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WITH APPLICATION TO SPARSE FFT

DANIEL POTTS∗, MANFRED TASCHE† , AND TONI VOLKMER‡

Abstract. In the spectral estimation, one has to determine all parameters of an exponential
sum, if only finitely many (noisy) sampled data of this exponential sum are given. Frequently
used methods for spectral estimation are MUSIC (= MUltiple SIgnal Classification) and ESPRIT
(= Estimation of Signal Parameters via Rotational Invariance Technique). For a trigonometric
polynomial of large sparsity, we present a new sparse fast Fourier transform by shifted sampling and
using MUSIC resp. ESPRIT, where the ESPRIT based methods will be faster. Later this technique is
extended to the reconstruction of multivariate trigonometric polynomials of large sparsity, if (noisy)
sampled values on a reconstructing rank-1 lattice are given. Numerical experiments illustrate the
high performance of this procedure.
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1. Introduction. The problem of spectral estimation resp. frequency analysis
arises quite often in signal processing, electrical engineering, and mathematical physics
(see e.g. the survey [19]) and reads as follows:

(P1) Recover the positive integer M , the distinct frequencies ωj ∈ (− 1
2 ,

1
2 ], and the

complex coefficients cj 6= 0 (j = 1, . . . ,M) in the exponential sum of sparsity M

h(x) :=

M∑

j=1

cj e
2πiωjx (x ∈ R) , (1.1)

if noisy sampled data h̃k := h(k) + ek (k = 0, . . . , N − 1) with N ≥ 2M are given,
where ek ∈ C are small error terms with |ek| ≤ ε1 and 0 ≤ ε1 ≪ minj |cj |.
Introducing so-called left/right signal spaces and noise spaces in Section 2, we explain
the numerical solution of the problem (P1) by the MUSIC method (created by [26])
and the ESPRIT method (created by [25]). We show that both methods are based on
singular value decomposition (SVD) of a rectangular Hankel matrix of given sampled
data. The main disadvantages of MUSIC and ESPRIT are the high computational
cost in the case of large sparsity M , caused mainly by the SVD. The computational
cost of an algorithm is measured in the number of arithmetical operations, where
all operations are counted equally. Often the computational cost of an algorithm is
reduced to the leading term, i.e., all lower order terms are omitted.
Our aim is an efficient spectral estimation for a moderate number of samples with low
computational cost, if one has to recover an exponential sum (1.1) of large sparsity
M . Therefore we specialize the problem (P1). Let S > 0 be a large even integer.
Replacing the variable x by Sx in (1.1), we consider the 1-periodic trigonometric
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polynomial of sparsity M

g(x) := h(Sx) :=
M∑

j=1

cj e
2πiωjx (x ∈ R) , (1.2)

but now with integer frequencies ωj ∈ (−S
2 ,

S
2 ] ∩ Z. Consequently, in Section 3 we

investigate the following spectral estimation problem:

(P2) Recover the sparsity M ∈ N, all integer frequencies ωj ∈ (−S
2 ,

S
2 ] ∩ Z as well

as all non-zero coefficients cj ∈ C of the trigonometric polynomial (1.2) from noisy
sampled values g̃k := g( kS ) + ek = h(k) + ek (k = 0, . . . , N − 1) with N ≥ 2M , where
ek ∈ C are small error terms with |ek| ≤ ε1 and 0 ≤ ε1 ≪ minj |cj |. Often one
considers the modified problem (P2*), where the sparsity M is known.

A numerical solution of problem (P2) or (P2*) with low computational cost is called
sparse fast Fourier transform (sparse FFT). Using divide-and-conquer technique, the
trigonometric polynomial (1.2) of large sparsity M is split into some trigonomet-
ric polynomials of lower sparsity and corresponding samples are determined by fast
Fourier transform (FFT). Here we borrow an idea from sparse FFT in [15, 2] and
use shifted sampling of (1.2), i.e., equidistant sampling with few equidistant shifts.
Then the trigonometric polynomials of lower sparsity can be recovered by MUSIC
resp. ESPRIT. The computational cost of the new sparse FFT is analyzed too.
A similar splitting technique is suggested in [15, 2], but with a different method to de-
tect frequencies, when aliasing between two or more frequencies occurs. The method
in [15, 2] follows an idea of [8], which is based on the Chinese Remainder Theorem,
see also [1]. A different method for the sparse FFT, based on efficient filters is sug-
gested in [7, 5]. We remark that there are two types of methods, deterministic (see
[8]) and randomized (see [7, 15, 5]). Further related randomized methods based on
compressed sensing can be found in the papers [24, 14, 6] and in the monograph [4].
Please note that the sparse FFT methods mentioned before solve the problem (P2*),
i.e., one assumes that the sparsity is known, whereas our new deterministic sparse
FFT also detects the sparsity M .
In Section 4, several numerical experiments with noiseless resp. noisy sampled data
illustrate the high performance of the sparse FFT proposed. Note that in the case
of successful recovery of the sparse trigonometric polynomial (1.2) all frequencies are
correctly detected.
In Section 5, we extend our method to the reconstruction of multivariate trigonometric
polynomials of large sparsity, where sampled data on a convenient rank-1 lattice are
given. Numerical examples for 6-variate trigonometric polynomials of sparsity 256 are
given. Here in the case of successful recovery of a sparse multivariate trigonometric
polynomial, all frequency vectors are detected without errors.

2. Reconstruction of exponential sums. The main difficulty is the recovery
of the frequency set Ω := {ω1, . . . , ωM} in (1.1). Note that the distance between two
frequencies ωj , ωℓ ∈ (− 1

2 ,
1
2 ] is measured by

d(ωj , ωℓ) := min
n∈Z

|ωj + n− ωℓ| .

We introduce the rectangular Fourier–type matrix FN,M :=
(
e2πiωj(k−1)

)N,M

k,j=1
.

Note that FN,M coincides with the rectangular Vandermonde matrix V N,M (z) :=

(zk−1
j )N,M

k,j=1 with z := (zj)
M
j=1, where zj := e2πiωj (j = 1, . . . ,M) are distinct nodes on
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the unit circle. Then the spectral estimation problem can be formulated in following
matrix-vector form

V N,M (z) c =
(
h̃k

)N−1

k=0
, (2.1)

where h̃ := (h̃k)
N−1
k=0 is the vector of noisy sampled data and c := (cj)

M
j=1 the vector

of complex coefficients.
Under the natural assumption that the nodes zj (j = 1, . . . ,M) are well-separated
on the unit circle, it can be shown that F P,M is well conditioned for sufficiently large
P > M .

Theorem 2.1 (see [16, Theorem 2]) Assume that the frequencies ωj ∈ (− 1
2 ,

1
2 ] (j =

1, . . . ,M) are well-separated by the separation distance

q := min
j 6=ℓ

d(ωj , ωℓ) > 0

and that P > max {M, 2π + 1
q}.

Then the discrete Ingham inequalities related to F P,M indicate that for all x ∈ C
M

α1(P ) ‖x‖22 ≤ ‖F P,M x‖22 ≤ α2(P ) ‖x‖22 (2.2)

with

α1(P ) := P

(
2

π
− 2

πP 2q2
− 4

P

)

, α2(P ) := P

(

4
√
2

π
+

√
2

πP 2q2
+

3
√
2

P

)

.

Furthermore, the rectangular Fourier–type matrix F P,M has a uniformly bounded spec-
tral norm condition number

cond2 F P,M ≤
√

4P 2q2 + 1 + 3πPq2√
2P 2q2 −

√
2− 2

√
2πPq2

.

