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Duality Results for Nonlinear Single Minimax Location Problems
via Multi-Composed Optimization

Gert Wanka* Oleg Wilfer'

Abstract: In the framework of conjugate duality we discuss nonlinear and linear single
minimax location problems with geometric constraints, where the gauges are defined by
convex sets of a Fréchet space. The version of the nonlinear location problem is additionally
considered with set-up costs. Associated dual problems for this kind of location problems
will be formulated as well as corresponding duality statements. As conclusion of this paper,
we give a geometrical interpretation of the optimal solutions of the dual problem of an
unconstraint linear single minimax location problem when the gauges are a norm. For an
illustration, an example in the Euclidean space will follow.

Key words: Conjugate Duality, Composed Functions, Gauges, Nonlinear Minimax Lo-
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1 Introduction

In the recent years, location problems attracted enormous attention in the scientific commu-
nity and a large number of papers studying minisum and minimax location problems have been
published (see [3]-[20]). This is due to the fact that location problems cover many practical
situations occurring for example in urban area models, computer science, telecommunication
and also in emergency facilities location programming.

In this paper minimax location problems form the focal point of our approach. In particular, we
are interested to give a detailed duality study for nonlinear and linear single minimax location
problems with geometric constraints, where the version of the nonlinear location problem will
additionally be equipped with set-up costs. To be more precise, we will formulate to this kind of
location problems its corresponding conjugate dual problems and derive necessary and sufficient
optimality conditions. Notice that we work in a very general setting, where the underlying space
is a Fréchet space and the distances are measured by gauges of convex sets.

But this is not all, we will formulate a new dual problem to the case of a linear single minimax
location problem reducing the number of constraints and dual variables compared with the first
formulated dual problem. Moreover, just as in the previous consideration we will establish also
associated duality results. Besides, we consider to this new dual problem the case where the
distances are measured by a norm defined on a Hilbert space and investigate from the optimality
conditions additional statements. A geometrical interpretation of the optimal solutions of the
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dual problem and a discussion of an example will complete the paper.

The organization of this article is the following. Section 2 gives some elements of convex analy-
sis and recalls basic statements of the duality approach done in [23] for geometrically and cone
constrained multi-composed optimization problems. Then, in Section 3, we apply the previous
approach to nonlinear single minimax location problems and give necessary and sufficient opti-
mality conditions. Finally, in Section 4 we consider linear single minimax location problems. In
Section 3 as well in Section 4 the location problems will be studied in a Fréchet space followed
by a characterization to a Hilbert space endowed with a norm.

2 Preliminaries

2.1 Elements of convex analysis

Let X be a Fréchet space and X* its topological dual space endowed with the weak* topology
w(X*, X). For z € X and 2" € X*, let (z*,z) := 2*(x) be the value of the linear continuous
functional z* at z. For a subset A C X, its indicator function d4 : X — R =R U {£o0} is

0, ifx e A,
400, otherwise.

da(x) == {

For a given function f : X — R we consider its effective domain
dom f:={r e X: f(x) < 4oo}

and call f: X — R proper if dom f # () and f(z) > —oo for all z € X. The conjugate function
of f with respect to the non-empty subset S C X is defined by

fs: X" =R, f5(z%) = (f +0s)"(z%) = sg{w,@ = f(x)}
€T
In the case S = X, it is clear that f¢ turns into the classical Fenchel-Moreau conjugate function
of f denoted by f*. Let us mention that it holds f*(z*) = sup,edom (7", ) — f(x)} as well as
f(x)+ f(z*) > (z*,z) for all x € X, x* € X* which is the so-called Young-Fenchel inequality.
Additionally, we consider a non-empty convex cone K C X, which induces on X a partial
ordering relation “<g”, defined by

§K::{(ﬂ:,y)6X><X:y—xEK},

ie. for z,y € X it holds x S y < y —x € K. Note that we assume that all cones we consider
contain the origin. Further, we attach to X a greatest element with respect to “<g”, denoted
by +oog, which does not belong to X and denote X = X U{+oco}. Then it holds z <y +oog
for all x € X. We also define # <j y if and only if z <x vy and = # y. Further, we define
Sp,=:< and <g, =:<.

On X we consider the following operations and conventions: x + (+o0g) = (+o00K) + & :=
+oog Vo € X U {+ook} and X - (+o0k) := +oog VA € [0,400]. Further, if K* := {a* €
X*: (z*,2) > 0, Vo € K} is the dual cone of K, then we define (z*,4+00g) := 400 for
all z* € K*. On the extended real space R we add the following operations and conventions:
A+ (+00) = (+00) + A 1= 400 VA € (—00,+00], A + (—00) = (—00) + A := —oc0 VA €
[—00, +00), A- (+00) 1= +00 VA € [0,+00], A (4+00) := —00 VA € [-00,0), X (—0o0) :=



—o00 VA € (0,400], A+ (—0) := 400 VA € [—00,0), (+00) + (—00) = (—0) + (+00) := 400,
0(400) := 400 and 0(—o0) := 0.

Let Z be another Fréchet space ordered by the convex cone Q C Z, then for a vector function
F:X — Z = ZU{+00g} the domain is the set dom F := {z € X : F(z) # +o0og}. When
F(Az+ (1 - MNy) =g AF(x) + (1 — A\)F(y) holds for all z,y € X and all A € [0,1] the function
F is said to be Q-convex. A function f : X — R is called convex if f(Az + (1 — A)y) <
AM(z)+ (1= N)f(y) for all x,y € X and all A € [0, 1].

Further, we consider the epigraph of a function f defined by epi f := {(z,7) € X xR : f(x) < r}.
The Q-epigraph of a vector function F' is epip I’ = {(z,2) € X x Z : F(z) ¢ 2} and we say
that F'is Q-epi closed if epig F' is a closed set.

If Q* == {z* € X*: (z%,2) >0, Vo € Q} is the dual cone of @), then we define for z* € Q*
the function (2*F) : X — R by (2*F)(x) := (2%, F(x)), where it is not hard to see that
dom(z*F) = dom F'. Moreover, it is easy to see that if F' is Q-convex, then (2*F') is convex for
all z* € Q*.

A function f : X — R is called lower semicontinuous at € X if liminf, .z f(z) > f(Z) and
when this function is lower semicontinuous at all z € X, then we call it lower semicontinuous
(Ls.c. for short). The vector function F' is called star QQ-lower semicontinuous at z € X if
(z*F) is lower semicontinuous at x for all z* € @Q*. The function F is called star @Q-lower
semicontinuous if it is star @-lower semicontinuous at every z € X. Note that if F' is star
Q-lower semicontinuous, then it is also Q-epi closed, while the inverse statement is not true in
general (see: Proposition 2.2.19 in [2]). Let us mention that in the case Z = R and @ = Ry,
the notion of ()-epi closedness falls into the classical notion of lower semicontinuity.

A function f : X — R is called K-increasing, if from x <y y follows f(z) < f(y) forallz,y € X.

Definition 2.1. The vector function F : X — Z is called K-Q-increasing, if from v g y
follows F(x) Sg F(y) for all x,y € X.

For a set S C X the conic hull is defined by cone(S) := {Az : x € S, A > 0} and sqri is used
to denote the strong quasi relative interior, where in the case of having a convex set S C X it
holds

sqri(S) = {x € S :cone(S — x) is a closed linear subspace}.

In this paper we do not use the classical differentiability, but we use the notion of subdifferen-
tiability to formulate optimality conditions. If we take an arbitrary = € X such that f(x) € R,
then we call the set

Of(x) :={z" € X*: f(y) = fx) = (2",y —x) Vy € X}

the (convex) subdifferential of f at z, where the elements are called the subgradients of f at x.
Moreover, if 9f(x) # (), then we say that f is subdifferentiable at x and if f(z) ¢ R, then we
make the convention that df(z) := (). Note, that the subgradients can be characterized by the
conjugate function, especially this means

¥ e df(x) e f(z)+ fH(z¥) = (2, x), Ve € X, ¥ € X¥, (1)

i.e. the Young-Fenchel inequality is fulfilled with equality.
Let C C X. As conclusion of this section we collect some properties of the gauge function of



the subset C, v¢ : X — R defined by

vo(z) == {+OO’ if{A>0:2e X} =0,

inf{\ > 0:2 € \C}, otherwise.
Let us start with the following theorem.

Theorem 2.1. Let C C X be a convex and closed set with 0x € C, then the gauge function ¢
s proper, convexr and lower semicontinuous.

