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Abstract

In the last decade `1-regularization became a powerful and popular
tool for the regularization of Inverse Problems. While in the early years
sparse solution were in the focus of research, recently also the case that the
coefficients of the exact solution decay sufficiently fast was under consid-
eration. In this paper we seek to show that `1-regularization is applicable
and leads to optimal convergence rates even when the exact solution does
not belong to `1 but only to `2. This is a particular example of over-
smoothing regularization, i.e., the penalty implies smoothness properties
the exact solution does not fulfill. We will make some statements on
convergence also in this general context.

1 Introduction

Our task is to find an x ∈ X satisfying the ill-posed linear equation

Ax = y (1)

between Banach spaces X and Y for given y ∈ Y . We assume, however, that
only noisy data yδ is available with ||y−yδ|| ≤ δ for δ > 0. In order to determine
a stable solution of (1) from the noisy data, regularization is required. We
employ a Tikhonov-type functional

T δα(x) =
1

r
||Ax− yδ||r + αR(x) (2)
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where 1 ≤ r <∞, α > 0 is the regularization parameter which has to be chosen
appropriately and R : D(R) ⊂ X → R the penalty functional. The minimizer
of (2) is the regularized solution, i.e.,

xδα := min
x∈D(A)

T δα(x). (3)

Problems of this form have been discussed widely in the literature, see e.g. [6]
and references therein. To the best of the author’s knowledge, in all these pub-
lications (with the exception of the paper discussed in Section 2) it is assumed
that the exact solution, which we donate by x† throughout this work, attains a
finite value of the penalty, R(x†) <∞. In this paper we seek to generalize this
and investigate the case that R(x†) is infinite. Since this is an unusual concept,
let us motivate its use first. A practical application may be the approximation of
an object emphasizing certain features that the true solution does not possess.
For example, in order to save memory one may be interested to find a sparse so-
lution to an Inverse Problem although it is a priori clear that the exact solution
is not sparse. Another motivation comes from stochastic regularization meth-
ods where x is regarded as a random variable. Defining an infinite dimensional
random variable has the effect that the random variable takes finite expecta-
tion only in a smoother space. As the main example, an infinite dimensional
Gaussian random variable is an element of L2 with probability zero, but lies in
some Sobolev space Hs for some negative value s < 0. It may also be that the
minimization of the functional (2) is particularly simple for a certain choice of
R or that the functional R leads to improved convergence behavior of the regu-
larized solutions. For example we will later demonstrate that `1-regularization
does not suffer from the saturation effect well known in classical `2-Tikhonov
regularization. Finally, considering an infinite value of the penalty at the exact
solution appears to be a gap in the theory of inverse problems that may spark
new ideas also in existing branches of the theory of Inverse Problems.

The paper is organized as follows. In the next Section we discuss Natterer’s
paper on Tikhonov regularization in Hilbert scales which includes oversmoothing
regularization. In Section 3 we discuss existence and stability of the regularized
solutions as well as convergence to the exact solution in the general case (2).
In order to show convergence rates we pick a particularly structured problem,
namely a diagonal operator wich allows us to explicitly calculate convergence
rates in Section 4. We discuss the results and compare it with classical `1

and classical `2 regularization in Section 5. Finally we numerically verify the
theoretical results.

2 Literature survey: Natterer’s paper

To the best of the author’s knowledge, only one paper exists in the literature
that includes a direct statement on oversmoothing regularization, namely the
paper [1] by Natterer from 1984. Natterer considers a linear problem (1) between
Hilbert spaces X and Y. The regularized solution is obtained by a variational
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minimization problem

xδα := min
x
||Ax− yδ||2 + α||x||p (4)

of type (2) where the penalty is a norm in a Hilbert scale. A family {Hs}s∈R
of Hilbert spaces is called Hilbert scale if Ht ⊆ Hs whenever s < t and the
inclusion is a continuous embedding, i.e., there exists cs,t > 0 such that

||x||s ≤ cs,t||x||t.

Natterer assumes that there is an unbounded, self-adjoint and strictly positive
definite operator T in X such that

||x||s = ||T sx||X , s ∈ R

defines a norm in Hs. this satisfies the condition above.
Assuming ||Ax† − yδ|| ≤ δ, that ||x†||q ≤ ρ for some q ≥ 0 and that there

exists some a > 0 such that with two constants m,M > 0

m||x||−a ≤ ||Ax|| ≤M ||x||−a (5)

he shows that
||xδα − x†|| ≤ Cδ

q
a+q ρ

a
a+q (6)

provided p > (q − a)/2) if the regularization parameter is chosen via

α = C(ρ)δ
2(a+p)
a+q .

It is interesting here that p, i.e., the smoothness of the penalty, is bounded
from below but not from above. As Natterer states, “there is nothing wrong
with high order regularization, even well above the order of the smoothness of
the exact solution” (which is here given by q). Even though the exact solution
may have infinite p-norm, we not only still obtain regularization but the rate of
convergence remains unchanged. The only adjustment to be made is a decrease
of the regularization parameter.