Proof. The assumption P > 2π + 1
q is sufficient that the gap condition

q >
1

P

(

1− 2π

P

)−1/2

(2.3)

is fulfilled. The gap condition (2.3) ensures that α1(P ) > 0. For a proof of the
discrete Ingham inequalities (2.2) under the gap condition (2.3) see [16, Theorem 2].
Let λ1 ≥ . . . ≥ λM > 0 be the ordered eigenvalues of F ∗

P,MF P,M ∈ CM×M . Using

the Raleigh–Ritz Theorem and (2.2), we obtain that for all x ∈ C
M

α1(P ) ‖x‖22 ≤ λM ‖x‖22 ≤ ‖F P,M x‖22 ≤ λ1 ‖x‖22 ≤ α2(P ) ‖x‖22
and hence

0 < α1(P ) ≤ λM ≤ λ1 ≤ α2(P ) < ∞ . (2.4)

Thus F ∗
P,MF P,M is positive definite and

cond2 F P,M =

√

λ1

λM
≤
√

α2(P )

α1(P )
.

This completes the proof.
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Corollary 2.1 Assume that the frequencies ωj ∈ (− 1
2 ,

1
2 ] (j = 1, . . . ,M) are well-

separated by the separation distance q > 0 and that P > max {M, 2π + 1
q}.

Then the discrete Ingham inequalities related to FT
P,M indicate that for all y ∈ C

P

α1(P ) ‖y‖22 ≤ ‖FT
P,M y‖22 ≤ α2(P ) ‖y‖22 . (2.5)

Proof. The matrices F P,M and FT
P,M possess the same singular values λj (j =

1, . . . ,M). By the Rayleigh–Ritz Theorem we obtain that

λM ‖y‖22 ≤ ‖FT
P,M y‖22 ≤ λ1 ‖y‖22

for all y ∈ C
P . Applying (2.4), it follows the discrete Ingham inequalities (2.5).

Remark 2.2 The Riesz stability of the exponentials exp (2πiωjx) (j = 1, . . . ,M) in
the Hilbert space ℓ2(ZN ) follows immediately from the discrete Ingham inequalities
(2.2), where ZN := {0, . . . , N − 1} denotes the sampling grid. If the assumptions
of Theorem 2.1 are fulfilled for P = N , then the exponentials exp (2πiωjx) (j =
1, . . . ,M) are Riesz stable with respect to the discrete norm of ℓ2(ZN ), i.e.

α1(N) ‖c‖22 ≤
N−1∑

k=0

|h(k)|2 ≤ α2(N) ‖c‖22

for all exponential sums (1.1) with arbitrary coefficient vectors c = (cj)
M
j=1 ∈ C

M .
Note that the Riesz stability of these exponentials related to continuous norms was
formerly discussed and applied in spectral estimation in [18, 21].

In practice, the sparsity M of the exponential sum (1.1) is often unknown. Assume
that L ∈ N is a convenient upper bound of M with M ≤ L ≤ N − M + 1. In
applications, such an upper bound L is mostly known a priori. If this is not the case,
then one can choose L ≈ N

2 . Often the sequence {h̃0, h̃1, . . . , h̃N−1} of sampled data
is called a time series of length N . Then we form the L-trajectory matrix of this time
series

H̃L,N−L+1 :=
(
h̃ℓ+m

)L−1,N−L

ℓ,m=0
(2.6)

with the window length L ∈ {M, . . . , N −M + 1}. Analogously, we define

HL,N−L+1 :=
(
h(ℓ+m)

)L−1,N−L

ℓ,m=0
. (2.7)

Obviously, (2.6) and (2.7) are L × (N − L + 1) Hankel matrices. For simplicity, we
consider mainly the noiseless case, i.e. h̃k = h(k) (k = 0, . . . , N − 1).
The main step in the solution of the frequency analysis problem (P1) is the determi-
nation of the sparsity M and the computation of the frequencies ωj or alternatively
of the nodes zj = e2πiωj (j = 1, . . . , M). Afterwards one can calculate the coefficient
vector c ∈ C

M as least squares solution of the overdetermined linear system (2.1),
i.e., the coefficient vector c is the solution of the least squares problem

‖V N,M (z) c−
(
h̃k

)N−1

k=0
‖2 = min .

We denote square matrices with only one index and refer to the well known fact
that the square Vandermonde matrix V M (z) is invertible and the matrix V N,L(z)
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with L ∈ {M, . . . , N −M + 1} has full column rank. Additionally we introduce the
rectangular Hankel matrices

H̃L,N−L(s) := H̃L,N−L+1(1 : L, 1 + s : N − L+ s) (s = 0, 1) . (2.8)

In the case of noiseless data h̃k = h(k) (k = 0, . . . , N−1), the related Hankel matrices
(2.8) are denoted by HL,N−L(s) (s = 0, 1).

Remark 2.3 The Hankel matrix HL,N−L+1 has the rank M for each window length
L ∈ {M, . . . , N − M + 1} and the related Hankel matrices HL,N−L(s) (s = 0, 1)
possess the same rank M for each window length L ∈ {M, . . . , N − M} (see [20,
Lemma 2.1]). Consequently, the order M of the exponential sum (1.1) coincides with
the rank of these Hankel matrices.

By the Vandermonde decomposition of the Hankel matrix HL,N−L+1 we obtain that

HL,N−L+1 = V L,M (z) (diag c) (V N−L+1,M (z))T . (2.9)

Under mild conditions, the Hankel matrix HL,N−L+1 is well-conditioned too.

Theorem 2.2 Let L, N ∈ N with M ≤ L ≤ N −M + 1 and min {L, N − L + 1} >
2π + 1

q be given. Assume that the frequencies ωj ∈ (− 1
2 ,

1
2 ] (j = 1, . . . ,M) are

well-separated by the separation distance q > 0 and that the non-zero coefficients cj
(j = 1, . . . ,M) of the exponential sum (1.1) fulfil the condition

0 < γ1 ≤ |cj | ≤ γ2 < ∞ (j = 1, . . . ,M) . (2.10)

Then for all y ∈ C
N−L+1

γ2
1 α1(L)α1(N−L+1) ‖y‖22 ≤ ‖HL,N−L+1 y‖22 ≤ γ2

2 α2(L)α2(N−L+1) ‖y‖22 . (2.11)

Further, the lowest (non-zero) resp. largest singular value of HL,N−L+1 can be esti-
mated by

0 < γ1
√

α1(L)α1(N − L+ 1) ≤ σM ≤ σ1 ≤ γ2
√

α2(L)α2(N − L+ 1) .

The spectral norm condition number of HL,N−L+1 is bounded by

cond2 HL,N−L+1 ≤ γ2
γ1

√

α2(L)α2(N − L+ 1)

α1(L)α1(N − L+ 1)
.

Proof. By the Vandermonde decomposition (2.9) of the Hankel matrix HL,N−L+1,
we obtain that for all y ∈ C

N−L+1

‖HL,N−L+1 y‖22 = ‖FL,M (diag c)FT
N−L+1,M y‖22 .

By the discrete Ingham inequalities (2.2) and the assumption (2.10), it follows that

γ2
1 α1(L) ‖FT

N−L+1,M y‖22 ≤ ‖HL,N−L+1 y‖22 ≤ γ2
2 α2(N − L+ 1) ‖FT

N−L+1,M y‖22 .

Using the discrete Ingham inequalities (2.5), we obtain the estimates (2.11). Finally,
the estimates of the lowest resp. largest singular value and the spectral norm condition
number of HL,N−L+1 arise from (2.11) and the Rayleigh–Ritz Theorem.
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The ranges of HL,N−L+1 and V L,M (z) coincide in the noiseless case with M ≤ L ≤
N−M+1 by (2.9). If L > M , then the range of V L,M (z) is a proper subspace of CL.
This subspace is called left signal space SL. The left signal space SL is of dimension
M and is generated by the M columns eL(ωj) (j = 1, . . . ,M), where

eL(ω) :=
(
e2πi ℓω

)L−1

ℓ=0
(ω ∈ (−1

2
,
1

2
]) .

Note that ‖eL(ω)‖2 =
√
L for each ω ∈ (− 1

2 ,
1
2 ]. The left noise space NL is defined

as the orthogonal complement of SL in C
L. The dimension of NL is equal to L−M .