Proof. Let us define the function g : X* — R by

. 0, if oo (2*) <1,
g(x*) = .
00, otherwise,

where o is the support function of the set C, i.e. oc(2*) = sup,c(z*, z). It is obvious that g
is proper, convex and lower semicontinuous. For the corresponding conjugate function of g one
has

g*(z) = sup {(z",2) —g(z*)} = sup (2", x).
areX* a*eX*,
oo (z*)<1
There is g*(z) = sup«c x-{(z*,z) — g(z*)} > (Ox+,z) — g(0x+) = 0 since g(0x+) =0, Vo € X,
and ¢*(0x) = sup,«cx-{—g(2*)} = 0, i.e. g* is proper. At this point it is important to say that
from 0x € C follows that v¢(0x) =0, i.e. ¢"(0x) = vc(0x).
Let us now assume that x # Ox and consider for fixed x € X the following convex optimization
problem
gl ; ot
(P7) m*lél)g*’ (—x*, x).
oo (z*)<1

As 0¢(0x+) = 0 < 1, the Slater condition is fulfilled and hence, it holds strong duality between
the problem (P7) and its corresponding Lagrange dual problem

(D}) sup inf {(~a".2) + Aoc() - ).

Therefore, the conjugate function of g can be represented for x £ 0x as

g"(x) = sup (2%,z)=—sup inf {(—z" z)+ Aoc(z") 1)}
T*EX*, Azom*eX*
oo (z*)<1

_ info{)\+ sup {@*,@Mc(x*)}} 2)

A> r*EX*

For A = 0 we verify two conceivable cases.
(a) If oc(x*) < 400, then 0- oc(2*) = 0 and therefore,

" " . 0, if x =0x,
sup {(z",z) —0-0¢c(z”)} = sup (", ) = )
x*eX*{< > ( )} JJ*EX*< ) {—FOO, lf.’B # OX



As by assumption x # Ox, we have sup,«cy+ = +00, but this has no effect on the infimum in

(2).

(b) If o (2*) = 400, then one has by convention that A - o¢(2*) =0 (+00) = 400 and hence,
(x*,x) — Aog(z¥) = (z*,x) — 00 = —00,

which has no effect on sup ¢ x«{(z*,z) — Aoc(x)}.
Hence, as the cases (a) and (b) are not relevant for ¢*, we can omit the situation when A\ = 0

and can write
1
g (x) = )1\2% {)\ + )\Isgz {<m*, )\:c> - ac(a:*)}} .

Moreover, as C' is a non-empty, closed and convex subset of X, the conjugate of the support
function o¢ is the indicator function d¢, i.e.

1
g () = Imf{A+XNeg(~z)p= inf A=inf{A\>0:2¢€\C}.
2>0 A A>0, LzeC

Taking the situations where x = Ox and x # Ox together implies that ¢*(x) = vo(x), Vz € X.
Hence, v¢ is the conjugate function of g and by the definition of the conjugate function it follows
that ¢ is convex and lower semicontinuous. This completes the proof. O

Remark 2.1. Note that the gauge function vyo is not only convex but also sublinear. Moreover,
if 0x € int C, then ¢ is well-defined, which means that domyo = X.

Lemma 2.1. Let C C X be a conver and closed set with Ox € C, then the conjugate of the
gauge function v is given by

“(2*) = {0, if oo(x*) <1,

00, otherwise.

Proof. In the proof of Theorem 2.1 we have shown that ¢ is the conjugate function of g, i.e.
Yo = g%, and as g is proper, convex and lower semicontinuous we have g = ¢g**. As ¢g** is also
the conjugate function of ¢, it holds v/ = g. O

Definition 2.2. Let C C X. The polar set of C is defined by
c .= {:U* € X* i sup(z*,z) < 1} ={z* e X" :0c(z") <1}
zeC

and by means of the polar set the dual gauge is defined by

Yoo (x*) = sup(z*, z) = oc(z”).
zeC
Remark 2.2. Note that C° is a convex and closed set containing the origin. Furthermore, by
the definition of the dual gauge follows that the conjugate function of vo can equivalently be
expressed by

e 400, otherwise.

L (2) i {0, if yoo(a®) <1,



2.2 Lagrange duality approach for multi-composed optimization problems

The purpose of this section is to recall some important results done in [23] by studying multi-
composed optimization problems. Let us consider an optimization problem with geometric and
cone constraints having as objective function the composition of n + 1 functions:

(PY)  inf(foF'o..oF™)(z),

zeA

A={zeS:g(x)e-Q},

where X; is a Fréchet space partially ordered by the non-empty convex cone K; C X; for
i =0,...,n — 1. Moreover,

e 5 C X, is a non-empty convex set,
e f:Xg — Ris proper, convex and Ky-increasing on F''(dom F') + Ky C dom f,

e F': X; » X, 1 =X, U {+o0K,_,} is proper, K;_j-convex and K;-K;_j-increasing on
F*l(dom F') + K; C dom F* for i = 1,...,n — 2,

e F" 1 1 X, 1 = X, 90 = X, 1 U{+oog,_,} is proper and K, 1-K, o-increasing on
F'(dom F" N A) + K1 C dom F" 1,

e F": X, = X, 1= X,_1U{+o0k,_,} is a proper and K,,_1-convex function and
e g: X, — Zis a proper function fulfilling SNg='(—Q)N((F")"to...o(F})~1)(dom f) # 0.

Additionally, we make the convention that f(+ook,) = +oo and Fi(4+o0og,) = +oog, ,, ie.
f:XO%Rand Fi:Xi—>Xi_1,i:1,...,n—1.

Remark 2.3. Let us point out that for the convexity of (foFlo...o F™) we ask that the function
f be conver and Ko-increasing on F'(dom F') + Ky and the function F* be K; 1-convex and
fulfills also the property of monotonicity for i = 1,...,n — 1, while the function F™ need just be
K,,_1-convex. This means that if F™ is an affine function, we do not need the monotonicity of
F™=1 since the composition of an affine function and a function, which fulfills the property of
convezity, fulfills also the property of convexity. In this context one can choose K,—1 = {0x, .}
(for more details see Remark 3.1 and 4.1 in [23]).

The corresponding conjugate dual problem to the problem (P®) looks like (see [23])

n—1
(DY) sup { igfs{@("*”*, F™x)) + (2", g(x))} — f*(z") — Z(z(”)*FZ)*(z’*)},
ZreQ*, ziveky, (7 i=1
i=0,...,n—1

where 2% := (20%, ..., 2(n=D* %) ¢ K* = K§ x ... x K}_; x Q" are the dual variables.

We denote by v(P®) and v(D®) the optimal objective values of the optimization problems (P®)
and (DY), respectively. To guarantee strong duality, i.e. the situation where v(P®) = v(D?)
and the conjugate dual problem has an optimal solution, we consider the following generalized
interior point regularity condition introduced in [23]:



(RC) fis Ls.c., S is closed, g is Q-epi closed, K;_1 is closed,

int K;_1 # (), F*is K;_1-epi closed, i = 1, ...,n,

0x, € sqri(F!(dom F') — dom f + K),

0x,_, € sqri(Fi(dom F*) —dom F""' + K;_1),i=2,....,n — 1,
0x,_, € sqri(F"(dom F* Ndom g N S) — dom F*~! + K,, 1) and
0z € sqri(g(dom F* Ndomg N S) + Q).

In [23] the following theorems have been stated.

Theorem 2.2. (strong duality) If the condition (RC) is fulfilled, then between (P) and (D)
strong duality holds, i.e. v(P®) = v(D) and the conjugate dual problem has an optimal solution.

Theorem 2.3. (optimality conditions) (a) Suppose that the regularity condition (RC') is fulfilled
and let T € A be an optimal solution of the problem (PY). Then there exists (2°%, ...,2("*1)*,2"*) €
K§ x ... x K| x Q*, an optimal solution to (DY), such that

(i) f(Flo..o F™")())+ f*(Z") = &%, (Flo..o F") (7)),

(i) (ZUD*FY)((Fit o, .o F™)(T))+EE D Fi* (%) = (7%, (F"Tlo...0o F")(T)), i = 1,...,n—1,
(i) (Z" D F)(@) + (2g)(@) + (D F") + (279))5(0x;) = 0,
(iv) (2, 9(z)) =0,

(b) If there exists T € A such that for some (2%%,...,z("=1* 77%) ¢ Kj x ... x Kf_ | x Q" the
conditions (i)-(iv) are fulfilled, then T is an optimal solution of (PY), (2°%,...,2") is an optimal
solution for (D) and v(PY) = v(DY).

Remark 2.4. If for somei € {1,...,n} the function F* is star K;_1-lower semicontinuous, then
we can omit asking that K;_1 is closed, int(K;—1) # 0 and F' is K;_1-epi closed in the regularity
conditions (RC') (for more details see Remark 4.2 in [23]).

