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A Lagrange Duality Approach for Multi-Composed Optimization

Problems∗

Gert Wanka† Oleg Wilfer‡

Abstract: In this paper we consider an optimization problem with geometric and cone
constraints, whose objective function is a composition of n+1 functions. For this problem
we calculate its conjugate dual problem, where the functions involved in the objective
function of the primal problem will be decomposed. Furthermore, we formulate generalized
interior point regularity conditions for strong duality and give necessary and su�cient
optimality conditions. As applications of this approach we determine the formulas of the
conjugate as well as the biconjugate of the objective function of the primal problem and
discuss an optimization problem having as objective function the sum of reciprocals of
concave functions.
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1 Introduction

Conjugate duality is a powerful instrument to analyze optimization problems and has for that
reason a wide range of applications. Over the last couple of years, an important field of ap-
plications arises in subjects such as facility location theory [19], machine learning [3], image
restoration [4] and portfolio optimization [6], to mention only a few of them. In many cases, the
objective function of an optimization problem occurring in the mentioned research areas may
be written as a composition of two functions. The method presented in this paper can also be
seen as a splitting technique, which makes not only the derivation of duality assertions easier,
but also the handling of optimization problems from the numerical point of view.
But until now there is no duality approach for the more general situation, namely, where the
optimization problem is considered as the minimization of an objective function that is a com-
position of more than two functions. The advantage of this consideration is that the objective
function of a certain optimization problem can be splitted into a certain number of functions to
refine and improve some theoretical and numerical aspects. In fact, this study is more general
than in [1], [2], [5], [7], [8] and [14] and can furthermore be understood as a union of all kinds
of meaningful perturbation methods.
Therefore, the goal of this paper is to consider an optimization problem with geometric and
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cone constraints, whose objective function is a composition of n + 1 functions and to deliver
a full duality approach for this type of problems. For short, we will call such problems multi-
composed optimization problems. As applications we present the formulas of the conjugate and
the biconjugate of a multi-composed function, i.e. a function that is a composition of n + 1
functions. Moreover, we discuss in the last section an optimization problem having as objective
function the sum of reciprocals of concave functions.
To this end, we first introduce in Section 2 some definitions and notations from convex analy-
sis. In Section 3 we consider a multi-composed optimization problem with geometric and cone
constraints. Then, we give an equivalent formulation of this problem and use the reformulated
optimization problem to construct a corresponding conjugate dual problem to the main prob-
lem, followed by a weak duality theorem. The convenience of this approach is that the functions
involved in the composed objective function of the original problem can be decomposed in the
formulation of the conjugate dual problem or, to formulate it more precisely, their conjugates.
Section 4 is devoted to generalized interior point regularity conditions guaranteeing strong dual-
ity. Moreover, by using the strong duality theorem we formulate some optimality conditions for
the original problem and its corresponding conjugate dual problem. Besides of this approach, we
discover in Section 5 the formula of the conjugate of a multi-composed function. We find also
a formula of the biconjugate function and close this section with a theorem which characterizes
some topological properties of this function.
In Section 6, as a further application of our approach, we consider a convex optimization prob-
lem having as objective function the sum of reciprocals of concave functions. For this problem
we formulate its corresponding conjugate dual problem and state a strong duality theorem from
which we derive necessary and su�cient optimality conditions.

2 Notations and preliminary results

Let X be a Hausdor↵ locally convex space and X

⇤ its topological dual space endowed with the
weak* topology w(X⇤

, X). For x 2 X and x

⇤ 2 X

⇤
, let hx⇤, xi := x

⇤(x) be the value of the linear
continuous functional x⇤ at x. For a subsetA ✓ X, its indicator function �

A

: X ! R = R[{±1}
is

�

A

(x) :=

⇢

0, if x 2 A,

+1, otherwise.

For a given function f : X ! R we consider its e↵ective domain

dom f := {x 2 X : f(x) < +1}.

and call the function f proper if dom f 6= ; and f(x) > �1 for all x 2 X. The conjugate
function of f with respect to the non-empty subset S ✓ X is defined by

f

⇤
S

: X⇤ ! R, f

⇤
S

(x⇤) = (f + �

S

)⇤(x⇤) = sup
x2S

{hx⇤, xi � f(x)}.

