(i, j) : |i− j| ≡ s (modn) , s ∈ S} , where S ⊆

{
1, . . . , dn−12 e

}
. A random cir-

culant graph results from deleting edges of H with probability 1 − p. Noticeable,
circulant graphs and its random instances carry a nice shape. The MinLA problem
for these graphs is the reconstruction of that shape.
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Figure 1.1. Circulant graphs

The MinLA problem for circulant graphs is solved in [8], where the authors
address the problem of finding an embedding of G into a graph H. In that case, G is
a circulant graph and H is a cycle graph. Certain circulant graphs are of particular
interest. In [10] it is presented a polynomial time algorithm solving MinLA of
Chord graphs, which is a particular case of circulant graphs. The main motivation
of [10] is an application to topology awareness of peer-to-peer overlay networks.
The solution of [10] assumes that the Chord graph is complete. However, in real
overlay networks nodes can disconnect at any moment, so the remaining network
can be regarded as a random circulant graph. Thus, the solution to MinLA for
random circulant graphs suits well such applications.

Nevertheless, layout problems for random graphs are significantly more compli-
cated and usually the solution is an approximation of the solution of the model
graph. The paper [5] is concerned with the approximability of several layout prob-
lems on families of random geometric graphs. It is proven that some of these
problems are still NP-complete even for deterministic geometric graphs. The au-
thors present heuristics that turn out to be constant approximation algorithms for
layout problems on random geometric graphs, almost surely. The authors of [5]
remark that their algorithms use the node coordinates in order to build a layout.
That is another feature we do not require in our problem. Even tough, the random
graph follows a geometric graph model (the circulant structure), we do not have
the coordinates of the random graph in advance. The input random graph consists
of a set of vertices and edges only and we have to retrieve the circulant layout from
that.

Eigenvectors of random matrices are the main tool we use to construct the layout
in our problem. We introduce this idea in [9], where one eigenvector would suffice to
recover the structure of a random linear graph. Here, as we will see, one eigenvector
alone is not enough to encode the whole layout. Fortunately, we can combine
two special eigenvectors to find the linear arrangement. Even tough, the use of
eigenvectors in the same fashion is a common feature of both methods, here we
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require some additional technical details that were not present in [9]. Due to the
use of angles between subspaces and SVD decomposition, the technique we use
here differs significantly from [9]. There, we pointed out the generality of such
method and here it turns out we need a more careful analysis. Nevertheless, we
have evidence that these methods can be used to implement a general framework
for which layout problems can be solved in a broader class of random geometric
graphs.

The rest of the paper is organized as follow. In section 2 we define the model
matrix, state the algorithm, and the main theorems. In section 3 we describe basic
properties of angle between subspaces. Finally, in section 4 we provide the proofs
for the results.

2. Main results

A circulant matrix A is a matrix that can be completely specified by only one
vector a, that appears in the first column of A. The remaining columns are cyclic
permutations of a with offset equal to the column index, i.e., the matrix A is of the
following form

A =


a1 a2 a3 . . . an
an a1 a2 . . . an−1
...

. . .
...

a2 a3 a4 . . . a1

 .
A circulant graph is a graph with circulant adjacency matrix. Let H = (V,EH) be
a circulant graph with vertex set V = {v1, . . . , vn} and adjacency matrix A, where
[a1, ..., an] corresponds to the first row of A. We define the set of indices of non-zero
elements in the first half of the row of A as

N := {k : ak = 1, 1 ≤ k ≤ dn− 1

2
e}.

Equivalently, a circulant graph can be defined as the Cayley graph of a finite cyclic
group.

In this paper, H is referred as the model graph. The random graph we consider
is denoted by G = (V,E) which results from deleting edges of H with probability
1− p. The model matrix M is a circulant matrix that describes the structure of H,
where M = pA.