Theorem 2.4. Let a; € Ry be a given point and h; : R — R with h;j(x) € Ry, if v € Ry, and
hi(x) = 400, otherwise, be a proper, lower semicontinuous and convex function, i = 1,...,n.
Then the conjugate of the function g : R™ — R defined by

g(x17 751771) = {max{hl(xl) + ar, ,hn((L‘n) +an}7 Zf‘rl € R+’ =1, ey Ty

400, otherwise,

s given by g* : R™ — R,

n
g (@], ) = min {Z[(zg*hi)*(xf)—z?*ai]}.
29* <1, 29* >0, 1
=t 7(i=1,4..,n71

Proof. We set Xg = X; = R" and Ko = R’. Further, we define the function f : R" — R by

ma’X{y?—’_al?"wyg—i_an}) 1f y? ER+, 1= 1,...777,,
400, otherwise,

f(yZ(l]7 7y2) = {



and the function F' : R™ — R" by

(hl(.%'l), ...,hn(.%'n))T, if x; € R+, 1=1,..,n,

+ooRn, otherwise.

Fl(azl, cony a;n) = {

Hence, the function g can be written as

g(x1, .y xy) = (f o FY)(xq, ..., z).

It can easy be verified that the function f is proper, convex, lower semicontinuous and R’} -
increasing on F'(dom F') + Ko C R" (as f is the pointwise supremum of proper, convex and
lower semicontinuous functions) and the function F! is proper, R’ -epi closed and R’ -convex.
Therefore, it follows by Theorem 5.2 in [23] (note also that Ogn € sqri(F!(dom F') — dom f +
Ko) = sqri(F!(dom F') — R? + R?) = R") that

g @t ay) = min {7 )+ (R ) ) (@, s 2)
Y; +, t=L...,n

For the conjugate of the function f we have

@™ = sup {Zyz vy — ---,yg)}

yo€R, i=1,...,n

= sup {Zy?*y? — max {y] + az}}

yOeRy, i=1,...,n

= sup Zyz y) — min -t = sup {Z Yy — t} (3)

yIeRy, i=1,..,n teR 4y, Ota;<t, WeRy, teRy,
O+a <t, i=1,...,

Now, let us consider for any y%* € R? the following primal optimization problem

(Pmer) inf { Zy y} (4)

yE]R+ tERy,
O+a <t, i=1,...,

and its corresponding Lagrange dual problem

(D) sup inf {t—zyz Y; +ZA Y+ a; —t)}
=1

>0, i=1,...,n v 6R+ teRy,

= sup { —sup {(Zn: Ai — 1) t} — sup {Zn:(y?* - Ai)y?} +Zn:/\iai
=0 Y =1

i=1 =1



As the Slater constraint qualification is fulfilled, i.e. it holds v(P™%") = v(D™") and the dual
has an optimal solution, one gets for the conjugate function of f

(™) = . min {_Z)‘ial}' (5)

Furthermore, one has

n
(2, 2T EY (af, . af) = sup {Z:c;-ka:i—(y?*,...,yg*)TFl(:cl,...,xn)}

z; €R, i=1,...n i—

n n
= sup {Zx?xl —Zy?*hz(xl)}
i=1 i=1

z;€Ry, i=1,...,n
n

= > sup {afz; -y hi(zi)}
i=1 r; €ERy

n

= > (@ hi)* (), (6)

=1

and so, the conjugate function of g turns into

We fix z7 € R", i = 1,...,n, and emphasize that the problem

(P?) min {Z[(y?*hi)*(xf)—mz’]} (8)
= xist a0 L=

ogy?*gxi, i=1,...,n

is equivalent to

(P9) min {Z[(Z?*hi)*(xé‘) - Z?*ai]} 9)

i=1

in the sense that v(P9) = v(P9) (where v(P9) and v(P9) denote the optimal objective values of
the problems (P9) and (P9), respectively).

To see this, take first a feasible element (A1, ..., A, y0%, ..., y0*) € R% x R% of the problem (P9)
and set z9* = \;, i = 1,...,n, then it follows from > "1 | A; <1, A, y2* >0, y?* < N, i =1,...,n,



that Y0 29* <1, 20 >0, i =1,...,n, i.e. (2%, ...,29%) is feasible to the problem (ﬁg). Hence
it holds

D W ha)* (7)) = Miai] > Z (20 h)* () — 22*a;] > v(PY) (10)
i=1 i=1

for all (A1, ..., A, y9%, ..., y2%) feasible to (PY), i.e. v(PY) > v(PY).

Now, take a feasible element (z9*,...,29*) € R™ of the problem (P9) and set y?* = \; = 2

for all i = 1,...,n, then we have from > !, z ?* <1, 2 >0, i=1,..n, that Yo < 1,
iy, ¥9* >0, y9* = \;, i = 1,...,n, which means that ()\1, ooy Ay U9, o, y0%) s a feasible element
of (PY9) and it holds

n n

Y IRy (@) = 2fFa] = Y [y ha)* (2F) — Aiai] = o(PY) (11)

=1 =1

0+) feasible to v(PY), which implies v(P9) < v(PY). Finally, it follows that
v(PY) = v(Pg) and thus, the conjugate function of g is given by

for all (29* ) -5 2

g*(x1,yay) = min {Z[(Z?*hi)*(w?) - Z?*ai]} (12)

n
2 st 2o Li=1
P

and takes only finite values. O

Lemma 2.2. Let a; € Ry be a given point and h; : R — R with hi(z) € Ry, if v € Ry, and
hi(x) = 400, otherwise, be a proper, lower semicontinuous and convex function, i = 1,...,n
Then the function g : R™ — R,

max{hi(r1) + a1, ..., hn(Ty) + an}, ife; €Ry, i=1,..,n,
41, o n) =

400, otherwise,

can equivalently be expressed as

n

9(x1y ey my) = sup {Z 2% [hi(2:) + ai}} , Vo, >0, i=1,...,n.
% z?*gl, 29*20, i=1

i=1

i=1,...,n

Proof. By Theorem 2.4 and the definition of the conjugate function we have for the biconjugate
function of g

G (@) = s 4> alm—  min {Zuz?*m)*(x:)—z?*ad}

zieR, i=1,.,n | ;5 '§1 29%<1, 29 >0, | j=1
i=
i=1,...,n
n n
— * 0% * [ %k 0%
= sup E LiLq — E (2 hi)*(x7) — 2 "a]
o €R, " eRy, | =1 i=1

10



— sup {Z[sup {Fa; — (20%h)*(a)} + z?*ai]}

FeRy, i=1,...,n, i—1 TiER
3 20% <1
i=1*
n
— sup {Z[(z?*hi)**(a:i) +z?*ai]}. (13)
z?*€R+, i=1,..., n, i=1
n
20% <1
=1t o

1=

As h;, © = 1,...,n, are proper, convex and lower semicontinuous functions it follows by the
Fenchel-Moreau Theorem that

O i X
2 €R+, i=1,..., n, i=1

n
g (x1, . y) = sup {Z[zzo*hl(mz) + z?*ai]} , Ve, e Ry, i=1,...,n, (14)

n
z?*gl
i=1

and moreover, as ¢ is also a proper, convex and lower semicontinuous function it follows by using
again the Fenchel-Moreau Theorem that g = ¢**, i.e.

z?*€R+, i=1,...,n, i=1

g(x1, .y xy) = sup {Z[z?*hl(xz) + z?*ai}} , Ve, €Ry, i=1,...,n.  (15)

7
z?*gl
i=1

O
We close this section by the following remark.

Remark 2.5. If we consider the situation when the given points a;, i = 1,...,n, are arbitrary,
i.e. a; € R, then it can easy be verified that the conjugate function of f in (3) looks like

n
f*(yO*) — sup Zyl()*y? ¢ (16)
yJEeRr ., teR, i—1
¥+a;<t, i=1,...n

(notice that here t € R instead of t € Ry ).
If we now construct to the conjugate function in (16) a primal problem in the sense of (P™%")
in (4), then the corresponding Lagrange dual problem (D™%) has the form

(D™ sup { Z Aia; } .

