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The efficient computation of Coulomb interactions in charged particle systems is of
great importance in the field of molecular dynamics simulations. It is widely known
that an approximation can be realized based on the Ewald summation approach and
the fast Fourier transform (FFT). In the present paper we consider particle systems
containing a mixture of N point charges as well as point dipoles. The cutoff errors
in the Ewald summation formulas are derived and validated by numerical examples.
Furthermore, we present for the first time an O(N logN) algorithm for computing
mixed charge–dipole interactions based on the FFT for nonequispaced data (NFFT).
Thereby the treatment of pure charge and pure dipole systems is also covered as a
special case. Our novel approach can be understood as a new module within the
particle-particle NFFT (P2NFFT) framework. Therefore our proposed charge-dipole
algorithms can be combined with all the formerly derived P2NFFT features, which
cover for instance the treatment of arbitrary combinations of periodic and non-periodic
boundary conditions, the handling of triclinic box shapes and a massively parallel
implementation. In order to calculate the interactions with dipoles efficiently, two new
variants of the NFFT, namely the Hessian NFFT as well as the adjoint gradient NFFT,
are derived and implemented. In the context of NFFT, these new variants are of great
importance on their own. The described method can be tuned to a high precision and
is publicly available as a part of the ScaFaCoS library.
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1 Introduction
In this paper we consider electrostatic systems consisting of point charges as well as point dipoles
and show how the interactions between these particles can be computed efficiently via the noneq-
uispaced FFT (NFFT).
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Let three linearly independent vectors `1, `2, `3 ∈ R3 be given. The particles are assumed to be
distributed in a box spanned by these three vectors. If periodic boundary conditions are applied
in all three dimensions, the underlying space is the three-dimensional torus

T := `1T× `2T× `3T := {λ1`1 + λ2`2 + λ3`3 | λ1, λ2, λ3 ∈ T},

where T := R/Z ' [−1/2, 1/2).
For Nc charges qj ∈ R at positions xj ∈ T , j = 1, . . . , Nc, as well as Nd dipoles µj ∈ R3 at

positions xj ∈ T , j = Nc + 1, . . . , Nc +Nd, the overall electrostatic energy can be written as

U = 1
2

Nc+Nd∑
j=1

ξjφ(j) (1.1)

with the potentials

φ(j) =
∑
n∈Z3

′
Nc+Nd∑
i=1

ξi
‖xij +Ln‖ (1.2)

=
∑
n∈Z3

′
Nc∑
i=1

qi
‖xij +Ln‖ −

∑
n∈Z3

′
Nc+Nd∑
i=Nc+1

µ>i (xij +Ln)
‖xij +Ln‖3 .

Thereby, we define the difference vectors xij := xi − xj and ‖ · ‖ denotes the Euclidean norm.
Furthermore, the prime indicates that for n = 0 all terms with i = j are omitted and the regular
matrix L is given by L := [`1, `2, `3]. The operators ξj are defined via

ξj :=
{
qj : j ∈ {1, . . . , Nc},
(µ>j ∇xj

) : j ∈ {Nc + 1, . . . , Nc +Nd}.

The expressions for the energy (1.1) and the potentials (1.2) are the same as for charge-charge
systems [14, 27], where the charges qj have simply been replaced by the operators ξj for the dipole
particles. Note that the infinite sum in (1.2) is conditionally convergent, provided that we have
charge neutrality, i.e.,

Nc∑
j=1

qj = 0. (1.3)

Thus, the value of the energy (1.1) strongly depends on the underlying summation order. Gener-
ally, a spherical order of summation is applied, see [27] for more details.
We are also interested in the computation of the fields E(j), energies U(j) and forces F (j) of

the single particles, which are given by

E(j) := −∇xj
φ(j) =

∑
n∈Z3

′
Nc∑
i=1

qixij,n
‖xij,n‖3 +

∑
n∈Z3

′
Nc+Nd∑
i=Nc+1

(
3µ>i xij,n
‖xij,n‖5 xij,n −

µi
‖xij,n‖3

)
,

where we set xij,n := xij +Ln,

U(j) := ξjφ(j) =
{
qjφ(j) : j ∈ {1, . . . , Nc},
−µ>j E(j) : j ∈ {Nc + 1, . . . , Nc +Nd},

(1.4)

and

F (j) := −∇xj
U(j) =

{
qjE(j) : j ∈ {1, . . . , Nc},
G(j)µj : j ∈ {Nc + 1, . . . , Nc +Nd},

(1.5)
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where G(j) ∈ R3×3 is the negative electric field gradient, i.e.,

G(j) := −∇xj
∇>xj

φ(j)

=
∑
n∈Z3

′
Nc∑
i=1

(
qi

‖xij,n‖3 I3,3 −
3qi

‖xij,n‖5xij,nx
>
ij,n

)

+
∑
n∈Z3

′
Nc+Nd∑
i=Nc+1

(
15µ>i xij,n
‖xij,n‖7 xij,nx

>
ij,n −

3
‖xij,n‖5 (µix>ij,n + xij,nµ>i )− 3µ>i xij,n

‖xij,n‖5 I3,3

)
.

We remark that the computation of sums of a very similar structure is required in order to solve
Stokes equations in three dimensions, for which fast algorithms have been proposed recently, see
[43, 25].
For the dipole particles, i.e., for j = Nc + 1, . . . , Nc +Nd, the torques are given by

τ (j) := µj ×E(j). (1.6)

Note that we can further simplify the expression of the overall energy (1.1) via

U = 1
2

Nc∑
j=1

qjφ(j)− 1
2

Nc+Nd∑
j=Nc+1

µ>j E(j), (1.7)

i.e., the overall energy can be obtained easily after having computed the potentials of the charges
as well as the fields of the dipoles.
There are already various algorithms for the computation of interactions in charged particle

systems, such as the particle-particle particle-mesh (P3M) method [12, 19, 8], the particle-particle
NFFT (P2NFFT) [18, 38], other so called particle mesh methods [7, 13], the fast multipole method
[17] as well as multigrid-based methods [4], just to mention a few. Note that [2] includes a detailed
comparison between different efficient methods for the 3d-periodic Coulomb problem. The results
show that the P3M and P2NFFT solvers rank among the best methods in this field. For systems
containing point dipoles the P3M for dipolar systems has already been introduced and applied
successfully, see [6, 5].
In this paper we show how the introduced quantities can be approximated efficiently for systems

containing charges as well as dipoles. Therewith we extend the P2NFFT [38, 32, 33] method in
order to treat mixed particle systems, as explained above. We remark that the modular structure
enables the combination of the extended modules with all former developments, which covers
for instance the usage on massively parallel architectures and the application of various types of
periodic boundary conditions, i.e.,

φ(j) :=
∑
n∈S

′
Nc+Nd∑
i=1

ξi
‖xij +Ln‖

with S = Zp × {0}3−p and the number p ∈ {0, 1, 2, 3} of dimensions with periodic boundary
conditions. In the present paper we concentrate on 3d-periodic boundary conditions, i.e, p = 3, as
introduced above. Note that the generalization of the method for the computation of dipole–dipole
interactions has already been presented in [31].
Our method is based on the Ewald summation approach [14, 27], which we introduce in Section 2.

In Section 3 we discuss the arising root mean square (rms) errors in the forces, which are introduced
by truncating the Ewald sums. We revisit the known error estimates for charge–charge [26] as
well as for dipole–dipole [45] systems and extend the theory to mixed systems (charge–dipole).
The NFFT is briefly described in Section 4. In the charge–charge case we need the NFFT as well
as the adjoint NFFT in order to approximate the potentials of the charges and in addition the
so called gradient NFFT for the approximation of the acting forces, see [38, 39, 37]. For systems
containing both charges and dipoles we need new NFFT modules, which we call Hessian NFFT
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and adjoint gradient NFFT. These new NFFT modules are described in Section 4, as well. The
final algorithm, which is publicly available as a part of the ScaFaCoS library [1], is summarized in
Section 5, while its implementation is described in Section 6. Numerical examples are presented
in Section 7 and a short summary is given in Section 8.