Remark 2.4 Let M ≤ L < N − M + 1 be given. If we use H∗
L,N−L+1 instead of

HL,N−L+1, then we can define the right signal space as the range of V N−L,M (z̄),
where z̄ denotes the complex conjugate of z. The right signal space is an M -
dimensional subspace of C

N−L+1 and is generated by the M linearly independent
vectors eN−L+1(ωj) (j = 1, . . . ,M). Then the corresponding right noise space is the
orthogonal complement of the right signal space in C

N−L+1.

By QL we denote the orthogonal projection onto the left noise space NL. Since
eL(ωj) ∈ SL (j = 1, . . . ,M) and NL ⊥ SL, we obtain that

QL eL(ωj) = 0 (j = 1, . . . ,M) .

If ω ∈ (− 1
2 ,

1
2 ] \ Ω, then the vectors eL(ω1), . . . , eL(ωM ), eL(ω) ∈ C

L are linearly
independent, since the square Vandermonde matrix

(
eL(ω1) | . . . | eL(ωM ) | eL(ω)

)
(1 : M + 1, 1 : M + 1)

is invertible for each L ≥ M + 1. Hence eL(ω) /∈ SL = span {eL(ω1), . . . , eL(ωM )},
i.e. QLeL(ω) 6= 0. Thus the frequency set Ω can be determined via the zeros of the
left noise-space correlation function

NL(ω) :=
1√
L
‖QL eL(ω)‖2 (ω ∈ (−1

2
,
1

2
]) ,

since NL(ωj) = 0 for each j = 1, . . . ,M and 0 < NL(ω) ≤ 1 for all ω ∈ (− 1
2 ,

1
2 ] \ Ω,

where QLeL(ω) can be computed on an equispaced fine grid. Alternatively, one can
seek the peaks of the left imaging function

JL(ω) :=
√
L ‖QL eL(ω)‖−1

2 (ω ∈ (−1

2
,
1

2
]) .

In this approach, we prefer the zeros resp. the lowest local minima of the left noise-
space correlation function NL(ω).
In the next step we determine the orthogonal projection QL onto the left noise space
NL. Here we can use the singular value decomposition (SVD) or the QR decomposi-
tion of the L-trajectory matrix HL,N−L+1. For an application of QR decomposition
see [20]. Applying SVD, we obtain that

HL,N−L+1 = UL DL,N−L+1 W
∗
N−L+1 ,

where UL ∈ C
L×L and WN−L+1 ∈ C

(N−L+1)×(N−L+1) are unitary matrices and
where DL,N−L+1 ∈ R

L×(N−L+1) is a rectangular diagonal matrix. The diagonal
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entries of DL,N−L+1 are the singular values σj of the L-trajectory matrix arranged
in nonincreasing order σ1 ≥ . . . ≥ σM > σM+1 = . . . = σmin {L,N−L+1} = 0. Thus we
can determine the order M of the exponential sum (1.1) by the number of positive
singular values σj .
Introducing the matrices

U
(1)
L,M := UL(1 : L, 1 : M) , U

(2)
L,L−M := UL(1 : L, M + 1 : L)

with orthonormal columns, we see that the columns of U
(1)
L,M form an orthonormal

basis of SL and that the columns of U
(2)
L,L−M are an orthonormal basis of NL. Hence

the orthogonal projection onto the left noise space NL has the form

QL = U
(2)
L,L−M (U

(2)
L,L−M )∗ .

Consequently, we obtain that

‖QL eL(ω)‖22 = 〈QL eL(ω), QL eL(ω)〉 = 〈(QL)
2 eL(ω), eL(ω)〉

= 〈QL eL(ω), eL(ω)〉 = 〈U (2)
L,L−M (U

(2)
L,L−M )∗ eL(ω), eL(ω)〉

= 〈(U (2)
L,L−M )∗ eL(ω), (U

(2)
L,L−M )∗ eL(ω)〉 = ‖(U (2)

L,L−M )∗ eL(ω)‖22 .

Hence the left noise-space correlation function can be represented by

NL(ω) =
1√
L
‖(U (2)

L,L−M )∗ eL(ω)‖2 (ω ∈ (−1

2
,
1

2
]) .

In MUSIC, one determines the lowest local minima of the left noise-space correlation
function, see e.g. [26, 17, 3, 13].

Algorithm 2.5 (MUSIC via SVD)
Input: L, N ∈ N (N ≫ 1, M < L ≤ N −M +1, M is the unknown sparsity of (1.1)),
h̃k = h(k) + ek ∈ C (k = 0, . . . , N − 1) noisy sampled values of (1.1), 0 < ε ≪ 1
tolerance.

1. Compute the SVD of the rectangular Hankel matrix (2.6), where the singular values
σ̃ℓ (ℓ = 1, . . . ,min {L, N−L+1}) are arranged in nonincreasing order. Determine the
numerical rank M of (2.6) such that σ̃M ≥ ε σ̃1 and σ̃M+1 < εσ̃1. Form the matrix

Ũ
(2)

L,L−M .

2. Calculate the left noise-space correlation function ÑL(ω) :=
1√
L
‖(Ũ (2)

L,L−M )∗eL(ω)‖2 on an equispaced grid {− 1
2 + 1

S , . . . , 1
2 − 1

S ,
1
2} for

sufficiently large S.
3. The M lowest local minima of ÑL(

2k−S
2S ) (k = 1, . . . , S) form the frequency set

Ω̃ := {ω̃1, . . . , ω̃M}. Set z̃j := e2πiω̃j (j = 1, . . . ,M).
4. Compute the coefficient vector c̃ := (c̃j)

M
j=1 ∈ C

M as solution of the least squares
problem

‖V N,M (z̃) c̃−
(
h̃k

)N−1

k=0
‖2 = min ,

where z̃ :=
(
z̃j
)M

j=1
denotes the vector of computed nodes.

Output: M ∈ N, ω̃j ∈ (− 1
2 ,

1
2 ], c̃j ∈ C (j = 1, . . . ,M).
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Let L, N ∈ N with M < L ≤ N − M + 1 be given. For noisy sampled data h̃k =
h(k) + ek (k = 0, . . . , N − 1), the MUSIC Algorithm 2.5 is relatively insensitive to
small perturbations on the data (see [16, Theorem 3]).
In opposite to the MUSIC Algorithm 2.5, the following ESPRIT Algorithm is based
on orthogonal projection onto a right signal space. For details see [25, 20, 23].

Algorithm 2.6 (ESPRIT via SVD)
Input: L, N ∈ N (N ≫ 1, M < L ≤ N −M +1, M is the unknown sparsity of (1.1)),
h̃k = h(k) + ek ∈ C (k = 0, . . . , N − 1) noisy sampled values of (1.1), 0 < ε ≪ 1
tolerance.

1. Compute the SVD of the rectangular Hankel matrix (2.6), where the singular values
σ̃ℓ (ℓ = 1, . . . ,min {L, N − L + 1}) are arranged in nonincreasing order. Determine
the numerical rank M of (2.6) such that σ̃M ≥ ε σ̃1 and σ̃M+1 < εσ̃1. Form the
submatrices

W̃N−L,M (s) := W̃N−L+1(1 + s : N − L+ s, 1 : M) (s = 0, 1) .

2. Calculate the matrix

F̃M := W̃N−L,M (1)∗
(
W̃N−L,M (0)∗

)†
,

where
(
W̃N−L,M (0)∗

)†
denotes the Moore–Penrose pseudoinverse.

3. Determine all eigenvalues z′j (j = 1, . . . ,M) of F̃M . Set

ω̃j :=
1

2π
Arg

z′j
|z′j |

∈ (−1

2
,
1

2
] (j = 1, . . . ,M) ,

where Arg z ∈ (−π, π] means the principal value of the argument of z ∈ C \ {0}.
4. Compute the coefficient vector c̃ := (c̃j)

M
j=1 ∈ C

M as solution of the least squares
problem

‖V N,M (z̃) c̃−
(
h̃k

)N−1

k=0
‖2 = min ,

where z̃ :=
(
z̃j
)M

j=1
denotes the vector of computed nodes z̃j := e2πi ω̃j .

Output: M ∈ N, ω̃j ∈ (− 1
2 ,

1
2 ], c̃j ∈ C (j = 1, . . . ,M).