Analogously to the calculations done above in (5) - (15) one derives for the conjugate function
of g,

g (@1, e ) = min {Z[(Z?*hi)*(fﬂ?) - Z?*ai]},



while its biconjugate is then given by

(X1, xn) = g1, 0y ) = sup {Z 2% hi (27) + ai]} , Vao; >0, i=1,...,n.

n -
> z?*:l, z?*z(), =1
=1

3 Duality results for nonlinear location problems with set-up
costs
3.1 Geometrically constrained location problems with gauges in Fréchet spaces

Let us now focus our discussion for given non-negative set-up costs a; € Ry and distinct points
pi € X,i=1,...,n, (where n > 2) on the following geometrically constrained minimax location
problem

(Py.)  inf sup {hi(vi(z — pi)) + ai},

2€S 1<i<n
where
e S is a non-empty, closed and convex subset of a Fréchet space X,
e (; is a non-empty, closed and convex subset of X such that Ox € int Cj,
e v¢, : X — R is a gauge function of the subset C; and
e h; : R — R, defined by

h ( ) hl(x) ERJ,_, if$€R+,
i\T) ‘=
400, otherwise,

is a proper, convex, lower semicontinuous and increasing function on R,

i = 1,...,n. Hence, it is clear that the defined gauges are proper, lower semicontinuous and
convex functions by Theorem 2.1, which implies that the problem (PhS ,) is a convex optimization
problem. The case where the set-up costs are arbitrary, i.e. a; € R, will be discussed in Remark
3.2.

For applying the developed Lagrange dual concept for multi-composed optimization problems,
we set Xog = R” ordered by Ko = R’}, X1 = X" ordered by the trivial cone K; = {Ox»} and
X9 = X and introduce the following functions:

e f:R” — R defined by

1<i<n

00 sup {hi(¥9) + ai}, if ¥ = (19, .., 40) T € R, i=1,...,n,
y') =
+ooRn, otherwise,

o F1: X" — R™ defined by F'(y') := (ye, (1), .., ve, (v1)T with y' = (yf,...,y5) € X"
and

12



e F?2: X — X" defined by F?(z) := (z — p1, ..., T — Pn).
These definitions yield the following equivalent representation for the considered problem

(Pia)  inf(foF!o F?)(x).

The function f is proper, convex, R”-increasing on F'(dom F'') + Ko = dom f = R and lower
semicontinous. Additionally, one can verify that the function F' is proper, R’ -convex and R’{-
epi closed. Furthermore, since the function F? is affine, it follows that the function F' does not
need to be monotone (see Remark 2.3).

By setting Z = X ordered by the trivial cone () = X and defining the function g : X — X
by g(x) := =, we have that Q* = {0x+}, i.e. 22" = Ox+, and thus, the conjugate dual problem
corresponding to (Pf? ), in accordance with the concept from the previous section, looks like

(Diia) sup { ;Telg {Z<Zl* pz)} f*(ZO*) _ (ZO*FI)*(ZI*)},
i ' i=1

,,,,,

where 20* = (20*,...,22)7 € R and z!* = (2}*,...,z}*) € (X*)". It remains to determine the

conjugate functions of f and (z O*F 1), For the conjugate function of f one gets by Theorem 2.4

L, 20 = min. {Z[()\ihi)*(zg*)—)\iai}},

=1

while for the conjugate function of (:%*F') we have

(ZO*FI)*(ZI*) _ sup {Z 2z, z ZZO*VC’ 1 }

z}eX, i=1,...,n ;=1

n

= > sw {{2",2) - 4" (2} = Zz v0:)*(27). (17)

i=1 %; lex

Therefore, the conjugate dual problem (D;? ,) turns into

(D) sw {;gg{2<z3*,x >} SlOuh) ()~ da] - Y (80" >}

‘21 2 <1, Ai,z?*zo, i=1 i=1
i=

zil*eX*, i=1,...,n

By separating the sum Z?:1(Aihi)* into the terms with A; > 0 and the terms with A\; = 0 as
well as 1, (29%y¢,)* into the terms with 20* > 0 and the terms with z* = 0 in (D} ), the
dual problem turns into

(D) sup { inf {fx 1x pz>} S0« By )*(29%)
0, I¢R, 3 A<l

" RC{l,...n}, Ak>0, k€R, A= ze€s (i=1 ré¢R

I1C{1,...,n}, 20*>0, i€l, 29*=0, j¢I
2 eX* i=1,...n

= L) (@) = Arar] = 22(0-70,)" (24") - z<z9*m>*<z3*>}.

r€R i¢l iel

13



If i € I, then we have (see [2])

1% . 2*
Z; 0, if o, (’—*) <1,
@%mﬂw>=z%@(@>={ 4

i 400, otherwise,

_ 0, if o¢, (2%) < 297, _ [0 if 76’?(21'1*) < 20 (18)
400, otherwise, 400, otherwise,
(see Remark 2.2 for the last equality) and if ¢ ¢ I, then it holds
0, if 2}* = 0x~
. * 1* — 1* 1 — 9 7 X*y
096 (1) = s (et = { S0 S (19)
Further, let us consider the case r ¢ R, i.e. A, = 0, then one has for z%* > 0,
0, if 22 =0
. * 0, 0%y 0x, 0 _ ’ r )
(01" () = sup (2738) e oo (20)

For r € R, i.e. A, > 0, follows

0%
(MMW£ﬂ=NM<?)-

Hence, the equation in (20) implies that if r ¢ R, then z0* = 0, which means that I C R. In
summary, the conjugate dual problem (D;f ) becomes to

0%
Dy sup inf 2 —p) e — A {h* (Zr ) —a } (21
( h,a) ICRC{1,.m}, Ax>0, kR, A=0, I¢R, {xeS {Z< 7 Z> Z T T )\r T ( )

i€l reR
29*>0, z1*eX™, 'yC?(z,il*)gz?*, i€el,

207=0, 21" =0x+, j¢I, X Ar<1
rER

Let us denote by v(P,i ) the optimal objective value of the problem (P,f o), then the weak duality
between the primal-dual pair (P7,)-(D5 ) always holds, i.e. v(Py ) > v(Dy ).

Our aim is now to verify whether ’strong ’duality holds. In other words we will give an answer to
the question whether under the given settings the situation holds where U(P;?: o) = v(D;i ) and

the dual problem (D,‘? ) has an optimal solution.

For this purpose, we use the generalized interior point regularity condition (RC'), which was
imposed in the previous section. In mind of this regularity condition, let us recall that f is lower
semicontinuous, Ko = R is closed, S is closed, int R" # () and F Lis R’ -epi closed. Moreover,
it holds

Ogn € sqri(F!(dom F') — dom f + Ko) = sqri(F* (dom F') — R" + R") =R"
and
Oxn € sqri(F?(dom F? Ndom g N S) — dom F! + K1) = sqri(F2(S) — X" + {0xn}) = X™.
As the function g : X — X is defined by g(z) := « it follows that g is Q-epi closed and
Ox € sqri(g(X NS) + Q) =sqri(S + X) = X.
Finally, as F? is star {Oxn }-lower semicontinuous the regularity condition is obviously fulfilled

(see Remark 2.4) and we can state the following theorem as a consequence of Theorem 2.2.
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Theorem 3.1. (strong duality) Between (P;f:a) and (DF?,@) strong duality holds, i.e. ’U(P}?:a) =

v(D;S;a) and the conjugate dual problem has an optimal solution.

The following necessary and sufficient optimality conditions are a consequence of the previous
theorem.

Theorem 3.2. (optimality conditions) (a) Let T € S be an optimal solution of the problem
(P,fa). Then there exist (A1, ..., Ay 205, o, 205, 21, ., Z0F) € RT X R X (X*)" and the index sets

I C RC({1,..,n}, an optimal solution to (D,ﬁia), such that

(i) o {00, (T = p5) + a3} = 26T —pi) = X A [h: <?> - ar}

<j
Isjsn iel reR

= ZAT[ r(’YCr(x_pr))+ar]u

reR

(ii) A\phi (

(iii) 2?*701_ (@ —pi) = <z}*7f —pi), Vi€l

) + Ahe (e, (T — pr)) = 20 ye, (T — pr), Vr € R,

(iv) Y(51*,7) = —os (— ) )

i€l i€l

(v) wax {h;(vc, (T = p;)) + aj} = he (70, (T = pr)) +ar, Vr € R,
(i) YA =1, >0, keR, \y=0,1¢R, 2*>0,iel, andz)* =0, j¢1,
reER

(vii) Yoo (2]") =2, 2" € X*, i€l and z}* = 0x-, j ¢ I.
(b) If there exists T € S such that for some (A1, ..., An, 20, .oy Z0%, 215 L Z0) € R xR x (X*)"
and the index sets Tig RC {1 ., n} the conditions (i)-(vii) are fulfilled, then T is an optimal
solution of (P,fa), (A1 ooy Ay 205, 0, 20 21 L 21 T R) is an optimal solution for (D,‘ia) and
U(P}'ia) = U(D;ia).