Although Natterers paper is quickly summarized, several interesting obser-
vations can be made which we will use later. First, note that the convergence
rate depends on the smoothness of the exact solution q and the smoothing of
the operator a. In particular, the penalty has no influence on the speed of con-
vergence. However, in order to obtain the convergence rate, the regularization
parameter has to be adjusted according to the smoothness p of the penalty. In
case q = p we have α ∼ δ2. Increasing p above q then yields smaller regulariza-
tion parameters (or equivalently: larger exponents). On the other hand, in the
case p = (q − a)/2 we have α ∼ δ which is the largest possible regularization
parameter. Next, observe that the smoothness condition (5) relates the norms
in x with those in AX ⊂ Y . This means that whenever residuals ||Ax1 −Ax2||
are close, also the distance between the elements x1 and x2 is small, although in
a weaker norm. Finally we would like to mention that in a Hilbert scale there
is a common dense subset among all spaces of the scale, hence any element of
Hs1 can be approximated arbitrarily well with elements from Hs2 , s2 > s1.
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3 Convergence for general penalty functionals

In this section we will show that all basic properties we seek to find in a reg-
ularization method also can be expected in the oversmoothing case. We will
discuss the existence of minimizers, their stability w.r.t noise in the right-hand
side and convergence of the approximate solutions when the noise goes to zero.
The following assumption is standard in regularization theory, see for example
[6, 12]

Assumption 3.1.

a) X and Y are infinite dimensional Banach spaces where in addition to
the norm topologies || · ||X and || · ||Y weaker topologies τX and τY are
under consideration for X and Y , respectively, such that the norm || · ||Y
is τY -sequentially lower semicontinuous

b) The domain D(A) is a convex and τX-sequentially closed subset of X

c) The operator A : D(A) ⊂ X → Y is τX − τY -continuous

d) R : X → [0,∞] is a τX-sequentially lower semicontinuous, convex and
proper functional, the latter meaning

D(R) := {x ∈ X : R(x) <∞} 6= ∅.

Moreover, we assume D := D(A) ∩ D(R) 6= ∅.

e) The penalty functional R is assumed to be stabilizing in the sense that the
sublevel sets

MR(c) := {x ∈ X : R(x) ≤ c}

are sequentially precompact w.r.t. the topology τX in X.

We start with the existence of a minimizer of (2).

Lemma 3.1 (existence). For all fixed α, δ > 0 a minimizer of (2) exists.

Proof. Take α > 0 arbitrary but fixed. Since by Assumption 3.1 d) D :=
D(A)∩D(R) 6= ∅ there exists x̃ ∈ X with ||Ax−yδ|| <∞, R(x̃) <∞ and hence
T δα(x̃) <∞. The remainder of the proof follows from standard arguments. We
include it for the convenience of the reader. There exists a sequence {xk}k∈N ∈ D
such that

lim
k→∞

T δα(xk) = c := inf{T δα(x) : x ∈ D} ≤ T δα(x̃) <∞.

Thus, {T δα(xk)} is a bounded sequence, in particular αR(xk) < ∞ and since
α > 0 is fixed R(xk) < ∞. By Assumption 3.1 {xk} has a subsequence {xkj}
weakly converging to some x̂ ∈ D since D is convex and closed and therefore

4



weakly closed. Since A is assumed to be weak-to-weak continuous, A(xkj )−yδ ⇀
A(x̂)− yδ in Y and, since the norm is weakly lower semi-continuous

||Ax̂− yδ|| ≤ lim inf
j→∞

||Axkj − yδ||.

On the other hand, for the lower-semicontinuous functional R, which is weakly
lower-semicontinuous, we have

R(x̂) ≤ lim inf
j→∞

R(xkj ).

Thus x̂ minimizes T δα.

Since existence of a minimizer to (2) depends on the properties of the penalty
R and not on the exact solution the Lemma is no surprise. Similarly one sees
that stability of the minimizers with respect to disturbances in the right hand
side carries over from the standard theory.

Lemma 3.2 (stability). Let Assumption 3.1 hold and let α > 0. If {yk} is
a sequence converging to yδ in Y with respect to the norm topology, then every
sequence {xk} with

xk ∈ arg min{T ykα (x) : x ∈ X}

has a subsequence that converges with respect to τX . The limit of every τX-

convergent subsequence {xk̃} of {xk} is a minimizer x̃ of T y
δ

α and R(xk̃) con-
verges to R(x̃).

Proof. Since α > 0 every minimizer x̃ of (2) fulfills R(x̃) <∞. The proof then
follows by standard arguments.

The next step is to investigate convergence of the minimizers to the exact
solution when the noise tends to zero. In standard theory, the conditions α→ 0

and δ2

α → 0 as δ → 0 ensure the weak convergence of subsequences to the exact
solution. We start our considerations by identifying some necessary conditions
for this statement in the case of oversmoothing regularization.

