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Abstract

We provide non-smooth atomic characterizations for 2-microlocal Besov and Triebel-
Lizorkin spaces with variable integrability Bw

p(·),q(·)(R
n) and Fw

p(·),q(·)(R
n). These spaces

cover the classical Besov and Triebel-Lizorkin spaces as well as spaces of variable smoothness
and integrability. As an application, we state a pointwise multipliers result for these spaces.
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1 Introduction

In this article we generalize the atomic decomposition theorem for 2-microlocal Besov and
Triebel-Lizorkin spaces Bw

p(·),q(·)(R
n) and Fw

p(·),q(·)(R
n) and present an application to pointwise

multipliers.
The 2-microlocal function spaces initially appeared in the book of Peetre [20] and have also

been studied by Bony [2] in connection with pseudodifferential operators. Later on, they were
investigated by Jaffard [9] as well as Jaffard and Meyer [10]. In [16] and [17], Levy Véhel
and Seuret showed that they are an useful tool to measure local regularity and to describe the
oscillatory behavior of functions near singularities.

Spaces of variable integrability, also known as variable exponent functions spaces Lp(·)(Rn),
can be traced back to Orlicz [19] 1931, but the modern development started with the papers [11]
of Kováčik and Rákosník as well as [3] of Diening. The spaces Lp(·)(Rn) have interesting appli-
cations in fluid dynamics, image processing, PDE and variational calculus, see the introduction
of [6]. For an overview we refer to [5].

The concept of function spaces with variable smoothness and the concept of variable integra-
bility were firstly mixed up by Diening, Hästö and Roudenko in [6]. They defined Triebel-Lizorkin
spaces F s(·)p(·),q(·)(R

n) and from the trace theorem on Rn−1 it became clear why it is natural to
have all parameters variable. Due to

Tr F
s(·)
p(·),q(·)(R

n) = F
s(·)− 1

p(·)
p(·),p(·) (Rn−1), with s(·)− 1

p(·)
> (n− 1) max

(
1

p(·)
− 1, 0

)
,

(Theorem 3.13 in [6]) we see the necessity of taking s and q variable if p is not constant.
Moreover, Almeida and Hästö also introduced Besov spaces Bs(·)

p(·),q(·)(R
n) with all three indices

variable in [1].
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The scale we consider here - mixing 2-microlocal weights with variable integrability - was
introduced in [13, 14] and provides a unified approach that covers many spaces related with
variable smoothness and generalized smoothness. Many results have been studied regarding these
spaces, in particular the possibility of decomposing functions f ∈ Bw

p(·),q(R
n) or Fw

p(·),q(·)(R
n) as

linear combinations of smooth atoms, which are the building blocks for atomic decompositions.
The study of smooth atomic decompositions for Besov spaces with p and q variable was firstly

done by Drihem in [7], where he proved the result for Besov spaces with variable smoothness
and integrability Bs(·)

p(·),q(·)(R
n). Following the same ideas, we present in Section 2 the smooth

atomic decomposition result for 2-microlocal Besov spaces Bw
p(·),q(·)(R

n).
In Section 3 we develop non-smooth atomic decompositions for 2-microlocal Besov and

Triebel-Lizorkin spaces Bw
p(·),q(·)(R

n) and Fw
p(·),q(·)(R

n). We show that we can replace the usual
atoms used in smooth atomic decompositions by more general ones, whose assumptions on
the smoothness are relaxed and, nevertheless, we keep all the crucial information compared to
smooth atomic decompositions. This modification appears in [25], where Triebel and Winkelvoß
suggested the use of these weaker conditions to define function spaces intrinsically on domains.

In this direction, recently Schneider and Vybíral in [23] and Scharf in [22] proved some results
about non-smooth atoms for the classical Besov space Bs

p,q(Rn), but using different approaches.
For the case of function spaces with variable exponents this is the first work concerning non-
smooth atomic decompositions. Our approach follows Scharf in [22] and generalizes and extends
the smooth atomic decomposition results previously referred.

In Section 4, we use the non-smooth atomic representation theorem to deal with pointwise
multipliers in the function spaces Bw

p(·),q(·)(R
n) and Fw

p(·),q(·)(R
n). Our result covers the corre-

sponding results obtained in [23] and [22] for classical Besov spaces Bs
p,q(Rn).

2 Notation and definitions

We shall adopt the following general notation: N denotes the set of all natural numbers,
N0 = N ∪ {0}, Z denotes the set of integers, Rn for n ∈ N denotes the n-dimensional real Eu-
clidean space with |x|, for x ∈ Rn, denoting the Euclidean norm of x. For a real number a, let
a+ := max(a, 0).

If s ∈ R, then there are uniquely determined bsc− ∈ Z and {s}+ ∈ (0, 1] with s = bsc−+{s}+.

Definition 2.1. Let s > 0. Then the Hölder space with index s is defined as

Cs =
{
f ∈ Cbsc− : ‖f | Cs‖ :=

∑
|α|≤bsc−

sup
x∈Rn

|Dαf(x)|+
∑

|α|=bsc−
sup

x,y∈Rn,x 6=y

|f(x)− f(y)|
|x− y|{s}+

<∞
}
.

If s = 0, then we set C0 = L∞.

For q ∈ (0,∞], `q stands for the linear space of all complex sequences f = (fj)j∈N0 endowed
with the quasi-norm

‖f | `q‖ =
( ∞∑
j=0

|fj |q
)1/q

,

with the usual modification if q =∞. By c, c1, c2, etc. we denote positive constants independent
of appropriate quantities. For two non-negative expressions (i.e., functions or functionals) A,
B, the symbol A . B (or A & B) means that A ≤ cB (or cA ≥ B), for some c > 0. If A . B
and A & B, we write A ∼ B and say that A and B are equivalent.