In the case S = X, it is clear that f⇤
S

turns into the classical Fenchel-Moreau conjugate function
of f denoted by f

⇤.
Additionally, we consider a non-empty convex cone K ✓ X, which induces on X a partial
ordering relation “5

K

”, defined by

5
K

:= {(x, y) 2 X ⇥X : y � x 2 K},
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i.e. for x, y 2 X it holds x 5
K

y , y � x 2 K. Note that we assume that all cones we consider
contain the origin. Further, we attach to X a greatest element with respect to “5

K

”, denoted
by +1

K

, which does not belong to X and denote X = X [ {+1
K

}. Then it holds x 5
K

+1
K

for all x 2 X. We also define x 
K

y if and only if x 5
K

y and x 6= y. Further, we define
5R+=: and R+=:< .

On X we consider the following operations and conventions: x + (+1
K

) = (+1
K

) + x :=
+1

K

8x 2 X [ {+1
K

} and � · (+1
K

) := +1
K

8� 2 [0,+1]. Further, if K

⇤ := {x⇤ 2
X

⇤ : hx⇤, xi � 0, 8x 2 K} is the dual cone of K, then we define hx⇤,+1
K

i := +1 for
all x⇤ 2 K

⇤. On the extended real space R we add the following operations and conventions:
� + (+1) = (+1) + � := +1 8� 2 (�1,+1], � + (�1) = (�1) + � := �1 8� 2
[�1,+1), � · (+1) := +1 8� 2 [0,+1], � · (+1) := �1 8� 2 [�1, 0), � · (�1) :=
�1 8� 2 (0,+1], � · (�1) := +1 8� 2 [�1, 0), (+1) + (�1) = (�1) + (+1) := +1,
0(+1) := +1 and 0(�1) := 0.
Let Z be another Hausdor↵ locally convex space ordered by the convex cone Q ✓ Z and Z

⇤ its
topological dual space endowed with the weak* topology w(Z⇤

, Z), then for a vector function
F : X ! Z = Z [ {+1

Q

} the domain is the set domF := {x 2 X : F (x) 6= +1
Q

}. If
domF 6= ;, then the function F is called proper. When F (�x+(1��)y) 5

Q

�F (x)+(1��)F (y)
holds for all x, y 2 X and all � 2 [0, 1] the function F is said to be Q-convex. A function
f : X ! R is called convex if f(�x + (1 � �)y)  �f(x) + (1 � �)f(y) for all x, y 2 X and all
� 2 [0, 1].
The Q-epigraph of a vector function F is epi

Q

F = {(x, z) 2 X ⇥ Z : F (x) 5
Q

z} and we say
that F is Q-epi closed if epi

Q

F is a closed set.

For a z

⇤ 2 Q

⇤ we define the function (z⇤F ) : X ! R by (z⇤F )(x) := hz⇤, F (x)i, where it is
not hard to see that dom(z⇤F ) = domF . Moreover, it is easy to see that if F is Q-convex,
then (z⇤F ) is convex for all z⇤ 2 Q

⇤. Let us point out that by the operations we defined on
a Hausdor↵ locally convex space attached with a maximal element and on the extended real
space, there holds 0f = �

dom f

and (0
Z

⇤
F ) = �

domF

, where 0
Z

⇤ denotes the origin of Z⇤.
A function f : X ! R is called lower semicontinuous at x 2 X if lim inf

x!x

f(x) � f(x) and
when this function is lower semicontinuous at all x 2 X, then we call it lower semicontinuous
(l.s.c. for short). The vector function F is called star Q-lower semicontinuous at x 2 X if
(z⇤F ) is lower semicontinuous at x for all z⇤ 2 Q

⇤. The function F is called star Q-lower
semicontinuous if it is star Q-lower semicontinuous at every x 2 X. Note that if F is star
Q-lower semicontinuous, then it is also Q-epi closed, while the inverse statement is not true in
general (see: Proposition 2.2.19 in [1]). Let us mention that in the case Z = R and Q = R

+

,
the notion of Q-epi closedness falls into the classical notion of lower semicontinuity.
Let W ✓ X be a non-empty set, then a function f : X ! R is called K-increasing on W , if
from x 5

K

y follows f(x)  f(y) for all x, y 2 W . When W = X, then we call the function f

K-increasing.

Definition 2.1. The vector function F : X ! Z is called K-Q-increasing on W , if from
x 5

K

y follows F (x) 5
Q

F (y) for all x, y 2 W . For the case W = X, we call this function
K-Q-increasing.