Theorem 3.1. Let x† ∈ D with R(x†) = ∞ denote a solution to (1). If the
Tikhonov regularization under consideration is weakly convergent to x† for a
parameter choice rule α = α(δ, yδ), then the following items must hold for a
sequence xk := xδkαk with δk → 0.

a) limk→∞R(xk) =∞

b) limk→∞ αk = 0.

c) limk→∞ αkR(xk) ≤ C <∞

Proof. By Lemma 3.1, R(xk) < ∞ for all k ∈ N. If, however, we assume that
there is a subsequence {xkj} with R(xkj ) ≤ c <∞ uniformly for all j ∈ N, then
the assumed weak convergence xkj ⇀ x† in X implies that R(x†) ≤ c. This
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contradicts the assumption R(x†) =∞ and yields a).
Now take some fixed x̂ ∈ D and keep in mind the definition of the xk as mini-
mizers of the functional (2). It is

1

r
||Axk − yδk ||r + αkR(xk) ≤ 1

r
||Ax̂− yδk||r + αkR(x̂)

≤ 2r−1

r
δrk +

2r−1

r
||Ax̂− y||r + αkR(x̂).

Therefore

αk(R(xk)−R(x̂)) ≤ c(r) (δrk + ||Ax̂− y||r) ≤ C <∞.

Since R(x̂) <∞ we need limk→∞ αk = 0 in order to allow limk→∞R(xk) =∞
as necessary due to a). Additionally, the product αkR(xk) has to stay bounded,
yielding c).

The regularization parameter is a free parameter that has to be chosen ap-
propriately. Theorem 3.1 states that in order to hope to obtain a sequence of
regularized solutions weakly convergent to x†, then the regularization param-
eter has to go to zero, in particular, be bounded from above. An immediate
consequence of this is that indeed condition c) of Theorem 3.1 is fulfilled.

Lemma 3.3. Let {yδ} be a sequence of noisy data with ||yδk − y|| ≤ δk → 0 for
k →∞. Let 0 ≤ αk = αk(δk, y

δ
k) ≤ ᾱ <∞ for all k ∈ N. Then the minimizers

xδkαk fulfill

T δkαk(xδkαk) ≤ C <∞

and consequently
αkR(xδkαk) ≤ C <∞

for all k ∈ N with some constant C > 0.

Proof. Since the αk are bounded the claim follows immediately from the proof
of Theorem 3.1.

In order to show convergence of the approximate solutions when the noise
tends to zero, we require that x† can be approximated arbitrarily well with
objects in D(R).

Assumption 3.2. There exists at least one sequence {x̃j} ⊂ D(R) ∩ X such
that x̃j ⇀ x† and R(x̃j) <∞ for all j ∈ N.

This is for example the case if D(R) is dense in X (or D(A), respectively).
Later we will more specifically assume that there exists a linear projector Pn :
X → D(R) such that R(Pnx

†) <∞ for all n ∈ N and limn→∞ Pnx
† = x†.

Assumption 3.2 allows to show that the regularized solutions converge to the
solution x† when the noise goes to zero. Indeed they fulfill R(xδα) → ∞. The
only requirement is that the regularization parameter goes to zero, no additional
restriction is necessary.
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Lemma 3.4. Let {yδk} be a sequence of noisy data with ||yδk − y|| ≤ δk → 0
for k →∞. Let 0 ≤ αk = αk(δk, y

δk) ≤ ᾱ <∞ be a parameter choice fulfilling
αk → 0 as k → ∞. Then among the minimizers xδkαk there is a subsequence

weakly converging to x†. In particular, it is

R(xδkαk)→∞ as k →∞.

Proof. Assumption 3.2 yields the existence of a sequence x̃j ⇀ x† in D with
R(x̃j) < ∞ ∀j. Due to Assumption 3.1 c) this sequence also fulfills A(x̃j) ⇀
A(x†). Since αk → 0 as k →∞ we can pick a subsequence αkj which we simply
denote by αj such that

lim
j→∞

αjR(x̃j) = 0. (7)

Since the xδkαk are minimizers of (2), the functional value has to be smaller than
the one of the x̃j at the respective αj , i.e.

0 ≤ T δjαj (x
δj
αj ) ≤ T

δj
αj (x̃j) ∀j. (8)

By assumption,

0 ≤ lim inf
j→∞

T δjαj (x̃j) ≤ lim inf
j→∞

(
2r−1

r
||Ax̃j −Ax†||r +

2r−1

r
δrj + αjR(x̃j)

)
= 0.

Note that the x̃j are not necessary minimizers of (2). These minimizers however
cannot perform worse, see (8), and hence there exists a subsequence of {xδkαk},
which we denote by {xj} with

0 ≤ lim inf
j→∞

T δjαj (xj) = 0

and consequently
lim inf
j→∞

||Axj − yδj || = 0.

Denote with x̂ the weak limit of the sequence {xl} (or move to a subsubsequence,
since the functional is bounded). It holds in particular

||Ax̂− y||r ≤ lim inf
j→∞

||Axj − y||r ≤ lim inf
j→∞

2r−1

r
||Axj − yδj ||r + lim

j→∞

2r−1

r
δpj = 0,

i.e., x̂ is a solution to (1). As in Theorem (3.1) a) it is limj→∞R(xδkαk) = ∞.
Otherwise, there would need to exist a solution to (1) with finite value of R(·).

The proof also holds in the case that R(x†) < ∞. If (1) admits more than
one solution, however, weak convergence to the minimum-norm solution, i.e.
a solution with minimal R-value among all possible solutions, in the classical
sense is not guaranteed anymore. Namely, if the exact solution is not unique one
will get convergence to some solution, but it is not clear which. In the standard
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theory convergence to a minimum-norm solution is obtained via the condition
δp/α→ 0.