In order to define 2-microlocal Besov and Triebel-Lizorkin spaces with variable integrability,
we start by recalling the definition of admissible weight sequences. We follow [14].
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Definition 2.2. Let α ≥ 0 and α1, α2 ∈ R with α1 ≤ α2. A sequence of non-negative measurable
functions in Rn w = (wj)j∈N0 belongs to the class Wα

α1,α2
(Rn) if the following conditions are

satisfied:

(i) There exists a constant c > 0 such that

0 < wj(x) ≤ cwj(y) (1 + 2j |x− y|)α for all j ∈ N0 and all x, y ∈ Rn.

(ii) For all j ∈ N0 it holds

2α1 wj(x) ≤ wj+1(x) ≤ 2α2 wj(x) for all x ∈ Rn.

Such a system (wj)j∈N0 ∈ Wα
α1,α2

(Rn) is called admissible weight sequence.

Properties of admissible weights may be found in [12, Remark 2.4].
Before introducing the function spaces under consideration we still need to recall some nota-

tion. By S(Rn) we denote the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions on Rn and by S ′(Rn) the dual space of all tempered distributions on
Rn. For f ∈ S ′(Rn) we denote by f̂ the Fourier transform of f and by f∨ the inverse Fourier
transform of f .

Let ϕ0 ∈ S(Rn) be such that

ϕ0(x) = 1 if |x| ≤ 1 and supp ϕ0 ⊂ {x ∈ Rn : |x| ≤ 2}. (2.1)

Now define ϕ(x) := ϕ0(x)− ϕ0(2x) and set ϕj(x) := ϕ(2−jx) for all j ∈ N. Then the sequence
(ϕj)j∈N0 forms a smooth dyadic partition of unity.

By P(Rn) we denote the class of exponents, which are measurable functions p : Rn → (c,∞]
for some c > 0. Let p ∈ P(Rn). Then, p+ := ess-supx∈Rnp(x), p− := ess-infx∈Rnp(x) and
Lp(·)(Rn) is the variable exponent Lebesgue space, which consists of all measurable functions f
such that for some λ > 0 the modular %Lp(·)(Rn)(f/λ) is finite, where

%Lp(·)(Rn)(f) :=

∫
Rn0
|f(x)|p(x) dx+ ess-supx∈Rn∞ |f(x)|.

Here Rn∞ denotes the subset of Rn where p(x) =∞ and Rn0 = Rn \ Rn∞. The Luxemburg norm
of a function f ∈ Lp(·)(Rn) is given by

‖f | Lp(·)(Rn)‖ := inf

{
λ > 0 : %Lp(·)(Rn)

(
f

λ

)
≤ 1

}
.

In order to define the mixed spaces `q(·)(Lp(·)), we need to define another modular. For
p, q ∈ P(Rn) and a sequence (fν)ν∈N0 of complex-valued Lebesgue measurable functions on Rn,
we define

%`q(·)(Lp(·))(fν) =
∞∑
ν=0

inf

{
λν > 0 : %p(·)

(
fν

λ
1/q(·)
ν

)
≤ 1

}
. (2.2)

If q+ <∞, then we can replace (2.2) by the simpler expression

%`q(·)(Lp(·))(fν) =
∞∑
ν=0

∥∥∥|fν |q(·) | L p(·)
q(·)

∥∥∥. (2.3)
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The (quasi-)norm in the `q(·)(Lp(·)) spaces is defined as usual by

‖fν | `q(·)(Lp(·)(Rn))‖ = inf

{
µ > 0 : %`q(·)(Lp(·))

(
fν
µ

)
≤ 1

}
. (2.4)

For the sake of completeness, we state also the definition of the space Lp(·)(`q(·)). At first, one
just takes the norm `q(·) of (fν(x))ν∈N0 for every x ∈ Rn and then the Lp(·)-norm with respect
to x ∈ Rn, i.e.

‖fν | Lp(·)(`q(·)(Rn))‖ =

∥∥∥∥∥∥
( ∞∑
ν=0

|fν(x)|q(x)
)1/q(x)

| Lp(·)(Rn)

∥∥∥∥∥∥ .

We introduce now the Hardy-Littlewood maximal operatorMt, which is defined for a locally
integrable function f ∈ Lloc1 and for 0 < t ≤ 1 by

Mt(f)(x) =

(
sup
x∈Q

∫
Q
|f(y)|t dy

)1/t

,

andM(f)(x) =M1(f)(x). In order to guarantee the boundedness ofMt in Lp(·)(Rn) for non-
constant exponent p(·) we require certain regularity conditions on p ∈ P(Rn). Let us define the
important classes.

Definition 2.3. Let g ∈ C(Rn). We say that g is locally log-Hölder continuous, abbreviated
g ∈ C log

loc (Rn), if there exists clog(g) > 0 such that

|g(x)− g(y)| ≤
clog(g)

log(e+ 1/|x− y|)
for all x, y ∈ Rn. (2.5)

We say that g is globally log-Hölder continuous, abbreviated g ∈ C log(Rn), if g is locally log-
Hölder continuous and there exists g∞ ∈ R such that

|g(x)− g∞| ≤
clog

log(e+ |x|)
for all x ∈ Rn. (2.6)

We use the notation p ∈ P log(Rn) if p ∈ P(Rn) and 1/p ∈ C log(Rn). It was proved
in [4] that the maximal operator M is bounded in Lp(·)(Rn) provided that p ∈ P log(Rn) and
1 < p− ≤ p+ ≤ ∞.

The definitions of the spaces below were given in [15]. The restriction q+ <∞ in the F-case
comes from the use of Lemma 3.8, which is essential for studying Triebel-Lizorkin spaces with
variable exponents.