The numbers of required samples and the computational costs of the Algorithms 2.5
and 2.6 are listed in Table 2.1, where L is chosen such that M < L ≈ N

2 . Thus the
main disadvantages of these algorithms are the high computational costs for large
sparsity M , caused mainly by the SVD. Therefore in [22], we have suggested to use a
partial SVD (based on partial Lanczos bidiagonalization) instead of a complete SVD.
For both Algorithms 2.5 and 2.6, one needs too many operations in the case of large
sparsity M , see Table 2.1.

3. Sparse fast Fourier transform. In this section, we apply Algorithm 2.5
(MUSIC) resp. Algorithm 2.5 (ESPRIT) to the reconstruction of sparse trigono-
metric polynomials. Clearly, one can approximate the unknown frequencies of the
exponential sum (1.1) by fractions. Therefore we assume that the unknown frequen-
cies of (1.1) are fractions

ωj

S with ωj ∈ (−S
2 ,

S
2 ] ∩ Z, where S is a large even integer.
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method samples computational cost

Algorithm 2.5 (MUSIC) 2N + 1 O(N3 +N2S + S logS)
Algorithm 2.6 (ESPRIT) 2N + 1 O(N3)

Table 2.1

Numbers of required samples and computational costs for the Algorithms 2.5 and 2.6 in the
case M < L ≈ N

2
.

Replacing the variable x by Sx in (1.1), we obtain the new exponential sum

g(x) := h(Sx) :=
M∑

j=1

cj e
2πiωjx (x ∈ R) . (3.1)

Then g is a 1-periodic trigonometric polynomial with sparsity M . Consequently we
consider the spectral estimation problem (P2) of Section 1.
In the following, we propose a new deterministic sparse FFT for solving the problem
(P2) of a trigonometric polynomial (3.1) with large sparsity M . Using divide–and–
conquer technique, we split the trigonometric polynomial (3.1) of large sparsity M
into some trigonometric polynomials of lower sparsity and determine corresponding
samples. Here we borrow an idea from sparse FFT in [2] and use shifted sampling of
(3.1). For a positive integer P ≤ S, we construct a discrete array of samples of size
P × (2K + 1) via

gP [s, k] := g

(
s

P
+

k

S

)

, (s = 0, . . . , P − 1; k = 0, . . . , 2K).

For each k = 0, . . . , 2K we form the discrete Fourier transform (DFT) of length P
and obtain

ĝP [ℓ, k] :=

P−1∑

s=0

gP [s, k] e
−2πisℓ/P (ℓ = 0, . . . , P − 1) .

The fast Fourier transform (FFT) allows the rapid computation of this DFT of length
P in O(P logP ) operations. Then for each ℓ = 0, . . . , P − 1, it follows that

ĝP [ℓ, k] =
P−1∑

s=0

M∑

j=1

cj e
2πiωj(s/P+k/S) e−2πisℓ/P

=
M∑

j=1

cj e
2πiωjk/S

P−1∑

s=0

e2πi(ωj−ℓ)s/P

︸ ︷︷ ︸

=0 or P

.

Now we define the index sets

IP (ℓ) :=
{
j ∈ {1, . . . ,M} : ωj ≡ ℓ (modP )

}

such that

ĝP [ℓ, k] = P
∑

j∈IP (ℓ)

cj e
2πiωjk/S .
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We choose K ∈ N as sparsity cut-off parameter. For each ℓ = 0, . . . , P − 1
with |IP (ℓ)| < K, we apply Algorithm 2.5 resp. 2.6 to the “samples” ĝP [ℓ, k]
(k = 0, . . . , 2K), which yields the corresponding frequencies ωj and coefficients cj
for j ∈ IP (ℓ). If the condition |IP (ℓ)| < K is fulfilled for all ℓ = 0, . . . , P − 1, i.e., the
frequencies ωj are almost uniformly distributed on the sets IP (ℓ) (ℓ = 0, . . . , P − 1),
this approach requires (2K + 1)P samples of g and 2K + 1 FFTs of length P . The
computational costs for the corresponding algorithms are listed in Table 3.1.

If we cannot uniquely identify all frequencies, i.e., if |IP (ℓ)| ≥ K for some ℓ, then we
form iteratively the new trigonometric polynomial

g1(x) := g(x)−
∑

j∈I

cj e
2πiωjx , (3.2)

where I is the union of all IP (ℓ) with the property |IP (ℓ)| < K. In the next iteration
step, we choose a positive integer P1 ≤ S different from P and repeat the method on
the trigonometric polynomial g1. In doing so, we can compute the values

∑

j∈I

cj e
2πiωj(

s
P1

+ k
S ) =

∑

j∈I

(

cj e
2πi

ωj
P1

s
)

e2πi
ωj
S k (s = 0, . . . , P1 − 1; k = 0, . . . , 2K)

by the nonequispaced fast Fourier transform (NFFT) [12] in O (P1(K logK + |I|))
arithmetic operations.

We perform additional iterations until all frequencies can be identified, i.e., if
|IP1

(ℓ)| < K for all ℓ = 0, . . . , P1 − 1. Note that our algorithm is related to the
sparse FFT proposed in [2]. But here we use the methods of Section 2, if aliasing
with respect to modulo P occurs.

All of the methods described in Section 2 apply an SVD and use the tolerance ε as
a relative threshold parameter to determine the local sparsity Mℓ of the signal. A
good choice of this parameter may depend without limitation on noise in the sampling
values of the trigonometric polynomial g and on the smallest distance between two
frequencies, where this distance may change for each ℓ ∈ {0, . . . , P − 1} in each
iteration. We propose to use a (small) list of possible relative threshold parameters
ε, which are tested for each ℓ ∈ {0, . . . , P − 1} in each iteration.

Our sparse FFT for recovery of a trigonometric polynomial with large sparsity reads
as follows:

Algorithm 3.1 (Sparse FFT via MUSIC resp. ESPRIT,
see Algorithm A.1 for detailed listing with extended parameter list)

Input: S ∈ 2N, K, P ∈ N (P ≤ S, M is the unknown sparsity of (3.1)), g̃P [s, k] noisy
sampled value of (3.1) at s

P + k
S for s = 0, . . . , P − 1 and k = 0, . . . , 2K.

I. For each k = 0, . . . , 2K compute
(
ĝP [ℓ, k]

)P−1

ℓ=0
by FFT of

(
g̃P [s, k]

)P−1

s=0
and form

the Hankel matrix H̃K,2K+1 :=
(
ĝP [ℓ+m, k]

)K−1,K+1

ℓ,m=0
.

II. For ℓ = 0, . . . , P − 1:
II.1 Apply Algorithm 2.5 resp. 2.6 (with L = K and N = 2K + 1) on the Hankel
matrix H̃K,2K+1. Determine the local sparsity Mℓ and compute the local fractions
ω̃ℓ,j ∈ (− 1

2 ,
1
2 ] for j = 1, . . . ,Mℓ. Compute the local frequencies ωℓ,j := round (ω̃ℓ,j S)

by rounding to nearest integer.
II.2. Compute the local coefficients cℓ,j as least squares solution of the overdetermined

10



Vandermonde system
∥
∥
∥
∥
∥
P

(

exp
2πikωℓ,j

S

)2K,Mℓ

k=0,j=1

(cℓ,j)
Mℓ
j=1 − (ĝP [ℓ, k])

2K
k=0

∥
∥
∥
∥
∥
2

= min .

II.3. If the residual is small and |cℓ,j | is not too small, then append the frequencies
ωℓ,j (j = 1, . . . ,Mℓ) to the frequency set Ω.
III. If |IP (ℓ)| ≥ K for some ℓ = 0, . . . , P − 1, then form the new trigonometric
polynomial (3.2). In the next iteration step choose a positive integer P1 ≤ S different
from P , sample (3.2) on s

P1

+ k
S for s = 0, . . . , P1 − 1 and k = 0, . . . , 2K, and repeat

the above method.