2 Ewald summation
Many methods in the field of particle simulation are based on the so called Ewald summation
technique [14]. Thereby, the Ewald splitting

1
r

= erfc(αr)
r

+ erf(αr)
r

is used, where α > 0 is called Ewald or splitting parameter, erf(x) = 2π−1/2
∫ x

0 e−t2dt is the well
known error function and erfc(x) = 1− erf(x) is the complementary error function.
If the splitting is applied to (1.1) by setting r := ‖xij +Ln‖ in each summand, the energy U

is split into an absolutely converging short range part

U short = 1
2

Nc+Nd∑
j=1

ξjφ
short(j) with φshort(j) :=

∑
n∈Z3

′
Nc+Nd∑
i=1

ξi
erfc(α‖xij +Ln‖)
‖xij +Ln‖ (2.1)

as well as a long range part U long including all erf terms.
A transform of the long range part into Fourier space yields U long = UF + U self + U0 with the

following three sums. First, the Fourier sum is given by

UF = 1
2

Nc+Nd∑
j=1

ξjφ
F(j) with φF(j) := 1

πV

∑
k∈Z3

ψ̂(k)
(
Nc+Nd∑
i=1

ξi e2πik>L−1xi

)
e−2πik>L−1xj ,

(2.2)
where V := |det(L)| denotes the volume of the simulation box and the Fourier coefficients ψ̂(k)
are given by

ψ̂(k) :=


e−π2‖L−>k‖2/α2

‖L−>k‖2
: k 6= 0,

0 : k = 0.
(2.3)

Second, the self energy

U self := − α√
π

Nc∑
j=1

q2
j −

2α3

3
√
π

Nc+Nd∑
j=Nc+1

‖µj‖2 =: 1
2

Nc∑
j=1

qjφ
self(j)− 1

2

Nc+Nd∑
j=Nc+1

µ>j E
self(j) (2.4)

corrects for the included terms with ‖xij +Ln‖ = 0. Finally, the correction term U0 is defined
as

U0 = 1
2

Nc+Nd∑
j=1

ξjφ
0(j) with φ0(j) := − 2π

3V

Nc+Nd∑
i=1

ξi‖xij‖2. (2.5)

In summary we have
U = U short + UF + U self + U0.

For a detailed derivation we refer to [14, 27].
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Remark 2.1. The correction term is the only term representing the order of summation as well
as the type of surrounding medium. In general, the prefactor of the correction energy is

− 2π
3V (1 + ε) ,

where ε is the dielectric constant of the surrounding medium. For ε = 0 we apply vacuum boundary
conditions and end up with (2.5), whereas ε = +∞ corresponds to metallic boundary conditions.
For systems only containing charges the term U0 is generally known as the dipole correction

term and is more precisely given by

U0 = − π

3V

Nc∑
i,j=1

qiqj‖xij‖2 = 2π
3V

∥∥∥∥∥
Nc∑
i=1

qixi

∥∥∥∥∥
2

,

where the second identity follows from the charge neutrality condition (1.3). The correction term
for mixed systems (2.5) is obtained by replacing the charges qi by the operators ξi. Expressed in
terms of the potentials we obtain

φ0(j) = − 2π
3V

Nc+Nd∑
i=1

ξi‖xij‖2 = 4π
3V

(
D>c xj −

1
2

Nc∑
i=1

qi‖xi‖2 −
Nc+Nd∑
i=Nc+1

µ>i xi +D>d xj

)
,

where we define the overall dipole moments

Dc :=
Nc∑
i=1

qixi and Dd :=
Nc+Nd∑
i=Nc+1

µi.

For the fields we obtain

E0(j) = −∇xj
φ0(j) = − 4π

3V (Dc +Dd) .

Thus, a correction term in the forces only exists for the charges. We have

F 0
c (j) := −qj∇xjφ

0
c (j) = −4πqj

3V (Dc +Dd) .

In summary we obtain for the correction energy

U0 = 1
2

N∑
i=1

qiφ
0(i)− 1

2

N+M∑
i=N+1

µ>i E
0(i) = 2π

3V

(
‖Dc‖2 + 2D>c Dd + ‖Dd‖2

)
.

3 Cutoff errors in the Ewald formulas for the forces
In the field of molecular dynamics simulations the root mean square (rms) error in the forces is
commonly considered in order to measure the accuracy of an algorithm. We denote the rms force
errors for the charges and for the dipoles by

∆Fc :=

√√√√ 1
Nc

Nc∑
j=1
‖F (j)− F≈(j)‖2 (3.1)

and

∆Fd :=

√√√√ 1
Nd

Nc+Nd∑
j=Nc+1

‖F (j)− F≈(j)‖2
, (3.2)
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respectively, where F≈(j) denote approximations of the exact forces F (j).
Both, the short range part as well as the Fourier space part, are converging exponentially fast

and thus can be truncated. In the following we show how the arising rms errors in the forces
caused by the truncation of the Ewald sums can be estimated.
The NFFT based approximation of the truncated Fourier space part, as described above, intro-

duce further approximation errors, which are not discussed here.

3.1 Rms force error in the short range part
In the following we denote the kernel function of the short range part shortly by

f(r) := erfc(αr)
r

. (3.3)

Furthermore, we set
xij,n := xij +Ln and rij,n := ‖xij,n‖.

Rms force errors for the charges

For the charges, i.e., for all j = 1, . . . , Nc, the short range part of the force F (j) = −qj∇xj
φ(j)

can be written as
F short(j) = F short

c.c. (j) + F short
c.d. (j),

where the first term

F short
c.c. (j) = −qj∇xj

Nc∑
i=1

∑
n∈Z3

′
qif(rij,n) = qj

Nc∑
i=1

∑
n∈Z3

′
qif
′(rij,n)xij,n

rij,n
,

includes all charge–charge (c.c.) interactions, while the second term

F short
c.d. (j) = −qj∇xj

Nc+Nd∑
i=Nc+1

∑
n∈Z3

µ>i ∇xi
f(rij,n)

= qj

Nc+Nd∑
i=Nc+1

∑
n∈Z3

f ′′(rij,n)µ>i xij,n
xij,n
r2
ij,n

+ f ′(rij,n)
(
µi
rij,n

− µ>i xij,n
xij,n
r3
ij,n

)
, (3.4)

includes all contributions originating from charge–dipole (c.d.) interactions.
From now we denote by rcut > 0 the near field cutoff radius and approximate the short range

part via considering only distances smaller than rcut. For the charge–charge part this means

F short
c.c. (j) ≈ qj

Nc∑
i=1

qi
∑
n∈Z3

rij,n≤rcut

′
f ′(rij,n)xij,n

rij,n
.

The resulting approximation error, measured in the Euclidean norm, is denoted by

δF short
c.c. (j) :=

∥∥∥∥∥qj
Nc∑
i=1

qi
∑
n∈Z3

rij,n>rcut

′
f ′(rij,n)xij,n

rij,n

∥∥∥∥∥.
In the following we give an estimate of the corresponding rms error

∆F short
c.c. :=

√√√√ 1
Nc

Nc∑
j=1

δF short
c.c. (j)2.
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Thereby, we will denote by

Q :=
Nc∑
i=1

q2
i

the sum over all squared charge values.
The error is estimated as presented in [26] via

δF short
c.c. (j)2 ≈

q2
jQ

V

∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ ∞
rcut

∥∥∥f ′(r)r
r

∥∥∥2
r2dr,

where

f ′(r) = − 2α√
πr

e−α
2r2
− erfc(αr)

r2 .

Thus, we obtain

δF short
c.c. (j)2 ≈

4πq2
jQ

V

∫ ∞
rcut

(
2α√
πr

e−α
2r2

+ erfc(αr)
r2

)2
r2dr

≈
4πq2

jQ

V

∫ ∞
rcut

e−2α2r2
(

2α√
πr

+ 1√
παr3

)2
r2dr

≈
q2
jQrcut

V α2 e−2α2r2
cut

(
2α√
πrcut

+ 1√
παr3

cut

)2
,

see [26]. Thereby, the asymptotic expansion formula∫ ∞
A

e−Bx
2
f(x)dx ≈ e−BA

2 f(A)
2AB if d

dx
f(x)
2Bx � f(x) ∀x ≥ A, (3.5)

is used, which gives

erfc(x) = 2√
π

∫ ∞
x

e−x
2
dx ≈ e−x2

√
πx

(3.6)

applied to the complementary error function.
The corresponding rms error can thus be approximated by

∆F short
c.c. :=

√√√√ 1
Nc

N∑
j=1

δF short
c.c. (j)2 ≈

Q
√
rcut√

NcV α
e−α

2r2
cut

(
2α√
πrcut

+ 1√
παr3

cut

)
. (3.7)

The charge–dipole part is computed separately in an analog manner. Thereby we denote by
θ := ^(µi, r) the angle between the dipole moment µi and the vector r. We obtain for the single
contributions to the error, cf. (3.4),∥∥∥f ′′(r)µ>i r rr2 + f ′(r)

(µi
r
− µ>i r

r

r3

)∥∥∥2

=
∥∥∥f ′′(r)‖µi‖ cos(θ)r

r
+ f ′(r)

(µi
r
− ‖µi‖ cos(θ) r

r2

)∥∥∥2

=
(
f ′′(r)
r − f ′(r)

r2

)2
r2‖µi‖2 cos2 θ + f ′(r)2

r2 ‖µi‖2 + 2
(
f ′′(r)
r − f ′(r)

r2

)
f ′(r)
r cos(θ)‖µi‖µ>i r

= ‖µi‖2
(
f ′(r)2

r2 + cos2 θ
(
f ′′(r)2 − f ′(r)2

r2

))
.
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Thus, we can approximate the error measured in the L2-norm by

δF short
c.d. (j)2 ≈

q2
j

V

Nc+Nd∑
i=Nc+1

∫ 2π

0

∫ π

0
sin θ

∫ ∞
rcut

r2
∥∥∥f ′′(r)µ>i r rr2 + f(r)′

(µi
r
− µ>i r

r

r3

)∥∥∥2
drdθdφ

=
2πq2

j

V

Nc+Nd∑
i=Nc+1

‖µi‖2
∫ π

0
sin θ

∫ ∞
rcut

f ′(r)2 + cos2 θ
(
r2f ′′(r)2 − f ′(r)2) drdθ

=
2πq2

j

V

Nc+Nd∑
i=Nc+1

‖µi‖2
∫ ∞
rcut

4
3f
′(r)2 + 2

3r
2f ′′(r)2dr, (3.8)

analogously to the approximation of δF short
c.c. (j).