Definition 2.4. Let (ϕj)j∈N0 be a partition of unity as above, w = (wj)j∈N0 ∈ Wα
α1,α2

(Rn) and
p, q ∈ P log(Rn).

(i) The space Bw
p(·),q(·)(R

n) is defined as the collection of all f ∈ S ′(Rn) such that

‖f | Bw
p(·),q(·)(R

n)‖ϕ := ‖(wj (ϕj f̂)∨)j∈N0 | `q(·)(Lp(·)(Rn))‖

is finite.
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(ii) If p+, q+ < ∞, then the space Fw
p(·),q(·)(R

n) is defined as the collection of all f ∈ S ′(Rn)
such that

‖f | Fw
p(·),q(·)(R

n)‖ϕ := ‖(wj (ϕj f̂)∨)j∈N0 | Lp(·)(`q(·)(Rn))‖

is finite.

Remark 2.5. These spaces include very well-known spaces. For p =const and wj(x) = 2js we
get back to the classical Besov and Triebel-Lizorkin spaces Bs

p,q(Rn) and F sp,q(Rn).
Also the spaces of generalized smoothness are contained in this approach (see [8], [18]) by

taking
wj(x) = 2jsΨ(2−j), or more general wj(x) = σj .

Here, {σj}j∈N0 is an admissible sequence, which means that there exist d0, d1 > 0 with d0σj ≤
σj+1 ≤ d1σj and Ψ is a slowly varying function.

Moreover, these 2-microlocal spaces also cover the spaces of variable smoothness and inte-
grability Bs(·)

p(·),q(·) and F
s(·)
p(·),q(·), introduced in [6] and [1]. If s ∈ C log

loc (Rn) (which is the standard
condition on s(·)), then w = (wj(x))j∈N0 = (2js(x))j∈N0 belongs to Wα

α1,α2
(Rn) with α1 = s−,

α2 = s+ and α = clog(s), where clog(s) is the constant for s(·) from (2.5).

For p, q ∈ P(Rn), we put

σp := n

(
1

p−
− 1

)
+

and σp,q := n

(
1

min(1, p−, q−)
− 1

)
.

2.1 Smooth atomic decompositions of Bw
p(·),q(·)(Rn) and Fw

p(·),q(·)(Rn)

In [14] it was presented the atomic decomposition theorems for Fw
p(·),q(·)(R

n) and, with q =

const, for Bw
p(·),q(R

n). The case of having both parameters p and q variable in the Besov scale
was studied by Drihem in [7], where the atomic decomposition of Besov spaces with variable
smoothness and integrability Bs(·)

p(·),q(·)(R
n) was stated. Here we present the atomic decompo-

sition for 2-microlocal Besov spaces Bw
p(·),q(·)(R

n), whose proof follows mainly from [7] using
Remark 2 in [15].

At first, we shall introduce some notation. Let Zn stand for the lattice of all points in
Rn with integer-valued components, Qν,m denotes a cube in Rn with sides parallel to the
axes of coordinates, centered at 2−νm = (2−νm1 . . . , 2

−νmn) and with side length 2−ν , where
m = (m1, . . . ,mn) ∈ Zn and ν ∈ N0. If Q is a cube in Rn and r > 0 then rQ is the cube in
Rn concentric with Q and with side length r times the side length of Q. By χν,m we denote the
characteristic function of the cube Qν,m.

We define now smooth atoms, which are the building blocks for atomic decompositions.

Definition 2.6. Let K,L ∈ N0 and let d > 1. A K-times continuously differentiable complex-
valued function a ∈ CK(Rn) is called [K,L]-atom centered at Qν,m, for all ν ∈ N0 and m ∈ Zn,
if

(i) supp a ⊂ dQν,m

(ii) |Dβa(x)| ≤ 2|β|ν for |β| ≤ K

(iii)
∫
Rn
xβa(x)dx = 0 for 0 ≤ |β| < L and ν ≥ 1.

Remark 2.7. If an atom a is centered at Qν,m, i.e., if it fulfills (i), then we denote it by aν,m. If
L = 0 or ν = 0, then no moment conditions (iii) are required.
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We shall now introduce the sequence spaces bwp(·),q(·) and f
w
p(·),q(·), whose use will become clear

in the following.

Definition 2.8. Let w = (wν)ν∈N0 ∈ Wα
α1,α2

(Rn) and p, q ∈ P(Rn).

(i) The sequence space bwp(·),q(·)(R
n) consists of those complex-valued sequences λ = (λν,m)ν∈N0,m∈Zn

such that

‖λ | bwp(·),q(·)(R
n)‖ :=

∥∥∥( ∑
m∈Zn

|λν,m|wν(2−νm)χν,m

)
ν∈N0

| `q(·)(Lp(·)(Rn))
∥∥∥

is finite.

(ii) If p+, q+ < ∞, then the sequence space fwp(·),q(·)(R
n) consists of those complex-valued se-

quences λ = (λν,m)ν∈N0,m∈Zn such that

‖λ | fwp(·),q(·)(R
n)‖ :=

∥∥∥( ∑
m∈Zn

|λν,m|wν(2−νm)χν,m

)
ν∈N0

| Lp(·)(`q(·)(Rn))
∥∥∥

is finite.

We present now the atomic decomposition results for the scale of 2-microlocal spaces with
variable p and q. While for the Triebel-Lizorkin space Fw

p(·),q(·)(R
n) the result was stated in [14],

the equivalent result for Besov spaces Bw
p(·),q(·)(R

n) is new. However we do not present it here,
since the idea of the proof goes back to [7] where the atomic decomposition was stated for
B
s(·)
p(·),q(·)(R

n), see also Remark 2 in [15].