Output: Ω ⊂ (−S
2 ,

S
2 ] ∩ Z set of recovered frequencies ωj (j = 1, . . . ,M), M := |Ω|

detected sparsity, cj ∈ C coefficient related to ωj .

The numbers of required samples and the computational cost for one iteration of
Algorithm 3.1 are given in Table 3.1.

method samples computational cost

Alg. 3.1 via MUSIC (2K + 1)P O
(
KP 2 +K3P +K2S + S log S

P

)

Alg. 3.1 via ESPRIT (2K + 1)P O
(
KP 2 +K3P

)

Table 3.1

Numbers of required samples and computational cost of one iteration step of Algorithm 3.1.

By choosing the parameters K = O(M1/3) and P = O(M2/3), we compare the
numbers of required samples and computational costs for different methods of spectral
estimation in Table 3.2 such as sparse FFT via MUSIC, sparse FFT via ESPRIT,
MUSIC, ESPRIT, and classical FFT. As we can see, the sparse FFT via ESPRIT is
very useful for the spectral estimation by a relatively low number of samples and low
computational cost.

method samples computational cost

Alg. 3.1 via MUSIC Alg. 2.5 O(M) O
(
M2/3S + S log S

M2/3

)

Alg. 3.1 via ESPRIT Alg. 2.6 O(M) O
(
M5/3

)

Alg. 2.5 (MUSIC) O (M) O
(
M2S + S logS

)

Alg. 2.6 (ESPRIT) O (M) O
(
M3
)

FFT of length S S O(S logS)
Table 3.2

Numbers of required samples and computational costs using the splitting approach for one itera-
tion of Algorithm 3.1 as well as for Algorithms 2.5 and 2.6 in the case K = O(M1/3), P = O(M2/3)
and M ≈ L/2 ≈ N/4.

4. Numerical experiments with sparse FFT. In this section, we present
some numerical results for Algorithm 3.1. All computations are performed in MAT-
LAB with IEEE double–precision arithmetic. First we consider noiseless sampled
data and later the case, where the sampled data are perturbed by additive (white)
Gaussian noise.

11



4.1. Noiseless sampled data.

Example 4.1 From noiseless sampled values, we reconstruct 100 trigonometric poly-
nomials (3.1) of orderM = 256 with random frequencies ωj ∈ (−S

2 ,
S
2 ]∩Z and random

coefficients cj on the unit circle. We set the array of relative SVD threshold values
epsilon svd list := [10−1, 10−2, . . . , 10−8], the parameter εspatial := 10−8, the ab-
solute value of minimal non-zero coefficients εfc min := 10−1 = 10−1 ·minj |cj | and the
maximal number of iterations R := 10, see Algorithm A.1 for the extended parameter
list. Applying the sparse FFT Algorithm 3.1 with MUSIC in the case S = 216 with
parameters K ∈ {6, 12, 16} and P ∈ {16, 32, 64, 128}, we can successfully detect
all integer frequencies ωj . In Table 4.1, the column “iterations” depicts the maximal
number of iterations actually used by the Algorithm 3.1 (computed over 100 trigono-
metric polynomials). The column “samples” contains the maximal number of sampled
values used by the Algorithm 3.1. The column “ℓ2–errors” shows two values. The first
value is the maximal relative ℓ2–error of the coefficients, which are locally computed
in step II.2 of Algorithm 3.1. The second value is the maximal relative ℓ2–error of
the coefficients, which are determined by additional solving one large Vandermonde
system at the end of Algorithm 3.1 with all frequencies as well as all samples of (3.1).

K P iterations samples ℓ2-errors
6 16 10 3939 3.1e-09/2.8e-15
6 32 5 2600 8.5e-10/2.5e-15
6 64 3 2626 3.0e-10/2.5e-15
6 128 2 3367 5.7e-11/1.9e-14
12 16 5 2600 3.4e-10/2.4e-15
12 32 2 1725 1.7e-10/9.2e-15
12 64 2 3275 1.3e-10/7.9e-14
12 128 1 3200 1.4e-11/1.6e-14
16 16 3 1716 5.2e-10/2.3e-15
16 32 2 2277 2.3e-10/4.4e-14
16 64 2 4323 9.9e-11/3.3e-14
16 128 1 4224 7.4e-12/6.3e-15

850 1 1 1701 2.3e-13/2.3e-13
Table 4.1

Results for Algorithm 3.1 via MUSIC for frequency grid parameter S = 216 and sparsity M =
256.

Note that the sparse FFT Algorithm 3.1 via ESPRIT yields identical iteration and
sampling numbers as well as similar error values, but it requires a shorter compu-
tational time. For comparison, the classical FFT of length 216 requires 216 samples
and the resulting ℓ2–error is 2.6e-16. The minimal number of samples for the cases
K ∈ {6, 12, 16} and P ∈ {16, 32, 64, 128} is reached for K = P = 16 with 1716
samples, the next smallest number of samples is 1725 for K = 12 and P = 32. If we
do not use the splitting approach (P = 1 and R = 1), we observe that the detection
of some frequencies fails for exactly 1 of the 100 signals for K = 750 and the detec-
tion of all frequencies of all 100 signals succeeds for K = 850 requiring 1701 samples.
This number of samples is very close to the minimum of 1716 samples from above.
However, a direct application of MUSIC method (entry K = 850) requires distinctly
more computational cost than with the sparse FFT Algorithm 3.1.
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Example 4.2 Now we apply Algorithm 3.1 with ESPRIT. From noiseless sampled
values, we reconstruct 100 trigonometric polynomials (3.1) of order M = 1024 with
random frequencies ωj ∈ (−S

2 ,
S
2 ]∩Z and random coefficients cj on the unit circle. The

results for the frequency grid parameter S := 222 are shown in Table 4.2. The minimal
number of samples is about 6 times higher compared to the results in Table 4.1.
In general, we observe that the maximal number of used iterations decreases for
increasing initial FFT length P ∈ {64, 128, 256, 512} as well as for increasing values
K ∈ {8, 10, 12}. In the cases, where all frequencies of all the 100 trigonometric
polynomials are correctly detected, the number of required samples first decreases
and later increases again for increasing initial FFT length P and fixed values K.
The reason for this is that the number of samples per iteration increases for growing
FFT length, while the number of used iterations decreases until its minimum one is
reached.

K P iterations samples ℓ2-errors
8 64 10 14059 1.3e-09/5.2e-15
8 128 8 19635 1.3e-09/6.0e-15
8 256 3 13192 1.0e-09/5.0e-15
8 512 2 17561 8.3e-10/9.0e-15
10 64 10 17367 2.7e-09/5.7e-15
10 128 6 17535 1.2e-09/5.5e-15
10 256 2 10773 1.2e-09/4.7e-15
10 512 2 21693 6.2e-10/1.6e-14
12 64 10 20675 1.5e-09/6.0e-15
12 128 4 13375 1.0e-09/5.0e-15
12 256 2 12825 1.1e-09/5.1e-15
12 512 2 25825 1.1e-09/1.9e-14

Table 4.2

Results for Algorithm 3.1 via ESPRIT for frequency grid parameter S = 222 and sparsity
M = 1024.

4.2. Noisy case. In this subsection, we test the robustness to noise of Algo-
rithm 3.1. For this, we perturb the samples of the trigonometric polynomials g from
(3.1) by additive complex white Gaussian noise with zero mean and standard deviation
σ, i.e., we have measurements g̃

(
k
S + s

P

)
= g( kS + s

P ) + ηk,s, where ηk,s ∈ C are inde-
pendent and identically distributed complex Gaussian. Then, we may approximately
compute the signal-to-noise ratio (SNR) in our case by

SNR ≈
1
S

∑S−1
k=0 |g( kS )|2

1
S

∑S−1
k=0 |ηk,0|2

≈
∑M

j=1 |cj |2
σ2

.

Correspondingly, we choose σ := ‖(cj)Mj=1‖2/
√
SNR for a targeted SNR value.

For the numerical computations in MATLAB, we generate the noise by ηk,s :=
σ/

√
2 * (randn + 1i*randn). Moreover, we choose the parameter εspatial := 5σ

and this means that |ηk,s| ≤ εspatial for more than 99.9998% of the noise values ηk,s.