M = p



0 1 1 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 1 1
1 1 0 1 1 1 0 0 0 1
1 1 1 0 1 1 1 0 0 0
0 1 1 1 0 1 1 1 0 0
0 0 1 1 1 0 1 1 1 0
0 0 0 1 1 1 0 1 1 1
1 0 0 0 1 1 1 0 1 1
1 1 0 0 0 1 1 1 0 1
1 1 1 0 0 0 1 1 1 0



Figure 2.1. Model graph and its model matrix

Furthermore, let M̂ be the adjacency matrix of the random graph G. The entries
of M̂ correspond to independent Bernoulli variables, where P(m̂ij = 1) = mij .
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M̂ =



0 0 1 1 0 0 0 1 0 1
0 0 0 1 1 0 0 0 0 0
1 0 0 1 1 1 0 0 0 0
1 1 1 0 1 1 1 0 0 0
0 1 1 1 0 1 1 1 0 0
0 0 1 1 1 0 1 0 0 0
0 0 0 1 1 1 0 1 0 1
1 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0



Figure 2.2. Random graph and its random matrix

By construction, the labels of vertices in the random graph G corresponds to the
same labels as the graph model in the first figure. However, in the real world
we do not have the labels in advance. We are talking about a large amount of
disorganized data with additional noise. We only know that this data encodes a
circulant structure which is hidden from us. In such situations, finding the labels
for the random graph can be rather challenging. See Figure 2.3.

Figure 2.3. Data before and after the correct permutation.

That is precisely the problem we address in this paper: given a graph that follows
a circulant model, find its circular embedding, or rather, retrieve the correct order of
the vertices. We present an algorithm that solves this problem by using eigenvectors
corresponding the second and third largest eigenvalues M̂ . The algorithm can be
described as follow.

Algorithm 1

Require: Random matrix M̂
1: Compute x̂ and ŷ, the eigenvectors for λ2(M̂) and λ3(M̂)
2: Compute the angular coordinate ϕi for the point of coordinates (x̂i, ŷi)
3: Define a permutation σ such that σ(i) > σ(j) iff ϕi ≥ ϕj
4: return σ

This simple algorithm is shown to return the correct labels with a bounded error.
We quantify the error in terms of a rank correlation coefficient we introduce. Before,
let us plot the points described in Algorithm 1.
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Figure 2.4. Points whose coordinates are entries of the eigenvec-
tors. Probabilities: 0.3, 0.5, 0.9.

The circle-like shape follows indeed the layout we are looking to reconstruct.
This phenomenon can be explained in terms of angles between spaces which appear
in our proofs. Also, notice that the points that are in the wrong position are not a
major part. That can be explained in terms of rank correlation coefficients.

A rank correlation coefficient measures the degree of similarity between two lists,
and can be used to assess the significance of the relation between them. One can
see the rank of one list as a permutation of the rank of the other. Statisticians
have used a number of different measures of closeness for permutations. Some pop-
ular rank correlation statistics are Kendall’s τ , Kendall distance, and Spearman’s
footrule. There are several other metrics, and for different situations some metrics
are preferable. For a deeper discussion on metrics on permutations we recommend
[4].

To count the total number of inversions in σ one can use

D(σ) =
∑
i<j

1σ(i)>σ(j) (Kendall Distance)

First we define a refined version of the Kendall distance. This version counts
inverted pairs whose indices are at least k positions apart. First note that, for
a permutation σ, we can rewrite D(σ) as

D(σ) = |{(i, j) : σ(j) < σ(i) and i < j}|.
Given a permutation σ and an index k ≥ 1, let

Dk(σ) = |{(i, j) : σ(j) < σ(i) and i+ k ≤ j and i− j ≥ k mod n}|.
Thus, Dk counts the number of inverted pairs where the vertices have jumped at
least k positions from their original order. In particular, D1(σ) = D(σ). The
module in the definition is used to access the circular structure of the graph we
consider.

