


Duality Results for Nonlinear Single Minimax Location Problems

via Multi-Composed Optimization
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Abstract: In the framework of conjugate duality we discuss nonlinear and linear single
minimax location problems with geometric constraints, where the gauges are defined by
convex sets of a Fréchet space. The version of the nonlinear location problem is additionally
considered with set-up costs. Associated dual problems for this kind of location problems
will be formulated as well as corresponding duality statements. As conclusion of this paper,
we give a geometrical interpretation of the optimal solutions of the dual problem of an
unconstraint linear single minimax location problem when the gauges are a norm. For an
illustration, an example in the Euclidean space will follow.
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1 Introduction

In the recent years, location problems attracted enormous attention in the scientific commu-
nity and a large number of papers studying minisum and minimax location problems have been
published (see [3]-[20]). This is due to the fact that location problems cover many practical
situations occurring for example in urban area models, computer science, telecommunication
and also in emergency facilities location programming.
In this paper minimax location problems form the focal point of our approach. In particular, we
are interested to give a detailed duality study for nonlinear and linear single minimax location
problems with geometric constraints, where the version of the nonlinear location problem will
additionally be equipped with set-up costs. To be more precise, we will formulate to this kind of
location problems its corresponding conjugate dual problems and derive necessary and su�cient
optimality conditions. Notice that we work in a very general setting, where the underlying space
is a Fréchet space and the distances are measured by gauges of convex sets.
But this is not all, we will formulate a new dual problem to the case of a linear single minimax
location problem reducing the number of constraints and dual variables compared with the first
formulated dual problem. Moreover, just as in the previous consideration we will establish also
associated duality results. Besides, we consider to this new dual problem the case where the
distances are measured by a norm defined on a Hilbert space and investigate from the optimality
conditions additional statements. A geometrical interpretation of the optimal solutions of the
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dual problem and a discussion of an example will complete the paper.
The organization of this article is the following. Section 2 gives some elements of convex analy-
sis and recalls basic statements of the duality approach done in [23] for geometrically and cone
constrained multi-composed optimization problems. Then, in Section 3, we apply the previous
approach to nonlinear single minimax location problems and give necessary and su�cient opti-
mality conditions. Finally, in Section 4 we consider linear single minimax location problems. In
Section 3 as well in Section 4 the location problems will be studied in a Fréchet space followed
by a characterization to a Hilbert space endowed with a norm.

2 Preliminaries

2.1 Elements of convex analysis

Let X be a Fréchet space and X

⇤ its topological dual space endowed with the weak* topology
w(X⇤

, X). For x 2 X and x

⇤ 2 X

⇤
, let hx⇤, xi := x

⇤(x) be the value of the linear continuous
functional x⇤ at x. For a subset A ✓ X, its indicator function �

A

: X ! R = R [ {±1} is

�

A

(x) :=

⇢

0, if x 2 A,

+1, otherwise.

For a given function f : X ! R we consider its e↵ective domain

dom f := {x 2 X : f(x) < +1}

and call f : X ! R proper if dom f 6= ; and f(x) > �1 for all x 2 X. The conjugate function
of f with respect to the non-empty subset S ✓ X is defined by

f

⇤
S

: X⇤ ! R, f

⇤
S

(x⇤) = (f + �

S

)⇤(x⇤) = sup
x2S

{hx⇤, xi � f(x)}.

In the case S = X, it is clear that f⇤
S

turns into the classical Fenchel-Moreau conjugate function
of f denoted by f

⇤. Let us mention that it holds f⇤(x⇤) = sup
x2dom f

{hx⇤, xi � f(x)} as well as
f(x) + f(x⇤) � hx⇤, xi for all x 2 X, x

⇤ 2 X

⇤, which is the so-called Young-Fenchel inequality.
Additionally, we consider a non-empty convex cone K ✓ X, which induces on X a partial
ordering relation “5

K

”, defined by

5
K

:= {(x, y) 2 X ⇥X : y � x 2 K},

i.e. for x, y 2 X it holds x 5
K

y , y � x 2 K. Note that we assume that all cones we consider
contain the origin. Further, we attach to X a greatest element with respect to “5

K

”, denoted
by +1

K

, which does not belong to X and denote X = X [ {+1
K

}. Then it holds x 5
K

+1
K

for all x 2 X. We also define x 
K

y if and only if x 5
K

y and x 6= y. Further, we define
5R+=: and R+=:< .

On X we consider the following operations and conventions: x + (+1
K

) = (+1
K

) + x :=
+1

K

8x 2 X [ {+1
K

} and � · (+1
K

) := +1
K

8� 2 [0,+1]. Further, if K

⇤ := {x⇤ 2
X

⇤ : hx⇤, xi � 0, 8x 2 K} is the dual cone of K, then we define hx⇤,+1
K

i := +1 for
all x⇤ 2 K

⇤. On the extended real space R we add the following operations and conventions:
� + (+1) = (+1) + � := +1 8� 2 (�1,+1], � + (�1) = (�1) + � := �1 8� 2
[�1,+1), � · (+1) := +1 8� 2 [0,+1], � · (+1) := �1 8� 2 [�1, 0), � · (�1) :=
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�1 8� 2 (0,+1], � · (�1) := +1 8� 2 [�1, 0), (+1) + (�1) = (�1) + (+1) := +1,
0(+1) := +1 and 0(�1) := 0.
Let Z be another Fréchet space ordered by the convex cone Q ✓ Z, then for a vector function
F : X ! Z = Z [ {+1

Q

} the domain is the set domF := {x 2 X : F (x) 6= +1
Q

}. When
F (�x+ (1� �)y) 5

Q

�F (x) + (1� �)F (y) holds for all x, y 2 X and all � 2 [0, 1] the function
F is said to be Q-convex. A function f : X ! R is called convex if f(�x + (1 � �)y) 
�f(x) + (1� �)f(y) for all x, y 2 X and all � 2 [0, 1].
Further, we consider the epigraph of a function f defined by epi f := {(x, r) 2 X⇥R : f(x)  r}.
The Q-epigraph of a vector function F is epi

Q

F = {(x, z) 2 X ⇥ Z : F (x) 5
Q

z} and we say
that F is Q-epi closed if epi

Q

F is a closed set.
If Q⇤ := {x⇤ 2 X

⇤ : hx⇤, xi � 0, 8x 2 Q} is the dual cone of Q, then we define for z

⇤ 2 Q

⇤

the function (z⇤F ) : X ! R by (z⇤F )(x) := hz⇤, F (x)i, where it is not hard to see that
dom(z⇤F ) = domF . Moreover, it is easy to see that if F is Q-convex, then (z⇤F ) is convex for
all z⇤ 2 Q

⇤.
A function f : X ! R is called lower semicontinuous at x 2 X if lim inf

x!x

f(x) � f(x) and
when this function is lower semicontinuous at all x 2 X, then we call it lower semicontinuous
(l.s.c. for short). The vector function F is called star Q-lower semicontinuous at x 2 X if
(z⇤F ) is lower semicontinuous at x for all z⇤ 2 Q

⇤. The function F is called star Q-lower
semicontinuous if it is star Q-lower semicontinuous at every x 2 X. Note that if F is star
Q-lower semicontinuous, then it is also Q-epi closed, while the inverse statement is not true in
general (see: Proposition 2.2.19 in [2]). Let us mention that in the case Z = R and Q = R

+

,
the notion of Q-epi closedness falls into the classical notion of lower semicontinuity.
A function f : X ! R is called K-increasing, if from x 5

K

y follows f(x)  f(y) for all x, y 2 X.

Definition 2.1. The vector function F : X ! Z is called K-Q-increasing, if from x 5
K

y

follows F (x) 5
Q

F (y) for all x, y 2 X.

For a set S ✓ X the conic hull is defined by cone(S) := {�x : x 2 S, � � 0} and sqri is used
to denote the strong quasi relative interior, where in the case of having a convex set S ✓ X it
holds

sqri(S) = {x 2 S : cone(S � x) is a closed linear subspace}.

In this paper we do not use the classical di↵erentiability, but we use the notion of subdi↵eren-
tiability to formulate optimality conditions. If we take an arbitrary x 2 X such that f(x) 2 R,
then we call the set

@f(x) := {x⇤ 2 X

⇤ : f(y)� f(x) � hx⇤, y � xi 8y 2 X}

the (convex) subdi↵erential of f at x, where the elements are called the subgradients of f at x.
Moreover, if @f(x) 6= ;, then we say that f is subdi↵erentiable at x and if f(x) /2 R, then we
make the convention that @f(x) := ;. Note, that the subgradients can be characterized by the
conjugate function, especially this means

x

⇤ 2 @f(x) , f(x) + f

⇤(x⇤) = hx⇤, xi, 8x 2 X, x

⇤ 2 X

⇤
, (1)

i.e. the Young-Fenchel inequality is fulfilled with equality.
Let C ✓ X. As conclusion of this section we collect some properties of the gauge function of

3



the subset C, �
C

: X ! R defined by

�

C

(x) :=

(

+1, if {� > 0 : x 2 �C} = ;,
inf{� > 0 : x 2 �C}, otherwise.

Let us start with the following theorem.

Theorem 2.1. Let C ✓ X be a convex and closed set with 0
X

2 C, then the gauge function �

C

is proper, convex and lower semicontinuous.

Proof. Let us define the function g : X⇤ ! R by

g(x⇤) :=

(

0, if �
C

(x⇤)  1,

+1, otherwise,

where �

C

is the support function of the set C, i.e. �
C

(x⇤) = sup
x2Chx⇤, xi. It is obvious that g

is proper, convex and lower semicontinuous. For the corresponding conjugate function of g one
has

g

⇤(x) = sup
x

⇤2X⇤
{hx⇤, xi � g(x⇤)} = sup

x

⇤2X

⇤
,

�

C

(x⇤)1

hx⇤, xi.

There is g⇤(x) = sup
x

⇤2X⇤{hx⇤, xi � g(x⇤)} � h0
X

⇤
, xi � g(0

X

⇤) = 0 since g(0
X

⇤) = 0, 8x 2 X,
and g

⇤(0
X

) = sup
x

⇤2X⇤{�g(x⇤)} = 0, i.e. g⇤ is proper. At this point it is important to say that
from 0

X

2 C follows that �
C

(0
X

) = 0, i.e. g⇤(0
X

) = �

C

(0
X

).
Let us now assume that x 6= 0

X

and consider for fixed x 2 X the following convex optimization
problem

(P �) inf
x

⇤2X

⇤
,

�

C

(x⇤)1

h�x

⇤
, xi.

As �
C

(0
X

⇤) = 0 < 1, the Slater condition is fulfilled and hence, it holds strong duality between
the problem (P �) and its corresponding Lagrange dual problem

(D�

L

) sup
��0

inf
x

⇤2X⇤
{h�x

⇤
, xi+ �(�

C

(x⇤)� 1)}.

Therefore, the conjugate function of g can be represented for x 6= 0
X

as

g

⇤(x) = sup
x

⇤2X

⇤
,

�

C

(x⇤)1

hx⇤, xi = � sup
��0

inf
x

⇤2X⇤
{h�x

⇤
, xi+ �(�

C

(x⇤)� 1)}

= inf
��0

⇢

�+ sup
x

⇤2X⇤
{hx⇤, xi � ��

C

(x⇤)}
�

(2)

For � = 0 we verify two conceivable cases.
(a) If �

C

(x⇤) < +1, then 0 · �
C

(x⇤) = 0 and therefore,

sup
x

⇤2X⇤
{hx⇤, xi � 0 · �

C

(x⇤)} = sup
x

⇤2X⇤
hx⇤, xi =

(

0, if x = 0
X

,

+1, if x 6= 0
X

.
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As by assumption x 6= 0
X

, we have sup
x

⇤2X⇤ = +1, but this has no e↵ect on the infimum in
(2).
(b) If �

C

(x⇤) = +1, then one has by convention that � · �
C

(x⇤) = 0 · (+1) = +1 and hence,

hx⇤, xi � ��

C

(x⇤) = hx⇤, xi �1 = �1,

which has no e↵ect on sup
x

⇤2X⇤{hx⇤, xi � ��

C

(x)}.
Hence, as the cases (a) and (b) are not relevant for g

⇤, we can omit the situation when � = 0
and can write

g

⇤(x) = inf
�>0

⇢

�+ � sup
x

⇤2X⇤

⇢⌧

x

⇤
,

1

�

x

�

� �

C

(x⇤)
��

.