Theorem 2.9 (Corollary 5.6 in [14]). Let w = (wν)ν∈N0 ∈ Wα
α1,α2

(Rn) and p, q ∈ P log(Rn)
with 0 < p− ≤ p+ < ∞ and 0 < q− ≤ q+ < ∞. Furthermore, let d > 1, K,L ∈ N0 with
K > α2 and L > σp,q−α1 be fixed. Then every f ∈ S ′(Rn) belongs to Fw

p(·),q(·)(R
n) if an only

if it can be represented as

f =
∞∑
ν=0

∑
m∈Zn

λν,m aν,m, convergence being in S ′(Rn), (2.7)

for (aν,m)ν∈N0,m∈Zn [K,L]-atoms according to Definition 2.6 and λ ∈ fwp(·),q(·)(R
n). Moreover,

‖f | Fw
p(·),q(·)(R

n)‖ ∼ inf ‖λ | fwp(·),q(·)(R
n)‖,

where the infimum is taken over all possible representations of f.

Theorem 2.10. Let w = (wν)ν∈N0 ∈ Wα
α1,α2

(Rn) and p, q ∈ P log(Rn) with 0 < q− ≤ q+ <∞.
Furthermore, let d > 1, K,L ∈ N0 with K > α2 and L > σp − α1 be fixed. Then every
f ∈ S ′(Rn) belongs to Bw

p(·),q(·)(R
n) if an only if it can be represented as

f =
∞∑
ν=0

∑
m∈Zn

λν,m aν,m, convergence being in S ′(Rn), (2.8)

for (aν,m)ν∈N0,m∈Zn [K,L]-atoms according to Definition 2.6 and λ ∈ bwp(·),q(·)(R
n). Moreover,

‖f | Bw
p(·),q(·)(R

n)‖ ∼ inf ‖λ | bwp(·),q(·)(R
n)‖,

where the infimum is taken over all possible representations of f.
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3 Non-smooth atomic decompositions

3.1 Non-smooth atoms

At first, we present the concept of non-smooth atoms, slightly adapted from [22] to our scale.
Note that the usual parameters K and L are now nonnegative real numbers instead of natural
numbers.

Definition 3.1. Let K,L ≥ 0, d > 1 and c > 0. A function a : Rn −→ R is called a non-smooth
[K,L]-atom centered at Qν,m, for all ν ∈ N0 and m ∈ Zn, if

(i) supp a ⊂ dQν,m,

(ii) ‖a(2−ν ·) | CK‖ ≤ c ,

(iii) and for every ψ ∈ CL it holds∣∣∣ ∫
dQν,m

ψ(x)a(x)dx
∣∣∣ ≤ c 2−ν(L+n)‖ψ | CL‖.

Remark 3.2. (a) As in the smooth case, if L = 0, then condition (iii) can be ignored since it
follows from conditions (i) and (ii) with K = 0. If K = 0, then by Definition 2.1 we only
require a to be suitable bounded.

(b) The modification of condition (ii) here was suggested in [25] (with some minor adjustments)
and one can see that the usual formulation as in Definition 2.6-(ii) follows from this one if
K is a natural number, since CK(Rn) ↪→ CK(Rn).

(c) Regarding condition (iii), the modification here was suggested by Skrzypczak in [24] for
natural numbers L + 1 (replacing CL(Rn) by CL(Rn)). Here, as in [22], we extended this
definition to general positive numbers L.

3.2 Local means

Let us recall the characterization of Bw
p(·),q(·)(R

n) and Fw
p(·),q(·)(R

n) by local means, proved in
Theorem 6 of [15] and Theorem 2.2 of [13], respectively. For each system (Ψk)k∈N0 ⊂ S(Rn), for
each distribution f ∈ S ′(Rn) and to each number a > 0, we define the Peetre maximal operator
by

(Ψ∗kf)a(x) = sup
y∈Rn

|(Ψk ∗ f)(y)|
1 + |2k(y − x)|a

, where k ∈ N0 and x ∈ Rn.

We start with two given functions ψ0, ψ1 ∈ S(Rn). We define

ψj(x) = ψ1(2
−jx), for x ∈ Rn and j ∈ N. (3.1)

Furthermore, for all k ∈ N0 we write Ψk = ψ̂k.

Remark 3.3. Before presenting the results, we would like to highlight that a careful look into the
proof of the Theorem 6 in [15] shows that the condition a > n+clog(1/q)

p− + α should be replaced
by

a >
n

p−
+ clog(1/q) + α.

Proposition 3.4. Let w = (wj)j∈N0 ∈ Wα
α1,α2

(Rn), p, q ∈ P log(Rn) and let a > 0, R ∈ N0 with
R > α2. Further, let ψ0, ψ1 belong to S(Rn) with

Dβψ1(0) = 0, for 0 ≤ |β| < R, (3.2)
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and
|ψ0(x)| > 0 on {x ∈ Rn : |x| < ε} (3.3)

|ψ1(x)| > 0 on {x ∈ Rn : ε/2 < |x| < 2ε} (3.4)

for some ε > 0.

(i) For a > n
p− + clog(1/q) + α and for all f ∈ S ′(Rn) we have

‖f | Bw
p(·),q(·)(R

n)‖ ∼ ‖(Ψk ∗ f)wk | `q(·)(Lp(·)(Rn))‖ ∼ ‖(Ψ∗kf)awk | `q(·)(Lp(·)(Rn))‖

(i) If p+, q+ <∞, then for a > n
min(p−,q−) + α and for all f ∈ S ′(Rn) we have

‖f | Fw
p(·),q(·)(R

n)‖ ∼ ‖(Ψk ∗ f)wk | Lp(·)(`q(·)(Rn))‖ ∼ ‖(Ψ∗kf)awk | Lp(·)(`q(·)(Rn))‖

Remark 3.5. (a) This result shows that the definition of the 2-microlocal spaces of variable
integrability given in Definition 2.4 is independent of the resolution of unity used.