Consider the eigenvectors x and y for λ2(M) and λ3(M), respectively. As we
will see, the set of points zi = (xi, yi) have coordinates on a circle in R2. Let ϕ(x)
be the angular coordinate for x ∈ R2. A crucial observation is that {ϕ(zi)}ni=1 is an
increasing sequence. That means that the order of ϕ(zi) provides the correct order
for the vertices in the model graph. Similarly, we can consider the eigenvectors x̂
and ŷ for λ2(M̂) and λ3(M̂), respectively. Here, {ϕ(ẑi)}ni=1 does not necessarily
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form an increasing sequence. Thus, we can construct a permutation σ of indices
such that σ(i) > σ(j) if and only if ϕ(ẑi) ≥ ϕ(ẑj).

In view of the last observations, the permutation σ has a neat interpretation in
terms of Dk: Dk(σ) counts the pairs in ẑ that disagree with the order induced by
z by at least k positions. I.e, the permutation σ of Algorithm 1 has Dk(σ) pairs of
vertices in the wrong order. Fortunately, the next Theorem bounds the number of
such pairs.

Theorem 1. Let σ be the permutation returned by Algorithm 1 for a random
circulant graph. Let k ∈ Ω(nβ) and |N | = cn, for a constant c > 0. Then it holds
Dk(σ) ∈ O(n5−4β) with probability 1− n−3.

In fact, we prove a more general version of Theorem 1 where we allow the edge
density to be variable.

Theorem 2. Let σ be the permutation returned by Algorithm 1 for a random
circulant graph with model satisfying |N | = cnγ , for a constant c > 0. Let k ∈
Ω(nβ). Then we have Dk(σ) ∈ O(n11−6γ−4β) with probability 1− n−3.

Furthermore, depending on the parameters γ and β we can improve the bounds
of the last Theorems, as shown in the next result.

Theorem 3. Let σ be the permutation returned by Algorithm 1 for a random
circulant graph with model satisfying |N | = cnγ , for a constant c > 0. Let k ∈
Ω(nβ). Then we have Dk(σ) ∈ O(n

13−6γ−2β
3 ) with probability 1− n−3.

Notice that the last result shows that there is a trade off between how far vertices
can jump and the total number of such incorrectly placed vertices. That is useful
for our purpose to establish metrics on the correctness of the rank. For example,
consider the worst case of Theorem 3 when all pairs are incorrect. Assuming γ = 1,
the number of pairs that drift less than k positions apart is

(
n
2

)
−Dk. If we take

β > 1/2 in Theorem 3 , we obtain that
(
n
2

)
−Dk is asymptotically equivalent to n2

as n → ∞. That means almost no vertex will drift more than n1/2 slots from its
correct position.

Finally, the next theorem shows that the permutation returned by Algorithm 1
is well behaved in terms of the usual Kendall distance.

Theorem 4. Let σ be the permutation returned by Algorithm 1 for a random
circulant graph with model satisfying |N | = cnγ and 1 ≥ γ > 0. Then D(σ) ∈
O(n(15−6γ)/5) with probability 1− n−3.

To prove the results, our technique uses Singular Value Decomposition and angles
between subspaces, which require expressions for the eigenvalues and eigenvectors
of the model matrix. Fortunately, circulant matrices have known spectrum and, as
we will see, there is a specific pair of eigenvectors carrying the desired information
about the structure of the graph, providing the correct label of vertices. Moreover,
consecutive entries of the eigenvectors differ significantly enough so that a small
perturbation will have limited effect on the labels. Further, in Section 3 we show
that those eigenvectors are close to the eigenvectors of the random graph. In Section
4 we perform the qualitative analysis of the problem proving the main results.
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3. SVD and angles between subspaces

The definition of an angle between two vectors can be extended to angles between
subspaces.

Definition 5. Let X ⊂ Rn and Y ⊂ Rn be subspaces with dim(X ) = p and
dim(Y) = q. Let m = min(p, q). The principal angles

Θ = [θ1, . . . , θm] , where θk ∈ [0, π/2] , k = 1, . . . ,m,

between X and Y are recursively defined by

sk = cos(θk) = max
x∈X

max
y∈Y

∣∣xT y∣∣ =
∣∣xTk yk∣∣ ,

subject to

‖x‖ = ‖y‖ = 1, xTxi = 0, yT yi = 0, for i = 1, . . . , k − 1.