Moreover, as C is a non-empty, closed and convex subset of X, the conjugate of the support
function �

C

is the indicator function �

C

, i.e.

g

⇤(x) = inf
�>0

⇢

�+ ��

C

✓

1

�

x

◆�

= inf
�>0,

1
�

x2C
� = inf{� > 0 : x 2 �C}.

Taking the situations where x = 0
X

and x 6= 0
X

together implies that g⇤(x) = �

C

(x), 8x 2 X.
Hence, �

C

is the conjugate function of g and by the definition of the conjugate function it follows
that �

C

is convex and lower semicontinuous. This completes the proof. ⇤

Remark 2.1. Note that the gauge function �

C

is not only convex but also sublinear. Moreover,
if 0

X

2 intC, then �

C

is well-defined, which means that dom �

C

= X.

Lemma 2.1. Let C ✓ X be a convex and closed set with 0
X

2 C, then the conjugate of the
gauge function � is given by

�

⇤
C

(x⇤) :=

(

0, if �
C

(x⇤)  1,

+1, otherwise.

Proof. In the proof of Theorem 2.1 we have shown that �
C

is the conjugate function of g, i.e.
�

C

= g

⇤, and as g is proper, convex and lower semicontinuous we have g = g

⇤⇤. As g

⇤⇤ is also
the conjugate function of �

C

, it holds �⇤
C

= g. ⇤

Definition 2.2. Let C ✓ X. The polar set of C is defined by

C

0 :=

⇢

x

⇤ 2 X

⇤ : sup
x2C

hx⇤, xi  1

�

= {x⇤ 2 X

⇤ : �
C

(x⇤)  1}

and by means of the polar set the dual gauge is defined by

�

C

0(x⇤) := sup
x2C

hx⇤, xi = �

C

(x⇤).

Remark 2.2. Note that C0 is a convex and closed set containing the origin. Furthermore, by
the definition of the dual gauge follows that the conjugate function of �

C

can equivalently be
expressed by

�

⇤
C

(x⇤) :=

(

0, if �
C

0(x⇤)  1,

+1, otherwise.
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2.2 Lagrange duality approach for multi-composed optimization problems

The purpose of this section is to recall some important results done in [23] by studying multi-
composed optimization problems. Let us consider an optimization problem with geometric and
cone constraints having as objective function the composition of n+ 1 functions:

(PC) inf
x2A

(f � F 1 � ... � Fn)(x),

A = {x 2 S : g(x) 2 �Q},

where X

i

is a Fréchet space partially ordered by the non-empty convex cone K

i

✓ X

i

for
i = 0, ..., n� 1. Moreover,

• S ✓ X

n

is a non-empty convex set,

• f : X
0

! R is proper, convex and K

0

-increasing on F

1(domF

1) +K

0

✓ dom f ,

• F

i : X
i

! X

i�1

= X

i�1

[ {+1
K

i�1} is proper, K
i�1

-convex and K

i

-K
i�1

-increasing on
F

i+1(domF

i+1) +K

i

✓ domF

i for i = 1, ..., n� 2,

• F

n�1 : X

n�1

! X

n�2

= X

n�1

[ {+1
K

n�1} is proper and K

n�1

-K
n�2

-increasing on
F

n(domF

n \A) +K

n�1

✓ domF

n�1,

• F

n : X
n

! X

n�1

= X

n�1

[ {+1
K

n�1} is a proper and K

n�1

-convex function and

• g : X
n

! Z is a proper function fulfilling S\g

�1(�Q)\ ((Fn)�1 � ...� (F 1)�1)(dom f) 6= ;.
Additionally, we make the convention that f(+1

K0) = +1 and F

i(+1
K

i

) = +1
K

i�1 , i.e.
f : X

0

! R and F

i : X
i

! X

i�1

, i = 1, ..., n� 1.

Remark 2.3. Let us point out that for the convexity of (f �F 1 � ...�Fn) we ask that the function
f be convex and K

0

-increasing on F

1(domF

1) + K

0

and the function F

i be K

i�1

-convex and
fulfills also the property of monotonicity for i = 1, ..., n � 1, while the function F

n need just be
K

n�1

-convex. This means that if Fn is an a�ne function, we do not need the monotonicity of
F

n�1, since the composition of an a�ne function and a function, which fulfills the property of
convexity, fulfills also the property of convexity. In this context one can choose K

n�1

= {0
X

n�1}
(for more details see Remark 3.1 and 4.1 in [23]).

The corresponding conjugate dual problem to the problem (PC) looks like (see [23])

(DC) sup
z

n⇤2Q

⇤
, z

i⇤2K

⇤
i

,

i=0,...,n�1

(

inf
x2S

{hz(n�1)⇤
, F

n(x)i+ hzn⇤, g(x)i}� f

⇤(z0⇤)�
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

,

where ez⇤ := (z0⇤, ..., z(n�1)⇤
, z

n⇤) 2 e

K

⇤ := K

⇤
0

⇥ ...⇥K

⇤
n�1

⇥Q

⇤ are the dual variables.
We denote by v(PC) and v(DC) the optimal objective values of the optimization problems (PC)
and (DC), respectively. To guarantee strong duality, i.e. the situation where v(PC) = v(DC)
and the conjugate dual problem has an optimal solution, we consider the following generalized
interior point regularity condition introduced in [23]:
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(RC) f is l.s.c., S is closed, g is Q-epi closed, K
i�1

is closed,
intK

i�1

6= ;, F i is K
i�1

-epi closed, i = 1, ..., n,
0
X0 2 sqri(F 1(domF

1)� dom f +K

0

),
0
X

i�1 2 sqri(F i(domF

i)� domF

i�1 +K

i�1

), i = 2, ..., n� 1,
0
X

n�1 2 sqri(Fn(domF

n \ dom g \ S)� domF

n�1 +K

n�1

) and
0
Z

2 sqri(g(domF

n \ dom g \ S) +Q).

In [23] the following theorems have been stated.

Theorem 2.2. (strong duality) If the condition (RC) is fulfilled, then between (PC) and (DC)
strong duality holds, i.e. v(PC) = v(DC) and the conjugate dual problem has an optimal solution.

Theorem 2.3. (optimality conditions) (a) Suppose that the regularity condition (RC) is fulfilled
and let x 2 A be an optimal solution of the problem (PC). Then there exists (z0⇤, ..., z(n�1)⇤

, z

n⇤) 2
K

⇤
0

⇥ ...⇥K

⇤
n�1

⇥Q

⇤, an optimal solution to (DC), such that

(i) f((F 1 � ... � Fn)(x)) + f

⇤(z0⇤) = hz0⇤, (F 1 � ... � Fn)(x)i,
(ii) (z(i�1)⇤

F

i)((F i+1�...�Fn)(x))+(z(i�1)⇤
F

i)⇤(zi⇤) = hzi⇤, (F i+1�...�Fn)(x)i, i = 1, ..., n�1,

(iii) (z(n�1)⇤
F

n)(x) + (zn⇤g)(x) + ((z(n�1)⇤
F

n) + (zn⇤g))⇤
S

(0
X

⇤
n

) = 0,

(iv) hzn⇤, g(x)i = 0,

(b) If there exists x 2 A such that for some (z0⇤, ..., z(n�1)⇤
, z

n⇤) 2 K

⇤
0

⇥ ... ⇥ K

⇤
n�1

⇥ Q

⇤ the
conditions (i)-(iv) are fulfilled, then x is an optimal solution of (PC), (z0⇤, ..., zn⇤) is an optimal
solution for (DC) and v(PC) = v(DC).

Remark 2.4. If for some i 2 {1, ..., n} the function F

i is star K
i�1

-lower semicontinuous, then
we can omit asking that K

i�1

is closed, int(K
i�1

) 6= ; and F

i is K
i�1

-epi closed in the regularity
conditions (RC) (for more details see Remark 4.2 in [23]).

Theorem 2.4. Let a
i

2 R
+

be a given point and h

i

: R ! R with h

i

(x) 2 R
+

, if x 2 R
+

, and
h

i

(x) = +1, otherwise, be a proper, lower semicontinuous and convex function, i = 1, ..., n.
Then the conjugate of the function g : Rn ! R defined by

g(x
1

, ..., x

n

) :=

(

max{h
1

(x
1

) + a

1

, ..., h

n

(x
n

) + a

n

}, if x
i

2 R
+

, i = 1, ..., n,

+1, otherwise,

is given by g

⇤ : Rn ! R,

g

⇤(x⇤
1

, ..., x

⇤
n

) = min
nP

i=1
z

0⇤
i

1, z

0⇤
i

�0,

i=1,...,n

(

n

X

i=1

[(z0⇤
i

h

i

)⇤(x⇤
i

)� z

0⇤
i

a

i

]

)

.

Proof. We set X
0

= X

1

= Rn and K

0

= Rn

+

. Further, we define the function f : Rn ! R by

f(y0
1

, ..., y

0

n

) :=

(

max{y0
1

+ a

1

, ..., y

0

n

+ a

n

}, if y0
i

2 R
+

, i = 1, ..., n,

+1, otherwise,
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and the function F

1 : Rn ! Rn by

F

1(x
1

, ..., x

n

) :=

(

(h
1

(x
1

), ..., h
n

(x
n

))T , if x
i

2 R
+

, i = 1, ..., n,

+1Rn

+
, otherwise.

Hence, the function g can be written as

g(x
1

, ..., x

n

) = (f � F 1)(x
1

, ..., x

n

).

It can easy be verified that the function f is proper, convex, lower semicontinuous and Rn

+

-
increasing on F

1(domF

1) +K

0

✓ Rn

+

(as f is the pointwise supremum of proper, convex and
lower semicontinuous functions) and the function F

1 is proper, Rn

+

-epi closed and Rn

+

-convex.
Therefore, it follows by Theorem 5.2 in [23] (note also that 0Rn 2 sqri(F 1(domF

1) � dom f +
K

0

) = sqri(F 1(domF

1)� Rn

+

+ Rn

+

) = Rn) that

g

⇤(x⇤
1

, ..., x

⇤
n

) = min
y

0⇤
i

2R+, i=1,...,n

{f⇤(y0⇤
1

, ..., y

0⇤
n

) + ((y0⇤
1

, ..., y

0⇤
n

)TF 1)⇤(x⇤
1

, ..., x

⇤
n

)}.

For the conjugate of the function f we have

f

⇤(y0⇤) = sup
y

0
i

2R, i=1,...,n

(

n

X

i=1

y

0⇤
i

y

0

i

� f(y0
1

, ..., y

0

n

)

)

= sup
y

0
i

2R+, i=1,...,n

(

n

X

i=1

y

0⇤
i

y

0

i

� max
1in

{y0
i

+ a

i

}
)

= sup
y

0
i

2R+, i=1,...,n

8

<

:

n

X

i=1

y

0⇤
i

y

0

i

� min
t2R+,y

0
i

+a

i

t,

i=1,...,n

t

9

=

;

= sup
y

0
i

2R+, t2R+,

y

0
i

+a

i

t, i=1,...,n

(

n

X

i=1

y

0⇤
i

y

0

i

� t

)

.(3)

Now, let us consider for any y

0⇤ 2 Rn

+

the following primal optimization problem

(Pmax) inf
y

0
i

2R+, t2R+,

y

0
i

+a

i

t, i=1,...,n

(

t�
n

X

i=1

y

0⇤
i

y

0

i

)

. (4)

and its corresponding Lagrange dual problem

(Dmax) sup
�

i

�0, i=1,...,n

inf
y

0
i

2R+, t2R+,

i=1,...,n

(

t�
n

X

i=1

y

0⇤
i

y

0

i

+
n

X

i=1

�

i

(y0
i

+ a

i

� t)

)

= sup
�

i

�0,
i=1,...,n

8

>

<

>

:

� sup
t2R+

( 

n

X

i=1

�

i

� 1

!

t

)

� sup
y

0
i

2R+,

i=1,...,n

(

n

X

i=1

(y0⇤
i

� �

i

)y0
i

)

+
n

X

i=1

�

i

a

i

9

>

=

>

;

= sup
nP

i=1
�

i

1, �

i

�0,

y

0⇤
i

�

i

, i=1,...,n

(

n

X

i=1

�

i

a

i

)

.
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As the Slater constraint qualification is fulfilled, i.e. it holds v(Pmax) = v(Dmax) and the dual
has an optimal solution, one gets for the conjugate function of f

f

⇤(y0⇤) = min
nP

i=1
�

i

1, �

i

�0,

y

0⇤
i

�

i

, i=1,...,n

(

�
n

X

i=1

�

i

a

i

)

. (5)