(b) The conditions (3.2) are usually called moment conditions, while (3.3) and (3.4) are the
so-called Tauberian conditions.

(c) If R = 0, then no moment conditions (3.2) on ψ1 are required.

(d) The notation clog(1/q) stands for the constant from (2.5) with 1/q(·).

3.2.1 Helpful lemmas

Before presenting the main theorem of this section, we provide some technical lemmas which
will be useful later on. The first result is an adaptation of Lemma 3.8 in [22] and it shows that
local means are related to non-smooth [K,L]-atoms.

Lemma 3.6. Let j ∈ N0. If ψj = ψ1(2
−j ·) is a local mean as in Proposition 3.4, then 2−jn ψj

is a non-smooth [K,L]-atom centered at Qj,0 for arbitrary large K > 0 and for L ≤ R + 1 with
R from (3.2).

The next result can be obtained following the steps of the proof of Theorem 3.12 in [22] with
our normalization. The idea is to use the fact that not only aν,m but also Ψj can be understood
as atoms in the sense of Definition 3.1. In this way, we can use estimates of the type (ii) and
(iii) of Definition 3.1 in both functions and get this result.

Lemma 3.7. Let j ∈ N0, ψj = ψ1(2
−j ·) be a local mean as in Proposition 3.4 and let

(aν,m)ν∈N0,m∈Zn be non-smooth [K,L]-atoms. Then∣∣∣∣∫
Rn

Ψj(y)aν,m(x− y) dy

∣∣∣∣ ≤ c 2−(j−ν)Kχ(cQν,m)(x), for j ≥ ν

and ∣∣∣∣∫
Rn

Ψj(x− y)aν,m(y) dy

∣∣∣∣ ≤ c 2−(ν−j)(L+n)χ(c 2ν−jQν,m)(x), for j < ν.

Since the maximal operator is of no use in the case when q is a variable function (see [1]
and [6]), we have to work with another tool. We use convolution inequalities from [6] and [15]
for Fw

p(·),q(·)(R
n) and Bw

p(·),q(·)(R
n), respectively. Therefore, we introduce the functions

ην,R(x) =
2nν

(1 + 2ν |x|)R
,

for ν ∈ N0 and R > 0.

8



Lemma 3.8 (Theorem 3.2 in [6]). Let p, q ∈ C log(Rn) with 1 < p− ≤ p+ < ∞ and 1 < q− ≤
q+ <∞. Then the inequality

‖ην,R ∗ fν | Lp(·)(`q(·)(Rn))‖ ≤ c ‖fν | Lp(·)(`q(·)(Rn))‖

holds for every sequence (fν)ν∈N0 of Lloc1 (Rn) functions and constant R > n.

Lemma 3.9 (Lemma 10 in [15]). Let p, q ∈ P(Rn) with p(·) ≥ 1. For all R > n + clog(1/q),
there exists a constant c > 0 such that for all sequences (fj)j∈N0 ∈ `q(·)(Lp(·)(Rn)) it holds

‖ην,R ∗ fν | `q(·)(Lp(·)(Rn))‖ ≤ c ‖fν | `q(·)(Lp(·)(Rn))‖.

Lemma 3.10 (Lemma 9 in [15]). Let p, q ∈ P(Rn) and δ > 0. Let (gk)k∈Z be a sequence of
non-negative measurable functions on Rn and denote

Gν(x) =
∑
k∈Z

2−|ν−k|δgk(x), for x ∈ Rn and ν ∈ Z.

Then there exist constants C1, C2 > 0, depending on p(·), q(·) and δ, such that

‖Gν | `q(·)(Lp(·)(Rn))‖ ≤ C1 ‖gk | `q(·)(Lp(·)(Rn))‖

and
‖Gν | Lp(·)(`q(·)(Rn))‖ ≤ C2 ‖gk | Lp(·)(`q(·)(Rn))‖.

Remark 3.11. Naturally, Lemma 3.10 holds true also if the indices k and ν run only over natural
numbers.

Lemma 3.12 (Lemma 5.5 in [14]). Let 0 < t ≤ 1, j, ν ∈ N0 and (hνm)ν∈N0,m∈Zn be positive real
numbers. Then we have for R > 0 and x ∈ Rn that

∑
m∈Zn

hνm(1 + 2j |x− 2−νm|)−R ≤ c max(1, 2(ν−j)R)

([
ην,Rt ∗

( ∑
m∈Zn

htνmχνm(·)

)]
(x)

)1/t

.

3.3 A more general atomic representation theorem

In this section we shall prove the more general atomic decomposition theorem. We will follow
the approach of the proof of Theorem 3.12 in [22]. But first we will prove the convergence of
the atomic series in S ′(Rn).

Theorem 3.13. Let w = (wj)j∈N0 ∈ Wα
α1,α2

(Rn) and p, q ∈ P log(Rn). Let K,L ≥ 0 with
K > α2 and L > σp − α1. Then

∞∑
ν=0

∑
m∈Zn

λν,m aν,m (3.5)

converges unconditionally in S ′(Rn), where aν,m are non-smooth [K,L]-atoms located at Qν,m
and λ ∈ bwp(·),q(·) or λ ∈ f

w
p(·),q(·).