Theorem 2.1. Let V be a Hausdor↵ locally convex space ordered by the convex cone U , F :
X ! Z be a proper and Q-convex function and G : Z ! V be an U -convex and Q-U -increasing
function on F (domF ) ✓ domG with the convention G(+1

Q

) = +1
U

. Then the function
(G � F ) : X ! V is U -convex.

The proof of this theorem is straightforward.
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Lemma 2.1. Let h : X ⇥Z ! Z and F : X ! Z be proper vector functions, where h is defined
by h(x, v) := F (x) � v. If we suppose that Q is a closed convex cone such that intQ 6= ;, then
h is Q-epi closed if and only if F is Q-epi closed.

Proof. By Theorem 5.8 of [15] it holds that h is Q-epi closed if and only if the level set of
h, defined by lev

z

h = {(x, v) 2 X ⇥ Z : h(x, v) 5
Q

z}, is closed for all z 2 Z. Further, as
h(x, v) = F (x)� v 5

Q

z, we have

lev
z

h = {(x, v) 2 X ⇥ Z : F (x) 5
Q

z + v}
= {(x, v) 2 X ⇥ Z : (x, z + v) 2 epi

Q

F} = epi
Q

F � (0
X

, z)

for all z 2 Z. But this is nothing else as a translation of epi
Q

F and means that epi
Q

F is closed
if and only if lev

z

h is closed for all z 2 Z. As a consequence we get the desired statement and
the proof is complete. ⇤

For a set S ✓ X the conic hull is defined by cone(S) := {�x : x 2 S, � � 0}. Further, the
prefix int we use to denote the interior of a set S ✓ X, while the prefixes core and sqri are used
to denote the algebraic interior and the strong quasi relative interior, respectively, where in the
case of having a convex set S ✓ X it holds (see [11])

core(S) = {x 2 S : cone(S � x) = X},
sqri(S) = {x 2 S : cone(S � x) is a closed linear subspace}.

Note, that if cone(S � x) is a linear subspace, then x 2 S. Moreover, it holds the following
statement.

Lemma 2.2. Let A ✓ X and B ✓ Z be non-empty convex subsets. Then, it holds

0
X⇥Z

2 sqri(A⇥B) , 0
X

2 sqri(A) and 0
Z

2 sqri(B).

Proof. First, let us recall that if A and B are convex and 0
X

2 A and 0
Z

2 B, then

cone(A⇥B) = cone(A)⇥ cone(B).

Now, let us assume that 0
X⇥Z

2 sqri(A ⇥ B), then cone(A ⇥ B) is a closed linear subspace of
X ⇥ Z, which implies that 0

X⇥Z

= (0
X

, 0
Z

) 2 A ⇥ B. But this means that cone(A ⇥ B) =
cone(A)⇥cone(B) and hence, cone(A) and cone(B) are closed linear subspaces, i.e. 0

X

2 sqri(A)
and 0

Z

2 sqri(B).
On the other hand, let 0

X

2 sqri(A) and 0
Z

2 sqri(B), then cone(A) and cone(B) are closed
linear subspaces and so, 0

X

2 A and 0
Z

2 B. From here follows that cone(A ⇥ B) =
cone(A)⇥cone(B) and thus, cone(A⇥B) is a closed linear subspace, i.e. 0

X⇥Z

2 sqri(A⇥B). ⇤

In this paper we do not use the classical di↵erentiability, but we use the notion of subdi↵eren-
tiability to formulate optimality conditions. If we take an arbitrary x 2 X such that f(x) 2 R,
then we call the set

@f(x) := {x⇤ 2 X

⇤ : f(y)� f(x) � hx⇤, y � xi 8y 2 X}

the (convex) subdi↵erential of f at x, where the elements are called the subgradients of f at x.
Moreover, if @f(x) 6= ;, then we say that f is subdi↵erentiable at x and if f(x) /2 R, then we
make the convention that @f(x) := ;.
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3 Lagrange duality for multi-composed optimization problems

As mentioned in the introduction our aim is to formulate a conjugate dual problem to an
optimization problem with geometric and cone constraints having as objective function the
composition of n+ 1 functions. In other words, we consider the following problem