Proof. (a) By using Theorem 2.3 we derive the following necessary and sufficient optimality
conditions

. ~ « [ Z20* _ 0% _
() max {h; (00, (F =) + a5} + X & (03 (F) — o] = 26, - ),
reR el

(i) Y20, (T —pi) = X(F57 —pi),

i€l iel

(iii) Y (z1*,7) +os (— Zz}*> =0,

el i€l

(iv) A<, A>0,keR N=0,1¢R, 2*>0,icl,andz)* =0, j¢1,
reR

(v) 700( ") <z oz e X iefandf}*zox*, jé&l,

15



where case (iii) arises from condition (i7i) of Theorem 2.3 by the following observation (note
that z2* = 0x+)

iel €5 e

& Y ENLT) =D Ep) Fsups =Y (F )+ Y (7 pi) =0
iel i€l zes i€l iel

& Z T) +supg — 2(53*7 x) p =0.
iel z€s iel

Additionally, one has by Theorem 3.1 that U(P,f:a) = U(D;Za), ie

s {0, @ = )+ s} = 1 4 S0 n =) b= 0% (1 (3 ) —a

1<5<n ~ ~
el reR

& max {h;j(yo; (T —p;)) +aj} +os Zzl* —i—Z (ZF, pi)

1<j<n
iel i€l
20
reR T
—0%
1% N * Z'f‘
& max {hj(he; (T = pj)) + aj} +os _ZZ’ +Y (Z" i) Z)\r [hr ()\T) —ar]
i€l i€l reR
+>  Nhe(ve, @ —pr) = Y Al (e, (T = py)
reR reR
+ A e @ —p) = Y E e @ -p)+ )Y (5T - Y (5T =0
iel iel i€l iel

~ max {h (’VC’ (ZL‘ - pj)) + aj} - Z(thr('}/cr (T - pr)) + Arar)

1<5<n —-
reR

+> Erve@—p) - ELE-p)l + |os | =D _FT |+ _(EZ"T)

i€l iel icl
+Z [A hi < ' ) + Nihi(ve, (T — pi) —Z?*m(:ﬂ—pz)]
+ Z [Xeh (0) + Aehe (e, (= pr)) — 0+ 36, (T — pp)] =0,
r€R\T

where the last two sums arise from the fact that I C R. By Lemma 2.2 holds that the term
within the first bracket is non-negative. Moreover, by the Young-Fenchel inequality we have
that the terms within the other brackets are also non-negative and hence, it follows that all
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the terms within the brackets must be equal to zero. Combining the last statement with the

optimality conditions (i)-(v) yields

(i) max {h; ("YC (T —pj)) +a;} = Z??*’yci(f—pi) - XA [h: (EXQ*> B aw}

lsjsn i€l reR "
= ZAr[hr(VCT(E —pr)) + ar],
reR
(i) %oh; () + Moo, 7 - ) = 296, (7 - ), W €

(iii) z¥*ve, (T — pi) = (Z1*, T — pi), Vi€ 1,

(iv) X(z*7) = —0s <— 223*>’
icl iel

(V) A< A>0,k€R N=0,1¢R 2¥>0icl, andz0* =0, j ¢ 1,
reR

(vi )’YCO( )< 52-1*€X*7iejand%*zox*’jgj

From conditions (i) and (v) we obtain that

max {h;(e;,( —pp) +a;} = > (Mhe(v0,(E = pr)) + Arar)

1<5<n —
reER
< Z)\ max {h (e, (T — pj)) + a;}
r€ER
< max {h;(ye, (@ — ps)) +aj},

which means on the one hand that
Z Ar Jmax {h (vo, (T —pj)) +a;} = lrg]agn{hj(’mj (T —pj)) + a5},
réR T

i.e. condition (v) can be written as

D X=1L3%>0keR N=0,1¢R 2>0icl, andz)* =0, j¢ T,

reR
and on the other hand that
Z(thr(’VCr (@ —pr)) + Ara Z Ar maX {h (vey (@ — pj)) + a5}
reR reR

or, equivalently,

Z)\ [max{h 'YC( pj))"‘aj}_(hr(’YCr(E_pr))'i‘ar) =0.

ré€R

(22)

(23)

(24)

As the brackets in the sum of (24) are non-negative and A\, > 0 for r € R, it follows that the

terms inside the brackets must be equal to zero, more precisely

lglaé( {h (’YC ( pj)) + aj} = hr(’)/Cr(f _pr)) +ar, Vr € R.

17
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Further, we obtain by the generalized Cauchy-Schwarz inequality and the conditions (4ii) and
(vi) that

2090, (@ = pi) = (77T = pi) < 00 (7770 (T = pi) < 20, (T - i),

which means that condition (vi) can be expressed as
Yeo(Zi*) =20, z* € X*, ieTand z;" = Ox-, j ¢ . (26)

Taking now the optimality conditions (i)-(vi), (22), (25) and (26) together gives the desired
statement.
(b) All the calculations done in (a), can also be made in the reverse order. O

Remark 3.1. We want to state that the optimality conditions (i)-(iv) of the previous theorem
can also be expressed by using the subdifferential. As

1<i<n

f( 0) sup {hl(yzo> + ai}? (Lfyo - (y% 7y2)T € RY—:—& i= 17 -y 10,
y =
+00Rn, otherwise,

and

we have by the optimal condition (i) of Theorem 3.2 that
f(/)/cl (f - pl)? SR 'VCn(E - pn)) + f*(Z?*, L 22*) = ZE?*’)/CZ,(E - pi)‘
iel
By (1) the last equality is equivalent to
(20, 20") € OF (V01 (T = p1)s w70, (T = D))

Therefore, the condition (i) of Theorem 3.2 can equivalently be written as

(i) (2*,..,2%) €0 (1I£1Ja<xn{- + aj}) (M (T —p1)s ooy V(T — pn))

In the same way, we can rewrite the conditions (ii)-(iv)

(ii) 2% € O\ -h.)(ve, (T —pr)), r € R,
(iii) Z;* € 0(Z) ve,)(T —pi), i €1,

(iv) — > 7" € 33s(7) = Ns(7),
iel

18



where Ng(T) := {z* € X* : (z*,y —T) <0, Yy € S} is the normal cone of the set S atT € X.
Bringing the optimality conditions (i) and (ii) together yields

@) € 0 (x4 a3} (0@ = 1) alo - )

N(@h) (11 (@ = p1)) X . X OAnhn) (40 (T = pn))) -

Moreover, summarizing the optimality conditions (iii) and (iv) reveals that

Szl e > 020, (@ — pi) N (—Ns(T)).

i€l i€l

Finally, take also note that the optimality conditions (iii) and (vii) of Theorem 3.2 give a detailed
characterization of the subdifferential of 2?*7(;1. at T —p;, 1 =1,...,n. More precisely,

(0@ — pi) = {71 € X*: 20,7 — i) = (2,7 = pi) and o (z1) =2}, i € T

Remark 3.2. If we consider the situation when the set-up costs are arbitrary, i.e. a; can also
be negative, i = 1,...,n, then the conjugate function of f looks like (see Remark 2.5)

Fredx, ., 20 = min | {Z[(Alhl)*(z?*) - )\iai]} .

As a consequence, we derive the following corresponding dual problem

0
Dy . sup inf 2 —p) p — Ar {h: <ZT ) - ar} .
(D, )I§R§{17...,n}7 Ar>0, kER, \=0, I¢R, {IGS {Z< ) TZ@; Ar

iel
20*>0, 21*€X", 'ycg)(zil*)gz?*, icl,

000, 21 =0xe, g1, 3 An=l
TER

Therefore, all the statements given in this subsection are also true in the case of arbitrary set-up
costs with the difference that ) _p A\r = 1 in the constraint set.

Minimax location problems with arbitrary set-up costs were considered for example in [6] and
[19]. For readers who are also interested in minimaz location problems with nonlinear set-up
costs, we refer to [4] and [10].