Furthermore, one has

((y0⇤
1

, ..., y

0⇤
n

)TF 1)⇤(x⇤
1

, ..., x

⇤
n

) = sup
x

i

2R, i=1,...,n

(

n

X

i=1

x

⇤
i

x

i

� (y0⇤
1

, ..., y

0⇤
n

)TF 1(x
1

, ..., x

n

)

)

= sup
x

i

2R+, i=1,...,n

(

n

X

i=1

x

⇤
i

x

i

�
n

X

i=1

y

0⇤
i

h

i

(x
i

)

)

=
n

X

i=1

sup
x

i

2R+

{x⇤
i

x

i

� y

0⇤
i

h

i

(x
i

)}

=
n

X

i=1

(y0⇤
i

h

i

)⇤(x⇤
i

), (6)

and so, the conjugate function of g turns into

g

⇤(x⇤
1

, ..., x

⇤
n

) = min
y

0⇤
i

�0, i=1,...,n

8

>

>

>

>

<

>

>

>

>

:

min
nP

i=1
�

i

1, �

i

�0,

y

0⇤
i

�

i

, i=1,...,n

(

�
n

X

i=1

�

i

a

i

)

+
n

X

i=1

(y0⇤
i

h

i

)⇤(x⇤
i

)

9

>

>

>

>

=

>

>

>

>

;

= min
nP

i=1
�

i

1, �

i

�0,

0y

0⇤
i

�

i

, i=1,...,n

(

n

X

i=1

[(y0⇤
i

h

i

)⇤(x⇤
i

)� �

i

a

i

]

)

. (7)

We fix x

⇤
i

2 Rn, i = 1, ..., n, and emphasize that the problem

(P g) min
nP

i=1
�

i

1, �

i

�0,

0y

0⇤
i

�

i

, i=1,...,n

(

n

X

i=1

[(y0⇤
i

h

i

)⇤(x⇤
i

)� �

i

a

i

]

)

(8)

is equivalent to

( eP g) min
nP

i=1
z

0⇤
i

1, z

0⇤
i

�0,

i=1,...,n

(

n

X

i=1

[(z0⇤
i

h

i

)⇤(x⇤
i

)� z

0⇤
i

a

i

]

)

(9)

in the sense that v(P g) = v( eP g) (where v(P g) and v( eP g) denote the optimal objective values of
the problems (P g) and ( eP g), respectively).
To see this, take first a feasible element (�

1

, ...,�

n

, y

0⇤
1

, ..., y

0⇤
n

) 2 Rn

+

⇥ Rn

+

of the problem (P g)
and set z0⇤

i

= �

i

, i = 1, ..., n, then it follows from
P

n

i=1

�

i

 1, �
i

, y

0⇤
i

� 0, y0⇤
i

 �

i

, i = 1, ..., n,

9



that
P

n

i=1

z

0⇤
i

 1, z

0⇤
i

� 0, i = 1, ..., n, i.e. (z0⇤
1

, ..., z

0⇤
n

) is feasible to the problem ( eP g). Hence
it holds

n

X

i=1

[(y0⇤
i

h

i

)⇤(x⇤
i

)� �

i

a

i

] �
n

X

i=1

[(z0⇤
i

h

i

)⇤(x⇤
i

)� z

0⇤
i

a

i

] � v( eP g) (10)

for all (�
1

, ...,�

n

, y

0⇤
1

, ..., y

0⇤
n

) feasible to (P g), i.e. v(P g) � v( eP g).

Now, take a feasible element (z0⇤
1

, ..., z

0⇤
n

) 2 Rn

+

of the problem ( eP g) and set y

0⇤
i

= �

i

= z

0⇤
i

for all i = 1, ..., n, then we have from
P

n

i=1

z

0⇤
i

 1, z

0⇤
i

� 0, i = 1, ..., n, that
P

n

i=1

�

i

 1,
�

i

, y

0⇤
i

� 0, y0⇤
i

= �

i

, i = 1, ..., n, which means that (�
1

, ...,�

n

, y

0⇤
1

, ..., y

0⇤
n

) is a feasible element
of (P g) and it holds

n

X

i=1

[(z0⇤
i

h

i

)⇤(x⇤
i

)� z

0⇤
i

a

i

] =
n

X

i=1

[(y0⇤
i

h

i

)⇤(x⇤
i

)� �

i

a

i

] � v(P g) (11)

for all (z0⇤
1

, ..., z

0⇤
n

) feasible to v( eP g), which implies v(P g)  v( eP g). Finally, it follows that

v(P g) = v( eP g) and thus, the conjugate function of g is given by

g

⇤(x⇤
1

, ..., x

⇤
n

) = min
nP

i=1
z

0⇤
i

1, z

0⇤
i

�0,

i=1,...,n

(

n

X

i=1

[(z0⇤
i

h

i

)⇤(x⇤
i

)� z

0⇤
i

a

i

]

)

(12)

and takes only finite values. ⇤

Lemma 2.2. Let a
i

2 R
+

be a given point and h

i

: R ! R with h

i

(x) 2 R
+

, if x 2 R
+

, and
h

i

(x) = +1, otherwise, be a proper, lower semicontinuous and convex function, i = 1, ..., n.
Then the function g : Rm ! R,

g(x
1

, ..., x

n

) =

(

max{h
1

(x
1

) + a

1

, ..., h

n

(x
n

) + a

n

}, if x
i

2 R
+

, i = 1, ..., n,

+1, otherwise,

can equivalently be expressed as

g(x
1

, ..., x

n

) = sup
nP

i=1
z

0⇤
i

1, z

0⇤
i

�0,

i=1,...,n

(

n

X

i=1

z

0⇤
i

[h
i

(x
i

) + a

i

]

)

, 8x
i

� 0, i = 1, ..., n.

Proof. By Theorem 2.4 and the definition of the conjugate function we have for the biconjugate
function of g

g

⇤⇤(x
1

, ..., x

n

) = sup
x

⇤
i

2R, i=1,...,n

8

>

>

<

>

>

:

n

X

i=1

x

⇤
i

x

i

� min
nP

i=1
z

0⇤
i

1, z

0⇤
i

�0,

i=1,...,n

(

n

X

i=1

[(z0⇤
i

h

i

)⇤(x⇤
i

)� z

0⇤
i

a

i

]

)

9

>

>

=

>

>

;

= sup
x

⇤
i

2R, z

0⇤
i

2R+,

i=1,...,n,

nP

i=1
z

0⇤
i

1

(

n

X

i=1

x

⇤
i

x

i

�
n

X

i=1

[(z0⇤
i

h

i

)⇤(x⇤
i

)� z

0⇤
i

a

i

]

)

10



= sup
z

0⇤
i

2R+, i=1,...,n,

nP

i=1
z

0⇤
i

1

(

n

X

i=1

[ sup
x

⇤
i

2R
{x⇤

i

x

i

� (z0⇤
i

h

i

)⇤(x⇤
i

)}+ z

0⇤
i

a

i

]

)

= sup
z

0⇤
i

2R+, i=1,...,n,

nP

i=1
z

0⇤
i

1

(

n

X

i=1

[(z0⇤
i

h

i

)⇤⇤(x
i

) + z

0⇤
i

a

i

]

)

. (13)

As h

i

, i = 1, ..., n, are proper, convex and lower semicontinuous functions it follows by the
Fenchel-Moreau Theorem that

g

⇤⇤(x
1

, ..., x

n

) = sup
z

0⇤
i

2R+, i=1,...,n,

nP

i=1
z

0⇤
i

1

(

n

X

i=1

[z0⇤
i

h

i

(x
i

) + z

0⇤
i

a

i

]

)

, 8x
i

2 R
+

, i = 1, ..., n, (14)

and moreover, as g is also a proper, convex and lower semicontinuous function it follows by using
again the Fenchel-Moreau Theorem that g = g

⇤⇤, i.e.

g(x
1

, ..., x

n

) = sup
z

0⇤
i

2R+, i=1,...,n,

nP

i=1
z

0⇤
i

1

(

n

X

i=1

[z0⇤
i

h

i

(x
i

) + z

0⇤
i

a

i

]

)

, 8x
i

2 R
+

, i = 1, ..., n. (15)

⇤
We close this section by the following remark.

Remark 2.5. If we consider the situation when the given points a

i

, i = 1, ..., n, are arbitrary,
i.e. a

i

2 R, then it can easy be verified that the conjugate function of f in (3) looks like

f

⇤(y0⇤) = sup
y

0
i

2R+, t2R,
y

0
i

+a

i

t, i=1,...,n

(

n

X

i=1

y

0⇤
i

y

0

i

� t

)

(16)

(notice that here t 2 R instead of t 2 R
+

).
If we now construct to the conjugate function in (16) a primal problem in the sense of (Pmax)
in (4), then the corresponding Lagrange dual problem (Dmax) has the form

(Dmax) sup
nP

i=1
�

i

=1, �

i

�0,

y

0⇤
i

�

i

, i=1,...,n

(

n

X

i=1

�

i

a

i

)

.

Analogously to the calculations done above in (5) - (15) one derives for the conjugate function
of g,

g

⇤(x⇤
1

, ..., x

⇤
n

) = min
nP

i=1
z

0⇤
i

=1, z

0⇤
i

�0,

i=1,...,n

(

n

X

i=1

[(z0⇤
i

h

i

)⇤(x⇤
i

)� z

0⇤
i

a

i

]

)

,

11



while its biconjugate is then given by

g

⇤⇤(x
1

, ..., x

n

) = g(x
1

, ..., x

n

) = sup
nP

i=1
z

0⇤
i

=1, z

0⇤
i

�0,

i=1,...,n

(

n

X

i=1

z

0⇤
i

[h
i

(x
i

) + a

i

]

)

, 8x
i

� 0, i = 1, ..., n.

3 Duality results for nonlinear location problems with set-up
costs

3.1 Geometrically constrained location problems with gauges in Fréchet spaces

Let us now focus our discussion for given non-negative set-up costs a
i

2 R
+

and distinct points
p

i

2 X, i = 1, ..., n, (where n � 2) on the following geometrically constrained minimax location
problem

(PS

h,a

) inf
x2S

sup
1in

{h
i

(�
i

(x� p

i

)) + a

i

},

where

• S is a non-empty, closed and convex subset of a Fréchet space X,

• C

i

is a non-empty, closed and convex subset of X such that 0
X

2 intC
i

,

• �

C

i

: X ! R is a gauge function of the subset C
i

and

• h

i

: R ! R, defined by

h

i

(x) :=

(

h

i

(x) 2 R
+

, if x 2 R
+

,

+1, otherwise,

is a proper, convex, lower semicontinuous and increasing function on R
+

,

i = 1, ..., n. Hence, it is clear that the defined gauges are proper, lower semicontinuous and
convex functions by Theorem 2.1, which implies that the problem (PS

h,a

) is a convex optimization
problem. The case where the set-up costs are arbitrary, i.e. a

i

2 R, will be discussed in Remark
3.2.
For applying the developed Lagrange dual concept for multi-composed optimization problems,
we set X

0

= Rn ordered by K

0

= Rn

+

, X
1

= X

n ordered by the trivial cone K

1

= {0
X

n} and
X

2

= X and introduce the following functions:

• f : Rn ! R defined by

f(y0) :=

(

sup
1in

{h
i

(y0
i

) + a

i

}, if y0 = (y0
1

, ..., y

0

n

)T 2 Rn

+

, i = 1, ..., n,

+1Rn

+
, otherwise,

• F

1 : Xn ! Rn defined by F

1(y1) := (�
C1(y

1), ..., �
C

n

(y1))T with y

1 = (y1
1

, ..., y

1

n

) 2 X

n

and

12



• F

2 : X ! X

n defined by F

2(x) := (x� p

1

, ..., x� p

n

).

These definitions yield the following equivalent representation for the considered problem

(PS

h,a

) inf
x2S

(f � F 1 � F 2)(x).