(PC) inf
x2A

(f � F 1 � ... � Fn)(x),

A = {x 2 S : g(x) 2 �Q},

where X

i

is partially ordered by the non-empty convex cone K

i

✓ X

i

for i = 0, ..., n � 1.
Moreover,

• S ✓ X

n

is a non-empty set,

• f : X
0

! R is proper and K

0

-increasing on F

1(domF

1) +K

0

✓ dom f ,

• F

i : X
i

! X

i�1

= X

i�1

[{+1
K

i�1} is proper andK

i

-K
i�1

-increasing on F

i+1(domF

i+1)+
K

i

✓ domF

i for i = 1, ..., n� 2,

• F

n�1 : X

n�1

! X

n�2

= X

n�2

[ {+1
K

n�2} is proper and K

n�1

-K
n�2

-increasing on
F

n(domF

n \A) +K

n�1

✓ domF

n�1,

• F

n : X
n

! X

n�1

= X

n�1

[ {+1
K

n�1} is a proper function and

• g : X
n

! Z is a proper function fulfilling S\g

�1(�Q)\ ((Fn)�1 � ...� (F 1)�1)(dom f) 6= ;.

Additionally, we make the convention that f(+1
K0) = +1 and F

i(+1
K

i

) = +1
K

i�1 , i.e.
f : X

0

! R and F

i : X
i

! X

i�1

, i = 1, ..., n� 1.

Let us now consider the following problem

( ePC) inf
(y

0
,...,y

n

)2 eA
e

f(y0, ..., yn),

where

eA =
�

(y0, ..., yn�1

, y

n) 2 X

0

⇥ ...⇥X

n�1

⇥ S : g(yn) 2 �Q, h

i(yi, yi�1) 2 �K

i�1

, i = 1, ..., n
 

.

The functions ef : X
0

⇥ ...⇥X

n

! R and h

i : X
i

⇥X

i�1

! X

i�1

are defined as

e

f(y0, ..., yn) = f(y0) and h

i(yi, yi�1) = F

i(yi)� y

i�1 for i = 1, ..., n.

Lemma 3.1. Let (y0, ..., yn) be feasible to ( ePC), then it holds f((F 1 � ... � Fn)(yn))  f(y0).

Proof. Let (y0, ..., yn) be feasible to ( ePC), then we have F

n(yn) 5
K

n�1 y

n�1, ..., F 1(y1) 5
K0

y

0. Moreover, since F

n�1 is K

n�1

-K
n�2

-increasing on F

n(domF

n \ A) +K

n�1

and F

i is K

i

-
K

i�1

-increasing on F

i+1(domF

i+1) +K

i

for i = 1, ..., n � 2, it follows (Fn�1 � Fn)(yn) 5
K

n�2

F

n�1(yn�1) 5
K

n�2 y

n�2 and so on (F 1 � ... � F

n)(yn) 5
K0 F

1(y1) 5
K0 y

0. Since f is K

0

-
increasing on F

1(domF

1) + K

0

we get the desired inequality f((F 1 � ... � F

n)(yn))  f(y0).
⇤

Remark 3.1. If Fn is an a�ne function, then it can be useful to set K
n�1

= {0
X

n�1}, because
in this case F

n�1 does not need to be monotone to ensure the inequality of the previous lemma.
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If we denote by v(PC) and v( ePC) the optimal objective values of the problems (PC) and ( ePC),
respectively, then the following relation between the optimal objective values is always true.

Theorem 3.1. It holds v(PC) = v( ePC).

Proof. Let x be a feasible element to (PC) and set yn = x, yn�1 = F

n(yn), yn�2 = F

n�1(yn�1),
..., y

0 = F

1(y1). If there exists an i 2 {2, ..., n} such that F

i(yi) /2 domF

i�1 or F

1(y1) /2
dom f or there exists an i 2 {1, ..., n} such that F

i(yi) = +1
K

i�1 , then it obviously holds

f((F 1 � ... � F

n)(yn)) = +1 � v( ePC). Otherwise it holds F

i(yi) � y

i�1 = 0 2 �K

i�1

for
i = 1, ..., n. Moreover, by the feasibility of yn it holds g(yn) 2 �Q, which implies the feasibility
of (y0, ..., yn) to the problem ( ePC) and f((F 1 � ... � Fn)(yn)) = f(y0) = e

f(y0, ..., yn) � v( ePC).
Hence it holds f((F 1 � ... � F

n)(yn)) � v( ePC) for all yn feasible to (PC), which means that
v(PC) � v( ePC).
Let now (y0, ..., yn) be feasible to ( ePC). If y0 /2 dom f , then obviously we have v(PC)  f((F 1 �
... � Fn)(yn))  f(y0) = e

f(y0, ..., yn) = +1. On the other hand, since (y0, ..., yn) is feasible to
( ePC) it holds h

i(yi, yi�1) 2 �K

i�1

for i = 1, ..., n (i.e. F

i(yi) � y

i�1 2 �K

i�1

for i = 1, ..., n)
and g(yn) 2 �Q. By Lemma 3.1 we have v(PC)  f((F 1 � ... � Fn)(yn))  f(y0) = e

f(y0, ..., yn)
and by taking the infimum over (y0, ..., yn) on the right-hand side we get v(PC)  v( ePC).
Summarizing, we get the desired result v(PC) = v( ePC). ⇤