The second derivative f ′′ of the function, as given in (3.3), can be written in the form

f ′′(r) = 4α3
√
π

e−α
2r2

+ 4α√
πr2 e−α

2r2
+ 2erfc(αr)

r3 ≈ e−α2r2

√
παr4

(
4α4r4 + 4α2r2 + 2

)
.

Thereby, the approximation is again obtained via applying the asymptotic expansion formula (3.6)
of the complementary error function.
By inserting the obtained approximations for the derivatives of f into (3.8) and making use of

the asymptotic expansion (3.5) we obtain

δF short
c.d. (j)2 ≈

4πq2
jM

3V · e−2α2r2
cut

4rcutα2 ·
1

πα2r6
cut

(
2B2

cut + (4α4r4
cut + 2Bcut)2)

with
Bcut := 1 + 2α2r2

cut

and

M :=
Nc+Nd∑
i=Nc+1

‖µi‖2.

The corresponding rms error can be approximated by

∆F short
c.d. :=

√√√√ 1
Nc

Nc∑
j=1

δF short
c.d. (j)2 ≈ e−α2r2

cut

α2r3
cut

√
2QM

3NcV rcut
(3B2

cut + 8α4r4
cutBcut + 8α8r8

cut). (3.9)

Assuming that the contributions originating from interactions with charges and those resulting
from interactions with dipoles are independent, we may approximate the rms near field error in
the forces of the charges via

∆F short
c ≈

√
(∆F short

c.c. )2 +
(
∆F short

c.d.
)2
. (3.10)

Rms force errors for the dipole particles

For the dipoles, i.e, for all j = Nc + 1, . . . , Nc + Nd, the short range parts of the forces F (j) =
−∇xj

µ>j ∇xj
φ(j) are given by

F short(j) = F short
d.c. (j) + F short

d.d. (j),
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where

F short
d.c. (j) =−∇xjµ

>
j ∇xj

Nc∑
i=1

∑
n∈Z3

qif(rij,n)

=−
Nc∑
i=1

qi
∑
n∈Z3

f ′′(rij,n)µ>j xij,n
xij,n
r2
ij,n

+ f ′(rij,n)
(
µj
rij,n

−
µ>j xij,n

r3
ij,n

xij,n

)
,

F short
d.d. (j) =−∇xj

µ>j ∇xj

Nc+Nd∑
i=Nc+1

∑
n∈Z3

′
µ>i ∇xi

f(rij,n)

=−
Nc+Nd∑
i=Nc+1

∑
n∈Z3

′
C(rij,n)

(
(µ>i xij,n)µj + (µ>j xij,n)µi + (µ>i µj)xij,n

)
+

Nc+Nd∑
i=Nc+1

∑
n∈Z3

′
D(rij,n)(µ>i xij,n)(µ>j xij,n)xij,n.

The functions C and D are given by

C(r) := f ′′(r)
r2 − f ′(r)

r3 = 4α3
√
πr2 e−α

2r2
+ 6α√

πr4 e−α
2r2

+ 3erfc(αr)
r5 ,

D(r) := −f
′′′(r)
r3 + 3f

′′(r)
r4 − 3f

′(r)
r2 =

(
8α5
√
πr2 + 20α3

√
πr4 + 30α√

πr6

)
e−α

2r2
+ 15erfc(αr)

r7 ,

see [45].
The same steps, which led to the approximation of δF short

c.d. (j) and ∆F short
c.d. , give

δF short
d.c. (j)2 ≈

‖µj‖2Q e−2α2r2
cut

3V α4r7
cut

(
2B2

cut + (4α4r4
cut + 2B2

cut)
)

for all j = Nc + 1, . . . , Nc +Nd as well as

∆F short
d.c. :=

√√√√ 1
Nd

Nc+Nd∑
j=Nc+1

δF short
d.c. (j)2 ≈ e−α2r2

cut

α2r3
cut

√
2QM

3NdV rcut
(3B2

cut + 8α4r4
cutBcut + 8α8r8

cut).

(3.11)
In the case of dipole–dipole interactions we refer to the derivation of the corresponding rms

errors as presented in [45]. For each pair (µj ,µi) the polar coordinates in the approximating
integral are chosen such that µj points from the center to the north pole and that the az-
imuthal angle of µi is φµi

= 0, i.e., µi = (‖µi‖ sin^(µi,µj), 0, ‖µi‖ cos^(µi,µj)). For some
r = (r sin θ cosφ, r sin θ sinφ, r cos θ) we obtain

cos^(µi, r) = µ>i r

‖µi‖r
= cos θ cos^(µi,µj) + sin θ sin^(µi,µj) cosφ, (3.12)

see [45, eq. (27)].
For each dipole j the expected error is computed via the integral

δF short
d.d. (j)2 ≈ 1

V

Nc+Nd∑
i=Nc+1

∫ 2π

0

∫ π

0

∫ ∞
rcut

∥∥v(r,µi,µj)
∥∥2 sin(θ)r2drdθdφ,

where
v(r,µi,µj) := C(r)

(
(µ>i r)µj + (µ>j r)µi + (µ>i µj)r

)
−D(r)(µ>i r)(µ>j r)r.

In order to approximate the integral, the single inner products are replaced by the products of
the vector lengths times the corresponding angle, where (3.12) is used. In addition, all the terms
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involving ^(µi,µj) are replaced by the mean values of the corresponding sine and cosine functions
on the interval [0, π]

1
π

∫ π

0
cos2(x)dx = 1

π

∫ π

0
sin2(x)dx = 1

2 ,
1
π

∫ π

0
cos(x) sin(x)dx = 0. (3.13)

We obtain, see [45],

δF short
d.d. (j)2 ≈ |µj | · |µi| ·

e−2α2r2
cut

V α4r9
cut

(
13
6 C

2
cut + 2

15D
2
cut + 13

15CcutDcut

)
,

where

Ccut := 4α4r4
cut + 6α2r2

cut + 3,
Dcut := 8α6r6

cut + 20α4r4
cut + 30α2r2

cut + 15.

For the rms force error in the short range part regarding dipole–dipole interactions we finally
obtain

∆F short
d.d. :=

√√√√ 1
Nd

Nc+Nd∑
j=Nc+1

δF short
d.d. (j)2

≈ e−α2r2
cutM

α2r4
cut

√
1

rcutNdV

(
13
6 C

2
cut + 2

15D
2
cut + 13

15CcutDcut

)
. (3.14)

Assuming that the contributions originating from interactions with charges and those resulting
from interactions with the other dipoles are independent, we may approximate the rms near field
error in the forces of the dipoles via

∆F short
d ≈

√(
∆F short

d.c.
)2 +

(
∆F short

d.d.
)2
. (3.15)

3.2 Rms force error in the Fourier space part
For some M ∈ 2N3 we define the index set IM by

IM :=
{
−M1

2 , . . . , M1
2 − 1

}
× . . .×

{
−M3

2 , . . . , M3
2 − 1

}
.

Since the Fourier coefficients (2.3) decrease exponentially fast for growing k we can replace the
infinite lattice by a finite lattice

Z3 7→ IM ,

where M ∈ 2N3 has to be chosen appropriately.
In the following we denote by

˜̀1, ˜̀2, ˜̀3

the dual lattice vectors fulfilling ˜̀
i · `j = δij . The dual lattice vectors are simply the columns of

the matrix L−>.
We obtain

‖L−>k‖2 = ‖k1˜̀1 + k2˜̀2 + k3˜̀3‖2.

Furthermore, we set
nkl := ˜̀

k × ˜̀
l

and choose the cutoff parameters c1, c2, c3 ∈ R+ such that

c1‖˜̀1‖ · | cos^(˜̀1,n23)| = c2‖˜̀2‖ · | cos^(˜̀2,n13)| = c3‖˜̀3‖ · | cos^(˜̀3,n12)| = β, (3.16)
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which means that the three heights of the parallelepiped

{x1˜̀1 + x2˜̀2 + x3˜̀3 : x ∈ Ic}

with
Ic := [−c1/2, c1/2]× [−c2/2, c2/2]× [−c3/2, c3/2]

are all of length β. Thus, the parallelepiped contains the ball of radius β/2. The Fourier space
cutoff M ∈ 2N3 is consequently chosen such that

M ≈ c = (c1, c2, c3), (3.17)

i.e., we round to the next even integer in each component.