The function f is proper, convex, Rn

+

-increasing on F

1(domF

1) +K

0

= dom f = Rn

+

and lower
semicontinous. Additionally, one can verify that the function F

1 is proper, Rn

+

-convex and Rn

+

-
epi closed. Furthermore, since the function F

2 is a�ne, it follows that the function F

1 does not
need to be monotone (see Remark 2.3).
By setting Z = X ordered by the trivial cone Q = X and defining the function g : X ! X

by g(x) := x, we have that Q⇤ = {0
X

⇤}, i.e. z

2⇤ = 0
X

⇤ , and thus, the conjugate dual problem
corresponding to (PS

h,a

), in accordance with the concept from the previous section, looks like

(DS

h,a

) sup
z

0⇤
i

2R+, z

1⇤
i

2X

⇤
,

i=1,...,n

(

inf
x2S

(

n

X

i=1

hz1⇤
i

, x� p

i

i
)

� f

⇤(z0⇤)� (z0⇤F 1)⇤(z1⇤)

)

,

where z

0⇤ = (z0⇤
1

, ..., z

0⇤
n

)T 2 Rn

+

and z

1⇤ = (z1⇤
1

, ..., z

1⇤
n

) 2 (X⇤)n. It remains to determine the
conjugate functions of f and (z0⇤F 1). For the conjugate function of f one gets by Theorem 2.4

f

⇤(z0⇤
1

, ..., z

0⇤
n

) = min
nP

i=1
�

i

1, �

i

�0,

i=1,...,n

(

n

X

i=1

[(�
i

h

i

)⇤(z0⇤
i

)� �

i

a

i

]

)

,

while for the conjugate function of (z0⇤F 1) we have

(z0⇤F 1)⇤(z1⇤) = sup
z

1
i

2X, i=1,...,n

(

n

X

i=1

hz1⇤
i

, z

1

i

i �
n

X

i=1

z

0⇤
i

�

C

i

(z1
i

)

)

=
n

X

i=1

sup
z

1
i

2X

�hz1⇤
i

, z

1

i

i � z

0⇤
i

�

C

i

(z1
i

)
 

=
n

X

i=1

(z0⇤
i

�

C

i

)⇤(z1⇤
i

). (17)

Therefore, the conjugate dual problem (DS

h,a

) turns into

(DS

h,a

) sup
nP

i=1
�

i

1, �

i

,z

0⇤
i

�0,

z

1⇤
i

2X

⇤
, i=1,...,n

(

inf
x2S

(

n

X

i=1

hz1⇤
i

, x� p

i

i
)

�
n

X

i=1

[(�
i

h

i

)⇤(z0⇤
i

)� �

i

a

i

]�
n

X

i=1

(z0⇤
i

�

C

i

)⇤(z1⇤
i

)

)

.

By separating the sum
P

n

i=1

(�
i

h

i

)⇤ into the terms with �

i

> 0 and the terms with �

i

= 0 as
well as

P

n

i=1

(z0⇤
i

�

C

i

)⇤ into the terms with z

0⇤
i

> 0 and the terms with z

0⇤
i

= 0 in (DS

h,a

), the
dual problem turns into

(DS

h,a

) sup
R✓{1,...,n}, �k>0, k2R, �l=0, l/2R,

P
r2R

�r1

I✓{1,...,n}, z

0⇤
i >0, i2I, z

0⇤
j =0, j /2I

z

1⇤
i 2X

⇤
, i=1,...,n

(

inf
x2S

⇢

n

P

i=1

hz1⇤
i

, x� p

i

i
�

� P

r/2R
(0 · h

r

)⇤(z0⇤
r

)

� P

r2R
[(�

r

h

r

)⇤(z0⇤
r

)� �

r

a

r

]� P

i/2I
(0 · �

C

i

)⇤(z1⇤
i

)� P

i2I
(z0⇤

i

�

C

i

)⇤(z1⇤
i

)

)

.
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If i 2 I, then we have (see [2])

(z0⇤
i

�

C

i

)⇤(z1⇤
i

) = z

0⇤
i

�

⇤
C

i

✓

z

1⇤
i

z

0⇤
i

◆

=

(

0, if �
C

i

⇣

z

1⇤
i

z

0⇤
i

⌘

 1,

+1, otherwise,

=

⇢

0, if �
C

i

(z1⇤
i

)  z

0⇤
i

,

+1, otherwise,
=

⇢

0, if �
C

0
i

(z1⇤
i

)  z

0⇤
i

,

+1, otherwise,
(18)

(see Remark 2.2 for the last equality) and if i /2 I, then it holds

(0 · �
C

i

)⇤(z1⇤
i

) = sup
y

1
i

2X
{hz1⇤

i

, y

1

i

i} =

⇢

0, if z1⇤
i

= 0
X

⇤
,

+1, otherwise.
(19)

Further, let us consider the case r /2 R, i.e. �
r

= 0, then one has for z0⇤
r

� 0,

(0 · h
r

)⇤(z0⇤
r

) = sup
y

0
r

�0

{z0⇤
r

y

0

r

} =

⇢

0, if z0⇤
r

= 0,
+1, otherwise.

(20)

For r 2 R, i.e. �
r

> 0, follows

(�
r

h

r

)⇤(z0⇤
r

) = �

r

h

⇤
r

✓

z

0⇤
r

�

r

◆

.

Hence, the equation in (20) implies that if r /2 R, then z

0⇤
r

= 0, which means that I ✓ R. In
summary, the conjugate dual problem (DS

h,a

) becomes to

(DS

h,a

) sup
I✓R✓{1,...,n}, �k>0, k2R, �l=0, l/2R,

z

0⇤
i >0, z

1⇤
i 2X

⇤
, �C0

i
(z1⇤

i )z

0⇤
i , i2I,

z

0⇤
j =0, z

1⇤
j =0X⇤ , j /2I,

P
r2R

�r1

(

inf
x2S

(

X

i2I
hz1⇤

i

, x� p

i

i
)

�
X

r2R
�

r



h

⇤
r

✓

z

0⇤
r

�

r

◆

� a

r

�

)

. (21)

Let us denote by v(PS

h,a

) the optimal objective value of the problem (PS

h,a

), then the weak duality

between the primal-dual pair (PS

h,a

)-(DS

h,a

) always holds, i.e. v(PS

h,a

) � v(DS

h,a

).
Our aim is now to verify whether strong duality holds. In other words we will give an answer to
the question whether under the given settings the situation holds where v(PS

h,a

) = v(DS

h,a

) and

the dual problem (DS

h,a

) has an optimal solution.
For this purpose, we use the generalized interior point regularity condition (RC), which was
imposed in the previous section. In mind of this regularity condition, let us recall that f is lower
semicontinuous, K

0

= Rn

+

is closed, S is closed, intRn

+

6= ; and F

1 is Rn

+

-epi closed. Moreover,
it holds

0Rn 2 sqri(F 1(domF

1)� dom f +K

0

) = sqri(F 1(domF

1)� Rn

+

+ Rn

+

) = Rn

and

0
X

n 2 sqri(F 2(domF

2 \ dom g \ S)� domF

1 +K

1

) = sqri(F 2(S)�X

n + {0
X

n}) = X

n

.

As the function g : X ! X is defined by g(x) := x it follows that g is Q-epi closed and

0
X

2 sqri(g(X \ S) +Q) = sqri(S +X) = X.

Finally, as F 2 is star {0
X

n}-lower semicontinuous the regularity condition is obviously fulfilled
(see Remark 2.4) and we can state the following theorem as a consequence of Theorem 2.2.
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Theorem 3.1. (strong duality) Between (PS

h,a

) and (DS

h,a

) strong duality holds, i.e. v(PS

h,a

) =

v(DS

h,a

) and the conjugate dual problem has an optimal solution.

The following necessary and su�cient optimality conditions are a consequence of the previous
theorem.

Theorem 3.2. (optimality conditions) (a) Let x 2 S be an optimal solution of the problem
(PS

h,a

). Then there exist (�
1

, ...,�

n

, z

0⇤
1

, ..., z

0⇤
n

, z

1⇤
1

, ..., z

1⇤
n

) 2 Rn

+

⇥Rn

+

⇥ (X⇤)n and the index sets

I ✓ R ✓ {1, ..., n}, an optimal solution to (DS

h,a

), such that

(i) max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

} =
P

i2I
z

0⇤
i

�

C

i

(x� p

i

)� P

r2R
�

r

h

h

⇤
r

⇣

z

0⇤
r

�

r

⌘

� a

r

i

=
P

r2R
�

r

[h
r

(�
C

r

(x� p

r

)) + a

r

],

(ii) �

r

h

⇤
r

⇣

z

0⇤
r

�

r

⌘

+ �

r

h

r

(�
C

r

(x� p

r

)) = z

0⇤
r

�

C

r

(x� p

r

), 8r 2 R,

(iii) z

0⇤
i

�

C

i

(x� p

i

) = hz1⇤
i

, x� p

i

i, 8i 2 I,

(iv)
P

i2I
hz1⇤

i

, xi = ��

S

 

�P

i2I
z

1⇤
i

!

,

(v) max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

} = h

r

(�
C

r

(x� p

r

)) + a

r

, 8r 2 R,

(vi)
P

r2R
�

r

= 1, �

k

> 0, k 2 R, �

l

= 0, l /2 R, z

0⇤
i

> 0, i 2 I, and z

0⇤
j

= 0, j /2 I,

(vii) �

C

0
i

(z1⇤
i

) = z

0⇤
i

, z

1⇤
i

2 X

⇤
, i 2 I and z

1⇤
j

= 0
X

⇤
, j /2 I.

(b) If there exists x 2 S such that for some (�
1

, ...,�

n

, z

0⇤
1

, ..., z

0⇤
n

, z

1⇤
1

, ..., z

1⇤
n

) 2 Rn

+

⇥Rn

+

⇥(X⇤)n

and the index sets I ✓ R ✓ {1, ..., n} the conditions (i)-(vii) are fulfilled, then x is an optimal
solution of (PS

h,a

), (�
1

, ...,�

n

, z

0⇤
1

, ..., z

0⇤
n

, z

1⇤
1

, ..., z

1⇤
n

, I, R) is an optimal solution for (DS

h,a

) and

v(PS

h,a

) = v(DS

h,a

).

Proof. (a) By using Theorem 2.3 we derive the following necessary and su�cient optimality
conditions

(i) max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

}+ P

r2R
�

r

h

h

⇤
r

⇣

z

0⇤
r

�

r

⌘

� a

r

i

=
P

i2I
z

0⇤
i

�

C

i

(x� p

i

),

(ii)
P

i2I
z

0⇤
i

�

C

i

(x� p

i

) =
P

i2I
hz1⇤

i

, x� p

i

i,

(iii)
P

i2I
hz1⇤

i

, xi+ �

S

 

�P

i2I
z

1⇤
i

!

= 0,

(iv)
P

r2R
�

r

 1, �

k

> 0, k 2 R, �

l

= 0, l /2 R, z

0⇤
i

> 0, i 2 I, and z

0⇤
j

= 0, j /2 I,

(v) �

C

0
i

(z1⇤
i

)  z

0⇤
i

, z

1⇤
i

2 X

⇤
, i 2 I and z

1⇤
j

= 0
X

⇤
, j /2 I,
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where case (iii) arises from condition (iii) of Theorem 2.3 by the following observation (note
that z2⇤ = 0

X

⇤)

X

i2I
hz1⇤

i

, x� p

i

i+ (z2⇤g)(x) + sup
x2S

8

<

:

�
X

i2I
hz1⇤

i

, x� p

i

i � hz2⇤, g(x)i
9

=

;

= 0

,
X

i2I
hz1⇤

i

, xi �
X

i2I
hz1⇤

i

, p

i

i+ sup
x2S

8

<

:

�
X

i2I
hz1⇤

i

, xi
9

=

;

+
X

i2I
hz1⇤

i

, p

i

i = 0

,
X

i2I
hz1⇤

i

, xi+ sup
x2S

8

<

:

�
X

i2I
hz1⇤

i

, xi
9

=

;

= 0.