The vectors {x1, . . . , xm} and {y1, . . . , ym} are called the principal vectors for X
and Y.

The principal angles and principal vectors can be characterized in terms of a
Singular Value Decomposition. That provides a constructive form for the principal
vectors, which is what we use in the proofs. That is the subject of the next Theorem
proved in [1].

Theorem 6. Let the columns of the matrices X ∈ Rn×p and Y ∈ Rn×q form an
orthonormal bases for the subspaces X and Y, respectively. Consider the singular
value decomposition

XTY = UΣV T ,

where U and V are unitary matrices and Σ is a p × q diagonal matrix with real
diagonal entries s1, . . . , sm in nonincreasing order with m = min(p, q). Then

cos Θ = [s1, . . . , sm] ,

where Θ denotes the vector of principal angles between X and Y. Furthermore, the
principal vectors for X and Y are given by the first m columns of XU and Y V .

In [12], the authors prove a variant of Davis-Kahan Theorem, which gives an
upper bound for the sine of the principal angles between subspaces in terms of
eigenvalues of the matrices whose columns are bases for the subspaces. The original
version of Davis-Kahan [3] relies on an eigenvalue separation condition for those
matrices. However, these conditions are not necessarily met by the eigenvalues of
a random matrix. That is the reason we use a different version of Davis-Kahan
Theorem. We recast the result here for the eigenvalues of interest of our problem.
Here ‖·‖F denotes the Frobenius norm.

Theorem 7. Let M,M̂ ∈ Rn×n be symmetric matrices, with eigenvalues λ1 ≥
. . . ≥ λn and λ̂1 ≥ . . . ≥ λ̂n, respectively. Let λi and λ̂i have corresponding unitary
eigenvectors vi and v̂i. Let min (λ1 − λ2, λ3 − λ4) > 0, define V =

[
v2 v3

]
and

V̂ =
[
v̂2 v̂3

]
. Let Θ be a 2 × 2 diagonal matrix whose diagonal contains the

principal angles between the subspaces spanned by the columns of V and V̂ . Then

‖sin Θ‖F ≤
2 min

(√
2
∥∥∥M − M̂∥∥∥ ,∥∥∥M − M̂∥∥∥

F

)
min (λ1 − λ2, λ3 − λ4)

.
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4. Bounds and proofs of the main results

To prove the main theorems, we need to bound the differences λ1−λ2 and λ3−λ4.
Fortunately, the spectrum of circulant graphs is well known, see for example [2], so
we do not need to compute it.

The four largest eigenvalues of H can be expressed as follows

λ1 =
∑
k∈N

2ak,

λ2 = λ3 =
∑
k∈N

2ak cos

(
2kπ

n

)
, and

λ4 =
∑
k∈N

2ak cos

(
4kπ

n

)
.

Their corresponding unitary eigenvectors are

v1 =
1√
n

(1, 1, . . . , 1)T ,

v2 =
2√
2n

(1, cos(
2π

n
), cos(2

2π

n
), . . . , cos((n− 1)

2π

n
))T ,

v3 =
2√
2n

(0, sin(
2π

n
), sin(2

2π

n
), . . . , sin((n− 1)

2π

n
))T , and

v4 =
2√
2n

(1, cos(
4π

n
), cos(2

4π

n
), . . . , cos((n− 1)

4π

n
))T .

Denote by vi is the i−th entry of the vector v. An important observation is that
the set of points with coordinates (vi2, v

i
3) are on a circle in R2. Thus, these points

describe the correct structure of the graph, providing the correct label of vertices.
Throughout the paper n is assumed to be large.

Lemma 8. Let H be a circulant graph of degree d and order n with eigenvalues
λ1 ≥ λ2 = λ3 ≥ λ4. If |N | = cnγ for a constant c > 0 and 1 ≥ γ > 0, there is a
constant C1 > 0 and C2 > 0 such that λ1 − λ2 ≥ C1n

3γ−2 and λ3 − λ4 ≥ C2n
3γ−2.