3.2 Unconstrained location problems with norms in Hilbert spaces

Let H be a real Hilbert space with scalar product (-,-), where the associated norm is denoted
as usual by || - || and defined by ||z| := (x,z). This subsection is devoted to the case where
S=X=%H,a; >0and y¢, : H — R is defined by v¢,(z) := ||z||, ¢ = 1,...,n, such that the
minimax location problem (P;S ,) turns into

S7N o . —_ . .
(Pra ) nf max {hi(llz — pill) +ai} .
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Its corresponding dual problem (Dfév) transforms to

ZO*
su inf zl* ; Ar [hﬁ <T> — ar]
1gRg{1,....n}, Ak>0p kER, \=0, I¢R, {CEGH {Z< b >} Z Ar

el reR
Zg*>0 21*CH, Hzl*|\<zo*, i€l € €

29 =0, zl*—on, J¢I, X <1
rER

= sup — sup — 2%
TCRC{L,...n}, A0, kER, Ni=0, IR, zEH oy

20%>0, 217 €H, ||217]|<20, Pel,

20*=0, zl*—OH, jer, S <1
rTER

Bk

el reR

*
= sup - > pi) Ar h*<r>—a] .

zel reR
z? >O 2} EH Hzl*|\<z0*, ZEI

zjq*_O z _OH, J¢I, > A.<1, > zl*_OH
rER i€l

Obviously, in this setting the regularity condition (RC) is fulfilled and the following duality
statements are direct consequences of Theorem 3.1 and 3.2.

Theorem 3.3. (strong duality) Between (P}‘?gv) and (D ™YY holds strong duality, i.e. v(P}faN) =
U(DS’N) and the dual problem has an optimal solution.

Theorem 3.4. (optimality conditions) (a) Let T € H be an optimal solution of the problem
(PSN). Then there exist (A1, ..., An,2°%,2%) € R x R" x H" and the index sets I C R C

1,...,n}, an optimal solution to DN , such that
h,a

(i) max {hy(I7 = pjl) + a5} = L2z - pill = £ X 7 () — o]

1sj<n iel r€R

=3 M7 = poll) + ],

r€R
(1) Nobi () + Meho(I7 = pel) = 227 = pyll, Vr € B,

(7’7“7“) ZO*H'I"_le _< Z; 7f_pl> \VIZ.GT)
(iv) Y7 = Oy,

i€l
() max ({17~ py) + a5} = b (17— pol) + . Vr € B,
1<j<n
(vi) ZXT:I, M >0, keR, N=0,1¢R, z*>0,icl,andz) =0, j¢1I,
reR
(vii) |zl =2, z* € H\{On}, i€ T and z}* = 0y, j ¢ I.
(b) If there exists T € H such that for some (Ai,..., \p,2°%,2'%) € RT x R x H" and the
index sets I C R the conditions (i)-(vii) are fulfilled, then T is an optimal solution of (Phsév),
(A1, .o A, 29,21 1, R) is an optimal solution for (Dsiv) and v(P;?CfV) = U(D,SLCJLV)
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Regarding the relation of the optimal solutions of the primal and its the dual problem the fol-
lowing corollary can be given under the additional assumption that the function h; is continuous
and strictly increasing for all i =1,...,n

Corollary 3.1. Let the function

™ h; R, ; R,
hi:R =R, hi(z) = (z) € Ry if v € X
+00, otherwise,

be conver, continuous and strictly increasing for alli =1, ....,n, and T € H an optimal solution
of the problem (P,‘?L;N) If (M, ey A, 22, 21) € REXRE XH™ and I C R C {1,...,n} are optimal
solutions of the dual problem (Dfév), then it holds

_ 1 [l

r = .
Iz Z S,N

E ey @ (PR )

el

Proof. The optimality conditions (#¢7) and (vii) of Theorem 3.4 imply that
Iz T = pill = (=7 — i), i €1,
By Fact 2.10 in [1] there exists o; > 0 such that
Ei*zai(f—pi), iel (27)

and so, ||Z1*|| = a;||T — pill, @ € I. Therefore, it follows from the optimality condition (v) of
Theorem 3.4 that (note that I C R)

_ I
o (= yl) + a3} =i (121 ) + o

1<5<n
o b (max (O~ pyl) + 0} —ar) = 2
io\1<i<nt J J i PG
1% 1%
R e = = ciel  (28)

_ SN
hi_l ( max {hJ(HT —ij) + aj} — az‘> hi ! (U(Dh,a ) - ai)
1<j<n
Now, we take in (27) the sum over all i € I, which yields by condition (iv) of Theorem 3.4

Oy = Zzll* 041 pz =T = Z o Z QPg- (29)

iel iel i€l

iel
Finally, bringing (28) and (29) together implies

_— 1 17" lp:

v =] 2= SNy _ a)

~ 1 ;
zEZIhZ (v(Dy ) —ai) €l hy (U(th“
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Example 3.1. (a) Let a5, Bis >0, s=1,...,v, and h; : R — R be defined by

ha(a) = Jax {aise + Bis},  ifx e Ry,

00, otherwise,

i =1,...,n, then the corresponding location problem looks like

S, .
) g o { mox (ol - pi||+ﬁis}+ai}—ln;§a§ (el — pill + Bis + ai).

Moreover, we define the function

st + Bis, if v € Ry,
400, otherwise,

fs :R—=R, fi(z) :—{

then we derive by Theorem 3.2 in [21]
met) = (ax(f)) @H= i {mes) <xs>} .

As the conjugate of the function 7sfs is

(1sfs) (%) = suﬁ{:r:x —7sfs(x)} = sg%{:)::x — TsQis® — TsPis}
re x>

« —TsBis, if .1‘: < TsQis,
= —Tsfis +sup{(z; — Tsis)T} = ~
sﬁzs‘f‘mzla{( s T Tsis )} { 400, otherwise,

s=1,...,v, we have

n

K[k . .

hi(z*) = . inf — E TsQis ¢, 1 =1,...,m,
> owi=a*, 3 Ts=1, s=1

s=1 s=

7520, xs<Tsa;g, s=1,..., v

and hence, the dual problem is given by

S,N
(Dh:a) sup Z Zi 7p2 +Z)\ ZTsars_ Ay .
ICRC{L,.on}, \e>0, kER, Mi=0, I¢R, 7 i
29*>0, 217 €H, ||217|<20", i€l i< rek 5=
22 =0, zl*—OH JeI, S A<1, 3 2lr=0y
reER i€l
ZO*

m
i
]

v
s 2 Ts=1, 7520, zs<Tsars, s=1,...0
=1

-

Furthermore, h;l(y) = minj<g<y, {O%(y — Bw)} foralli=1,...,n, and thus, we have by Corol-
lary 3.1

1 [l
1% .
HZZ Il min {as( (DSN)_az_ﬁzs)}

v(D ) —ai—Bis) } i€l <5<y

. 1
= min { —
el 1§S§v{%’s(
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(b) Let h; : R — R be defined by

O

+00, otherwise,

with w; >0, 8; > 1,i=1,...,n, then

S,N i
) s e v

and since the conjugate function of h; is given by (see Example 13.2 (i) in [1])

Bi
;— 1 1 Bi—1 ;i — 1 _Bi
hi(z*) = UJiIB 7 (wzx*> bzl i1

the associated dual problem (Ds’év) is

sup —E 2%, pi) E Ar
ICRC{1,...,n}, Ax>0, kER, \;=0, I¢R

—1 Br
0x*
Br—1 — a
1 (zr ) T .
=0, I¢R, el R [/Br Arty
20750, 2lTeH, |27]1<20", il '€ re (Arwr) P
20°=0, 21 =0, j&I, £ A<1, X 2l =0y

rER

i€l

1
In addition, as h; ' (y) = (y/wi)% for alli=1,...,n, it holds

1
f I F Izt
WP SN 5
sl e @(Dh;a ) — ai) i
i€l (U(DiN) az)ﬂi
(c) Let h; : R — R be defined by
hi(z) = w;x, if v € Ry,
’ . 400, otherwise,
w; > 0, then h;l(y) = w%_y foralli=1,...,n, and hence,
— 1 Z wzHZ Ipi 30
v > wi[Z}*| (DSN)_Q,' (30)
il ”(DS:i\[)_ai i€l i

Ifa; =0,i=1,...,n, then formula in (30) reduces to

7
iel

Remark 3.3. Let us note that all the results in this section holds also for negative set-up costs

Like already mentioned in Remark 3.2, we have in this case in the constraint set of the dual
problem Y p A =1
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4 Duality results for linear location problems without set-up
costs

4.1 Geometrically constrained location problems with gauges in Fréchet spaces

In this section we will discuss single minimax location problems without set-up costs (a; = 0, i =
1,...,m), where the function h; : R — R be defined by