In the oversmoothing scenario we strongly believe that a similar statement
can be made. However, at this point there is still a gap in the proof of the
corresponding theorem. We shall give the Theorem and its proof in the following
and indicate the so far missing link. Since a minimum-norm solution with
respect to R does not exist in our context, the idea is to find a functional S
related to R for which S(x†) < ∞ and use this to define S-minimum norm
solutions. The following Assumption links R and S. We suppose that a third
condition is needed to complete the proof of the convergence theorem below.
Note that later when we discuss convergence rates we get stuck at precisely the
same point.

Assumption 3.3. a) There exists a family of linear projectors Pn : X → X
depending on a real valued variable n such that limn→∞ Pnx = x for all
x ∈ X and R(Pnx

†) <∞ for all n ∈ N

b) There exists a linear functional S : X → R with D(R) ⊂ D(S) ⊆ X
with S(x†) < ∞, where the values S(Pnx

†) increase monotonically and a
monotonically increasing function f : R→ R with limn→∞ f(n) =∞ such
that R(Pnx) ≤ f(n)S(Pnx) for all x ∈ D(R)

Assumption 3.3 is not finalized yet so let us quickly discuss it. Point a)
is a special case of the requirement that x† can be approximated arbitrarily
well with elements in D(R), i.e., Assumption 3.2. Item b) requires that these
projectors allow to measure the growth of R(Pnx

†) with respect to n and a
weaker functional S. This condition is required to control the residual of the
regularized solution. Unfortunately those two conditions are not enough. The
difficulty in the following proof as well as in the proof for the convergence rates
is to control the R-value of the regularized solution or its tail, respectively. We
need some condition that allows to relate R-based inequalities with S-based
inequalities.

For the following proof note that since by construction Pnx
† → x† it follows

that for each 0 < δ ≤ δ0 there is n0(δ) such that ||APnx† − Ax†|| ≤ cδ for all
n > n0(δ) where the constant c > 1 is independent of n and δ.

Lemma 3.5. Let {yδk} be a sequence of noisy data with ||yδk − y|| ≤ δk → 0
for k → ∞ and assume the requirements of Assumption (3.3) hold true. Let
n0(δ) = infn∈N{||APnx† − Ax†|| ≤ cδ} for fixed c ≥ 0. Let αk = αk(δk, y

δk)

be a parameter choice fulfilling αkf(n0(δk)) → 0 and
δpk
α ≤ Cf(n0(δk)) for all

k → ∞. Then the sequence of minimizers xδkαk converges to a solution of (1)
and

R(xδkαk)→∞ as k →∞.

Proof. From the minimizing property we have

1

r
||A(xδkαk)− yδk ||r + αkR(xδkαk) ≤ 1

r
||A(Pnx

†)− yδk ||r + αkR(Pnx
†)

8



for all n ∈ N. Now pick any n with ||APnx† −Ax†|| ≤ cδk. Then

αkR(xδkαk) ≤ 1

r
||A(Pnx

†)− yδk ||r + αkR(Pnx
†)

≤ c

r
δrk + αkf(n0(δk))S(Pnx

†)

≤ c

r
δrk + αkf(n0(δk))S(x†) −→ 0 as k →∞

Note that also

R(xδkαk) ≤ cδrk
rαk

+ f(n0(δk))S(Pnx
†) ≤ Cf(n0(δk)),

with some constant C > 1. This means that for sufficiently large δk, R(xδkαk)
grows approximately as fast as f(n0(δk)). On the other hand, the minimizing
property also implies

1

r
||A(xδkαk)− yδk ||r ≤ 1

r
||A(Pnx

†)− yδk ||r + αk
(
R(Pnx

†)−R(xδkαk)
)

for all n ∈ N. If R(Pnx
†) ≤ R(xδkαk) this immediately yields

1

r
||A(xδkαk)− yδk ||r ≤ 1

r
δrk. −→ 0 as k →∞

If R(Pnx
†) > R(xδkαk), then

1

r
||A(xδkαk)− yδk ||r ≤ 1

r
||A(Pnx

†)− yδk ||r + αkf(n)S(Pnx
†)

≤ c

r
δrk + αkf(n0(δk))S(x†) −→ 0 as k →∞

In any case, we have shown that

T δkαk (xδkαk)→ 0 as k → 0

from which the convergence follows by standard arguments.
If from the relations

αkR(xδkαk) ≤ c

r
δrk + αkR(Pnx

†) (9)

and R(Pnx
†) ≤ f(n0(δ))S(x†) we could conclude

αkf(n0(δk))S(xδkαk) ≤ c

r
δrk + αkf(n0(δk))S(Pnx

†) (10)

it would follow

S(xδkαk) ≤
cδpk

αkf(n0(δk))
+ S(Pnx

†).

Since the term in the middle goes to zero as k → ∞ and x†n → x† as n → ∞
this would mean the regularized solutions converge to the solution of (1) with
minimal S-value.
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We quickly want to relate this to the diagonal case for `1-regularization with
an `2-solution as presented in Section 4. Let Pn denote the cut-off projectors
. Then ||Pnx||`1 ≤

√
n||Pnx||`2 for all x ∈ `2. Later we calculate that there is

ninf (δ) = cδ−
2

2β+2η+1 such that ||Ax†ninf −Ax
†|| ∼ δ. Therefore,

||Pninfx†||`1 ≤
√
ninf (δ)||Pninfx†||`2 = cδ−

1
2β+2η+1 ||Pninfx†||`2 .