Proof. We will show the lower bound for λ1 − λ2 first. Using the expression for
the eigenvalues as above we have λ1 − λ2 =

∑
k∈N

2ak
(
1− cos

(
2kπ
n

))
. Note that

cos(θ) is a decreasing function in θ for θ ∈ [0, π] and 2kπ
n ≤ π for N and therefore

λ1 − λ2 ≥
|N |∑
k=1

2
(
1− cos

(
2kπ
n

))
. Using the Taylor series of cos(θ) at θ = 0 we get

cos(θ) ≤ 1− θ2

2 + θ4

24 , thus

λ1 − λ2 ≥ 2
|N |∑
k=1

2k2π2

n2 − 2k4π4

3n4

= 2
(

2π2

n2

2|N |3+3|N |2+|N |
6 − 2π4

3n4

6|N |5+15|N |4+10|N |3−|N |
30

)
≥ K1

(
|N |3
n2 − |N |

5

n4

)
,

for a constant K1 > 0. Therefore, there is a constant C1 > 0 such that λ1 − λ2 ≥
C1n

3γ−2. λ3 − λ4 =
∑
k∈N

2ak
(
cos
(
2kπ
n

)
− cos

(
4kπ
n

))
. Note, that f(θ) = cos(θ) −

cos(2θ) is increasing for θ ∈ [0, π4 ], decreasing for θ ∈ [π4 , π] and 2kπ
n < π for k ∈ N .
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For this reason we will split the sum above using the following partition of N,
NL := {k ∈ N : 2kπ

n ≤
π
4 } and NU := N − NL. Let k̂ = max{k ∈ N}, then using

the Taylor series for f(θ), we have

λ3 − λ4 =
∑

k∈NL
2ak

(
cos
(
2kπ
n

)
− cos

(
4kπ
n

))
+
∑

k∈NU
2ak

(
cos
(
2kπ
n

)
− cos

(
4kπ
n

))
≥

|NL|∑
k=1

2ak
(
cos
(
2kπ
n

)
− cos

(
4kπ
n

))
+

k̂∑
k=k̂−|NU |+1

2ak
(
cos
(
2kπ
n

)
− cos

(
4kπ
n

))
≥ 2

|NL|∑
k=1

(
6π2k2

n2 − 10π4k4

n4

)
+ 2

k̂∑
k=k̂−|NU |+1

(
6π2k2

n2 − 10π4k4

n4

)
= K2

(
|NL|3
n2 − |NL|

5

n4

)
+K3

(
k̂3

n2 − k̂5

n4

)
−K4

(
(k̂−|NU |)3

n2 − (k̂−|NU |)5
n4

)
,

for nonnegative constantsK2,K3 andK4. Furthermore, k̂ ≥ |N | and k̂ ≥ |NL|. The
first inequality implies that there is a constant K5 such that k̂ = K5n

γ . Therefore,
there is a constant C2 > 0 with λ3 − λ4 ≥ C2n

3γ−2 �

Using Lemma 8 we are able to prove an upper bound for the deviations of the
eigenvectors corresponding to the second and third eigenvalues of the model matrix
and the random matrix, respectively. We will also need the following concentration
inequality from [11].

Lemma 9 (Norm of a random matrix). There is a costant C > 0 such that the
following holds. Let E be a symmetric matrix whose upper diagonal entries eij
are independent random variables where eij = 1 − pij or −pij with probabilities
pij and 1 − pij , respectively, where 0 ≤ pij ≤ 1. Let σ2 = maxij pij(1 − pij). If
σ2 ≥ C log n/n, then

P(||E|| ≥ Cσn1/2) ≤ n−3

Now we are able to prove the following theorem.