Proof. According to [1] and [14] (see also the explanation before Proposition 3.9 in [14]), for
t < min(1, p−) we have the follow sequences of embeddings

bwp(·),q(·) ↪→ b%p(·)
t
,q(·)

↪→ b%p(·)
t
,∞

and
fwp(·),q(·) ↪→ f%p(·)

t
,q(·)

↪→ b%p(·)
t
,∞
,
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where %j(x) = wj(x)2
−j t

p(x)
σt . Since 2

−j t
p(x)

σt =: 2−js(x)σt is again a 2-microlocal weight se-
quence with s(·) ∈ C log(Rn) and 0 ≤ s(x) < 1, then % is also an admissible weight sequence and
it can be shown that % ∈ Wβ

α1−σt,α2
(Rn) with β ≥ 0 large enough. In fact, it can be shown that

β = α+ t σt clog(1/p), where the constant clog(1/p) comes from (2.5).
Let ϕ ∈ S(Rn). We can assume that λ ∈ b%p(·)

t
,∞

, having in mind the above embeddings.

From the conditions (i) and (iii) of the Definition 3.1 we obtain∣∣∣ ∫
Rn

∑
m∈Zn

λν,maνm(x)ϕ(x)
∣∣∣ ≤ c 2−ν(L+n)

∑
m∈Zn

|λν,m| ‖ϕ(·)ψ(2ν · −m) | CL(Rn)‖, (3.6)

where ψ ∈ C∞(Rn), ψ(x) = 1 for x ∈ dQ0,0 and supp ψ ⊂ (d + 1)Q0,0. Since ϕ ∈ S(Rn), we
can estimate the norm in (3.6) from above in the following way:

‖ϕ(·)ψ(2ν · −m) | CL(Rn)‖ ≤ CM (1 + |2−νm|)−M ∼ CM (1 + |y|)−M , y ∈ Qν,m,

where M ∈ N0 is at our disposal and CM does not depend on ν and m. According to the
properties of the admissible weight sequence (3.6) becomes∣∣∣ ∫

Rn

∑
m∈Zn

λν,maνm(x)ϕ(x)dx
∣∣∣ ≤ c 2−ν(L+n)

∑
m∈Zn

|λν,m| %ν(y) (1 + |y|)−M χν,m(y) %ν(y)−1

≤ c 2−ν(L+n)
∑
m∈Zn

|λν,m| %ν(2−νm) (1 + 2ν |y − 2−νm|)−β 2ν(α1−σt) (1 + |y|)−M+β χν,m(y)

∼ c 2−ν(L+α1−σt)
∫
Rn

∑
m∈Zn

|λν,m| %ν(2−νm) (1 + 2ν |x− 2−νm|)−β (1 + |x|)−M+β χν,m(x) dx.

We estimate now the integral and from Hölder’s inequality for Lp(·)(Rn) with p(·)/t > 1 and
choosing M large enough we get∫

Rn

∑
m∈Zn

|λν,m| %ν(2−νm) (1 + 2ν |x− 2−νm|)−β (1 + |x|)−M+β χν,m(x) dx

≤ c

∥∥∥∥∥ ∑
m∈Zn

|λν,m| %ν(2−νm) (1 + 2ν |x− 2−νm|)−β | L p(·)
t

(Rn)

∥∥∥∥∥ .
Finally, we use Lemma 3.7 of [14] with β > n

t and the boundedness of the maximal operator
and obtain∣∣∣ ∫

Rn

∑
m∈Zn

λν,maνm(x)ϕ(x)
∣∣∣ ≤ c 2−ν(L+α1−σt)

∥∥∥∥∥M
( ∑
m∈Zn

|λν,m| %ν(2−νm)χν,m(·)

)
| L p(·)

t

(Rn)

∥∥∥∥∥
≤ c 2−ν(L+α1−σt)

∥∥∥∥∥ ∑
m∈Zn

|λν,m| %ν(2−νm)χν,m(·) | L p(·)
t

(Rn)

∥∥∥∥∥ .
Summing up over ν ∈ N0 and since L > σt − α1 > σp − α1, we arrive at

∞∑
ν=0

∑
m∈Zn

∣∣∣∣∫
Rn
λν,maνm(x)ϕ(x)dx

∣∣∣∣ ≤ C ‖λ | b%p(·)
t
,∞
‖,

from which the absolute convergence of (3.5) and the unconditional convergence in S ′(Rn) fol-
low. �

Now we state the atomic decomposition result.
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Theorem 3.14. Let w = (wj)j∈N0 ∈ Wα
α1,α2

(Rn) and p, q ∈ P log(Rn).

(i) Let K,L ≥ 0 with K > α2 and L > σp − α1 + clog(1/q). Then f ∈ S ′(Rn) belongs to
Bw
p(·),q(·)(R

n) if and only if it can be represented as

f =

∞∑
ν=0

∑
m∈Zn

λν,m aν,m, convergence being in S ′(Rn), (3.7)

for (aν,m)ν∈N0,m∈Zn non-smooth [K,L]-atoms according to Definition 3.1 and λ ∈ bwp(·),q(·)(R
n).

Moreover,
‖f | Bw

p(·),q(·)(R
n)‖ ∼ inf ‖λ | bwp(·),q(·)(R

n)‖,

where the infimum is taken over all possible representations of f .

(ii) Let K,L ≥ 0 with K > α2 and L > σp,q − α1. If p+, q+ < ∞, then f ∈ S ′(Rn) belongs to
Fw
p(·),q(·)(R

n) if and only if it can be represented as

f =
∞∑
ν=0

∑
m∈Zn

λν,m aν,m, convergence being in S ′(Rn),

for (aν,m)ν∈N0,m∈Zn non-smooth [K,L]-atoms according to Definition 3.1 and λ ∈ fwp(·),q(·)(R
n).

Moreover,
‖f | Fw

p(·),q(·)(R
n)‖ ∼ inf ‖λ | fwp(·),q(·)(R

n)‖,

where the infimum is taken over all possible representations of f .