The resulting correction of the regularization parameter with the factor δ
1

2β+2η+1

i.e.,

α =
δ2+

1
2β+2η+1

ϕ(δ)

coincides precisely with the adjustment needed for the regularization parameter
as observed in the experiments of Section (6).

4 Convergence rates for `1-regularization with a
diagonal operator

The derivation of convergence rates is typically much more difficult than the
convergence statements of the previous section. We will therefore step away
from the general penalty term as introduced in Section 1 and focus on `1-
regularization. This strategy defines the approximate solution to (1) via

xδα := argmin
x∈D(A)

1

2
||Ax− yδ||2 + α||x||`1 . (11)

For the sake of simplicity we also set the exponent of the residual to the stan-
dard value r = 2. `1-regularization became a popular and powerful tool in
the last decade, sparked by the seminal paper [2]. Since then, many authors
have contributed to its theory and application. Here we only mention the papers
[11, 10, 9, 3].The vast majority of papers connected to `1-regularization assumes
that x† ∈ `0, i.e. it has only finitely many non-zero components. However, in
[3] for the first time the situation that the exact solution x† is not sparse, but
only x† ∈ `1 was explored. In some sense this paper is a continuation of this
trend as we now assume that x† is not even in `1, but x† ∈ `2\`1. Due to this
we will employ the `2-norm to measure the speed of convergence, i.e. we seek a
positive function ϕ(δ) such that

||xδα − x†||`2 ≤ Cϕ(δ), C > 0.

We will see that even in this case convergence rates can be derived. Often it
is only possible to state that a function describing the convergence rate exists
and that it indeed bounds the regularization error from above. In order to be
able to explicitly calculate this function we will restrict ourselves to a particular
scenario. Namely, we consider the case of a compact operator between Hilbert
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spaces. This allows us to use its singular system for the calculus. Assume Ã :
X̃ → Y to be a compact linear operator between infinite dimensional separable
Hilbert spaces X̃ and Y . Then Ã has a singular system {σi, ui, vi}i∈N with
nonnegative, decreasingly ordered singular values σi tending to zero and {ui},
{vi} are complete orthonormal systems in X̃ and ran(A), respectively. We have

Ãui = σivi and Ã∗vi = σiui. Since we consider Hilbert-spaces, we can identify
the dual spaces with the original ones. Hence Ã∗ : Y → X̃.

Using the {ui} as Schauder basis in X̃ we have x̃ =
∑
i∈N xiui where

xi = 〈x̃, ui〉 with the scalar product in X̃. Interpreting the coefficients
as an infinite series we introduce the synthesis operator L : `2(N) → X,
x = (xi)

∞
i= 7→

∑
i∈N xiui to obtain via the composition A = Ã ◦ L a

compact linear operator A : X = `2(N )→ Y . A still has diagonal structure

as Aei = Ãui for all i ∈ N, characterized by Ax =
∑
i∈N xiσivi. We use this

special structure for the characterization of the smoothness properties of the
operator and the exact solution. Namely, we will assume that σi = i−β and
|〈x, ui〉| = i−η for positive values β and η.

In the remainder of the section we will proof the following Theorem up to a
final gap that has not been closed yet.

Theorem 4.1. Let A be as above with singular values σi = i−β, β > 0 and let
yδk be a sequence fulfilling ||y−yδk || ≤ δk for a sequence δk → 0. Let x† be such
that |〈x, ui〉| = i−η for η > 1

2 . Then, with the a priori parameter choice

α ∼ δ
4β+2η

2η+2β−1

the `1-regularized solution of (11) fulfill

||xδα − x†||`2 ≤ cδ
2η−1

2η+2β−1

even if 1
2 < η ≤ 1, i.e., x† ∈ `2\`1.

We chose the `1-`2-situation for several reasons. As mentioned above, `1-
regularization is a very popular method. In practice however it is not always
clear whether or not the exact solution is sparse, or what its precise smoothness
characteristics are. In contrast to Natterer’s Hilbert space theory, `1 is a Banach
space. Even more, `1 is not even reflexive, in contrast to the `p-spaces for
1 < p < ∞. Thus `1 is far away from the Hilbert space structure of `2 and we
may hope to find results that can be generalized to a large family of Banach
spaces.

We start with the derivation of a governing inequality. We have with the
linear projector

Pn : `2 → `2, xn := Pn(x) = {xi}i=1,...,n,

the relation

||x− x†||`2 ≤ ||x− x†n||`2 + ||x†n − x†||`2
≤ ||(I − Pn)x||`2 + ||Pn(x− x†)||`2 + ||(I − Pn)x†||`2 (12)
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Until further notice we keep the parameter n ∈ N arbitrary but fixed and start
estimating the last term which describes the decay of the tail of the solution
and thus its smoothness. One easily sees that in in our special situation with
〈x†, ui〉 = σ−ηi it is

||x†n − x†||`2 =

√√√√ ∞∑
i=n+1

|〈x†, ui〉|2 =

√√√√ ∞∑
i=n+1

|i−η|2

=

√√√√ ∞∑
i=n+1

i−2η ≤
√

1

2η − 1
(n+ 1)1−2η

≤ (2η − 1)−
1
2n

1
2−η.