Theorem 10. Let M be the circulant graph model matrix with constant probability
p, variance σ2, and |N | = cnγ for a constant 1 ≥ γ > 0. Let M̂ the random matrix
following the model matrix. Let v2, v3 be unitary eigenvectors for λ2(M), λ3(M)

and v̂2, v̂3 be unitary eigenvectors for λ2(M̂), λ3(M̂). Let x,y ∈ Span {v2, v3} and
x̂,ŷ ∈ Span {v̂2, v̂3} be the principal vectors for the principal angles between the
spaces Span {v2, v3} and Span {v̂2, v̂3}. Define the matrices z = (x, y) and ẑ =
(x̂, ŷ). Then there is an absolute constant C0 > 0 and such that

||z − ẑ||2F ≤ C0σn
5−6γ

with probability at least 1− n−3.

Proof. In view of Theorem 6, consider the singular value decomposition [v2, v3]
T

[v̂2, v̂3] =
UΣWT . Let θ2 and θ3 denote the principal angles between the spaces spanned by
{v2, v3} and {v̂2, v̂3}.

Note that min(λ1 − λ2, λ3 − λ4) > 0, thus we can apply Theorem 7. We have

||z − ẑ||2F = ||(x, y)− (x̂, ŷ)||2F
= (||x− x̂||2 + ||y − ŷ||2)
≤ 2(sin2(θ2) + sin2(θ3))
= 2|| sin Θ(z, ẑ)||2F
≤ 2

(
min(

√
2||M̂−M ||,||M̂−M ||F )

min(λ1−λ2,λ3−λ4)

)2
.
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Now, we can view the adjacency matrix M̂ as a perturbation ofM, M̂ = M+E,
where the entries of E are eij = 1 − p with probability p and −p with probability
1 − p, thus, E is as in Lemma 9 and with probability at least 1 − n−3 we have
||E|| ≤ Cσ

√
n. Furthermore, min(

√
2||M̂ −M ||, ||M̂ −M ||F ) ≤

√
2||M̂ −M ||op =

||E|| and λi(M) = pλi(H). Together with Lemma 8 we get for some absolute
constant C0 > 0

||z − ẑ||2 ≤ C0σ
( √

n
n3γ−2

)2
= C0σn

5−6γ .

That finishes the proof. �

Now we will provide a lower bound for ||z− ẑ||F in terms of Dk(σ) and eventually
proof theorem 4.

Lemma 11. Let v and w be the unitary eigenvectors for λ2 (M) and λ3 (M), re-
spectively. Then

(vi − vi+k)
2

= n−5
(
32π4k2i2 + 32π4k3i+ 8π4k4

)
+O

(
n−7

)
and,

(wi − wi+k)
2

= (3n)
−5 (

12π2k2n2 − 48π4k2i2 − 48π4k3i− 16π4k4
)

+O
(
n−7

)
.

Proof. Notice that

vi − vi+k =
2√
2n

(cos

(
2πi

n

)
− cos

(
2π (i+ k)

n

)
) and

wi − wi+k =
2√
2n

(sin

(
2πi

n

)
− sin

(
2π (i+ k)

n

)
).

Now the expressions can be obtained from a simple asymptotic expansion as n −→
∞. �

Theorem 12. Let M be the circulant graph model matrix with constant probability
p and variance σ2, and M̂ the random matrix following the model matrix. Let
v2, v3 be unitary eigenvectors for λ2(M) and λ3(M), and v̂2 and v̂3 be unitary
eigenvectors for λ2(M̂) and λ3(M̂). Let x,y ∈ Span {v2, v3} and x̂,ŷ ∈ Span {v̂2, v̂3}
be the principal vectors for the principal angles between the spaces Span {v2, v3}
and Span {v̂2, v̂3}. Define the matrices z = (x, y) and ẑ = (x̂, ŷ). Then there are
constants C1 > 0 and β such that

‖z − ẑ‖2 > C0 |R|
n4β

n6
,

where R = {(i, j) : ϕ (ẑj) ≥ ϕ (ẑi) , i+ k ≤ j and i− j ≥ k mod n}.