Additionally, one has by Theorem 3.1 that v(PS

h,a

) = v(DS

h,a

), i.e.

max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

} = inf
x2S

8

<

:

X

i2I
hz1⇤

i

, x� p

i

i
9

=

;

�
X

r2R
�

r



h

⇤
r

✓

z

0⇤
r

�

r

◆

� a

r

�

, max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

}+ �

S

0

@�
X

i2I
z

1⇤
i

1

A+
X

i2I
hz1⇤

i

, p

i

i

+
X

r2R
�

r



h

⇤
r

✓

z

0⇤
r

�

r

◆

� a

r

�

= 0

, max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

}+ �

S

0

@�
X

i2I
z

1⇤
i

1

A+
X

i2I
hz1⇤

i

, p

i

i+
X

r2R
�

r



h

⇤
r

✓

z

0⇤
r

�

r

◆

� a

r

�

+
X

r2R
�

r

h

r

(�
C

r

(x� p

r

))�
X

r2R
�

r

h

r

(�
C

r

(x� p

r

))

+
X

i2I
z

0⇤
i

�

C

i

(x� p

i

)�
X

i2I
z

0⇤
i

�

C

i

(x� p

i

) +
X

i2I
hz1⇤

i

, xi �
X

i2I
hz1⇤

i

, xi = 0

,
2

4 max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

}�
X

r2R
(�

r

h

r

(�
C

r

(x� p

r

)) + �

r

a

r

)

3

5

+
X

i2I
[z0⇤

i

�

C

i

(x� p

i

)� hz1⇤
i

, x� p

i

i] +
2

4

�

S

0

@�
X

i2I
z

1⇤
i

1

A+
X

i2I
hz1⇤

i

, xi
3

5

+
X

i2I



�

i

h

⇤
i

✓

z

0⇤
i

�

i

◆

+ �

i

h

i

(�
C

i

(x� p

i

))� z

0⇤
i

�

C

i

(x� p

i

)

�

+
X

r2R\I

⇥

�

r

h

⇤
r

(0) + �

r

h

r

(�
C

r

(x� p

r

))� 0 · �
C

r

(x� p

r

)
⇤

= 0,

where the last two sums arise from the fact that I ✓ R. By Lemma 2.2 holds that the term
within the first bracket is non-negative. Moreover, by the Young-Fenchel inequality we have
that the terms within the other brackets are also non-negative and hence, it follows that all

16



the terms within the brackets must be equal to zero. Combining the last statement with the
optimality conditions (i)-(v) yields

(i) max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

} =
P

i2I
z

0⇤
i

�

C

i

(x� p

i

)� P

r2R
�

r

h

h

⇤
r

⇣

z

0⇤
r

�

r

⌘

� a

r

i

=
P

r2R
�

r

[h
r

(�
C

r

(x� p

r

)) + a

r

],

(ii) �

r

h

⇤
r

⇣

z

0⇤
r

�

r

⌘

+ �

r

h

r

(�
C

r

(x� p

r

)) = z

0⇤
r

�

C

r

(x� p

r

), 8r 2 R,

(iii) z

0⇤
i

�

C

i

(x� p

i

) = hz1⇤
i

, x� p

i

i, 8i 2 I,

(iv)
P

i2I
hz1⇤

i

, xi = ��

S

 

�P

i2I
z

1⇤
i

!

,

(v)
P

r2R
�

r

 1, �

k

> 0, k 2 R, �

l

= 0, l /2 R, z

0⇤
i

> 0, i 2 I, and z

0⇤
j

= 0, j /2 I,

(vi) �

C

0
i

(z1⇤
i

)  z

0⇤
i

, z

1⇤
i

2 X

⇤
, i 2 I and z

1⇤
j

= 0
X

⇤
, j /2 I.

From conditions (i) and (v) we obtain that

max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

} =
X

r2R
(�

r

h

r

(�
C

r

(x� p

r

)) + �

r

a

r

)


X

r2R
�

r

max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

}

 max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

},

which means on the one hand that
X

r2R
�

r

max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

} = max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

},

i.e. condition (v) can be written as
X

r2R
�

r

= 1, �

k

> 0, k 2 R, �

l

= 0, l /2 R, z

0⇤
i

> 0, i 2 I, and z

0⇤
j

= 0, j /2 I, (22)

and on the other hand that
X

r2R
(�

r

h

r

(�
C

r

(x� p

r

)) + �

r

a

r

) =
X

r2R
�

r

max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

} (23)

or, equivalently,

X

r2R
�

r



max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

}� (h
r

(�
C

r

(x� p

r

)) + a

r

)

�

= 0. (24)

As the brackets in the sum of (24) are non-negative and �

r

> 0 for r 2 R, it follows that the
terms inside the brackets must be equal to zero, more precisely

max
1jn

{h
j

(�
C

j

(x� p

j

)) + a

j

} = h

r

(�
C

r

(x� p

r

)) + a

r

, 8r 2 R. (25)
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Further, we obtain by the generalized Cauchy-Schwarz inequality and the conditions (iii) and
(vi) that

z

0⇤
i

�

C

i

(x� p

i

) = hz1⇤
i

, x� p

i

i  �

C

0
i

(z1⇤
i

)�
C

i

(x� p

i

)  z

0⇤
i

�

C

i

(x� p

i

),

which means that condition (vi) can be expressed as

�

C

0
i

(z1⇤
i

) = z

0⇤
i

, z

1⇤
i

2 X

⇤
, i 2 I and z

1⇤
j

= 0
X

⇤
, j /2 I. (26)

Taking now the optimality conditions (i)-(vi), (22), (25) and (26) together gives the desired
statement.
(b) All the calculations done in (a), can also be made in the reverse order. ⇤

Remark 3.1. We want to state that the optimality conditions (i)-(iv) of the previous theorem
can also be expressed by using the subdi↵erential. As

f(y0) =

(

sup
1in

{h
i

(y0
i

) + a

i

}, if y0 = (y0
1

, ..., y

0

n

)T 2 Rn

+

, i = 1, ..., n,

+1Rn

+
, otherwise,

and

f

⇤(z0⇤
1

, ..., z

0⇤
n

) = min
nP

i=1
�

i

1, �

i

�0,

i=1,...,n

(

n

X

i=1

[(�
i

h

i

)⇤(z0⇤
i

)� �

i

a

i

]

)

,

we have by the optimal condition (i) of Theorem 3.2 that

f(�
C1(x� p

1

), ..., �
C

n

(x� p

n

)) + f

⇤(z0⇤
1

, ..., z

0⇤
n

) =
X

i2I
z

0⇤
i

�

C

i

(x� p

i

).

By (1) the last equality is equivalent to

(z0⇤
1

, ..., z

0⇤
n

) 2 @f(�
C1(x� p

1

), ..., �
C

n

(x� p

n

)).

Therefore, the condition (i) of Theorem 3.2 can equivalently be written as

(i) (z0⇤
1

, ..., z

0⇤
n

) 2 @

✓

max
1jn

{·+ a

j

}
◆

(�
1

(x� p

1

), ..., �
n

(x� p

n

)) ,

In the same way, we can rewrite the conditions (ii)-(iv)

(ii) z

0⇤
r

2 @(�
r

h

r

)(�
C

r

(x� p

r

)), r 2 R,

(iii) z

1⇤
i

2 @(z0⇤
i

�

C

i

)(x� p

i

), i 2 I,

(iv) �P

i2I
z

1⇤
i

2 @�

S

(x) = N

S

(x),
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where N

S

(x) := {x⇤ 2 X

⇤ : hx⇤, y � xi  0, 8y 2 S} is the normal cone of the set S at x 2 X.
Bringing the optimality conditions (i) and (ii) together yields

(z0⇤
1

, ..., z

0⇤
n

) 2 @

✓

max
1jn

{·+ a

j

}
◆

(�
1

(x� p

1

), ..., �
n

(x� p

n

))

\ �@(�
1

h

1

)(�
1

(x� p

1

))⇥ ...⇥ @(�
n

h

n

)(�
n

(x� p

n

))
�

.

Moreover, summarizing the optimality conditions (iii) and (iv) reveals that

X

i2I
z

1⇤
i

2
X

i2I
@(z0⇤

i

�

C

i

)(x� p

i

) \ (�N

S

(x)).

Finally, take also note that the optimality conditions (iii) and (vii) of Theorem 3.2 give a detailed
characterization of the subdi↵erential of z0⇤

i

�

C

i

at x� p

i

, i = 1, ..., n. More precisely,

@(z0⇤
i

�

C

i

)(x� p

i

) =
n

z

1⇤
i

2 X

⇤ : z0⇤
i

�

C

i

(x� p

i

) = hz1⇤
i

, x� p

i

i and �

C

0
i

(z1⇤
i

) = z

0⇤
i

o

, i 2 I.

Remark 3.2. If we consider the situation when the set-up costs are arbitrary, i.e. a

i

can also
be negative, i = 1, ..., n, then the conjugate function of f looks like (see Remark 2.5)

f

⇤(z0⇤
1

, ..., z

0⇤
n

) = min
nP

i=1
�

i

=1, �

i

�0,

i=1,...,n

(

n

X

i=1

[(�
i

h

i

)⇤(z0⇤
i

)� �

i

a

i

]

)

.

As a consequence, we derive the following corresponding dual problem

(DS

h,a

) sup
I✓R✓{1,...,n}, �k>0, k2R, �l=0, l/2R,

z

0⇤
i >0, z

1⇤
i 2X

⇤
, �C0

i
(z1⇤

i )z

0⇤
i , i2I,

z

0⇤
j =0, z

1⇤
j =0X⇤ , j /2I,

P
r2R

�r=1

(

inf
x2S

(

X

i2I

hz1⇤
i

, x� p

i

i
)

�
X

r2R

�

r



h

⇤
r

✓

z

0⇤
r

�

r

◆

� a

r

�

)

.

Therefore, all the statements given in this subsection are also true in the case of arbitrary set-up
costs with the di↵erence that

P

r2R �

r

= 1 in the constraint set.
Minimax location problems with arbitrary set-up costs were considered for example in [6] and
[19]. For readers who are also interested in minimax location problems with nonlinear set-up
costs, we refer to [4] and [10].

3.2 Unconstrained location problems with norms in Hilbert spaces

Let H be a real Hilbert space with scalar product h·, ·i, where the associated norm is denoted
as usual by k · k and defined by kxk := hx, xi. This subsection is devoted to the case where
S = X = H, a

i

� 0 and �

C

i

: H ! R is defined by �

C

i

(x) := kxk, i = 1, ..., n, such that the
minimax location problem (PS

h,a

) turns into

(PS,N

h,a

) inf
x2H

max
1in

{h
i

(kx� p

i

k) + a

i

} .
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Its corresponding dual problem (DS,N

h,a

) transforms to

sup
I✓R✓{1,...,n}, �k>0, k2R, �l=0, l/2R,

z

0⇤
i >0, z

1⇤
i 2H, kz1⇤

i kz

0⇤
i , i2I,

z

0⇤
j =0, z

1⇤
j =0H, j /2I,

P
r2R

�r1

(

inf
x2H

(

X

i2I
hz1⇤

i

, x� p

i

i
)

�
X

r2R
�

r



h

⇤
r

✓

z

0⇤
r

�

r

◆

� a

r

�

)

= sup
I✓R✓{1,...,n}, �k>0, k2R, �l=0, l/2R,

z

0⇤
i >0, z

1⇤
i 2H, kz1⇤

i kz

0⇤
i , i2I,

z

0⇤
j =0, z

1⇤
j =0H, j /2I,

P
r2R

�r1

(

� sup
x2H

(*

�
X

i2I
z

1⇤
i

, x

+)

�
X

i2I
hz1⇤

i

, p

i

i �
X

r2R
�

r



h

⇤
r

✓

z

0⇤
r

�

r

◆

� a

r

�

)

= sup
I✓R✓{1,...,n}, �k>0, k2R, �l=0, l/2R,

z

0⇤
i >0, z

1⇤
i 2H, kz1⇤

i kz

0⇤
i , i2I,

z

0⇤
j =0, z

1⇤
j =0H, j /2I,

P
r2R

�r1,
P
i2I

z

1⇤
i =0H

(

�
X

i2I
hz1⇤

i

, p

i

i �
X

r2R
�

r



h

⇤
r

✓

z

0⇤
r

�

r

◆

� a

r

�

)

.

Obviously, in this setting the regularity condition (RC) is fulfilled and the following duality
statements are direct consequences of Theorem 3.1 and 3.2.

Theorem 3.3. (strong duality) Between (PS,N

h,a

) and (DS,N

h,a

)) holds strong duality, i.e. v(PS,N

h,a

) =

v(DS,N

h,a

) and the dual problem has an optimal solution.

Theorem 3.4. (optimality conditions) (a) Let x 2 H be an optimal solution of the problem
(PS,N

h,a

). Then there exist (�
1

, ...,�

n

, z

0⇤
, z

1⇤) 2 Rn

+

⇥ Rn

+

⇥ Hn and the index sets I ✓ R ✓
{1, ..., n}, an optimal solution to (DS,N

h,a

), such that

(i) max
1jn

{h
j

(kx� p

j

k) + a

j

} =
P

i2I
z

0⇤
i

kx� p

i

k � P

r2R
�

r

h

h

⇤
r

⇣

z

0⇤
r

�

r

⌘

� a

r

i

=
P

r2R
�

r

[h
r

(kx� p

r

k) + a

r

],

(ii) �

r

h

⇤
r

⇣

z

0⇤
r

�

r

⌘

+ �

r

h

r

(kx� p

r

k) = z

0⇤
r

kx� p

r

k, 8r 2 R,

(iii) z

0⇤
i

kx� p

i

k = hz1⇤
i

, x� p

i

i, 8i 2 I,

(iv)
P

i2I
z

1⇤
i

= 0H,

(v) max
1jn

{h
j

(kx� p

j

k) + a

j

} = h

r

(kx� p

r

k) + a

r

, 8r 2 R,

(vi)
P

r2R
�

r

= 1, �

k

> 0, k 2 R, �

l

= 0, l /2 R, z

0⇤
i

> 0, i 2 I, and z

0⇤
j

= 0, j /2 I,

(vii) kz1⇤
i

k = z

0⇤
i

, z

1⇤
i

2 H \ {0H}, i 2 I and z

1⇤
j

= 0H, j /2 I.