Proof. We rely on the proof of Theorem 3.12 in [22].
There are two directions we shall prove. Observing that every smooth [K,L]-atom is a non-
smooth [K,L]-atom one direction follows directly from Theorems 2.10 and 2.9 (see the proof of
Theorem 3.12 in [22]). We will focus on the other direction, which is the main part of the proof.
We need to show that, even with weaker conditions on the atoms, we still get an element of
Bw
p(·),q(·)(R

n) or Fw
p(·),q(·)(R

n) when considering a linear combination of these non-smooth atoms.
For this, we will use the equivalent characterization by local means given in Proposition 3.4. As
usual, we divide the following summation in dependence on j ∈ N0 into two parts

f =
∞∑
ν=0

∑
m∈Zn

λν,m aν,m =

j∑
ν=0

∑
m∈Zn

λν,m aν,m +
∞∑

ν=j+1

∑
m∈Zn

λν,m aν,m = fj + f j .

We have

‖f | Bw
p(·),q(·)(R

n)‖ ≤ c
(
‖fj | Bw

p(·),q(·)(R
n)‖+ ‖f j | Bw

p(·),q(·)(R
n)‖
)

= c ‖(Ψj ∗ fj)wj | `q(·)(Lp(·)(Rn))‖
+ c ‖(Ψj ∗ f j)wj | `q(·)(Lp(·)(Rn))‖

= I + II. (3.8)

In both parts of the summation, the crucial part is the estimate of∣∣∣∣∫
Rn

Ψj(y)aν,m(x− y) dy

∣∣∣∣ ,
which we already have from Lemma 3.7. As stated before, we use that not only aν,m but also
Ψj can be interpreted as non-smooth atoms and admit estimates as (ii) and (iii) in Definition 3.1.
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Let us first consider the case j ≥ ν. We have, from Lemma 3.7, the estimate∣∣∣∣∫
Rn

Ψj(y)aν,m(x− y) dy

∣∣∣∣ ≤ c 2−(j−ν)Kχ(cQν,m)(x),

and from the properties of the weight sequence in Definition 2.2,

wj(x) ≤ C 2(j−ν)α2wν(2−νm)(1 + 2ν |x− 2−νm|)α.

Putting both together, we have

|(Ψj ∗ fj)(x)wj(x)| ≤ c
j∑

ν=0

∑
m∈Zn

|λν,m| 2−(j−ν)(K−α2)wν(2−νm)χ(cQν,m)(x),

using that |x − 2−νm| . 2−ν for x ∈ cQν,m. Further, using Lemma 3.10 with δ = K − α2 > 0
we get

I ≤ c

∥∥∥∥∥
j∑

ν=0

2−(j−ν)(K−α2)
∑
m∈Zn

|λν,m|wν(2−νm)χ(cQν,m) | `q(·)(Lp(·)(Rn))

∥∥∥∥∥
≤ c′

∥∥∥∥∥ ∑
m∈Zn

|λν,m|wν(2−νm)χ(cQν,m) | `q(·)(Lp(·)(Rn))

∥∥∥∥∥
= c′

∥∥∥λ | bwp(·),q(·)(Rn)
∥∥∥ .

Now, let j < ν. Lemma 3.7 gives us the estimate∣∣∣∣∫
Rn

Ψj(x− y)aν,m(y) dy

∣∣∣∣ ≤ c 2−(ν−j)(L+n)χ(c 2ν−jQν,m)(x)

and using the properties of the weight sequence again, we get

wj(x) ≤ C 2−(ν−j)α1wν(2−νm)(1 + 2j |x− 2−νm|)α.

Note that the following assertion is true: for every x ∈ Rn and every M > 0, there exist a
constant C > 0 such that

χ(c 2ν−jQν,m)(x) ≤ C (1 + 2j |x− 2−νm|)−M .

Combining the last three estimates, we have

∣∣(Ψj ∗ f j)(x)wj(x)
∣∣ ≤ c ∞∑

ν=j+1

∑
m∈Zn

|λν,m| 2−(ν−j)(L+n+α1)wν(2−νm) (1 + 2j |x− 2−νm|)α−M .

We can now estimate II. Let 0 < t ≤ min(1, p−). By Lemma 3.12 with M − α > 0 we get

II ≤ c

∥∥∥∥∥∥
∞∑

ν=j+1

∑
m∈Zn

|λν,m|2−(ν−j)(L+n+α1)wν(2−νm) (1 + 2j |x− 2−νm|)α−M | `q(·)(Lp(·)(Rn))

∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥
∞∑

ν=j+1

2−(ν−j)δ

[
ην,(M−α)t ∗

( ∑
m∈Zn

|λν,m|twtν(2−νm)χν,m(·)

)]1/t
| `q(·)(Lp(·)(Rn))

∥∥∥∥∥∥
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with δ := L+ n+ α1 −M + α and by Lemma 3.10 with δ ≥ 0 we obtain

≤ c′
∥∥∥∥∥∥
[
ην,(M−α)t ∗

( ∑
m∈Zn

|λν,m|twtν(2−νm)χν,m(·)

)]1/t
| `q(·)(Lp(·)(Rn))

∥∥∥∥∥∥
= c′

∥∥∥∥∥ην,(M−α)t ∗
( ∑
m∈Zn

|λν,m|twtν(2−νm)χν,m(·)

)
| ` q(·)

t

(L p(·)
t

(Rn))

∥∥∥∥∥
1/t

.