Proof. As in Theorem 6, let UΣWT be the singular value decomposition for the
matrix [v2, v3]

T
[v̂2, v̂3] . Thus, z = (v2, v3)U and ẑ = (v̂2, v̂3)W . Let ϕ(zi) be the

angular coordinate of the point zi = (xi, yi). Thus, {ϕ(zi)}ni=1 is an increasing
sequence. Fix k = k(n) = C(nβ) and let

R = {(i, j) : ϕ (ẑj) ≤ ϕ (ẑi) and i+ k ≤ j and i− j ≥ k mod n}.
Then R is the set of pairs in ẑ that disagree with the order induced by z by at least
k positions in both directions on the cycle. Now we can write

2n‖z − ẑ‖2 =

n∑
i=1

n∑
j=1

‖zi − ẑi‖2 + ‖zj − ẑj‖2 ≥
∑

(i,j)∈R

‖zi − ẑi‖2 + ‖zj − ẑj‖2.
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Since ϕ (ẑj) ≤ ϕ (ẑi) and ϕ (zj) > ϕ (zi), the minimum contribution of each term
in the sum happens in the median point

ẑi = ẑj =
zi + zj

2
.

Thus, we have

2n ‖z − ẑ‖2 >
∑

(i,j)∈R

‖zi −
zi + zj

2
‖2 + ‖zj −

zi + zj
2
‖2

=
∑

(i,j)∈R

‖zi − zj‖2

2

Now set v = v2 and w = v3 and notice that (zi− zj)UT = (vi− vj , wi−wj) and,
by the definition of R, ||zi − zj ||2 is minimum for j = i+ k. Thus we write

2n ‖z − ẑ‖2 >
∑

(i,j)∈R

‖zi − zi+k‖2

2

=
∑

(i,j)∈R

||(zi − zi+k)UT ||2

2

=
∑

(i,j)∈R

(vi − vi+k)2 + (wi − wi+k)2

2
.

By Lemma 11, for n large enough we obtain

2n ‖z − ẑ‖2 > C
∑

(i,j)∈R

k4

n5
,

for an absolute constant C > 0.
Now k = k(n) = Ω(nβ), so there exists a constant c such that for n large enough

k ≥ cnβ . We can bound

‖z − ẑ‖2 > C0 |R|
n4β

n6
,

for a constant C0 > 0. �

Now, the proof of Theorem 2 easily follows from Theorem 12 and Theorem 10.
First, we make an observation about the order given by Algorithm 1. Let v2, v3 be
unitary eigenvectors for λ2(M) and λ3(M), and v̂2 and v̂3 be unitary eigenvectors for
λ2(M̂) and λ3(M̂). Let UΣWT be the singular value decomposition for the matrix
[v2, v3]

T
[v̂2, v̂3] . Let x̂ = v̂2 and ŷ = v̂3 as in Algorithm 1, and let ϕ ((x̂i, ŷi)) be

the angular coordinate of the point (x̂i, ŷi). Define the matrices z = (v2 v3)U and
ẑ = (v̂2 v̂3)W . Finally, let

R = {(i, j) : ϕ (ẑj) ≤ ϕ (ẑi) and i+ k ≤ j and i− j ≥ k mod n}.

Notice that since W is a rotation matrix, it holds

ϕ ((x̂i, ŷi))− ϕ ((x̂j , ŷj)) = ϕ (ẑi)− ϕ (ẑj) .
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Thus the order induced by the row vectors of ẑ is the same as the order induced by
the row vectors of [v̂2, v̂3]. That implies Dk(σ) = |R|, where σ is the permutation
returned by the Algorithm 1. Therefore, we proceed bounding |R|.

Proof. (Theorem 2) By theorems 12 and 10 we have

C0|R|
n4β

n6
< ||z − ẑ||2 ≤ C̄0n

5−6γ ,

where C0 and C̄0 are positive constants and the upper bound holds with probability
at least 1− n−3. Therefore, there is a constant C > 0 such that

|R| < Cn11−6γ−4β ,

with probability at least 1− n−3. �

The proof of Theorem 3 is similar to the last one but uses a different trick to get
another lower bound.