Remark 3.1. The conditions (3.16) are equivalent to

c1

‖`1‖
= c2

‖`2‖
= c3

‖`3‖
= β. (3.18)

As an example, the vectors n23 and `1 are linearly dependent. Thus, we obtain

c1‖˜̀1‖ · | cos^(˜̀1,n23)| = c1‖˜̀1‖ · | cos^(˜̀1, `1)| = c1
|˜̀1 · `1|
‖`1‖

= c1

‖`1‖
.

Example 3.2. We consider a box spanned by the three vectors `1 = (1, 0, 0), `2 = (1, 1, 0) and
`3 = (0, 0, 1). The dual lattice vectors are given by ˜̀1 = (1,−1, 0), ˜̀2 = (0, 1, 0) and ˜̀3 = (0, 0, 1).
For β := 8 we obtain

c = (8, 8
√

2, 8) and M := (8, 12, 8),

which ensures
{x ∈ R3 : ‖x‖ ≤ 4} ⊂ {x1˜̀1 + x2˜̀1 + x3˜̀1,x ∈ Ic}.

In contrast, for the lattice vectors `1 = (1, 0, 0), `2 = (0, 1, 0) and `3 = (0, 0, 1) we obtain M =
(8, 8, 8). For a graphical illustration in two dimensions see Figure 3.1.

k2 ∈ I12

k1 ∈ I8

r = β
2
= 4

1

k2 ∈ I8

k1 ∈ I8

r = β
2
= 4

1

Figure 3.1: The sets {k1˜̀1 + k2˜̀2 : k1 ∈ IM1 , k2 ∈ IM2} for `1 = (1, 0), `2 = (1, 1) (left) and for
`1 = (1, 0), `2 = (0, 1) (right).
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Rms force errors for the charges

For the charges, i.e., j = 1, . . . , Nc, we decompose the Fourier space part of the force F (j) =
−qj∇xj

φ(j) via
F F(j) = F F

c.c.(j) + F F
c.d.(j),

where

F F
c.c.(j) = −

qj∇xj

πV

∑
k∈Z3

ψ̂(k)
Nc∑
i=1

qi e2πik>L−1xij = 2iqj
V

Nc∑
i=1

qi
∑
k∈Z3

ψ̂(k)(L−>k) e2πik>L−1xij ,

F F
c.d.(j) = −

qj∇xj

πV

∑
k∈Z3

ψ̂(k)
Nc+Nd∑
i=Nc+1

µ>i ∇xi
e2πik>L−1xij

= −4πqj
V

Nc+Nd∑
i=Nc+1

‖µi‖
∑
k∈Z3

ψ̂(k)‖L−>k‖ cos(γi,k)(L−>k) e2πik>L−1xij , (3.19)

and γi,k := ^(µi,L−>k) denotes the angle between a lattice vector L−>k and a dipole moment
µi.
If the infinite sum is replaced by a finite sum over k ∈ IM , the Fourier space part F F

c.c.(j) is
approximated via

F F
c.c.(j) ≈ F F,≈

c.c. (j) := 2iqj
V

Nc∑
i=1

qi
∑
k∈IM

ψ̂(k)(L−>k) e2πik>L−1xij

resulting in an error

F F
c.c.(j)− F F,≈

c.c. (j) =
Nc∑
i=1

qiχ(xij),

where
χ(x) := 2i

V

∑
k∈Z3\IM

ψ̂(k)(L−>k) e2πik>L−1x.

Note that the rms force errors in the Fourier space part have already been computed in [26].
However, for the sake of completeness, we sketch the derivation of the error, following the common
approach as presented and used in [9, 45], for instance. The result is slightly different from the
one given in [26].
At first, we compute the quadratic mean

χ2 := 1
V

∫
x∈LT

χ(x)>χ̄(x) dx = 4
V 2

∑
k∈Z3\IM

ψ̂(k)2‖L−>k‖2 = 4
V 2

∑
k∈Z3\IM

e−2π2‖L−>k‖2/α2

‖L−>k‖2

and we obtain, cf. [9, Eq. 19],

(
∆FF

c.c.
)2 ≈ Q2

Nc
χ2 ≈ 4Q2

V 2Nc

∫
k∈Z3\IM

e−2π2‖L−>k‖2/α2

‖L−>k‖2
dk

≤ 4Q2

V 2Nc|det(L−>)|

∫
‖k‖≥β/2

e−2π2‖k‖2/α2

‖k‖2 dk

= 4Q2

V Nc

∫ π

0
sin θ

∫ 2π

0

∫ ∞
β/2

e−2π2k2/α2
dk dφ dθ

= 16πQ2

V Nc
· α

2
√

2π
erfc

(
πβ√
2α

)
≈ 8α2Q2

πV Ncβ
e−π

2β2/2α2
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or equivalently

∆FF
c.c. ≈ αQ

√
8

πβNcV
e−π

2β2/4α2
, (3.20)

where we can replace β = 3−1/2‖L−>M‖. The infinite sum has been approximated by an integral,
as explained above.
We proceed with the charge–dipole interaction, i.e., we want to estimate the resulting error

when replacing the infinite sum in (3.19) by a sum over k ∈ IM . The integral, which has to be
computed, contains cos2(γi,k) for each i. Thus, the spherical coordinates are chosen such that
θ = γi,k for each i. We obtain

δFF
c.d.(j)2 ≈

16π2q2
j

V 2|det(L−>)|

Nc+Nd∑
i=Nc+1

‖µi‖2
∫ π

0
sin(θ) cos2(θ)dθ

∫ 2π

0
dφ
∫ ∞
β/2

e−2π2k2/α2
k2dk

=
64π3q2

jM
3V

∫ ∞
β/2

e−2π2k2/α2
k2dk ≈

8βα2πq2
jM

3V e−π
2β2/2α2

and, finally,

∆FF
c.d. :=

√√√√ 1
Nc

Nc∑
j=1

δFF
c.d.(j)2 ≈ α

√
8βπQM

3NcV
e−π

2β2/4α2
. (3.21)

Assuming that the contributions originating from interactions with charges and those resulting
from interactions with dipoles are independent, we may approximate the rms far field error in the
forces of the charges via

∆FF
c ≈

√
(∆FF

c.c.)
2 +

(
∆FF

c.d.
)2
. (3.22)

Rms force errors for the dipole particles

For the dipoles, i.e., j = Nc + 1, . . . , Nc +Nd, we can write the Fourier space part of the force as

F F(j) = F F
d.c.(j) + F F

d.d.(j),

where

F F
d.c.(j) = −

∇xj
(µ>j ∇xj

)
πV

∑
k∈Z3

ψ̂(k)
Nc∑
i=1

qi e2πik>L−1xij

=
4π‖µj‖
V

Nc∑
i=1

qi
∑
k∈Z3

ψ̂(k)‖L−>k‖ cos(γj,k)(L−>k) e2πik>L−1xij ,

F F
d.d.(j) = −

∇xj
(µ>j ∇xj

)
πV

∑
k∈Z3

ψ̂(k)
Nc+Nd∑
i=Nc+1

µ>i ∇xi e2πik>L−1xij

=
8π2i‖µj‖

V

Nc+Nd∑
i=Nc+1

‖µi‖
∑
k∈Z3

ψ̂(k)‖L−>k‖2 cos(γj,k) cos(γi,k)(L−>k) e2πik>L−1xij .

Analogously to the computation of ∆FF
c.d., see (3.21), we obtain

∆FF
d.c. ≈ α

√
8βπQM

3NdV
e−π

2β2/4α2
. (3.23)

For the approximation of δFc.d.(j) as well as δFd.c.(j) the spherical coordinates have been
chosen such that θ = γi,k, as explained above. The same is done for the computation of the errors
δFd.d.(j). Furthermore, cos(γi,k) is rewritten via (3.12) and in the obtained expression the sine
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and cosine terms depending on the angle γij := ^(µi,µj) are again simply replaced by the mean
values (3.13). We obtain

∆FF
d.d. ≈ 4αM

√
π3β3

15NdV
e−π

2β2/4α2
, (3.24)

see [45, eq. (45)], where kc = βL/2.
Assuming that the contributions originating from interactions with charges and those resulting

from interactions with the other dipoles are independent, we may approximate the rms far field
error in the forces of the dipoles via

∆FF
d ≈

√(
∆FF

d.c.
)2 +

(
∆FF

d.d.
)2
. (3.25)

4 Fast evaluation of trigonometric sums for nonequispaced data
The well known fast Fourier transform enables the efficient evaluation of a trigonometric poly-
nomial at N equispaced nodes with an arithmetic complexity of O(N logN). In a wide range
of applications an efficient sampling at nonequispaced knots is needed, which led to the develop-
ment of the well known nonuniform FFT or rather fast Fourier transform for nonequispaced data
(NFFT). In this section we give a short introduction to the NFFT and some of its variations that
will be essential modules of our particle–mesh framework in Section 5. Thereby, we introduce two
new NFFT variants called adjoint gradient NFFT and Hessian NFFT.