{:U, ifx e Ry,

400, otherwise,

i1 =1,...,n. Hence, the location problem (P,;S,a) turns into

PS inf m (x—pi)}
( ) QI:GS 1§za§Xn{fYCZ( pl)}
Since the conjugate function of h; is given by

hi(z*) = sup {(z" — 1)z} =

zeRy

{ 0, if z* < 1,

400, otherwise,

i =1,...,n, the corresponding conjugate dual problem to (P*) becomes by (21) to

S . 1
(D”) sup inf Z<Zl r—pi)yy-
ICRC{L,....n}, Ae>0, 20°<Ai, k€R, Ni=0, I¢R, | *€5 | i

z?*>07 zil*EX*, 'yc.o(zil*)gz?*7 i€l
i

22*=0, 2}*=0xx, j¢I, > A<l
rTER

The fact I C R implies that if A\, = 0, then 2* = 0 for some r € R and so, it holds that z?* <\
for all ¢ = 1,...,n. Now, if we define the function 6 : R"} — R by

n
0, if 22, X, >0, 22 <\, i=1,...,n, N <1
=1

0(20%, ..., 20%) =

400, otherwise,

then it is obvious that
n
0, if 20* >0, 20 <1
9(2(1)*,...,22*) = vo= Z; ¢ =
400, otherwise

and therefore, we can write (D) as

(D?) sup {;Ielg {Z(ZQ*, T — p;) }} :
IC{1,...,n}, z;?*:o, z]l.*ZOX*, j¢l, icl

z?*>0, zil’kEX*7 Vc?(zil*)gz?*, iel, ig[z?*fl

Let us now introduce the following optimization problem
(D) sup inf Z(z;“, T—Di)p o - (32)
IC{1,...,n}, zf€X}, i€l, z€S ey
z;f:OX*, jélI, ngl'yco(z;‘)gl

If we denote by v(D*) the optimal objective value of the problem (DS) and by v(D5) the optimal
objective value of the problem (D?), then the following theorem can be formulated.

24



Theorem 4.1. It holds v(DS) = v(D%).

Proof. Let zf, i = 1,...,n, be a feasible element to (D) and set ¥ = 2f ? = 'yco( *) for

i €1 and z?* =0, z% = Ox~ for i ¢ I. Then, it is obvious that ZO* and z *i=1,..,n are
feasible elements to (D) and it holds

igg{Z(ﬁ,x—Pﬁ} :;QE{Z@}*W—PJ} < v(D%), (33)

iel 1€l

for all 2, i = 1,...,n, feasible to (D%), which implies v(D%) < v(D%).
Vice versa, let z0* and z}* be feasible elements to (D) for i = 1, ..., n, then we have yqo(2}*) <

2% forie I, Y, 2 <1and 2)* =0, 2/* = 0x~ for i ¢ I, from which follows by setting
2 =zl* forie I and 2} = Oxr forzgé[that

Z ’YC’? (Zz) <1
i€l
in other words z; is a feasible solution to (55 ) for all ¢ = 1,...,n. Furthermore, we have that
. 1% . * ) S
;g@{Z(z pz>} _;2£{Z<2mx_pz>} < v(D%), (34)
el el
for all 29* and z}*, i = 1,...,n, feasible to (D), which implies that v(D%) < v(DS). Bringing

the statements (33) and (34) together reveals that it must hold v(DS) = v(D%). O

Motivated by Theorem 4.1 it follows immediately the following one.

Theorem 4.2. (strong duality) Between (P%) and (DS) holds strong duality, i.e. v(PS) =
v(D5) and the dual problem v(DS) has an optimal solution.

Now, it is possible to formulate the following optimality conditions for the primal-dual pair
(P5)-(D®) (note that a; = 0, i = 1,...,n).

Theorem 4.3. (optimality conditions) (a) Let T € S be an optimal solution of the problem
(BS) Then there exists z* € (X*)" and an index set I C {1,....,n}, an optimal solution to
(D®), such that

(1) max {7¢,(T = pj)}t = 2. Y0 (F))70:(T = pi),
iel

(i) Y(25,7) = —os (— ) )

il iel
(iii) Yoo (Z )0 (@ —pi) = (2,7 —pi), i €1,

(iv) S ve0(z5) =1, 7e0(z5) > 0, i €T, and yeo(z) =0, i ¢ T,
jel

(v) ve,(T —pi) = ax. {ve,@—p;)}, i1
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(b) If there exists T € S such that for some z* € (X*)™ and an index set I the conditions (i)-(v)
are fulfilled, then T is an optimal solution of (P%), (z%,1) is an optimal solution for (D) and
v(P%) = v(D%).

Proof. Let T € S be an optimal solution of (P%), then by Theorem 4.2 there exists z* € (X*)"
and an index set T C {1,...,n} such that v(P%) = v(D?), i.e.

& max {10, - p;)} = inf
iel

1<i<n z€eS Z@ x—pz>

& max {1o,@F—p)}+os [ =D 7 | +D _E.p) =0

1<j<n —
iel iel

& max{fyc(x—p]}—i-as Zz* —i—Z(Ez‘,pi)

1<j<n —
i€l i€l
+ 00 Ee (@ = pi) = Y _eo (@ e, @ —pi) + Y (Z.T) - Y (5.7 =0
iel iel iel iel
& lrgjagn{’rc Z-p))} =) oG e @ —p)| + |os | =D = | + <Zzz "”’>
iel i€l i€l
+> eoE)ve, (@ —pi) + (2, pi — )] = 0.

iel

By Lemma 2.2 holds that the term within the first bracket is non-negative and by the Young-
Fenchel inequality we derive that the terms within the other brackets are also non-negative.
This implies the cases (i)-(ii¢). Further, we obtain by the first bracket

max {1¢,(@ = pi)} = >0 (Z)10,(@ — i)
el

< Y s (E) max (0,7~ )} < max {1, (7~ )
iel

and from here follows that » . _77vc0(Z;) = 1, which yields condition (iv), as well as

Y o (z) max {ye, (F = pj)} = Y 00 (ZHe: (T — pi)

~ 1<j<n
i€l iel
& 20 Lrg]agn{m (T —pj)} =0, (T - pi)] =0. (35)
el

As the brackets in (35) are non-negative and 700( *) >0, i€ I, we get that

ax {90, (7 —pj)} =10 (@ —pi), 1€ L.

which yields the condition (v) and completes the proof. O

26



4.2 Unconstrained location problems with the Euclidean norm

Now we turn our attention to the case where S = X = R? and w; > 0, i = 1,...,n. Furthermore,
we use as the gauge functions the Euclidean norm, i.e. y¢;, = w;||-||, ¢ = 1, ..., n. By these settings,
the minimax location problem (P?) transforms into the following one

s ~ N — s
(Py)  inf max {wi|lz — pifl}

By using (32) we obtain the following dual problem corresponding to (Pg),

(515\;) sup inf {Z<Zl*’ T — pz)}

) d
%Iw%‘lzf”gl’ zFeR?, i€l zcR iel

z;‘:ORd, j¢r

_ p {aRd (sz> - Z<z;:pz->}

1% *crd X X
z‘%} wy 1z5 IIS1, 27 €RE, <€l iel icl

#5=0p4, 7¢I

= sup {— E(z:,pﬁ} . (36)

1% * X
Z a1t 2 a7 =0pa, el

2¥erd, icl, z;f:ORd, ¢l

Remark 4.1. Note that for simplicity it is also possible to substitute z} = —z; foralli =1,...,n,
whence it follows

(D) sup {Z<z:,pi>} . (37)

Ly *— )
Z it 2 ar=ogae Uiel

z:‘G]Rd, i€l, z;‘:ORd, j¢r

Theorem 4.4. (strong duality) Between (PY) and (5]%) holds strong duality, i.e. v(Py) =
v(DY) and the dual problem has an optimal solution.

By Theorem 4.3 and 4.4 we derive the following necessary and sufficient optimality conditions.

Theorem 4.5. (optimality conditions) (a) Let T € R be an optimal solution of the problem
(P]*\gf) Then there exists Z; € R?, i =1,...,n, and an optimal index set I, an optimal solution
to (DY), such that

(i) max {w;]|z —pjll} = > Iz - pill,
=j=n il
(7’7’) sz = O]Rdv
iel
(i) |Z5 |17 — pill = (z, % —pi), i € I,

(iv) ZW%HE;H =1,z € RY\ {Oga} fori €I and z} = Oga fori ¢ I,
jel
(o) wille = pill = s {7~ pil}, i €.
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(b) If there exists T € RY such that for some zZi € R?, i = 1,...,n, and an index set I the
conditions (i)-(v) are fulfilled, then T is an optimal solution of (Px), (z*,1) is an optimal
solution for (D%;) and v(Py) = v(DY,).

For the length of the vectors 2}, ¢ € I, feasible to (]_N)f,) the following estimation from above can
be made.