(b) If there exists x 2 H such that for some (�
1

, ...,�

n

, z

0⇤
, z

1⇤) 2 Rn

+

⇥ Rn

+

⇥ Hn and the

index sets I ✓ R the conditions (i)-(vii) are fulfilled, then x is an optimal solution of (PS,N

h,a

),

(�
1

, ...,�

n

, z

0⇤
, z

1⇤
, I, R) is an optimal solution for (DS,N

h,a

) and v(PS,N

h,a

) = v(DS,N

h,a

).
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Regarding the relation of the optimal solutions of the primal and its the dual problem the fol-
lowing corollary can be given under the additional assumption that the function h

i

is continuous
and strictly increasing for all i = 1, ..., n.

Corollary 3.1. Let the function

h

i

: R ! R, h

i

(x) :=

(

h

i

(x) 2 R
+

, if x 2 R
+

,

+1, otherwise,

be convex, continuous and strictly increasing for all i = 1, ..., n, and x 2 H an optimal solution
of the problem (PS,N

h,a

). If (�
1

, ...,�

n

, z

0⇤
, z

1⇤) 2 Rn

+

⇥Rn

+

⇥Hn and I ✓ R ✓ {1, ..., n} are optimal

solutions of the dual problem (DS,N

h,a

), then it holds

x =
1

P

i2I

kz1⇤
i

k
h

�1
i

(v(DS,N

h,a

)�a

i

)

X

i2I

kz1⇤
i

kp
i

h

�1

i

⇣

v(DS,N

h,a

)� a

i

⌘

.

Proof. The optimality conditions (iii) and (vii) of Theorem 3.4 imply that

kz1⇤
i

kkx� p

i

k = hz1⇤
i

, x� p

i

i, i 2 I,

By Fact 2.10 in [1] there exists ↵
i

> 0 such that

z

1⇤
i

= ↵

i

(x� p

i

) , i 2 I (27)

and so, kz1⇤
i

k = ↵

i

kx � p

i

k, i 2 I. Therefore, it follows from the optimality condition (v) of
Theorem 3.4 that (note that I ✓ R)

max
1jn

{h
j

(kx� p

j

k) + a

j

} = h

i

✓

1

↵

i

kz1⇤
i

k
◆

+ a

i

, h

�1

i

✓

max
1jn

{h
j

(kx� p

j

k) + a

j

}� a

i

◆

=
1

↵

i

kz1⇤
i

k

, ↵

i

=
kz1⇤

i

k
h

�1

i

✓

max
1jn

{h
j

(kx� p

j

k) + a

j

}� a

i

◆ =
kz1⇤

i

k
h

�1

i

⇣

v(DS,N

h,a

)� a

i

⌘

, i 2 I. (28)

Now, we take in (27) the sum over all i 2 I, which yields by condition (iv) of Theorem 3.4

0H =
X

i2I
z

1⇤
i

=
X

i2I
↵

i

(x� p

i

) , x =
1

P

i2I
↵

i

X

i2I
↵

i

p

i

. (29)

Finally, bringing (28) and (29) together implies

x =
1

P

i2I

kz1⇤
i

k
h

�1
i

(v(DS,N

h,a

)�a

i

)

X

i2I

kz1⇤
i

kp
i

h

�1

i

⇣

v(DS,N

h,a

)� a

i

⌘

.

⇤
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Example 3.1. (a) Let ↵
is

, �

is

� 0, s = 1, ..., v, and h

i

: R ! R be defined by

h

i

(x) :=

8

<

:

max
1sv

{↵
is

x+ �

is

}, if x 2 R
+

,

+1, otherwise,

i = 1, ..., n, then the corresponding location problem looks like

(PS,N

h,a

) inf
x2H

max
1in

⇢

max
1sv

{↵
is

kx� p

i

k+ �

is

}+ a

i

�

= inf
x2H

max
1in,

1sv

{↵
is

kx� p

i

k+ �

is

+ a

i

} .

Moreover, we define the function

f

s

: R ! R, f

s

(x) :=

(

↵

is

x+ �

is

, if x 2 R
+

,

+1, otherwise,

then we derive by Theorem 3.2 in [21]

h

⇤
i

(x⇤) =
✓

max
1sv

{f
s

}
◆⇤

(x⇤) = inf
vP

s=1
x

⇤
s

=x

⇤
,

vP

s=1
⌧

s

=1,

⌧

s

�0, s=1,...,v

(

v

X

s=1

(⌧
s

f

s

)⇤(x⇤
s

)

)

.

As the conjugate of the function ⌧

s

f

s

is

(⌧
s

f

s

)⇤(x⇤) = sup
x2R

{x⇤
s

x� ⌧

s

f

s

(x)} = sup
x�0

{x⇤
s

x� ⌧

s

↵

is

x� ⌧

s

�

is

}

= �⌧

s

�

is

+ sup
x�0

{(x⇤
s

� ⌧

s

↵

is

)x} =

⇢ �⌧

s

�

is

, if x⇤
s

 ⌧

s

↵

is

,

+1, otherwise,

s = 1, ..., v, we have

h

⇤
i

(x⇤) = inf
vP

s=1
x

⇤
s

=x

⇤
,

vP

s=1
⌧

s

=1,

⌧

s

�0, x

s

⌧

s

↵

is

, s=1,...,v

(

�
n

X

s=1

⌧

s

↵

is

)

, i = 1, ..., n,

and hence, the dual problem is given by

(DS,N

h,a

) sup
I✓R✓{1,...,n}, �k>0, k2R, �l=0, l/2R,

z

0⇤
i >0, z

1⇤
i 2H, kz1⇤

i kz

0⇤
i , i2I,

z

0⇤
j =0, z

1⇤
j =0H, j /2I,

P
r2R

�r1,
P
i2I

z

1⇤
i =0H

vP
s=1

x

⇤
s=

z0⇤r
�r

,

vP
s=1

⌧s=1, ⌧s�0, xs⌧s↵rs, s=1,...,v

(

�
X

i2I
hz1⇤

i

, p

i

i+
X

r2R
�

r

"

n

X

s=1

⌧

s

↵

rs

� a

r

#)

.

Furthermore, h�1

i

(y) = min
1sv

n

1

↵

is

(y � �

is

)
o

for all i = 1, ..., n, and thus, we have by Corol-

lary 3.1

x =
1

P

i2I

kz1⇤
i

k
min

1sv

n

1
↵

is

(v(D

S,N

h,a

)�a

i

��

is

)

o

X

i2I

kz1⇤
i

kp
i

min
1sv

n

1

↵

is

(v(DS,N

h,a

)� a

i

� �

is

)
o

.
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(b) Let h
i

: R ! R be defined by

h

i

(x) :=

(

w

i

x

�

i

, if x 2 R
+

,

+1, otherwise,

with w

i

> 0, �
i

> 1, i = 1, ..., n, then

(PS,N

h,a

) inf
x2H

max
1in

n

w

i

kx� p

i

k�i + a

i

o

and since the conjugate function of h
i

is given by (see Example 13.2 (i) in [1])

h

⇤
i

(x⇤) = w

i

�

i

� 1

�

i

✓

1

w

i

x

⇤
◆

�

i

�

i

�1

=
�

i

� 1

�

i

w

1
�

i

�1

i

(x⇤)
�

i

�

i

�1
, i = 1, ..., n,

the associated dual problem (DS,N

h,a

) is

sup
I✓R✓{1,...,n}, �k>0, k2R, �l=0, l/2R,

z

0⇤
i >0, z

1⇤
i 2H, kz1⇤

i kz

0⇤
i , i2I,

z

0⇤
j =0, z

1⇤
j =0H, j /2I,

P
r2R

�r1,
P
i2I

z

1⇤
i =0H

(

�
X

i2I
hz1⇤

i

, p

i

i �
X

r2R
�

r

"

�

r

� 1

�

r

(�
r

w

r

)
1

�

r

�1

(z0⇤
r

)
�

r

�

r

�1 � a

r

#)

.

In addition, as h

�1

i

(y) = (y/w
i

)
1
�

i for all i = 1, ..., n, it holds

x =
1

P

i2I

w

1
�

i

i

kz1⇤
i

k
(v(DS,N

h,a

)�a

i

)
1
�

i

X

i2I

w

1
�

i

i

kz1⇤
i

kp
i

⇣

v(DS,N

h,a

)� a

i

⌘

1
�

i

.

(c) Let h
i

: R ! R be defined by

h

i

(x) :=

(

w

i

x, if x 2 R
+

,

+1, otherwise,

w

i

> 0, then h

�1

i

(y) = 1

w

i

y for all i = 1, ..., n, and hence,

x =
1

P

i2I

w

i

kz1⇤
i

k
v(D

S,N

h,a

)�a

i

X

i2I

w

i

kz1⇤
i

kp
i

v(DS,N

h,a

)� a

i

. (30)

If a
i

= 0, i = 1, ..., n, then formula in (30) reduces to

x =
1

P

i2I
w

i

kz1⇤
i

k
X

i2I
w

i

kz1⇤
i

kp
i

. (31)

Remark 3.3. Let us note that all the results in this section holds also for negative set-up costs.
Like already mentioned in Remark 3.2, we have in this case in the constraint set of the dual
problem

P

r2R �

r

= 1.
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4 Duality results for linear location problems without set-up
costs

4.1 Geometrically constrained location problems with gauges in Fréchet spaces

In this section we will discuss single minimax location problems without set-up costs (a
i

= 0, i =
1, ..., n), where the function h

i

: R ! R be defined by

h

i

(x) :=

(

x, if x 2 R
+

,

+1, otherwise,

i = 1, ..., n. Hence, the location problem (PS

h,a

) turns into

(PS) inf
x2S

max
1in

{�
C

i

(x� p

i

)}.

Since the conjugate function of h
i

is given by

h

⇤
i

(x⇤) = sup
x2R+

{(x⇤ � 1)x} =

⇢

0, if x⇤  1,
+1, otherwise,

i = 1, ..., n, the corresponding conjugate dual problem to (PS) becomes by (21) to

(DS) sup
I✓R✓{1,...,n}, �k>0, z

0⇤
k �k, k2R, �l=0, l/2R,

z

0⇤
i >0, z

1⇤
i 2X

⇤
, �C0

i
(z1⇤

i )z

0⇤
i , i2I,

z

0⇤
j =0, z

1⇤
j =0X⇤ , j /2I,

P
r2R

�r1

(

inf
x2S

(

X

i2I
hz1⇤

i

, x� p

i

i
))

.

The fact I ✓ R implies that if �
r

= 0, then z

0⇤
r

= 0 for some r 2 R and so, it holds that z0⇤
i

 �

i

for all i = 1, ..., n. Now, if we define the function ✓ : Rn

+

! R by

✓(z0⇤
1

, ..., z

0⇤
n

) :=

8

<

:

0, if z0⇤
i

, �

i

� 0, z

0⇤
i

 �

i

, i = 1, ..., n,
n

P

i=1

�

i

 1

+1, otherwise,

then it is obvious that

✓(z0⇤
1

, ..., z

0⇤
n

) =

8

<

:

0, if z0⇤
i

� 0,
n

P

i=1

z

0⇤
i

 1

+1, otherwise

and therefore, we can write (DS) as

(DS) sup
I✓{1,...,n}, z

0⇤
j

=0, z

1⇤
j

=0
X

⇤ , j /2I,

z

0⇤
i

>0, z

1⇤
i

2X

⇤
, �

C

0
i

(z1⇤
i

)z

0⇤
i

, i2I,

P

i2I

z

0⇤
i

1

(

inf
x2S

(

X

i2I
hz1⇤

i

, x� p

i

i
))

.