4.1 NFFT
The fast evaluation of a trigonometric polynomial

f(x) =
∑
k∈IM

f̂k e2πik>x (4.1)

at N given nodes xj ∈ T3, i.e., the fast computation of the sums

f(xj) =
∑
k∈IM

f̂k e2πik>xj (4.2)

for all j = 1, . . . , N , is known as NFFT, [11, 3, 42, 10, 46, 41, 16, 24]. The idea is to map the
arbitrarily spaced nodes xj onto a regular grid via a so called window function ϕ (convolution),
since on a regular grid the transformation into Fourier space can be done via the FFT. In order to
correct for the convolution with the window function ϕ the input coefficients f̂k ∈ C can simply
be divided by the Fourier coefficients ck(ϕ) of the window function (deconvolution).
The usage of a larger grid of size m >M , where m ∈ 2N3, can increase the accuracy of this

approximate algorithm and is called oversampling. Thereby, we denote by

σj := mj

Mj
, j ∈ {1, 2, 3}, (4.3)

the oversampling factors of the single dimensions.
In summary, the NFFT algorithm consists of the following three steps.
i) Deconvolution in Fourier space:

ĝk :=
{

f̂k

ck(ϕ̃) : k ∈ IM ,

0 : k ∈ Im \ IM .

ii) Inverse fast Fourier transform:

(ĝk)k∈Im
7→ (gl)l∈Im

.

14



iii) Approximate the function values f(xj) via

f(xj) ≈
∑
l∈Im

glϕ (xj − l�m) , (4.4)

where l�m :=
(
l1
m1
, l2m2

, l3m3

)
∈ R3.

The described algorithm needs O(|Im| log |Im| + N) arithmetic operations, whereas the direct
evaluation of the sums (4.2) scales like O(|IM | ·N).

4.2 Gradient NFFT
Consider again a trigonometric polynomial f as given in (4.1). We are now interested in the fast
evaluation of the gradient ∇f at the given nodes xj ∈ T3, j = 1, . . . , N . This can be done with
a similar approximation as we use for the NFFT in Section 4.1, see [37] for a detailed derivation.
For the sake of brevity, we only give the resulting approximations.
If the differentiation is done in Fourier space, we obtain

∇f(xj) = 2πi
∑
k∈IM

f̂k e2πik>xjk ∈ C3, (4.5)

i.e., the fast evaluation can be done via the NFFT in each of the three dimensions. This approach
is widely known as ik differentiation.
Another variant is to apply the differentiation to the window function ϕ, i.e., the third step of

the NFFT (4.4) is replaced by

∇f(xj) ≈
∑
l∈Im

gl∇ϕ (xj − l�m) .

Note that this so called analytic differentiation approach only requires the computation of one FFT
of size |Im|, whereas three FFTs of the same size are needed for the ik differentiation approach.

4.3 Hessian NFFT
Similarly to the gradient NFFT, we are also able to evaluate the Hessian Hf of a trigonometric
polynomial f , see (4.1), at nonequispaced nodes xj ∈ T3, j = 1, . . . , N . Differentiation in Fourier
space gives

Hf(xj) = −4π2
∑
k∈IM

f̂k e2πik>xjk>k ∈ C3×3, (4.6)

i.e., nine univariate NFFTs are required. Since Hf(xj) ∈ C3x3 is a symmetric matrix, we can
reduce the computational effort to the computation of six one-dimensional NFFTs.
Applying the differentiation operators directly to the NFFT window function ϕ gives the analytic

differentiation
Hf(xj) ≈

∑
l∈Im

gl(Hϕ) (xj − l�m) ,

which replaces the convolution step (4.4) in the computation of the NFFT. Again, for the analytic
differentiation approach only one FFT of size |Im| has to be computed.

4.4 Adjoint NFFT
The efficient computation of the sums

h(k) =
N∑
j=1

fj e−2πik>xj (4.7)
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for all k ∈ IM , where the coefficients fj ∈ C, j = 1, . . . , N , are given, is known as adjoint NFFT.
Equation (4.2) can be written in matrix-vector form as

(fj)Nj=1 = A
(
f̂k

)
k∈IM

with A :=
(

e2πik>xj

)
j∈{1,...,N},k∈IM

∈ CN×|IM |.

Thus, equation (4.7) reads as (
f̂k

)
k∈IM

= A
> (fj)Nj=1

with the adjoint matrix A>. The algorithm can be summarized as follows.
i) Convolution in spatial domain: For all l ∈ Im compute

gl :=
N∑
j=1

fjϕ (xj − l�m) . (4.8)

ii) Fast Fourier transform:
(gl)l∈Im

7→ (ĝk)k∈Im
. (4.9)

iii) Deconvolution in Fourier space: For all k ∈ IM approximate h(k) via

h(k) ≈ ĝk
ck(ϕ) . (4.10)

4.5 Adjoint gradient NFFT
The fast evaluation of

h(k) =
N∑
j=1

(f>j ∇x) e−2πik>x
∣∣∣
x=xj

∈ C, (4.11)

for all k ∈ IM , where the nodes xj ∈ T3 as well as the vectors f j ∈ C3 are given, is called adjoint
gradient NFFT. It can be computed via the adjoint NFFT as follows.
The ik differentiation approach gives

h(k) = −2πi
N∑
j=1

f>j k e−2πik>xj = −2πi

 N∑
j=1

f j e−2πik>xj

> k.
Thus, we can compute a vector valued adjoint NFFT and then compute the scalar products with
k. For the analytic differentiation we replace the convolution step (4.8) in the adjoint NFFT by

gl :=
N∑
j=1

f>j ∇ϕ (xj − l�m) .

The FFT step (4.9) and deconvolution step (4.10) remain the same. Again, we stress that the
analytic differentiation approach only needs one FFT, whereas the ik differentiation approach
requires three FFTs.

4.6 Window functions
A variety of possible window functions ϕ has already been suggested in the literature. An overview
on the available NFFT windows is given in [24], for instance. Note that in the scope of particle
mesh methods B-splines are commonly used, cf. [19, 8, 7, 13, 6, 5]. But also for the Bessel window
promising results have been achieved recently, see [30, 29]. Thus, the focus is set on the B-spline
as well as the Bessel window function in this paper.
Note that the considered window functions are both compactly supported in spatial domain so

that basically the same estimates for the resulting approximation errors are valid, see [42, 10, 41,
30, 37].
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4.6.1 B-Spline window

The centered cardinal B-splines are defined recursively via

B1(x) :=
{

1 : x ∈ [−1/2, 1/2),
0 : else,

Bn+1(x) := (Bn ∗B1)(x) for n ∈ N,

where ∗ denotes the convolution operator on R.
The NFFT window function is then chosen as, cf. [3, 40],

ϕ(x) := B2p(m1x1)B2p(m2x2)B2p(m3x3)

via a tensor product approach, where we refer to p ∈ N as the support parameter. Thereby
m1,m2,m3 are the single components of the oversampled grid size m. The window function is
compactly supported with

supp(ϕ) = [−p/m1, p/m1]× [−p/m2, p/m2]× [−p/m3, p/m3]. (4.12)

The Fourier coefficients can be expressed in terms of the well known sinc function.

ck(ϕ) = 1
m1m2m3

sinc2p
(
πk1
m1

)
sinc2p

(
πk2
m2

)
sinc2p

(
πk3
m3

)
.

4.6.2 Bessel window

For some shape parameter b > 0 and p ∈ N we define

z(x) := 1
2

{
I0(b

√
p2 − x2) : |x| ≤ p,

0 : else,

see [23, 15, 21, 37], where I0 denotes the modified zero-order Bessel function. In three dimensions
we follow the tensor product approach in order to define the NFFT window function via

ϕ(x) := z(m1x1)z(m2x2)z(m3x3),

which is compactly supported with the support given in (4.12). Again, m1,m2,m3 are the single
components of the oversampled grid size m. The Fourier coefficients can be expressed as

ck(ϕ) =
3∏
j=1

sinh(p
√
b2 − 4π2k2

j/m
2
j )

mj

√
b2 − 4π2k2

j/m
2
j

,

where the square root gives one unit root for negative arguments, i.e., we have

sinh(p
√
b2 − 4π2k2

j/m
2
j )

mj

√
b2 − 4π2k2

j/m
2
j

=
sinh(i p

√
4π2k2

j/m
2
j − b2)

imj

√
4π2k2

j/m
2
j − b2

=
sin(p

√
4π2k2

j/m
2
j − b2)

mj

√
4π2k2

j/m
2
j − b2

if b2 − 4π2k2
j/m

2
j < 0.

5 P2NFFT for charges and dipoles
In the following we present a method for the efficient approximation of the potentials, fields and
field gradients. Based on the corresponding Ewald formulas the computation is basically split into
a near field part, which is evaluated by direct summation, as well as a far field part, which is
computed via the NFFT modules as presented in Section 4.
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5.1 Computation of the potentials
As stated in Section 2, the Ewald formulas for the energy (1.1) have been derived in [28]. The
Ewald representations for the potentials φ(j) follow immediately from that, see (2.1), (2.2) and
(2.5). The self potentials for the charges as well as the self fields for the dipoles are obtained from
(2.4) and the self potentials of the dipoles are equal to zero, since for j ∈ {Nc + 1, . . . , Nc + Nd}
we have

φself(j) = − lim
x→0

µ>j ∇x
erf(α‖x‖)
‖x‖

= 0.