Example 4.3 As in Example 4.1, we generate 100 trigonometric polynomials (3.1)
of order M = 256 with random frequencies ωj ∈ (−S

2 ,
S
2 ]∩Z and random coefficients
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cj from the unit circle. We set the frequency grid parameter S = 216, the signal
sparsity M = 256, the array of relative SVD threshold values epsilon svd list :=
[10−2, 10−3, . . . , 10−8] and the maximal number of iterations R := 10. Here, we set
the absolute value of minimal non-zero coefficients εfc min := 10−1 = 10−1 ·minj |cj |.
We use the parameters P ∈ {32, 64, 128} and K ∈ {12, 24} with SNR values 108

and 1010. The results of Algorithm 3.1 via ESPRIT are presented in Table 4.3.
Additionally, we test the sparsity cut-off parameter K2 ∈ N differently from the
Hankel matrix size parameter K, see Algorithm A.1. Here, we use the parameter
combinations (K,K2) ∈ {(12, 6), (12, 12), (24, 12)}. In general, we observe that we
require more samples for SNR = 108 than for SNR = 1010 and that the relative
errors are about one order of magnitude larger for SNR = 108, since the maximal
noise values ηk,s are larger by about one order of magnitude with high probability.
Moreover, the maximal number of samples in the noisy case is higher than in the
noiseless case, cf. Table 4.1. For some parameter combinations, exactly one of the 100
signals is not correctly detected and this is indicated by the entry “–” in the column
“ℓ2-errors”. All parameters of (3.1) are correctly detected in the case SNR = 1010

for the parameter combinations (K,K2) ∈ {(12, 6), (12, 12), (24, 12)} and P = 32.
For the considered test parameters, the choices (K,K2) ∈ {(12, 6), (24, 12)}, which
yield a higher oversampling within the ESPRIT algorithm, give slightly better results
compared to the choice K = K2 = 12.

SNR K K2 P iterations samples ℓ2-errors
108 12 6 32 7 7800 –
108 12 6 64 4 6875 3.9e-04/2.8e-05
108 12 6 128 3 9900 2.0e-04/2.2e-05
108 12 12 32 6 6325 –
108 12 12 64 4 6875 –
108 12 12 128 3 9900 2.0e-04/2.2e-05
108 24 12 32 4 7497 3.9e-04/2.8e-05
108 24 12 64 3 9898 1.4e-04/2.2e-05
108 24 12 128 2 12691 2.4e-05/2.3e-05
108 3000 3000 1 1 6001 4.2e-05/4.2e-05
108 3500 3500 1 1 7001 2.9e-05/2.9e-05

1010 12 6 32 6 6325 1.4e-05/2.8e-06
1010 12 12 32 5 5000 1.7e-05/3.4e-06
1010 24 12 32 3 5390 8.9e-06/3.0e-06
1010 3000 3000 1 1 6001 –
1010 3500 3500 1 1 7001 3.3e-06/3.3e-06

Table 4.3

Results for Algorithm 3.1 via ESPRIT for frequency grid parameter S = 216 and sparsity
M = 256 with noisy data.

Example 4.4 Additionally, we generate 100 random trigonometric polynomials (3.1),
where the coefficients cj are drawn uniformly at random from [−1, 1] + [−1, 1] i with
|cj | ≥ 10−2. We set the absolute value of minimal non-zero coefficients εfc min :=
10−3 = 10−1 · minj |cj |. In the case SNR = 108, we observe in each considered
parameter combination that the correct detection of one or two frequencies fails for
several of the 100 trigonometric polynomials. The most likely reason is the fact that
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the smallest coefficient can be very close to the noise level. If we decrease the noise
by one order of magnitude, i.e. SNR = 1010, the frequency detection succeeds for all
considered parameter combinations.
Furthermore, we generate 100 random trigonometric polynomials (3.1), where the
coefficients cj are drawn uniformly at random from [−1, 1] + [−1, 1] i with |cj | ≥
10−1. Then we set the absolute value of minimal non-zero coefficients εfc min :=
10−2 = 10−1 · minj |cj |. This means that the smallest possible coefficient as well
as the parameter εfc min are by one order of magnitude as before. Now in both of
the cases SNR = 108 and SNR = 1010, we observe for each parameter combination
(K,K2) ∈ {(12, 6), (12, 12), (24, 12)} and P ∈ {32, 64, 128} that all frequencies of all
trigonometric polynomials are correctly detected.

5. Reconstruction of multivariate trigonometric polynomials. Let
d, M ∈ N with d > 1 be given. We consider the d-variate exponential sum of sparsity
M

g(x) :=

M∑

j=1

cj e
2πiωj ·x (5.1)

for x := (x1, . . . , xd)
T ∈ R

d with non-zero coefficients cj ∈ C and distinct frequency
vectors ωj := (ωj,1, . . . , ωj,d)

T ∈ (−S
2 ,

S
2 ]

d ∩ Z
d, where S > 0 is an even integer

power. Here the dot in the exponent denotes the usual scalar product in R
d. Note

that the function (5.1) is a d-variate trigonometric polynomial of sparsity M which is
1-periodical with respect to each variable. Let Ω := {ω1, . . . , ωM} be the set of the
frequency vectors.
We assume that we know a priori that ωj are contained in a frequency set Γ ⊂ Z

d.
Then the cardinality of Γ satisfies |Γ| ≥ M . Examples of possible frequency sets Γ
are the cube {k ∈ Z

d : ‖k‖∞ ≤ N} and the symmetric hyperbolic cross

{

k = (ks)
d
s=1 ∈ Z

d :

d∏

s=1

max {1, |ks|} ≤ N

}

.

For given z ∈ Z
d and T ∈ N, the set

Λ(z, T ) :=

{

xk =
k

T
zmod1; k = 0, . . . , T − 1

}

⊂ T
d ≃ [0, 1)

d

is called rank–1 lattice, where 1 := (1, . . . , 1)T. Note that xk = xk+nT for k =
0, . . . , T − 1 and n ∈ Z. For given Γ ⊂ Z

d, there exists a reconstructing rank-1 lattice
Λ(z, T ) such that the matrix

AT,|Γ| :=
(

e2πik·x
)

x∈Λ(z,T ),k∈Γ

fulfils the condition (see [9] and [10, Section 3.2])

A∗
T,|Γ| AT,|Γ| = T I |Γ| . (5.2)

Then we consider the following spectral estimation problem:

(P3) Assume that ωj ∈ Γ (j = 1, . . . ,M) and that Λ(z, T ) is a reconstructing rank–1
lattice with respect to Γ. Recover the sparsity M ∈ N, all frequencies ωj ∈ Γ as
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well as all non-zero coefficients cj ∈ C of the d-variate exponential sum (5.1), if noisy
sampled data

g̃k := g(xk) + ek (|ek| ≤ ε1 ≪ minj |cj |)

for all k = 0, . . . , 2L − 2 are given, where xk ∈ Λ(z, T ), T ≥ L > M and ek ∈ C are
small error terms.

For simplicity we discuss only noiseless data. Let HL :=
(
g(xk+n)

)L−1

k,n=0
be the

response matrix of the given data. Then HL is a Hankel matrix. Further we introduce
the rectangular Fourier-type matrix

FL,M :=
(
e2πiωj ·xk

)L−1,M

k=0,j=1
.

From (5.2) it follows in the case L = T that F ∗
T,M F T,M = T IM and hence for all

x ∈ C
M

‖F T,Mx‖22 = x∗F ∗
T,M F T,Mx = T ‖x‖22 .

Consequently, all singular values of F T,M are equal to
√
T and cond2F T,M = 1.

The matrix HL can be represented in the form

HL = FL,M

(
diag (cj)

M
j=1

)
FT

L,M . (5.3)

The ranges of HL and FL,M coincide in the noiseless case by (5.3). The range of
FL,M is a proper subspace of CL. This subspace is called left signal space SL. The
left signal space SL is of dimension M and is generated by the M columns eL(ωj)
(j = 1, . . . ,M), where

eL(ω) :=
(
e2πiω·xk

)L−1

k=0
(ω ∈ Γ) .