Let us now introduce the following optimization problem

( eDS) sup
I✓{1,...,n}, z

⇤
i

2X

⇤
i

, i2I,

z

⇤
j

=0
X

⇤ , j /2I,

P

i2I

�

C

0
i

(z⇤
i

)1

(

inf
x2S

(

X

i2I
hz⇤

i

, x� p

i

i
))

. (32)

If we denote by v(DS) the optimal objective value of the problem (DS) and by v( eDS) the optimal
objective value of the problem ( eDS), then the following theorem can be formulated.
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Theorem 4.1. It holds v(DS) = v( eDS).

Proof. Let z

⇤
i

, i = 1, ..., n, be a feasible element to ( eDS) and set z

1⇤
i

= z

⇤
i

, z0⇤
i

= �

C

0
i

(z⇤
i

) for

i 2 I and z

0⇤
i

= 0, z1⇤
1

= 0
X

⇤ for i /2 I. Then, it is obvious that z

0⇤
i

and z

1⇤
i

, i = 1, ..., n are
feasible elements to (DS) and it holds

inf
x2S

(

X

i2I
hz⇤

i

, x� p

i

i
)

= inf
x2S

(

X

i2I
hz1⇤

i

, x� p

i

i
)

 v(DS), (33)

for all z⇤
i

, i = 1, ..., n, feasible to ( eDS), which implies v( eDS)  v(DS).
Vice versa, let z0⇤

i

and z

1⇤
i

be feasible elements to (DS) for i = 1, ..., n, then we have �

C

0
i

(z1⇤
i

) 
z

0⇤
i

for i 2 I,
P

i2I z
0⇤
i

 1 and z

0⇤
i

= 0, z1⇤
i

= 0
X

⇤ for i /2 I, from which follows by setting
z

⇤
i

= z

1⇤
i

for i 2 I and z

⇤
i

= 0
X

⇤
i

for i /2 I that

X

i2I
�

C

0
i

(z⇤
i

)  1,

in other words z⇤
i

is a feasible solution to ( eDS) for all i = 1, ..., n. Furthermore, we have that

inf
x2S

(

X

i2I
hz1⇤

i

, x� p

i

i
)

= inf
x2S

(

X

i2I
hz⇤

i

, x� p

i

i
)

 v( eDS), (34)

for all z0⇤
i

and z

1⇤
i

, i = 1, ..., n, feasible to (DS), which implies that v(DS)  v( eDS). Bringing

the statements (33) and (34) together reveals that it must hold v( eDS) = v(DS). ⇤

Motivated by Theorem 4.1 it follows immediately the following one.

Theorem 4.2. (strong duality) Between (PS) and ( eDS) holds strong duality, i.e. v(PS) =
v( eDS) and the dual problem v( eDS) has an optimal solution.

Now, it is possible to formulate the following optimality conditions for the primal-dual pair
(PS)-( eDS) (note that a

i

= 0, i = 1, ..., n).

Theorem 4.3. (optimality conditions) (a) Let x 2 S be an optimal solution of the problem
(PS). Then there exists z

⇤ 2 (X⇤)n and an index set I ✓ {1, ..., n}, an optimal solution to
( eDS), such that

(i) max
1jn

{�
C

j

(x� p

j

)} =
P

i2I
�

C

0
i

(z⇤
i

)�
C

i

(x� p

i

),

(ii)
P

i2I
hz⇤

i

, xi = ��

S

 

�P

i2I
z

⇤
i

!

,

(iii) �

C

0
i

(z⇤
i

)�
C

i

(x� p

i

) = hz⇤
i

, x� p

i

i, i 2 I,

(iv)
P

j2I
�

C

0
j

(z⇤
j

) = 1, �

C

0
i

(z⇤
i

) > 0, i 2 I, and �

C

0
i

(z⇤
i

) = 0, i /2 I,

(v) �

C

i

(x� p

i

) = max
1jn

{�
C

j

(x� p

j

)}, i 2 I.
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(b) If there exists x 2 S such that for some z

⇤ 2 (X⇤)n and an index set I the conditions (i)-(v)
are fulfilled, then x is an optimal solution of (PS), (z⇤, I) is an optimal solution for ( eDS) and
v(PS) = v( eDS).

Proof. Let x 2 S be an optimal solution of (PS), then by Theorem 4.2 there exists z⇤ 2 (X⇤)n

and an index set I ✓ {1, ..., n} such that v(PS) = v( eDS), i.e.

, max
1jn

{�
C

j

(x� p

j

)} = inf
x2S

8

<

:

X

i2I
hz⇤

i

, x� p

i

i
9

=

;

, max
1jn

{�
C

j

(x� p

j

)}+ �

S

0

@�
X

i2I
z

⇤
i

1

A+
X

i2I
hz⇤

i

, p

i

i = 0

, max
1jn

{�
C

j

(x� p

j

)}+ �

S

0

@�
X

i2I
z

⇤
i

1

A+
X

i2I
hz⇤

i

, p

i

i

+
X

i2I
�

C

0
i

(z⇤
i

)�
C

i

(x� p

i

)�
X

i2I
�

C

0
i

(z⇤
i

)�
C

i

(x� p

i

) +
X

i2I
hz⇤

i

, xi �
X

i2I
hz⇤

i

, xi = 0

,
2

4 max
1jn

{�
C

j

(x� p

j

)}�
X

i2I
�

C

0
i

(z⇤
i

)�
C

i

(x� p

i

)

3

5+

2

4

�

S

0

@�
X

i2I
z

⇤
i

1

A+

*

X

i2I
z

⇤
i

, x

+

3

5

+
X

i2I
[�

C

0
i

(z⇤
i

)�
C

i

(x� p

i

) + hz⇤
i

, p

i

� xi] = 0.

By Lemma 2.2 holds that the term within the first bracket is non-negative and by the Young-
Fenchel inequality we derive that the terms within the other brackets are also non-negative.
This implies the cases (i)-(iii). Further, we obtain by the first bracket

max
1jn

{�
C

j

(x� p

j

)} =
X

i2I
�

C

0
i

(z⇤
i

)�
C

i

(x� p

i

)


X

i2I
�

C

0
i

(z⇤
i

) max
1jn

{�
C

j

(x� p

j

)}  max
1jn

{�
C

j

(x� p

j

)}

and from here follows that
P

i2I �C0
i

(z⇤
i

) = 1, which yields condition (iv), as well as

X

i2I
�

C

0
i

(z⇤
i

) max
1jn

{�
C

j

(x� p

j

)} =
X

i2I
�

C

0
i

(z⇤
i

)�
C

i

(x� p

i

)

,
X

i2I
�

C

0
i

(z⇤
i

)



max
1jn

{�
C

j

(x� p

j

)}� �

C

i

(x� p

i

)

�

= 0. (35)

As the brackets in (35) are non-negative and �

C

0
i

(z⇤
i

) > 0, i 2 I, we get that

max
1jn

{�
C

j

(x� p

j

)} = �

C

i

(x� p

i

), i 2 I.

which yields the condition (v) and completes the proof.

26



4.2 Unconstrained location problems with the Euclidean norm

Now we turn our attention to the case where S = X = Rd and w

i

> 0, i = 1, ..., n. Furthermore,
we use as the gauge functions the Euclidean norm, i.e. �

C

i

= w

i

k·k, i = 1, ..., n. By these settings,
the minimax location problem (PS) transforms into the following one

(PS

N

) inf
x2Rd

max
1in

{w
i

kx� p

i

k}.

By using (32) we obtain the following dual problem corresponding to (PS

N

),

( eDS

N

) sup
P

i2I

1
w

i

kz⇤
i

k1, z

⇤
i

2Rd, i2I,

z

⇤
j

=0Rd , j /2I

inf
x2Rd

(

X

i2I
hz⇤

i

, x� p

i

i
)

= sup
P

i2I

1
w

i

kz⇤
i

k1, z

⇤
i

2Rd, i2I,

z

⇤
j

=0Rd , j /2I

(

��Rd

 

�
X

i2I
z

⇤
i

!

�
X

i2I
hz⇤

i

, p

i

i
)

= sup
P

i2I

1
w

i

kz⇤
i

k1,
P

i2I

z

⇤
i

=0Rd ,

z

⇤
i

2Rd, i2I, z

⇤
j

=0Rd , j /2I

(

�
X

i2I
hz⇤

i

, p

i

i
)

. (36)

Remark 4.1. Note that for simplicity it is also possible to substitute z⇤
i

= �z

⇤
i

for all i = 1, ..., n,
whence it follows

( eDS

N

) sup
P

i2I

1
w

i

kz⇤
i

k1,
P

i2I

z

⇤
i

=0Rd ,

z

⇤
i

2Rd, i2I, z

⇤
j

=0Rd , j /2I

(

X

i2I
hz⇤

i

, p

i

i
)

. (37)

Theorem 4.4. (strong duality) Between (PS

N

) and ( eDS

N

) holds strong duality, i.e. v(PS

N

) =

v( eDS

N

) and the dual problem has an optimal solution.

By Theorem 4.3 and 4.4 we derive the following necessary and su�cient optimality conditions.

Theorem 4.5. (optimality conditions) (a) Let x 2 Rd be an optimal solution of the problem
(PS

N

). Then there exists z

⇤
i

2 Rd, i = 1, ..., n, and an optimal index set I, an optimal solution

to ( eDS

N

), such that

(i) max
1jn

{w
j

kx� p

j

k} =
P

i2I
kz⇤

i

kkx� p

i

k,

(ii)
P

i2I
z

⇤
i

= 0Rd

,

(iii) kz⇤
i

kkx� p

i

k = hz⇤
i

, x� p

i

i, i 2 I,

(iv)
P

j2I
1

w

j

kz⇤
j

k = 1, z⇤
i

2 Rd \ {0Rd

} for i 2 I and z

⇤
i

= 0Rd

for i /2 I,

(v) w

i

kx� p

i

k = max
1jn

{w
j

kx� p

j

k}, i 2 I.
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(b) If there exists x 2 Rd such that for some z

⇤
i

2 Rd, i = 1, ..., n, and an index set I the
conditions (i)-(v) are fulfilled, then x is an optimal solution of (PS

N

), (z⇤, I) is an optimal

solution for ( eDS

N

) and v(PS

N

) = v( eDS

N

).

For the length of the vectors z⇤
i

, i 2 I, feasible to ( eDS

N

) the following estimation from above can
be made.

Corollary 4.1. Let w

s

:= max
1in

{w
i

} and z

⇤
i

2 Rd, i = 1, ..., n, and I ✓ {1, ..., n} be a

feasible solution to ( eDS

N

), then it holds

kz⇤
i

k  w

s

w

i

w

s

+ w

i

, i 2 I.

Proof. Assume that z

⇤
i

2 Rd

, i = 1, ..., n and I ✓ {1, ..., n} are feasible elements of the dual

problem ( eDS

N

), then one has for j 2 I,

X

i2I
z

⇤
i

= 0Rd

, z

⇤
j

= �
X

i2I

i 6=j

z

⇤
i

and hence,

kz⇤
j

k = k
X

i2I

i 6=j

z

⇤
i

k 
X

i2I

i 6=j

kz⇤
i

k, j 2 I. (38)

Moreover, from the feasibility of z⇤
i

, i 2 I, to ( eDS

N

) and by (38), we have

1 �
X

i2I

1

w

i

kz⇤
i

k =
1

w

j

kz⇤
j

k+
X

i2I

i 6=j

1

w

i

kz⇤
i

k

� 1

w

j

kz⇤
j

k+ 1

w

s

X

i2I

i 6=j

kz⇤
i

k � 1

w

j

kz⇤
j

k+ 1

w

s

kz⇤
j

k =
w

s

+ w

j

w

s

w

j

kz⇤
j

k, j 2 I,

and so,

kz⇤
j

k  w

s

w

j

w

s

+ w

j

, j 2 I,

⇤

By the next remark we point out the relationship between the minimax and minisum problems.

Remark 4.2. The optimal solution x of the problem (PS

N

) is also a solution of the following
generalized Fermat-Torricelli problem

(PFT

N

) min
x2Rd

X

i2I
ew

i

kx� p

i

k,
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where ew

i

= kz⇤
i

k, i 2 I.
This can be seen like follows: It is well known that x is an optimal solution of the problem (PFT

N

)
with x 6= p

i

, i 2 I if and only if the resultant force R at x, defined by

R(x) :=
X

i2I
ew

i

x� p

i

kx� p

i

k ,

is zero (see [18]). As x is an optimal solution of (PS

N

), we have by (27) that

X

i2I
ew

i

x� p

i

kx� p

i

k =
X

i2I
kz⇤

i

k x� p

i

kx� p

i

k =
X

i2I
↵

i

(x� p

i

) =
X

i2I
z

⇤
i

= 0Rd

,

which implies that x is also an optimal solution of the problem (PFT

N

). In this context, pay
attention also to the fact that for the optimal solution x of the problem (PS

N

) it holds x 6= p

i

,
i 2 I. Because if there exists j 2 I such that x = p

j

, then x = p

i

for all i 2 I, which contradicts
the assumption that the given points are distinct.