In summary, we obtain

φ(j) = φshort(j) + φF(j) + φself(j) + φ0(j),

where

φshort(j) :=
Nc+Nd∑
i=1

∑
n∈Z3

′ξi
erfc(α‖xij +Ln‖)
‖xij +Ln‖ , (5.1)

φF(j) := 1
πV

∑
k∈Z3

ψ̂(k)
(
Nc+Nd∑
i=1

ξi e2πik>L−1xi

)
e−2πik>L−1xj , (5.2)

φself(j) :=
{
− 2α√

π
qj : j = 1, . . . , Nc,

0 : j = Nc + 1, . . . , Nc +Nd,

φ0(j) := 4π
3V

(
D>c xj −

1
2

Nc∑
i=1

qi‖xi‖2 −
Nc+Nd∑
i=Nc+1

µ>i xi +D>d xj

)
.

The computation of φself(j) and φ0(j) is straight forward. Since the complementary error function
erfc(·) tends to zero exponentially fast, the short range parts of the potentials can be obtained via
direct evaluation, e.g. via a so called linked cell method [19, Chap. 8.4], which is also available
within the ScaFaCoS library [1]. Each particle interacts with a fixed number of neighbors, provided
that the particles are distributed homogeneously. In this case the near field computations scale
like O(N), where the constant depends on the applied near field cutoff radius rcut.
The Fourier space parts φF(j) are approximated as follows. Since the Fourier coefficients ψ̂(k)

given by (2.3) tend to zero exponentially fast in k, the infinite sum over k ∈ Z3 can be replaced
by a sum involving all k ∈ IM , where M ∈ 2N3 has to be chosen large enough.
Then, the structure factors can be written as

S(k) :=
Nc+Nd∑
i=1

ξi e2πik>L−1xi

=
Nc∑
i=1

qi e2πik>L−1xi +
Nc+Nd∑
i=Nc+1

µ>i ∇xi e2πik>L−1xi

=
Nc∑
i=1

qi e2πik>L−1xi +
Nc+Nd∑
i=Nc+1

µ>i L
−>∇x e2πik>x

∣∣∣
x=L−1xi

=: Sc(k) + Sd(k),

where k ∈ IM . In order to compute the structure factors of the charges Sc(k) we apply the
adjoint NFFT, as introduced in Section 4.4, for the nodes L−1xi ∈ T3, i = 1, . . . , Nc. For the
approximation of Sd(k) we can apply the adjoint gradient NFFT from Section 4.5, where we have
to set f i := L−1µi, i = Nc + 1, . . . , Nc +Nd.
Finally, the Fourier space parts of the potentials

φF(j) ≈ 1
πV

∑
k∈IM

ψ̂(k)S≈(k) e−2πik>L−1xj
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are approximated via the NFFT. Thereby, we denote by S≈(k) ≈ S(k) the approximated structure
factors obtained by the adjoint (gradient) NFFT, as described above.

5.2 Computation of the fields
The fields E(j) = −∇xjφ(j), j = 1, . . . , Nc +Nd, can be written as

E(j) = Eshort(j) +EF(j) +Eself(j) +E0(j),

where

Eshort(j) := −∇xj

Nc+Nd∑
i=1

∑
n∈Z3

′ξi
erfc(α‖xij +Ln‖)
‖xij +Ln‖ , (5.3)

EF(j) := −
∇xj

πV

∑
k∈Z3

ψ̂(k)S(k) e−2πik>L−1xj , (5.4)

Eself(j) :=
{

0 : j = 1, . . . , Nc,
4α3

3
√
π
µj : j = Nc + 1, . . . , Nc +Nd,

E0(j) := − 4π
3V (Dc +Dd) .

Similarly to the computation of the potentials, the short range parts of the fields Eshort(j) can be
obtained via a direct summation method.
Having approximated the sums S(k) via the adjoint NFFT and the adjoint gradient NFFT,

the outer sums can be evaluated via the gradient NFFT, cf. Section 4.2. If the ik differentiation
approach is applied, we have

EF(j) ≈ 2i
V
L−>

∑
k∈IM

kψ̂(k)S≈(k) e−2πik>L−1xj .

In other words, we can apply the gradient NFFT for the nodes L−1xj and multiply with L−>
afterward, which is a simple consequence of the chain rule. The gradient NFFT with analytic
differentiation can be applied analogously. Note that the availability of the gradient NFFT module
makes it very easy to switch between the ik and analytic differentiation within this computation.

5.3 Computation of the field gradients
The negative field gradients G(j) = −∇xj∇>xj

φ(j), j = 1, . . . , Nc +Nd, can be written as

G(j) = Gshort(j) +GF(j) +Gself(j),

where

Gshort(j) := −∇xj
∇>xj

Nc+Nd∑
i=1

∑
n∈Z3

′ξi
erfc(α‖xij +Ln‖)
‖xij +Ln‖ , (5.5)

GF(j) := −
∇xj∇>xj

πV

∑
k∈Z3

ψ̂(k)S(k) e−2πik>L−1xj , (5.6)

Gself(j) :=
{
− 4α3

3
√
π
qjI3,3 : j = 1, . . . , Nc,

03,3 : j = Nc + 1, . . . , Nc +Nd.

Whereas the short range parts of the matrices Gshort(j) can be obtained via a direct evaluation,
the Fourier space parts GF(j) are approximated with the Hessian NFFT, cf. Section 4.3. For the
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ik differentiation approach we get

GF(j) ≈ 4π
V

∑
k∈IM

(L−>k)(L−>k)>ψ̂(k)S≈(k) e−2πik>L−1xj

= 4π
V
L−>

( ∑
k∈IM

kk>ψ̂(k)S≈(k) e−2πik>L−1xj

)
L−1.

Thus, we apply the Hessian NFFT (4.6) for the nodes L−1xj in order to compute the matrix
valued sums. Following the chain rule, the obtained matrices have to be multiplied by L−> from
the left as well as by L−1 from the right. The gradient NFFT with analytic differentiation can be
applied analogously. Again, the availability of the gradient NFFT module makes it very easy to
switch between the ik and analytic differentiation.

5.4 Charged dipoles
The described method can also be easily used if charged dipoles are present. Consider a particle
p at position xp, which has a charge qp as well as a dipole moment µp.
We split the particle into a charge and a dipole, i.e., we set

xj1 := xp, qj1 := qp for some j1 ∈ {1, . . . , Nc}

as well as
xj2 := xp,µj2 := µp for some j2 ∈ {Nc + 1, . . . , Nc +Nd}.

The potential of the charged dipole φp is given by the potential of the charge j1

φp = φ(j1),

which includes the corresponding self interaction term. In contrast, the field of the charged dipole
Ep is given by the field of the dipole j2

Ep = E(j2),

since a self interaction in the fields, which has to be respected, only exists for the dipoles. Conse-
quently, the energy is given by

Up = qpφp − µ>p Ep.

The overall force acting on the charged dipole is given by

F p = qpE(j1) + 4α3

3
√
π
qpµp +G(j2)µp −

4α3

3
√
π
qpµp = qpE(j1) +G(j2)µp.

6 Software and Implementation
As described above, we extended the implementation of the versatile P2NFFT framework [39, 37] in
order to treat systems containing both charges as well as dipoles. P2NFFT is part of ScaFaCoS [1] –
a massively parallel, open source software library for computing Coulomb interactions with various
fast numerical methods, e.g. P3M [19, 8, 9], FMM [17, 22], and multigrid based solvers [44, 4]. A
detailed comparison of the methods available within ScaFaCoS was published in [2] and showed
P2NFFT to be the fastest method in most cases. We stress that P2NFFT is a highly modularized
framework. Therefore, adding support for charge–dipole interactions directly results in a variety
new particle–mesh methods that have not been implemented so far. Many particle–mesh methods
can be interpreted as special cases of P2NFFT by appropriate combination of modules. Recently,
P2NFFT has been extended to support any combination of periodic and non-periodic boundary
conditions [32, 33] up to high precision. Therefore, our proposed algorithms also apply for mixed-
periodic and open boundary conditions, although our numerical tests in this paper are restricted
to the 3d-periodic case. In the following, we briefly describe the changes that were necessary in
order to extend P2NFFT to charge–dipole interactions.
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Extension of the ScaFaCoS interface
The ScaFaCoS interface has been extended to dipole moment input vectors and the corresponding
output vectors. For a given system the P2NFFT computes

• the potentials φ(j) as well as the fields E(j) for all charges (j = 1, . . . , Nc),

• the fields E(j) and the negative field gradientsG(j) for all dipoles (j = Nc +1, . . . , Nc +Nd).

Based on this, the energies per particle U(j), the total energy U , the acting forces F (j) as well as
the torques of the dipoles τ (j) can be computed afterward with complexity O(N), see equations
(1.4), (1.7), (1.5) and (1.6).