Next we estimate ||Pn(x− x†)||`2 . In order to do so we recall the notion of
the modulus of continuity, given by

ω(M, δ) := sup{||x|| : x ∈M, ||Ax|| ≤ δ}. (13)

This quantity is essentially related to minimal errors of any regularization
method for noisy data. Since Pn(x − x†) ∈ span{u1, . . . , un} =: Xn, we can
use tools from approximation theory to estimate its norm. In [13], Proposition
3.9, it has been shown that

ω(Xn, δ) =
δ

σn

where 1
j(A,Xn)

is the inverse of the modulus of injectivity j(A,Xn), defined as

j(A,Xn) := inf
06=x∈Xn

||Ax||
||x||

.

For diagonal operators it is j(A,Xn) = σn and thus, with σn = n−β , we have

ω(Xn, δ) = nβδ (14)

and therefore

||Pn(x− x†)||`2 ≤ ω(Xn, ||APn(x− x†n)||) = nβ(||APn(x− x†n)||+ δ),

see [13], Lemma 2.2. We need to show later that ||APn(x − x†n)|| + δ ≤ cδ
for some constant c > 1. Therefore we neglect the summand δ as in the case
||APn(x − x†n)|| < δ this criterion is fulfilled anyway. One also easily sees that
for diagonal operators it is

||APn(x− x†n)|| ≤ ||Ax− x†n||.

Summing up the results so far, (12) now reads

||x− x†||`2 ≤ ||(I − Pn)x||`2 + nβ ||Ax−Ax†n||`2 + cn
1
2−η (15)
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and holds for all n ∈ N. We are of course only interested in this relation
when x is the regularized solution, x = xδα. In the best case scenario the term
||(I − Pn)x||`2 vanishes and only the two rightmost terms remain. The best
possible convergence rate obtainable with our approach is therefore determined
by those two expressions. Define

ϕn(t) := nβt+ cn
1
2−η (16)

and
ϕ(t) = inf

n∈N
ϕn(t) (17)

The index for which the infimum is attained is denoted by ninf . Since the
infimum is taken over a countable set and ϕn(t) → ∞ as n → ∞ such an ninf
exists. It is simple calculus to show

ϕ(t) = inf
n∈N

ϕn(t) = cβ,ηt
2η−1

2η+2β−1 (18)

and
ninf (t) = cηt

− 2
2η+2β−1 (19)

with cη > 0. Before we continue, we shall make a quick credibility check for

the convergence rate. Using the singular system of Ã we can also calculate the
residual approximation ||Ã(x†n − x†)||2Y . It is

||Ã(x†n − x†)||2Y =

∣∣∣∣∣
∣∣∣∣∣
∞∑

i=n+1

σix
†
iui

∣∣∣∣∣
∣∣∣∣∣
2

Y

=

∞∑
i=n+1

|σix†i |
2

=

∞∑
i=n+1

|i−βi−η|2 =

∞∑
i=n+1

i−2(η+β)

≤
∣∣∣∣ 1

1− 2η − 2β

∣∣∣∣n1−2(η+β)
We insert ninf (t) in this expression and obtain

||Ã(x†ninf (t) − x
†)||2Y = cη,β(t2)

2η+2β−1
2η+2β−1 = cη,βt

2, (20)

i.e., ||Ax†ninf (δ) −Ax
†|| ≤ cδ. Note that

nβ ||Ã(x†n − x†)||Y = cn
1
2−η → 0 for η >

1

2
,

i.e., the the image of A under the approximation of x† via x†n is compatible
with the modulus of continuity for all x ∈ `2. In section 6 we observe that the
parameter choice (21) indeed yields the rate (18) in numerical experiments.

In order to theoretically verify the convergence rate it remains to show
||Axδα − Ax†|| ≤ cδ2 and to estimate ||(I − Pn)xδα||`2 . For both terms the

13



choice of the regularization parameter is crucial. We will investigate here an a
priori parameter choice which takes the form

α ∼ δ2

δ
−1

2η+2β−1ϕ(δ)
. (21)

While we are interested in the discrepancy principle as an a posteriori parameter
choice, we while not discuss it for now as we will run into the same problem
as with the a priori choice. It is apparent that one this has been overcome the
discrepancy principle will lead to the same convergence rate.

Lemma 4.1. It is with the a-priori parameter choice (21) ||Axδα− yδ||2 ≤ Cδ2.