Geometrical Interpretation.
For simplicity let us suppose that w

1

= ... = w

n

= 1, then it is well-known that the problem
(PN

S

) can be interpreted as the finding a ball with center x and minimal radius such that all
given points p

i

, i = 1, ..., n are covered by this ball. This problem is also known as the minimum
covering ball problem.
Our plan is now to give a geometrical interpretation of the set of optimal solutions of the dual
problem ( eDS

N

) by using Theorem 4.5. By condition (iii) we see that for i 2 I the dual problem
can geometrically be understood as the finding of vectors z

⇤
i

, which are parallel to the vectors
x� p

i

and directed to x fulfilling
P

i2I z
⇤
i

= 0Rd

and
P

i2I kz⇤i k = 1. Especially, conditions (iv)

and (v) are telling us that for i 2 I, i.e. z

⇤
i

6= 0Rd

, the corresponding point p

i

is lying on the
border of the minimal covering ball and for i /2 I, i.e. z

1⇤
i

= 0Rd

, the corresponding point p
i

is
lying inside the mentioned ball. Therefore, for i 2 I the elements z⇤

i

can be interpreted as force
vectors, which pulling the points p

i

lying on the border of the minimum covering ball inside of
this ball in direction to the center, the gravity point x, where the resultant force of the sum of
these force vectors is zero. For illustration see Example 1 and Figure 1.
Another well-known geometrical characterization of the location problem (PN

S

) is to find the
minimum radius of balls centered at the points p

i

, i = 1, ..., n, such that their intersection is
non-empty. In this situation the set of optimal solutions of the dual problem can be described
as force vectors fulfilling the optimality conditions of Theorem 4.5 and increasing these balls
until their intersection is non-empty and the radius of the largest ball is minimal. From the
conditions (iv) and (v) we obtain that a force vector z

⇤
i

is equal to the zero vector if x is an
element of the interior of the ball centered at point p

i

with radius v(PS

N

), which is exactly the
case when i 2 I. If i /2 I, which is exactly the case when x is lying on the border of the ball
centered at point p

i

with radius v(PS

N

), then the corresponding force vector z

⇤
i

is unequal to
the zero vector and moreover, by the optimality condition (iii) follows that z⇤

i

is parallel to the
vector x� p

i

and has the the same direction.
To demonstrate the statements we made above, let us discuss the following example.

Example 4.1. Consider the unconstrained single minimax location problem in R2 defined by
the given points:

p

1

= (�5,�2.5)T ; p

2

= (�2, 1)T ; p

3

= (2.5, 3)T ; p

4

= (3.5,�2)T and p

5

= (0,�3)T .
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The primal problem looks in this case like follows

(P
S

N

) inf
x2R2

max
1i5

{kx� p

i

k}

and by using the Matlab Optimization Toolbox we get the solution x = (�0.866,�0.273)T with
the objective function value max

1i5

{kx� p

i

k} = 4.695.
For the dual problem we have the formulation

( eDS

N

) sup
P

i2I

kz⇤
i

k1,
P

i2I

z

⇤
i

=0R2 ,

z

⇤
i

2R2, i2I, z

⇤
i

=0R2 , i/2I

(

�
X

i2I
hz⇤

i

, p

i

i
)

. (39)

with the solution

z

⇤
1

= (0.412, 0.222)T ; z

⇤
2

= (0, 0)T ; z

⇤
3

= (�0.281,�0.273)T ;

z

⇤
4

= (�0.131, 0.052)T ; z

⇤
5

= (0, 0)T .

The dual problem was also solved by using the Matlab Optimization Toolbox. In fact, it holds
I = {1, 3, 4}, hz⇤

1

, p

1

i + hz⇤
3

, p

3

i + hz⇤
4

, p

4

i = 4.695, x = kz⇤
1

kp
1

+ kz⇤
3

kp
3

+ kz⇤
4

kp
4

= 0.468 ·
(�5,�2.5)T + 0.392 · (2.5, 3)T + 0.14 · (3.5,�2)T = (�0.866,�0.273)T (see (31)) and the points
p

1

, p
3

and p

4

are lying on the border of the minimum covering circle as Figure 1 demonstrates.

Remark 4.3. Let w
i

= 1, i=1,...,n. Then, for the case n = 2 it follows immediately by condition
(iv) of Theorem 4.5 and Corollary 4.1 the well-known fact that x = 1

2

(p
1

+ p

2

).

Remark 4.4. Let w

i

= 1, i=1,...,n. If we consider the case d = 1, we can write the dual
problem ( eDS

N

) as

( eDS

N

) sup
P

i2I

|z⇤
i

|1,
P

i2I

z

⇤
i

=0,

z

⇤
i

2R, i2I, z

⇤
i

=0, i/2I

(

�
X

i2I
z

⇤
i

p

i

)

= sup
z

⇤2Rn, hz⇤,1i=0,
kz⇤k11

{�hz⇤, pi},

where z

⇤ = (z⇤
1

, ..., z

⇤
n

)T 2 Rn, p = (p
1

, ..., p

n

)T 2 Rn, 1 = (1, ..., 1)T 2 Rn and k · k
1

is the

Manhattan norm. From the second formulation of the problem ( eDS

N

) it is clear that the set
of the feasible elements is the intersection of a hyperplane orthogonal to the vector 1 and a
cross-polytope (or hyperoctahedron), i.e. a convex polytope. Further, it is clear that the optimal
solution of this problem can get immediately by the following consideration. Let us assume that
p

1

< ... < p

n

, then it holds p

1

< x < p

n

and by condition (v) of Theorem 4.5 one gets

max
1jn

{|x� p

j

|} = |x� p

1

| = |x� p

n

|,

i.e. I = {1, n}. By Remark 4.3 this means x = 1

2

(p
1

+ p

n

). Moreover, by Corollary 4.1 we have
that |z⇤

1

| = |z⇤
n

| = 0.5 and by condition (iv) of Theorem 4.5 finally follows that z

⇤
1

= 0.5 and
z

⇤
n

= �0.5. A more detailed analysis of location problems using rectilinear distances was given
in [5].
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Figure 1: Geometrical illustration of the Example 4.1.

By the next remark, we discover that the Lagrange multiplier associated with the linear equation
constraint of the dual problem ( eDS

N

) is the optimal solution of the primal problem (PS

N

) and

moreover, the Lagrange multiplier associated with the inequality constraint of the dual ( eDS

N

) is
the optimal objective value. A similar result was shown in [16] for minisum location problems.

Remark 4.5. First, let us notice that the dual problem ( eDS

N

) can be written as

( eDS

N

) sup
z

⇤
i

2Rd, i=1,...,n
nP

i=1

1
w

i

kz⇤
i

k1,
nP

i=1
z

⇤
i

=0Rd

(

�
n

X

i=1

hz⇤
i

, p

i

i
)

,
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then the Lagrange dual of the dual ( eDS

N

) looks like

(D e

D

S

N

) inf
��0, x2Rd

sup
z

⇤
i

2Rd

, i=1,...,n

(

�
n

X

i=1

hz⇤
i

, p

i

i+
*

x,

n

X

i=1

z

⇤
i

+

� �

 

n

X

i=1

1

w

i

kz⇤
i

k � 1

!)

= inf
��0, x2Rd

(

�+
n

X

i=1

sup
z

⇤
i

2Rd

⇢

�hz⇤
i

, p

i

i+ hx, z⇤
i

i � �

w

i

kz⇤
i

k
�

)

= inf
��0, x2Rd

(

�+
n

X

i=1

sup
z

⇤
i

2Rd

⇢

hx� p

i

, z

⇤
i

i � �

w

i

kz⇤
i

k
�

)

. (40)

If � = 0, then we get

sup
z

⇤
i

2Rd

hx� p

i

, z

⇤
i

i =
⇢

0, if x = p

i

,

+1, otherwise,

i = 1, ..., n, which contradicts the assumption from the beginning that the given points p

i

, i =
1, ..., n are distinct. Therefore, we can write for (40)

(D e

D

S

N

) inf
�>0, x2Rd

(

�+ �

n

X

i=1

1

w

i

sup
z

⇤
i

2Rd

nD

w

i

�

(x� p

i

), z⇤
i

E

� kz⇤
i

k
o

)

= inf
�>0, x2Rd,

w

i

kx�p

i

k�, i=1,...,n

� = inf
x2Rd

max
1in

{w
i

kx� p

i

k}.

We conclude, on the one hand, that the Lagrange dual of the dual problem ( eDS

N

) (i.e. the bidual
of the primal location problem (PS)) is the problem (PS). On the other hand, we see that
the Lagrange multipliers of the dual (D e

D

S

N

) characterize the optimal solution and the optimal
objective value of the primal problem (PS). Therefore, we have a complete symmetry between
the primal problem (PS

N

), the dual problem ( eDS

N

) and its Lagrange dual problem (D e

D

S

N

).
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[3] R.I. Boţ, E. Vargyas, G. Wanka: Duality for Location Problems with Unbounded Unit
Balls. European Journal of Operational Research 179(3), 1252-1265, 2007.

[4] P. M. Dearing: Minimax Location Problems with Nonlinear Costs. Journal of Research
of the National Bureau of Standards 82, 65-72, 1977.

[5] P. M. Dearing: On some Minimax Location Problems using Rectilinear Distances. Ph.D.
Dissertation, University of Florida, Gainesville, Florida, 1972.

[6] Z. Drezner: The Weighted Minimax Location Problem with Set-up Costs and Extensions.
RAIRO-Operations Research. 25, 55-64, 1991.

32



[7] R. Durier, C. Michelot: Geometrical Properties of the Fermat-Weber Problem. European
Journal of Operational Research 20, 332-343, 1985.

[8] J. Elzinga, D. W. Hearn: Geometrical Solutions for Some Minimax Location Problems.
Transportation Science 6, 379-394, 1972.

[9] J. Elzinga, D. W. Hearn: The Minimum Covering Sphere Problem. Management science
19(1), 96-104, 1972.

[10] R. L. Francis: A Note on a Nonlinear Minimax Location Problem in Tree Networks.
Journal of Research of the National Bureau of Standards 82, 73-80, 1977.

[11] R. L. Francis: Some Aspects of a Minimax Location Problem. Operations Research 15(6),
1163-1169, 1967.

[12] Y. Hinojosa, J. Puerto: Single Facility Location Problems with Unbounded Unit Balls.
Mathematical Methods of Operations Research 58, 87-104, 2003.

[13] T. R. Je↵erson, S. Jorjani, C. H. Scott: Quality Locations for the Constrained Minimax
Location Model. International Journal of Systems Science 24(5), 1009-1016, 1993.

[14] T. R. Je↵erson, C. H. Scott: Duality for Minmax Programs. Journal of Mathematical
Analysis and Applications 100(2), 385-392, 1984.

[15] H. Juel, R. F. Love: Duality in Constrained Location Problems. Operations Research
Letters 6(6), 281-284, 1987.

[16] H. Juel, R. F. Love: On the Dual of the Linearly Constrained Multi-Facility Location
Problem with Arbitrary Norms. Transportation Science 15, 329-337, 1981.

[17] H. Juel, R. F. Love: The Dual of a Generalized Minimax Location Problem. Annals of
Operations Research 40(1-4), 261-264, 1992.

[18] H. W. Kuhn: A Note on Fermat’s Problem. Mathematical Programming 4, 98-107, 1973.

[19] C. Michelot, F. Plastria: An Extended Multifacility Minimax Location Problem Revisited.
Annals of Operations Research 111(1-4), 167-179, 2002.

[20] B. A. Murtagh, C. H. Scott, E. Sirri: Solution of Constrained Minmax Location with
Euclidean Distances via Conjugate Duality. New Zealand Operational Research 13, 61-
67, 1985.

[21] S. M. Robinson: A Short Derivation of the Conjugate of a Supremum Function. Journal
of Convex Analysis 19, 569-574, 2012.

[22] G. Wanka, U. Krallert: Duality for Optimal Control-Approximation Problems with
Gauges. Journal for Analysis and its Applications 18(2), 491-504, 1999.

[23] G. Wanka, O. Wilfer: A Lagrange Duality Approach for Multi-Composed Optimization
Problems. Preprint, 2015.

33