Near field computations
The computation of the near field interactions, see equations (5.1), (5.3) and (5.5), is directly
delegated to the ScaFaCoS near field module. This module is shared among several solvers of
ScaFaCoS and computes particle interactions with a given cutoff radius and a solver-specific short
range function (e.g. based on the Ewald splitting). A linked cell scheme is used in order to
compute the near field interactions efficiently. The massively parallel implementation is based on
a parallel sorting library and dedicated data redistribution operations to implement the domain
decomposition for Cartesian process grids and the creation of ghost particles, see [20]. The near
field module supports triclinic box shapes and various types of periodic boundary conditions. It
has been extended by introducing a separate type of dipole particles that are handled in the same
way as the already existing charge particles, but with an additional solver-specific short range
function to compute charge-dipole and dipole-dipole interactions.

Far field computations
The computation of the Fourier space sums, see equations (5.2), (5.4) and (5.6), is based on a
variety of NFFT modules, see Sections 4 and 5. A massively parallel implementation of these
modules is publicly available within the PNFFT software library [39, 35]. Motivated by the
special needs of charge–dipole computations we extended the PNFFT library with two modules
for computing an adjoint gradient NFFT (4.11) and the Hessian NFFT (4.6). Following the
modular approach of PNFFT, both new modules can be computed with various NFFT window
functions, with analytic or Fourier space differentiation and with interlacing, cf. [37]. In addition,
the PNFFT interface has been improved in order to support input and output vectors consisting
of function values, gradients and Hessians. Note that the parallel algorithm of PNFFT is based
on the PFFT framework [36, 34, 37] for computing massively parallel, fast Fourier transforms.
The PNFFT library also allows the direct evaluation of the various trigonometric sums. We

refer to the direct computation of the sums (4.2) as discrete Fourier transform for nonequispaced
data (NDFT). Note that this direct computation does not introduce approximation errors and,
therefore, can be used as a reference method for numerical tests. However, the NDFT ends up with
an undesirable arithmetic complexity of O(N |IM |). Analogously, the sums (4.5), (4.6), (4.7) and
(4.11) can be obtained via a direct evaluation, which we denote as gradient NDFT, the Hessian
NDFT, the adjoint NDFT and the adjoint gradient NDFT, respectively. The P2NFFT interface in
ScaFaCoS enables the user to easily switch between the fast computation and the direct evaluation
(via flag pnfft_direct).

Remark 6.1 (P2NDFT Ewald). By applying the direct evaluation methods (NDFT) instead
of the fast modules (NFFT), the described method (P2NFFT) is equivalent to a pure Ewald
summation, where only the Ewald truncation errors, see Section 3, are present. Thus, we refer to
this method as the P2NDFT Ewald summation. This method can serve as a reference method for
numerical experiments since its approximation error is well controllable by the error estimates in
Section 7.
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Further features

We remark that the P2NFFT method has already been generalized for the treatment of 2d- and
1d-periodic as well as open boundary conditions. This method follows the same modular process
for all types of boundary conditions. In fact, a change of periodicity can be performed easily
by replacing the Fourier coefficients ψ̂(k) with some appropriately precomputed coefficients, see
[32, 33]. Note that the nature of the used Fourier coefficients is not relevant for the presented
modifications for dipole–dipole or charge–dipole systems. Indeed, our modularized implementation
already works for these cases. However, the numerical testing of the method under other types
of periodic boundary conditions goes beyond the scope of this article and will be presented in a
future work.
Furthermore, our implementation for computing dipole–charge interactions includes many more

particle–mesh specific features including interlacing, analytic differentiation and differentiation in
Fourier space, optimal influence functions in a P3M like fashion and a variety of different window
functions; cf. [37] for a detailed list of features and description of the framework.

7 Numerical examples
In this Section we present some numerical results. We start by verifying the derived truncation
errors concerning the Ewald summation formulas by measuring the rms force errors of our P2NDFT
Ewald algorithm, which simply truncates the infinite lattice sums, cf. (1.2). Next, we also present
some results for the fast P2NFFT algorithm, which show that the method can be tuned to high
accuracy. We present results for the ik as well as for the analytic differentiation approach.

Example 7.1. We consider Nc = 50 charges qj = (−1)j , j = 1, . . . , Nc as well as Nd = 50 dipoles
‖µj‖ = 1, j = Nc+1, . . . , Nc+Nd. The positions are randomly distributed in a box spanned by the
vectors `1 = (10, 0, 0), `2 = (0, 10, 0) and `3 = (0, 0, 10), i.e., we consider a cubic box with volume
V = 103. The dipole moments µj are also randomly chosen as elements of {r ∈ R3 : ‖r‖ = 1}.
Thus, we obtain Q = M = 50 so that the charge–dipole and the dipole–charge are supposed to
be of the same size, see (3.9) and (3.11) for the expected near field as well as (3.21) and (3.23) for
the corresponding far field errors.
In Figure 7.1 we plot the expected rms force errors in the near field
• ∆F short

c.c. , see (3.7),
• ∆F short

c.d. = ∆F short
d.c. , see (3.9) and (3.11),

• ∆F short
d.d. , see (3.14),

as well as the expected far field errors
• ∆FF

c.c., see (3.20),
• ∆FF

c.d. = ∆FF
d.c., see (3.21) and (3.23),

• ∆FF
d.d., see (3.24).

Thereby, we choose the cutoff radius in the near field rcut = 6.0 and the grid size is set to
M = (48, 48, 48), according to the cubic box shape, and plot the predicted rms force errors for
varying splitting parameters α.
We can see that all the expected errors are of a comparable size, which is far below the machine

epsilon ε = 10−15, if we choose the splitting parameter α ≈ 1.15. Thus, we apply the P2NDFT
algorithm with this parameter combination in order to compute high accuracy reference data in
the following examples.

7.1 Verification of Ewald truncation errors

In Section 3 we showed how the resulting rms errors in the forces can be predicted. The following
numerical examples confirm the correctness of the derived error estimates.
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Figure 7.1: Predicted Ewald truncation errors in the forces for the above described test system
with Nc = 50 charges and Nd = 50 dipoles. We plot the errors with respect to the
splitting parameter α. The near field cutoff radius is set to rcut = 6.0, the applied far
field cutoff is M = (48, 48, 48).

Example 7.2. We compute the acting forces for a system of Nc = 50 randomly distributed
charges with |qj | = 1 as well as Nd = 50 randomly distributed dipoles with ‖µj‖ = 1 in the cubic
box with edge length L = 10, see Example 7.1.
We apply the P2NDFT method for different near field cutoffs rcut ∈ {3.5, 4.0, 4.5, 5.0} and far

field cutoffs M = (M,M,M) with M ∈ {16, 24, 32}.
The reference data are computed via the P2NDFT with rcut = 6.0, M = 48 and α = 1.15, see

Example 7.1. The measured rms force errors, which match very well with the predicted errors,
are plotted in Figure 7.2.
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Figure 7.2: Predicted errors ∆F short (dotted), see (3.10) and (3.15), and ∆FF (dashed), see (3.22)
and (3.25). The measured rms force errors are represented by the solid lines for the
charges (left) as well as for the dipole particles (right). We use different near field as
well as far field cutoffs (see labels).
Method: P2NDFT, test system: random, cubic box, Nc = Nd = 50.

Example 7.3. We replace the cubic box spanned by the vectors `1 = (10, 0, 0), `2 = (0, 10, 0)
and `1 = (0, 0, 10) by a triclinic box spanned by

`1 = (10, 10, 0), `2 = (0, 10, 10) and `1 = (0, 0, 10).

If the charges are appropriately mapped to the new box structure, the new particle systems
is, under metallic boundary conditions, equivalent to the primary system in the cubic box, see
Figure 7.3.
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1

Figure 7.3: Particles distributed in a cubic box spanned by `1 = (10, 0), `2 = (0, 10) and equivalent
particle system mapped to the triclinic box spanned by `1 = (10, 10) and `2 = (0, 10).

In order to verify the functionality of our algorithms for triclinic box shapes, we compute the
reference data based on the equivalent cubic system as described in Example 7.1.
In Figure 7.4 we plot the predicted as well as the measured rms force errors for the triclinic par-

ticle system. Again, we use the P2NDFT with different near field cutoffs rcut ∈ {3.5, 4.0, 4.5, 5.0}
and different far field cutoffs

M ≈ {10
√

2β, 10
√

2β, 10β} with β ∈ {1.6, 2.4, 3.2},

according to the lengths of the box vectors, cf. Equations (3.17) and (3.18). We can see that also
for the triclinic particle systems the errors behave as expected.
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Figure 7.4: Predicted errors ∆F short (dotted), see (3.10) and (3.15), and ∆FF (dashed), see (3.22)
and (3.25). The measured rms force errors are represented by the solid lines for the
charges (left) as well as for the dipole particles (right). We use different near field as
well as far field cutoffs (see legend).
Method: P2NDFT, test system: random, triclinic box, Nc = Nd = 50.