Corollary 4.1. Let ws := maxj<i<p{w;} and zf € RY, i = 1,...,n, and I C {1,...,n} be a
feasible solution to (DY), then it holds

Proof. Assume that zf € RY, i = 1,...,n and I C {1,...,n} are feasible elements of the dual
problem (D%;), then one has for j € I,

ZZ;{:ORd@Z}(:—ZZ’;

el i€l
i#]

and hence,

Izl =121 <> Nzl eI (38)

iel i€l
i#] i#]

Moreover, from the feasibility of 2}, i € I, to (5]%) and by (38), we have

1237 el = el + X el

i€l ?i’.
i#]
1 1 1 1 W + w; .
> —lzl+— > Izl = =zl + —lz5 ] = —2Iz}]l, j € I,
w; W, 4= w; W sW;j
i#j

and so,

WsW 4 .
”ZjH < U)SST’(]U]‘? J Gla

g

By the next remark we point out the relationship between the minimax and minisum problems.

Remark 4.2. The optimal solution T of the problem (Pj\q,) is also a solution of the following
generalized Fermat-Torricelli problem

(PX)  min} allz—pi
* iel
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where w; = ||z]|, i € I.
This can be seen like follows: It is well known that x is an optimal solution of the problem (PJI\T,T)
with x # p;, © € I if and only if the resultant force R at x, defined by

L —Pi
Z“h
lz = pill’
is zero (see [18]). As T is an optimal solution of (Py), we have by (27) that

I Z”z*” i ZO‘Z )= 7 = O

i€l i€l

which implies that T is also an optimal solution of the problem (PFT). In this context, pay
attention also to the fact that for the optimal solution T of the problem (PS) it holds T # p;,
i € I. Because if there exists j € I such that T = pj, then T = p; for alli € 1, which contradicts
the assumption that the given points are distinct.

Geometrical Interpretation.

For simplicity let us suppose that w; = ... = w, = 1, then it is well-known that the problem
(PY) can be interpreted as the finding a ball with center  and minimal radius such that all
given points p;, i = 1,...,n are covered by this ball. This problem is also known as the minimum
covering ball problem.

Our plan is now to give a geometrical interpretation of the set of optimal solutions of the dual
problem (53 ) by using Theorem 4.5. By condition (iii) we see that for i € T the dual problem
can geometrically be understood as the finding of vectors z;, which are parallel to the vectors
Z — p; and directed to Z fulfilling » , 7Z; = Oga and ), 7 [|Z}|| = 1. Especially, conditions (iv)
and (v) are telling us that for i € I, i.e. Z} # Oga, the Corresponding point p; is lying on the
border of the minimal covering ball and for i¢l,ie. z = Oga, the corresponding point p; is
lying inside the mentioned ball. Therefore, for i € T the elements z; can be interpreted as force
vectors, which pulling the points p; lying on the border of the minimum covering ball inside of
this ball in direction to the center, the gravity point Z, where the resultant force of the sum of
these force vectors is zero. For illustration see Example 1 and Figure 1.

Another well-known geometrical characterization of the location problem (Pév ) is to find the
minimum radius of balls centered at the points p;, ¢ = 1,...,n, such that their intersection is
non-empty. In this situation the set of optimal solutions of the dual problem can be described
as force vectors fulfilling the optimality conditions of Theorem 4.5 and increasing these balls
until their intersection is non-empty and the radius of the largest ball is minimal. From the
conditions (iv) and (v) we obtain that a force vector z! is equal to the zero vector if T is an
element of the interior of the ball centered at point p; with radius v(Py ), which is exactly the
case when i € I. If i ¢ I, which is exactly the case when T is lying on the border of the ball
centered at point p; with radius v(Pj?,), then the corresponding force vector z; is unequal to
the zero vector and moreover, by the optimality condition (i) follows that Z} is parallel to the
vector T — p; and has the the same direction.

To demonstrate the statements we made above, let us discuss the following example.

Example 4.1. Consider the unconstrained single minimaz location problem in R? defined by
the given points:

p1 = (=5,-25)T; poy = (=2,1)T; ps = (2.5,3)"; ps = (3.5,—2)" and p5 = (0, -3)".
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The primal problem looks in this case like follows

-5 .

(Py)  inf max {flo—pil|}
and by using the Matlab Optimization Toolbox we get the solution T = (—0.866, —0.273)T with
the objective function value maxi<;<s{||T — p;||} = 4.695.
For the dual problem we have the formulation

(DY) sup {— Z(Zim?} : (39)

*1<1 *=0 X
Z ISt E st =0, Py

27 €R?, i€1, 2¥=0pp, i¢l
with the solution

7 = (0412,0222)7; 75 = (0,0)7; 75 = (~0.281,-0.273)"
zj = (~0.131,0.052)7; z2 = (0,0)7.

_The dual problem was also solved by using the Matlab Optimization Toolboz. In fact, it holds
(—=5,-2.5)T +0.392 - (2.5,3)T +0.14 - (3.5, —2)T = (—0.866, —0.273)T (see (31)) and the points
p1, p3 and py are lying on the border of the minimum covering circle as Figure 1 demonstrates.

Remark 4.3. Let w; = 1, i=1,...,n. Then, for the case n = 2 it follows immediately by condition
(iv) of Theorem 4.5 and Corollary 4.1 the well-known fact that T = %(pl + pa2).

Remark 4.4. Let w; = 1, i=1,...,n. If we consider the case d = 1, we can write the dual
problem (DY) as

(B%) up {—zz:m}

T 2¥<1, 3 z¥=0, -
icr ¢ icr el
z;FeR, i€l z;‘:O, gl

= sup {_<Z*7p>}7
2*ERM, (2%,1)=0,
llz*[l1 <1

where 2* = (25,..,22) € R", p = (p1,.,pn)T € R, 1 = (1,..,1)T € R™ and || - ||1 is the
Manhattan norm. From the second formulation of the problem (15;?,) it is clear that the set
of the feasible elements is the intersection of a hyperplane orthogonal to the vector 1 and a
cross-polytope (or hyperoctahedron), i.e. a convex polytope. Further, it is clear that the optimal
solution of this problem can get immediately by the following consideration. Let us assume that

p1 < ... < pp, then it holds p1 < T < p, and by condition (v) of Theorem 4.5 one gets

ax {7 —pjl} = 7 —pi| = |7 = pal,

i.e. I ={1,n}. By Remark 4.3 this means T = %(pl + pn). Moreover, by Corollary 4.1 we have
that |Z5| = |zk| = 0.5 and by condition (iv) of Theorem 4.5 finally follows that zZ7 = 0.5 and

zy = —0.5. A more detailed analysis of location problems using rectilinear distances was given

in [5].
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34 ps

Figure 1: Geometrical illustration of the Example 4.1.

By the next remark, we discover that the Lagrange multiplier associated with the linear equation
constraint of the dual problem (D7) is the optimal solution of the primal problem (Py) and

moreover, the Lagrange multiplier associated with the inequality constraint of the dual (D}%) is
the optimal objective value. A similar result was shown in [16] for minisum location problems.

Remark 4.5. First, let us notice that the dual problem (513\]) can be written as

(D) sup { Z<z:,pi>} ,

* d ;= 3
25 eRA) =1 i=1

.....

2 * 2 *
2y g =St 3 2 =0
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then the Lagrange dual of the dual (15]%) looks like

n n n
D 1
DDY inf su — 2p) + ( PR I TPEATI
(DDY) AzgvmeRdﬁeRMph_m{ > (= pi) < ZZ> (Zwiuzn )}

=1 =1

n
§ : A
= inf A+ su — Zik, N I’,Zﬁk — 2|z
A>0, z€R4 { — z;e]gd { < J pz> < l> w; H i H}}

— inf A+ b2y — | 40
AZO{%W{ ;g‘g{gd{< ~ i) = 2 \}} (40)

If A =0, then we get

Sup <x_p’“z:> :{ 07 fo:ph

2reRd 400, otherwise,

i =1,...,n, which contradicts the assumption from the beginning that the given points p;, i =
1,...,n are distinct. Therefore, we can write for (40)

~ ) 1 w;
(DDY) A>o{“feRd{A“;M;";§d{<A( —pi)2f) - uzzn}}

inf A = inf max ny
A>0, z€R?, zeRd 1<i< {er”ﬂ? pl”}
willz—p; [I<A, i=1,...,n

We conclude, on the one hand, that the Lagrange dual of the dual problem (5%) (i.e. the bidual
of the primal location problem (P%)) is the problem (P°). On the other hand, we see that
the Lagrange multipliers of the dual (DDS) characterize the optimal solution and the optimal
objective value of the primal problem (P%). Therefore, we have a complete symmetry between
the primal problem (PS) the dual problem (DS) and its Lagrange dual problem (DDS)
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