Proof. (Theorem 3) As in Theorem 6, let UΣWT be the singular value decompo-
sition for the matrix [v2, v3]

T
[v̂2, v̂3] . Thus, z = (v2, v3)U and ẑ = (v̂2, v̂3)W . Let

ϕ(zi) be the angular coordinate of the point zi = (xi, yi). Thus, {ϕ(zi)}ni=1 is an
increasing sequence. Fix k = k(n) = C(nβ) and let

R = {(i, j) : ϕ (ẑj) ≤ ϕ (ẑi) and i+ k ≤ j and i− j ≥ k mod n}.

Then R is the set of pairs in ẑ that disagree with the order induced by z by at least
k positions in both directions on the cycle. Now we can write

2n‖z − ẑ‖2 =

n∑
i=1

n∑
j=1

‖zi − ẑi‖2 + ‖zj − ẑj‖2 ≥
∑

(i,j)∈R

‖zi − ẑi‖2 + ‖zj − ẑj‖2.

Since ϕ (ẑj) ≤ ϕ (ẑi) and ϕ (zj) > ϕ (zi), the minimum contribution of each term
in the sum happens in the median point

ẑi = ẑj =
zi + zj

2
.

Thus, we have

2n ‖z − ẑ‖2 >
∑

(i,j)∈R

‖zi −
zi + zj

2
‖2 + ‖zj −

zi + zj
2
‖2

=
∑

(i,j)∈R

‖zi − zj‖2

2
(4.1)

Now, let ni denote the number of pairs (i, j) and label them (i, ji1), . . . , (i, jini ) for
i = 1, . . . , n and therefore

∑n
i=1 ni = |R|. Furthermore, for a fixed i we obtain the

minimum ||zi − zj ||2whenever j − i is minimum. By definition of R the sum
ni∑
t=1

||zi − zj ||2

2
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is minimum whenever ji1 = i+k, ji2 = i+k+1, . . . , jini = i+k+ni−1. Therefore,
setting v = v2 and w = v3 , inequality 4.1 becomes

2n||z − ẑ||2 >
n∑
i=1

ni−1∑
t=0

||zi − zi+k+t||2

2
=

n∑
i=1

ni−1∑
t=0

(vi − vi+k+t)2 + (wi − wi+k+t)2

2
.

By Lemma 11, for n large enough,

2n||z − ẑ||2 > C1

n∑
i=1

ni−1∑
t=0

(k + t)4

n5
> C1

k2

n5

n∑
i=1

ni−1∑
t=0

t2

for a constant C1 > 0. Therefore, there is a constant C2 > 0 such that 2n||z− ẑ||2 >
C2

k2

n5

∑n
i=1 n

3
i . Now, recall that two p-norms are related by ||x||p ≤ n

1
p−

1
q ||x||q.

Taking p = 1 and q = 3, we obtain
n∑
i=1

ni ≤ n
2
3 (

n∑
i=1

n3i )
1
3

which allows us to rewrite inequality 4.1 as

2n||z − ẑ|| > C1k
2|R|3n−7.

Combining this inequality with the upper bound of Theorem 10 and using k =
k(n) = Ω(nβ), we obtain a constant C2 > 0 such that, with probability 1− n−3,

|R| < C2n
13−6γ−2β

3

and therefore Dk(σ) ∈ O(n
13−6γ−2β

3 ). �

Eventually, we give a proof for Theorem 4.

Proof. (Theorem 4) Fix k = n(10−6γ)/5 and define

R = {(i, j) : ϕ (ẑj) ≤ ϕ (ẑi) and i+ k ≤ j and i− j ≥ k mod n}
and

RC = {(i, j) : ϕ (ẑj) ≤ ϕ (ẑi) and j < i+ k or i− j < k mod n)}.

By Theorem 2, taking β = 10−6γ
5 , there is a constant C > 0 so that, for large

enough n,
|R| = Dk(σ) ≤ Cn11−6γ−4β = Cn(15−6γ)/5.

Furthermore, for each index i there are at most 2k pairs (i, j) in RC ,thus

|RC | ≤ 2kn = 2nβ+1 = 2n(15−6γ)/5

and therefore D(σ) = |R|+ |RC | ≤ (C + 2)n(15−6γ)/5, as required. �
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