Note that ‖eL(ω)‖2 =
√
L for each ω ∈ Γ. The left noise space NL is defined as the

orthogonal complement of SL in C
L. The dimension of NL is equal to L−M > 0.

By QL we denote the orthogonal projection onto the left noise space NL. Since
eL(ωj) ∈ SL (j = 1, . . . ,M) and NL ⊥ SL, we obtain that

QL eL(ωj) = 0 (j = 1, . . . ,M) .

If ω ∈ Γ \ Ω, then the vectors eL(ω1), . . . , eL(ωM ), eL(ω) ∈ C
L are linearly inde-

pendent for T ≥ L > M . This can be seen as follows: For distinct ω, ω′ ∈ Γ , it
follows by [10, Lemma 3.1] that

ω · z 6≡ ω′ · z (modT ).

Consequently the vectors

eL(ωj) :=
(
e2πi (ωj ·z) k

T

)L−1

k=0
(j = 1, . . . ,M)

and eL(ω) with ω ∈ Γ \ Ω are linearly independent for T ≥ L > M , since the square
Vandermonde matrix

(
eL(ω1)| . . . |eL(ωM )|eL(ω)

)
(1 : M + 1, 1 : M + 1)
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is invertible for each L ≥ M + 1. Hence

eL(ω) /∈ SL = span {eL(ω1), . . . , eL(ωM )} ,

i.e. QL eL(ω) 6= 0.
Thus the frequency vectors can be determined via the M zeros resp. lowest local
minima of the left noise-space correlation function

NL(ω) :=
1√
L
‖QL eL(ω)‖2 (ω ∈ Γ)

or via the M peaks of the left imaging function

JL(ω) :=
√
L ‖QL eL(ω)‖−1

2 (ω ∈ Γ) .

Similar to Section 2, one can determine the left noise-space correlation function resp.
the left imaging function on Γ by using SVD of the response matrix HL.
Now, we proceed analogously to Section 3 replacing the parameter S by the rank-1
lattice size T . For a positive integer P ≤ T , we construct the sampling array of (5.1)
of size P × (2K + 1) via

gP [s, k] := g

((
s

P
+

k

T

)

z

)

(s = 0, . . . , P − 1; k = 0, . . . , 2K).

As in the univariate case, for each k = 0, . . . , 2K we form the DFT of length P

ĝP [ℓ, k] :=
P−1∑

s=0

gP [s, k] e
−2πisℓ/P (ℓ = 0, . . . , P − 1) .

For each ℓ = 0, . . . , P − 1, we obtain that

ĝP [ℓ, k] =

P−1∑

s=0

M∑

j=1

cj e
2πi(s/P+k/T )ωj ·z e−2πisℓ/P

=

M∑

j=1

cj e
2πikωj ·z/T

P−1∑

s=0

e2πi((ωj ·z)−ℓ)s/P .

Introducing the index sets

IP (ℓ) :=
{

j ∈ {1, . . . ,M} : ωj · z ≡ ℓ (modP )
}

(ℓ = 0, . . . , P − 1) ,

it follows that

ĝP [ℓ, k] = P
∑

j∈IP (ℓ)

cj e
2πikωj ·z/T .

Now we apply Algorithm 2.5 resp. 2.6 for each ℓ = 0, . . . , P − 1 and we compute the
one-dimensional frequencies ωℓ,j ∈ (−T

2 ,
T
2 ]∩Z. We transform these one-dimensional

frequencies ωℓ,j into their d-dimensional counterparts ωℓ,j ∈ Γ using the relation
ωℓ,j · z ≡ ωℓ,j (mod T ) given by the reconstructing rank-1 lattice Λ(z, T ). Then
we compute coefficients cj from the samples ĝP [ℓ, k] (k = 0, . . . , 2K) by solving the
corresponding overdetermined Vandermonde system. If we cannot identify all the
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frequencies, i.e., if |IP (ℓ)| ≥ K for some indices ℓ, we consider the new trigonometric
polynomial

g1(x) := g(x)−
∑

j∈I

cj e
2πiωj ·x =

M∑

j=1

cj e
2πiωj ·x −

∑

j∈I

cj e
2πiωj ·x (x ∈ T

d) (5.4)

in an additional iteration, where the index set I contains all index sets IP (ℓ) with
|IP (ℓ)| < K. In the next iteration, we choose a positive integer P1 ≤ S different
from P and repeat the method for the trigonometric polynomial g1. In doing so, we
compute the values

∑

j∈I

cj e
2πi( s

P1
+ k

T )ωj ·z =
∑

j∈I

(

cj e
2πi

ωj
P1

s
)

e2πi
ωj ·z

T k (s = 0, . . . , P1 − 1; k = 0, . . . , 2K)

of the second sum in (5.4) evaluated at the nodes x = ( s
P1

+ k
T )z with the univariate

NFFT [12] in O (P1(K logK + |I|)) arithmetic operations. We perform additional
iterations until all frequencies can be identified, i.e. |IP1

(ℓ)| < K for all ℓ = 0, . . . , P1−
1.
We modify Algorithm 3.1 from Section 3 as described above and additionally in the
following way. Here, we describe the changes in the detailed listing (see Algorithm A.1)
of Algorithm 3.1. In step 1, we sample the multivariate trigonometric polynomial at
the nodes

(
s
P + k

T

)
·z (s = 0, . . . , P −1, k = 0, . . . , 2K). In step 3.3.3, we compute

the discrete frequencies ωℓ,j := round (ω̃ℓ,j T ) for j = 1, . . . ,Mℓ. Next, we compute
the d-dimensional counterparts ωℓ,j of the one-dimensional frequencies ωℓ,j using the
relation ωℓ,j · z ≡ ωℓ,j (mod T ). In step 3.3.4, we filter the frequencies ωℓ,j by
removing non-unique ones and by keeping only those with ωℓ,j · z ≡ ℓ (modP ). We
remark that we have to modify step 3.3.4 and that we have to perform the conversion
of one-dimensional frequencies ωℓ,j to their d-dimensional counterparts ωℓ,j before
the filtering, since the conditions ωℓ,j · z ≡ ℓ (modP ) and ωℓ,j ≡ ℓ (modP ) are not
equivalent in general if P is not a divisor of T .
In the following example, we present some numerical results for the modified Algo-
rithm 3.1 for dimension d = 6.

Example 5.1 We choose the index set Γ of possible frequency vectors as the 6-dimen-
sional hyperbolic cross Γ := {k ∈ Z

6 :
∏6

s=1 max {1, |ks|} ≤ 16} of cardinality 169209.
Further we use the reconstructing rank-1 lattice Λ(z, T ) with generating vector z =
(1, 33, 579, 3628, 21944, 169230)⊤ and rank-1 lattice size T = 1105193, see [11, Table
6.2]. We generate 100 random trigonometric polynomials (5.1) with sparsityM = 256,
where the frequency vectors ωj (j = 1, . . . ,M) are chosen uniformly at random from Γ
(without repetition) and the corresponding coefficients cj are randomly chosen on the
unit circle. We set the array of relative SVD threshold values epsilon svd list :=
[10−2, 10−3, . . . , 10−8], the absolute value of minimal non-zero coefficients εfc min :=
10−1, and the maximal number of iterations R := 10. In the noiseless case, we set the
parameter εspatial := 10−8, and in the noisy case as described in Subsection 4.2. The
results of the modified Algorithm 3.1 via ESPRIT are presented in Table 5.1.
The columns of Table 5.1 have the same meaning as in Section 4. For the noiseless
case, i.e. “SNR = ∞”, we observe the same behavior as in the one-dimensional case
in Subsection 4.1. The detection of all frequency vectors of all 100 trigonometric
polynomials (5.1) succeeds for K = K2 ∈ {8, 10, 12} and P ∈ {8, 16, 32, 64, 128}.
For the noisy case, the results are worse than in Table 4.3 of the one-dimensional
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SNR K K2 P iterations samples ℓ2-errors
∞ 8 8 8 10 3893 5.1e-08/6.2e-11
∞ 8 8 16 10 5151 5.1e-08/6.4e-11
∞ 8 8 32 10 8687 6.6e-09/9.3e-11
∞ 8 8 64 3 3434 2.6e-09/3.2e-10
∞ 8 8 128 2 4403 2.8e-09/1.8e-09
∞ 10 10 8 9 3948 5.0e-09/6.5e-11
∞ 10 10 16 10 6363 1.0e-08/6.8e-11
∞ 10 10 32 10 10731 3.9e-09/1.1e-10
∞ 10 10 64 10 17367 6.2e-09/5.5e-10
∞ 10 10 128 2 5439 2.3e-09/1.7e-09
∞ 12 12 8 10 5725 8.6e-09/6.8e-11
∞ 12 12 16 10 7575 1.1e-08/7.1e-11
∞ 12 12 32 3 2750 2.9e-09/1.3e-10
∞ 12 12 64 4 6875 3.0e-09/8.5e-10
∞ 12 12 128 2 6475 2.2e-09/1.9e-09