This can be further estimated using Lemma 3.9 with M − α > n
t + clog(1/q) (note that we are

applying the result for ` q(·)
t

(L p(·)
t

(Rn)))

≤ c′′
∥∥∥∥∥ ∑
m∈Zn

|λν,m|twtν(2−νm)χν,m(·) | ` q(·)
t

(L p(·)
t

(Rn))

∥∥∥∥∥
1/t

= c′′

∥∥∥∥∥ ∑
m∈Zn

|λν,m|wν(2−νm)χν,m(·) | `q(·)(Lp(·)(Rn))

∥∥∥∥∥
= c′′

∥∥∥λ | bwp(·),q(·)(Rn)
∥∥∥ .

In the F -case we do the same estimates as above, use the second part of Lemma 3.10
and apply, instead of Lemma 3.9, Lemma 3.8 for L p(·)

t

(` q(·)
t

) with t < min(1, p−, q−) and
R = (M − α)t > n. �

4 Pointwise multipliers

Let ϕ be a bounded function on Rn. The question is under which conditions the mapping
f 7→ ϕ · f makes sense and generates a bounded operator in a given space Bw

p(·),q(·)(R
n) or

Fw
p(·),q(·)(R

n).
For the classical spaces Bs

p,q(Rn) and F sp,q(Rn), Triebel studied this problem in Section 4.2
of [26], where two different approaches were followed: via atoms and via local means. The first
idea of taking an atomic decomposition of f required the non-existence of moment conditions
as in Definition 2.6-(iii) since the moment conditions are in general destroyed by multiplication
with ϕ. A more general result was then obtained by Triebel using local means. A good overview
on pointwise multipliers in constant exponent spaces Bs

p,q(Rn) and F sp,q(Rn) can be found in
Chapter 4 in [21].

Recently, Scharf has shown in [22] that it is possible to get a very general result on pointwise
multipliers using atomic decomposition but now with the non-smooth atoms.

Our aim in this section is to extend this result for variable exponent spaces Bw
p(·),q(·)(R

n) and
Fw
p(·),q(·)(R

n). Following [22], we take an atomic decomposition of f as in Theorem 3.14, multiply
it by ϕ and prove that the resulting sum is still a sum of non-smooth atoms. We start referring
two helpful results.

Lemma 4.1. (Lemma 4.2 in [22]) Let s ≥ 0. There exists a constant c > 0 such that for all
f, g ∈ Cs(Rn), the product f · g belongs to Cs(Rn) and it holds

‖f · g | Cs(Rn)‖ ≤ c ‖f | Cs(Rn)‖ · ‖g | Cs(Rn)‖.
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The next result shows that the product of a non-smooth [K,L]-atom with a function ϕ ∈
Cρ(Rn) is still a non-smooth [K,L]-atom. It is a slight normalization of Lemma 4.3 in [22] and
so the proof will not be presented here.

Lemma 4.2. There exists a constant c with the following property: for all ν ∈ N0, m ∈ Zn, all
non-smooth [K,L]-atoms aν,m with support in dQν,m and all ϕ ∈ Cρ(Rn) with ρ ≥ max(K,L),
the product

c ‖ϕ | Cρ(Rn)‖−1 · ϕ · aν,m
is a non-smooth [K,L]-atom with support in dQν,m.

We are now in the position of proving the main result.

Theorem 4.3. Let w = (wj)j∈N0 ∈ Wα
α1,α2

(Rn) and p, q ∈ P log(Rn).

(i) Let ρ > max (α2, σp − α1 + clog(1/q)). Then there exists a positive number c such that

‖ϕ · f | Bw
p(·),q(·)(R

n)‖ ≤ c ‖ϕ | Cρ(Rn)‖ · ‖f | Bw
p(·),q(·)(R

n)‖

for all ϕ ∈ Cρ(Rn) and all f ∈ Bw
p(·),q(·)(R

n).

(ii) Let p+, q+ < ∞ and ρ > max(α2, σp,q − α1). Then there exists a positive number c such
that

‖ϕ · f | Fw
p(·),q(·)(R

n)‖ ≤ c ‖ϕ | Cρ(Rn)‖ · ‖f | Fw
p(·),q(·)(R

n)‖

for all ϕ ∈ Cρ(Rn) and all f ∈ Fw
p(·),q(·)(R

n).

Proof. We will prove (i), since (ii) follows similarly. Let f ∈ Bw
p(·),q(·)(R

n). By Theorem 3.14,
there exist λ ∈ bwp(·),q(·)(R

n) and non-smooth [K,L]-atoms (aν,m)ν∈N0,m∈Zn such that f can be
represented as

f =

∞∑
ν=0

∑
m∈Zn

λν,maν,m

and
‖λ | bwp(·),q(·)(R

n)‖ ≤ c ‖f | Bw
p(·),q(·)(R

n)‖,

where the constant c is independent of f ∈ Bw
p(·),q(·)(R

n). By Lemma 4.2 we know that

ϕ · f = ‖ϕ | Cρ(Rn)‖
∞∑
ν=0

∑
m∈Zn

λν,m
(
‖ϕ | Cρ(Rn)‖−1 · ϕ · aν,m

)
=
∞∑
ν=0

∑
m∈Zn

µν,m
(
‖ϕ | Cρ(Rn)‖−1 · ϕ · aν,m

)
is still a linear combination of non-smooth [K,L]-atoms with coefficients µν,m := ‖ϕ | Cρ(Rn)‖λν,m,
which means that we obtained an atomic decomposition for the product ϕ · f . Using now the
other direction of the Theorem 3.14, we know that ϕ · f belongs to Bw

p(·),q(·)(R
n) and it holds

‖ϕ · f | Bw
p(·),q(·)(R

n)‖ ≤ c ‖ϕ | Cρ(Rn)‖ · ‖λ | bwp(·),q(·)(R
n)‖ ≤ c′ ‖ϕ | Cρ(Rn)‖ · ‖f | Bw

p(·),q(·)(R
n)‖,

which completes the proof. �
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