Proof. Fix n = ninf (δ). From the Tikhonov functional we have

||Axδα − yδ||2 + α||xδα||`1 ≤ ||Ax†n − yδ||2 + α||x†n||`1

which with
||xδα||`1 = ||Pnxδα||`1 + ||(I − Pn)xδα||`1

and
||x†n||`1 ≤ ||Pn(x† − xδα)||`1 + ||Pnxδα||`1 .

yields

||Axδα − yδ||2 + α||(I − Pn)xδα||`1 ≤ ||Ax†n − yδ||2 + α||Pn(x† − xδα)||`1 . (22)

Therefore, using ||Pn · ||`1 ≤
√
n||Pn · ||`2 and adding α

√
n||x†n − x†||`2 on the

right hand side one obtains by neglecting the second term on the left hand side

||Axδα − yδ||2 ≤ ||Ax†n − yδ||2 + α
√
n(||Pn(x† − xδα)||`2 + ||x†n − x†||`2) (23)

Observe that the term in brackets is ϕ(||APn(xδα − x†n)||) and that

ϕ(||APn(xδα − x†n)||) ≤ ϕ(||Axδα − yδ||+ ||Ax†n −Ax†||) (24)

≤ ϕ(2 max{||Axδα − yδ||, Cδ}). (25)

Therefore we have from (23), with
√
n =

√
ninf (δ) = Cδ

−1
2η+2β−1 and ||Ax†n −

yδ||2 ≤ 4δ2

||Axδα − yδ||2 ≤ 4δ2 + Cαδ
−1

2η+2β−1ϕ(2 max{||Axδα − yδ||, Cδ}). (26)

Using the parameter choice (21) one continues analogously to Corollary 1 in
[5].

The final step is to show that ||(I − Pn)xδα|| ≤ cϕ(δ), and this is precisely
the open problem. Starting from (22) we have

α||(I − Pn)xδα||`1 ≤ ||Ax†n − yδ||2 + α||Pn(x† − xδα)||`1 . (27)
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Alternatively, (23) yields

α||(I − Pn)xδα||`1 ≤ ||Ax†n − yδ||2 + α
√
nϕ(δ).

Inserting the parameter choice (21) yields

||(I − Pn)xδα||`1 ≤ C
√
nϕ(δ).

Without the term
√
n on the right-hand side this would proof the conjecture

for the convergence rate since trivially

||(I − Pn)xδα||`2 ≤ ||(I − Pn)xδα||`1 .

However, we would need a relation of the type

√
n||(I − Pn)xδα||`2 ≤ ||(I − Pn)xδα||`1 . (28)

While for general elements in `1 this certainly won’t hold, we have a particular
structure of in (I − Pn)xδα. Namely, by construction its first n coefficients are
zero and there is only a finite number of nonzero-elements since xδα ∈ `0 (see
[10] for the last statement). Alternatively, we would immediately obtain the
proposed convergence rates if simply

||(I − Pn)xδα||`1 = 0

would hold, implying ||(I − Pn)xδα||`1 = 0.
The problem here is precisely the same as in the proof of convergence to a

minimum-norm solution, compare (27) and (9) as well as (28) and (10).

Remark 4.1. Although we restricted ourselves to the case of a diagonal oper-
ator with special solution, a generalization to general operators and solutions is
possible. Then, however, we might not be able to explicitly state the obtained
convergence rate. We could merely show that there is a function ϕ governing
the regularization error which is constructed as in (16), with different factor
working on t and different term describing the solution smoothness. Lemma 4.1
would still apply and we would expect that the term ||(I−Pn)xδα|| can be handled
as well (assuming we would know how to do that in the diagonal case).

5 Comparison with `1 and `2-regularization

In order to get a feeling for the convergence properties we compare the result
from the previous section with classical `1 and classical `2 regularization. Let
us start with `1-regularization, i.e. the approximate solution to (1) is obtained
via (11) but under the assumption that ||x†||`1 <∞. Since we are interested in
non-sparse solutions, we refer to [3, 4] for this situation. For the diagonal case
as in Section 4 they showed a convergence rate

||xδα − x†||`1 ≤ cδ
η−1
η+β ,

15



see [3, Example 5.3]. Recently it was shown in [14] that actually

||xδα − x†||`1 ≤ cδ
η−1

η+β− 1
2 = ϕ`1 ,

can be achieved using the parameter choice

α ∼ δ2

ϕ(δ)
=

δ2

δ
η−1

η+β− 1
2

= δ
4β+2η

2η+2β−1 .

Now let us move to `2-regularization. This corresponds to the classic Tikhonov
regularization, i.e. the approximate solution to (1) is given by

xδα := argmin
x∈D(A)

1

2
||Ax− yδ||2 + α||x||`2 . (29)

It is then well known, see e.g. [7, 8] that under the assumption

x† ∈ ran((A∗A)ν) (30)

for some 0 ≤ ν ≤ 2 the best possible convergence rate

||xδα − x†||`1 ≤ cδ
ν
ν+1 (31)

can be shown under the a-priori parameter choice

α ∼ δ
2
ν+1 .

In the diagonal setting the source condition (30) can easily be related to the
parameters η and β. Namely, (30) holds for all ν with 2η−1

2β < ν. Since we are

interested in the largest ν we set ν = 2η−1
2β for simplicity, acknowledging that

actually we should write ν = 2η−1
2β − ε for arbitrary but small ε > 0. With this,

the convergence rate becomes

||xδα − x†||`1 ≤ cδ
ν
ν+1 = cδ

2η−1
2η+2β−1 = ϕ`2

and the parameter choice is

α ∼ δ2

ϕ(δ)2
=

δ2

δ
4η−2

2η+2β−1

= δ
4β

2η+2β−1 .