108 24 12 32 10 25039 8.6e-05/1.4e-05
108 24 12 64 7 25774 5.1e-05/1.5e-05

1010 12 12 64 4 6875 2.2e-05/2.5e-06
1010 24 12 32 5 9800 6.2e-05/2.4e-06
1010 24 12 64 3 9898 8.4e-06/2.2e-06

Table 5.1

Results of the modified Algorithm 3.1 via ESPRIT with sparsity M = 256, frequency vectors
within 6-dimensional hyperbolic cross index set Γ = {k ∈ Z6 :

∏
6

s=1
max {1, |ks|} ≤ 16}, and

resulting rank-1 lattice Λ(z, T ) with z = (1, 33, 579, 3628, 21944, 169230)⊤ and T = 1105193.

case. The reason for this is that we have a bijective mapping between 6-dimensional
ωj and one-dimensional frequencies ωj by means of the reconstructing rank-1 lattice,
ωj ·z ≡ ωj(modT ), and the rank-1 lattice size T influences how close two distinct one-
dimensional fractional frequencies ω′

j/T and ω′′
j /T may get in the ESPRIT algorithm.

For the lower SNR = 108 value, the detection of all frequencies of all 100 signals
succeeds for the parameters K = 24, K2 = 12 and P ∈ {32, 64}. For the higher
SNR = 1010 value, the detection succeeds for all depicted parameter combinations.
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[6] K. Gröchenig, B. M. Pötscher, and H. Rauhut. Learning trigonometric polynomials
from random samples and exponential inequalities for eigenvalues of random matrices.
arXiv:math/0701781v2, 2010.

[7] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly optimal sparse Fourier transform. In
Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, pages
563 – 578. ACM, 2012.

[8] M. A. Iwen. Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math., 10:303
– 338, 2010.

[9] L. Kämmerer. Reconstructing multivariate trigonometric polynomials from samples along rank-
1 lattices. In G. E. Fasshauer and L. L. Schumaker, editors, Approximation Theory XIV:
San Antonio 2013, pages 255 – 271. Springer International Publishing, 2014.

[10] L. Kämmerer. High Dimensional Fast Fourier Transform Based on Rank-1 Lattice Sampling.
Dissertation. Universitätsverlag Chemnitz, 2014.
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Appendix A. Detailed sparse FFT algorithm.

Algorithm A.1 (Detailed listing of Algorithm 3.1 with extended parameter list)

Input: S ∈ 2N frequency grid parameter, K ∈ N Hankel matrix size parameter,
K2 ∈ N sparsity cut-off parameter (default value K), P ∈ N initial FFT length, g 1-
periodic sparse trigonometric polynomial of unknown sparsityM ∈ N with frequencies
in (−S

2 ,
S
2 ]∩Z, epsilon svd list array of relative SVD threshold values 0 < εSVD < 1

in descending order, εspatial > 0 estimate for maximal noise value, εfc min > 0 lower
bound of absolute values of non-zero coefficients, R ∈ Nmaximal number of iterations.
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Create empty index set array Ω and coefficient array C.
for iteration r := 1, . . . , R
1. Construct the discrete array of samples of g of length P × (2K + 1) via

gP [s, k] := g
(
s
P + k

S

)
−∑|Ω|

j′=1 C[j′] e2πiΩ[j′]( s
P + k

S ) (s = 0, . . . , P −1; k = 0, . . . , 2K).
2. Compute for each k = 0, . . . , 2K an FFT of length P and obtain array ĝP of length
P × (2K + 1), ĝP [ℓ, k] :=

∑P−1
s=0 gP [s, k] e

−2πisℓ/P for ℓ = 0, . . . , P − 1, if P > 1.
Otherwise if P = 1, then set ĝP [ℓ, k] := gP [ℓ, k] for ℓ = 0, . . . , P − 1.
3. for ℓ := 0, . . . , P − 1
3.1. If ‖ĝP [ℓ, 0 : 2K]‖∞/P < εspatial, then go to 3. and continue with next ℓ.
3.2. Set variable found svd := 0.
3.3. for εSVD in epsilon svd list

3.3.1. Apply Algorithm 2.5 resp. 2.6 with L := K, N := 2K + 1 and ε := εSVD on
the vector ĝP [ℓ, 0 : 2K] and obtain (local) sparsity Mℓ, frequencies ω̃ℓ,j ∈ (− 1

2 ,
1
2 ] for

j = 1, . . . ,Mℓ.
3.3.2. If Mℓ ≥ K2 then go to 3.3. and continue with next (smaller) εSVD.
3.3.3. Compute discrete frequencies ωℓ,j := round (ω̃ℓ,j S) for j = 1, . . . ,Mℓ.
3.3.4. Filter frequencies ωℓ,j by removing non-unique ones and by keeping only those
where ωℓ,j ≡ ℓ (modP ). Set Mℓ to number of resulting frequencies ωℓ,j .
3.3.5. Compute (local) Fourier coefficients cℓ,j as least squares solution from the

overdetermined Vandermonde system (ĝP [ℓ, 0 : 2K])⊤ ≈ (e2πikωℓ,j/S)2K; Mℓ

k=0; j=1 (P ·
cℓ,j)

Mℓ
j=1.

3.3.6. If residual ‖(e2πikωℓ,j/S)2K,Mℓ

k=0,j=1 (cℓ,j)
Mℓ
j=1 − (ĝP [ℓ, 0 : 2K])⊤/P‖∞ > 10 · εspatial,

then go to 3.3. and continue with next (smaller) εSVD.
Otherwise, set variable found svd := 1, leave for εSVD loop and go to 3.5.
3.3. end for εSVD

3.4. If found svd 6= 1, then go to 3. and continue with next ℓ.
3.5. If a frequency has already been found, i.e., ωℓ,j = Ω[j′] for any j = 1, . . . ,Mℓ,
then update the corresponding coefficient C[j′] by computing C[j′] := C[j′] + cℓ,j .
3.6. Append new frequencies of ωℓ,j , j = 1, . . . ,Mℓ, to array Ω and append corre-
sponding coefficients to array C.
3. end for ℓ
4. Remove small coefficients

∣
∣C[j′]

∣
∣ < εfc min from array C and remove corresponding

frequencies from array Ω for any j′.

5. If the residual max
s=0,...,P−1
k=0,...,2K

∣
∣
∣
∑|Ω|

j′=1 C[j′] e2πiΩ[j′]( s
P + k

S ) − g
(
s
P + k

S

)
∣
∣
∣ < 10 · εspatial,

then set Rused := r and exit r-loop.
Otherwise, determine next prime number larger than current FFT length P and use
this larger prime as P in the next iteration.
end for iteration r

Output: Detected sparsity M := |Ω| ∈ N, array Ω ⊂ (−S
2 ,

S
2 ] ∩ Z of detected frequen-

cies, array C ∈ C
M of corresponding coefficients.
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