7.2 Results for the P2NFFT method
In this section we present some numerical results for the fast NFFT based algorithm (P2NFFT).
As already mentioned above, we do not discuss the estimation of approximation errors introduced
by the NFFT algorithms, since it goes beyond the scope of this article. However, the presented
results show that the method computes the interactions correctly and can be tuned to a high
precision.
We consider both, the ik as well as the analytic differentiation approach. In the case that

oversampling is applied we use the same oversampling factor σ = σ1 = σ2 = σ3 in all three
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dimensions, see (4.3). In our first examples we apply the B-spline as NFFT window function,
which is widely used in the scope of particle mesh methods. In addition, we present results
obtained by using the Bessel window function, as introduced in Section 4.6.2. In comparison with
the B-spline window, we can reduce the approximation errors significantly by using the Bessel
window function, provided that the shape parameter is chosen appropriately.

7.2.1 B-spline window

Example 7.4. We consider the same particle system as in Example 7.2. The trigonometric sums
are now approximated via the NFFT algorithms as described in Section 5. Thereby we apply the
B-spline of order 12, i.e., the support parameter is m = 6, as NFFT window function. We plot the
obtained rms force errors with respect to the splitting parameter α in Figures 7.5 and 7.6. The
reference data have been computed via the P2NDFT Ewald method, as presented in Example 7.1.
In our tests we choose the near field cutoff radius rcut := 5, applied different far field cutoffsM =

(M,M,M), where M ∈ {16, 24, 32, 48}, as well as different oversampling factors σ ∈ {1, 1.25}.
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Figure 7.5: Rms force errors (3.1) for the charges. Applied parameters: near field cutoff rcut = 5,
different far field cutoffs M = (M,M,M) (see labels), B-spline window with support
parameter m = 6, oversampling factor σ = 1.0 (solid) and σ = 1.25 (dashed), ik-
differentiation (left) and analytic differentiation (right).
Method: P2NFFT, test system: random, cubic box, Nc = Nd = 50.
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Figure 7.6: Rms force errors (3.2) for the dipoles. Applied parameters: near field cutoff rcut = 5,
different far field cutoffs M = (M,M,M) (see labels), B-spline window with sup-
port parameter m = 6, oversampling factor σ = 1.0 (solid) and σ = 1.25 (dashed),
ik-differentiation (left) and analytic differentiation (right). Method: P2NFFT, test
system: random, cubic box, Nc = Nd = 50.
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Example 7.5. We consider the same triclinic particle system as in Example 7.3. The trigono-
metric sums are approximated via the NFFT algorithms with the same parameters as chosen in
Example 7.4. We plot the obtained rms force errors with respect to the splitting parameter α in
Figures 7.5 and 7.6. The reference data have been computed by considering the equivalent particle
system in the cubic box via the P2NDFT Ewald method, see Example 7.1.
According to the present triclinic box shape, we applied different far field cutoffsM = (10

√
2β,

10
√

2β, β), where β ∈ {1.6, 2.4, 3.2, 4.8}.
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Figure 7.7: Rms force errors (3.1) for the charges. Applied parameters: near field cutoff rcut = 5,
different far field cutoffsM ≈ (10

√
2β, 10

√
2β, 10β) (see labels), B-spline window with

support parameter m = 6, oversampling factor σ = 1.0 and σ = 1.25 (see legend),
ik-differentiation (left) and analytic differentiation (right).
Method: P2NFFT, test system: random, triclinic box, Nc = Nd = 50.
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Figure 7.8: Rms force errors (3.2) for the dipoles. Applied parameters: near field cutoff rcut = 5,
different far field cutoffsM ≈ (10

√
2β, 10

√
2β, 10β) (see labels), B-spline window with

support parameter m = 6, oversampling factor σ = 1.0 and σ = 1.25 (see legend),
ik-differentiation (left) and analytic differentiation (right).
Method: P2NFFT, test system: random, triclinic box, Nc = Nd = 50.

7.2.2 Bessel window

In order to apply the Bessel window function, as introduced in Section 4.6.2, the support parameter
b has to be chosen appropriately. It is already known that the choice of the shape parameter can
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influence the resulting approximation errors significantly. Especially in the case that the present
Fourier coefficients are subject to a rapid decrease, a modification of the widely used standard
value of b is necessary in order to tune the method to the best possible accuracy, see [30, 29].

Example 7.6. We consider the same particle system as in Examples 7.2 and 7.4. Now, we use the
Bessel window function within the NFFT algorithms for varying shape parameter b and measure
the resulting rms force errors. We optimized the shape parameter based on the measured errors
via minimizing

∆F 2
c + ∆F 2

d

for each α. The optimal rms force errors, which have been achieved, are plotted in Figures 7.9
and 7.10. Some of the corresponding tuned shape parameters are shown in Figure 7.11. We can
see that we can in some cases reduce the approximation errors significantly by using the Bessel
window function with an appropriate shape parameter.
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Figure 7.9: Rms force errors (3.1) for the charges compared for the Bessel and the B-spline
window. Applied Parameters: near field cutoff rcut = 5, different far field cutoffs
M = (M,M,M) (see labels), window support parameter m = 6, oversampling factor
σ = 1.0 (left) and σ = 1.25 (right), ik-differentiation approach.
Method: P2NFFT, test system: random, cubic box, Nc = Nd = 50.
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Figure 7.10: Rms force errors (3.2) for the dipoles compared for the Bessel and the B-spline
window. Applied Parameters: near field cutoff rcut = 5, different far field cutoffs
M = (M,M,M) (see labels), window support parameter m = 6, oversampling factor
σ = 1.0 (left) and σ = 1.25 (right), ik-differentiation approach.
Method: P2NFFT, test system: random, cubic box, Nc = Nd = 50.
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Figure 7.11: Tuned shape parameters for the Bessel window function for some of the results pre-
sented in Figures 7.9 and 7.10.

8 Summary
In the present paper we proposed an approach for the efficient evaluation of the interactions in
electrostatic systems containing charges as well as dipoles. The method is based on the well
known Ewald summation technique. An error control is possible based on estimating the root
mean square errors in the forces, which result from truncation of the Ewald sums. Analogously
to the well known error estimates for the charge–charge as well as the dipole–dipole case under
3d-periodic boundary conditions, we derived proper estimates for mixed particle systems. The
obtained error formulas have been verified by numerical examples.
An efficient evaluation of the energies as well as the acting forces, for instance, is possible

based on the FFT for nonequispaced data, since the particle positions are arbitrarily distributed
in a primary box. In order to compute the interactions to the dipole particles, new modules of
the NFFT, namely the Hessian NFFT as well as the adjoint gradient NFFT, have been derived
and implemented. The presented approach is an extension of the P2NFFT method, which scales
like O(N logN), where N being the number of particles, and becomes now applicable to an
even wider range of possible applications. The method is publicly available as a part of the
ScaFaCoS library. All implemented modules of the NFFT, namely the adjoint NFFT, the gradient
NFFT, the Hessian NFFT as well as the adjoint gradient NFFT, which may also be interesting
for other applications, are also publicly available via the PNFFT library, which is used within
the P2NFFT method. For all modules, which require the computation of derivatives, the ik as
well as the analytic differentiation approach are applicable. Note that the application of the fast
NFFT modules introduce further approximation errors, which have not been considered here. An
extended analysis of the resulting NFFT approximation errors is subject to future research. The
library additionally enables a direct or rather exact computation of the considered trigonometric
sums, which we refer to as the NDFT. Using the NDFT instead of the NFFT modules within our
algorithms yields a pure Ewald summation reference method, which we call P2NDFT Ewald. The
errors of this method are well controllable via the presented Ewald truncation errors, as already
mentioned above.
Our numerical results show that the P2NFFT method for mixed systems can be tuned to a

high precision. We obtain very exact approximations when using analytic differentiation as well
as in the case that ik-differentiation is applied. As an NFFT window function we compared the
widely used B-spline window as well as the introduced Bessel window. The numerical results
show that if the shape parameter of the Bessel function is chosen appropriately, the resulting
approximation errors are in many cases significantly smaller than for the B-spline window. In this
paper we concentrated on the 3d-periodic case, where we also considered triclinic box shapes. We
emphasize that the P2NFFT method has already been implemented for 2d-periodic, 1d-periodic
as well as for open boundary conditions. In the 3d-periodic case the underlying Fourier coefficients
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are known analytically. For all other types of periodic boundary conditions we simply replace these
Fourier coefficients by some appropriately precomputed coefficients, which has already been tested
for pure charge systems. We can proceed analogously for systems, where also dipole particles are
present. In other words, the presented algorithms already work for all types of periodic boundary
conditions and our implementation within the ScaFaCoS library supports these cases. Numerical
results for other boundary conditions will be presented elsewhere. Analogously to the charge–
charge case the proposed charge–dipole method is build on top of the same optimized modules of
the PNFFT [39, 35] and PFFT [36, 34] software libraries and can be assumed to yield the same
performance on massively parallel architectures, cf. [36, 39, 2].
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