We summarize the convergence rates and parameter choices in Table 1. One
sees that the `1 − `2-regularization inherits the parameter choice from the `1-
regularization and the convergence rate from the `2-regularization. With respect
to the ideas of Section 4 this appears to be reasonable. The parameter choice
influences the residual ||Axδα − yδ|| and the penalty value ||xδα||`1 . Since it it
most important to keep the residual on a level of about δ the `1-parameter
choice is used. Namely, in [14] it has been observed that for `1-regularization
the discrepancy principle and a priori parameter choice always coincide. It is
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type `1 `1 − `2 `2

rate ϕ`1(δ) = δ
η−1

η+β− 1
2 ϕ`2(δ) = cδ

2η−1
2η+2β−1 ϕ`2(δ) = cδ

2η−1
2η+2β−1

α δ
4β+2η

2η+2β−1 δ
4β+2η

2η+2β−1 δ
4β

2η+2β−1

α recipe α = δ2

ϕ`1
α = δ2

ϕ`2 (δ)δ
−1

2η+2β−1

α = δ2

ϕ`2 (δ)

Table 1: Comparison of `1, `2 and `1− `2 regularization. The parameter choice
depends on the penalty functional whereas the convergence rate depends on the
norm the regularization error is measured in.

however somewhat surprising that this property appears to remain even when
x† /∈ `1. The less smooth the solution is, the smaller α has to be chosen. On the
other hand, the optimal convergence rate in `2 is well known to be given by (31).
In short this means that `1-regularization has qualification ∞ in comparison to
the classical `2-based Tikhonov regularization which possesses the qualification
ν.

The above observations give rise to the assumption that a closed convergence
theory for `q-regularization with convergence rate measured in `p is possible.
This would lead to a theory alike the one in Hilbert scales, see Section 2. We
could already find an a priori parameter choice rule as well as a convergence rate
for this situation. Numerically observed convergence rates coincide nicely with
our conjecture. Since the sketch of the proof is similar to the one in Section 4, it
is clear that we have to fix that one first before going to a more general setting.

6 Numerical examples

In this section we consider an operator specifically tailored to the setting of
section (4). Our base is the Voltera operator

[Ãx](s) =

∫ s

0

x(t) dt. (32)

We discretized Ã with the rectangular rule at N = 400 points. In order to
ensure our desired properties σn ∼ n−β , 〈x†, vn〉| ∼ n−η, we computed the
SVD of the resulting matrix and manually set its singular values σn to precisely
n−β . This means that the actual operator A in (1) is an operator possessing
the same singular vectors {ui} and {vi} as Ã, but different singular values {σi}.
Using the SVD, we constructed our solution such that 〈x†, vn〉 = n−η holds for
various values of η > 0. We added random noise to the data y = Ax† such that
||y− yδ|| = δ. The range of δ is such that the relative error is between 25% and
0.2%. The solutions were computed via

xδα = argmin||Ax− yδ||2 + α||x||`1 ,

where the `1-norm was taken of the coefficients with respect to the basis originat-
ing from the SVD. The regularization parameter was chosen a priori according
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to (21). We computed the reconstruction error in the `2 norm as well as the
residuals. For larger values of η we could observe the convergence rate directly.
For smaller values of η, we had to compensate for the error introduced by the
discretization level. Namely, since we used a discretization level N = 400, nu-
merically we actually measured

||P400(xδα − x†)||`2

with the projectors P as before being the cut-off after N = 400 elements. In
the plots of the convergence rates we show

||P400(xδα − x†) + (I − P400)x†||`2 . (33)

The second term can be calculated analytically and is supposed to correct for
the fact that we cannot measure the regularization error for larger coefficients,
i.e., we add the tail of x† that can not be observed, keeping in mind that xδα has
only finitely many non-zero components.

We show selected plots of the convergence rates in Figure 6 for β = 1 and
Figure 6 for β = 2. The plots are given with logarithmic scales for both axis. In
each plot of the convergence rates we added the regression line for the assump-
tion ||xδα − x†||`2 = cδe. The value of e is given in the legend. For the residuals
we show the regression for ||Axδα−yδ||`2 = cδd, d being given in the legend. The
regularization parameter is shown in the title of the figures in the form α = δa,
a given. The result of our simulations for a larger number of parameters η are
shown in Table 6 and 6 for β = 1 and β = 2, respectively. We see that for
all values of η the predicted and measured convergence rate coincides nicely.
Additionally, the residual remains stable around ||Axδα − yδ|| ∼ δ. For small
values of η and beta = 1 the residual is a bit smaller than expected. We suppose
this is due to the cut-off of x† due to the discretization. For correct results we
would have to include a tail of the residual similar to (33). If η is very large,
i.e. the components of the solution decay rapidly the observed convergence rate
is basically linear. We suppose this is due to numerical effects as numerically
those solutions are de facto sparse.
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Figure 1: Convergence rates for β = 1 and η = 0.55, 0.7, 1. From the measured
reconstruction error (solid line) we calculated the regression for the assumption
||xδα − x†||`2 = cδe, shown in the broken line.
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Figure 2: Convergence rates for β = 2 and η = 0.55, 0.9, 1.05. From the mea-
sured reconstruction error (solid line) we calculated the regression for the as-
sumption ||xδα − x†||`2 = cδe, shown in the broken line.
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