Remark 3.2. The assumption that f is K
0

-increasing on F

1(domF

1)+K

0

✓ dom f was made
to allow functions which are not necessarily monotone on their whole e↵ective domain. But in
some situations the inclusion F

1(domF

1) + K

0

✓ dom f may not be fulfilled. As an example
consider the convex optimization problem (PG) in Section 6.
To overcome this circumstances one can alternatively assume that f is K

0

-increasing on dom f

and F

1(domF

1) ✓ dom f . For the functions F

1

, ..., F

n�1 one can formulate in the same way
alternative assumptions. To be more precise, we can alternatively ask that F

i is K

i

-K
i�1

-
increasing on domF

i and F

i+1(domF

i+1) ✓ domF

i, i = 1, ..., n� 2, and F

n�1 is K

n�1

-K
n�2

-
increasing on domF

n�1 and F

n(domF

n \ A) ✓ domF

n�1. One can observe that under this
alternative assumptions Lemma 3.1 and especially Theorem 3.1 still hold.

As we have seen by Theorem 3.1, the problem (PC) can be associated to the problem ( ePC). In
the next step we want to determine the corresponding conjugate dual problems to the problems
(PC) and ( ePC).
As we take a careful look at the optimization problem ( ePC), we can see that this problem can
be rewritten in the form

( ePC) inf
ey2e

S,

e
h(ey)2� e

K

e

f(ey), (1)

where ey := (y0, ..., yn) 2 e

X := X

0

⇥ ... ⇥ X

n

, eZ := X

0

⇥ ... ⇥ X

n�1

⇥ Z ordered by e

K :=

K

0

⇥ ...⇥K

n�1

⇥Q, eS := X

0

⇥ ...⇥X

n�1

⇥ S and eh : eX ! e

Z = e

Z [ {+1 e
K

} is defined as

e

h(ey) :=

⇢

(h1(y1, y0), ..., hn(yn, yn�1), g(yn)), if (yi, yi�1) 2 domh

i

, i = 1, ..., n, y

n 2 dom g,

+1 e
K

, otherwise.

Note that by the definition of hi we have

domh

i = domF

i ⇥X

i�1

, i = 1, ..., n,
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which yields

domeh = X

0

⇥ domF

1 ⇥ ...⇥ (domF

n \ dom g). (2)

At this point, let us additionally remark that the assumption from the beginning, S\g

�1(�Q)\
((Fn)�1 � ... � (F 1)�1)(dom f) 6= ;, implies also that dom e

f \ eS \ eh�1(� eK) 6= ;, but the inverse
is not true. This means

S \ g

�1(�Q) \ ((Fn)�1 � ... � (F 1)�1)(dom f) 6= ;
, 9(y0, y1, ..., yn�1

, y

n) 2 dom f ⇥X

1

⇥ ...⇥X

n�1

⇥ S such that

F

1(y1)� y

0 = 0 2 �K

0

, ..., F

n(yn)� y

n�1 = 0 2 �K

n�1

and g(yn) 2 �Q

) 9ey 2 eS \ dom e

f such that eh(ey) 2 � eK
, dom e

f \ eS \ eh�1(� eK) 6= ;.

The corresponding Lagrange dual problem ( eDC) with ez⇤ := (z0⇤, ..., z(n�1)⇤
, z

n⇤) 2 e

K

⇤ := K

⇤
0

⇥
...⇥K

⇤
n�1

⇥Q

⇤ as the dual variable to the problem ( ePC) is

( eDC) sup
ez⇤2 e

K

⇤
inf
ey2e

S

{ ef(ey) + hez⇤,eh(ey)i},

which can equivalently be written as

( eDC) sup
z

n⇤2Q

⇤
, z

i⇤2K

⇤
i

i=0,...,n�1

inf
y

n2S, y

i2X

i

i=0,...,n�1

(

e

f(y0, ..., yn) +
n

X

i=1

hz(i�1)⇤
, h

i(yi, yi�1)i+ hzn⇤, g(yn)i
)

.

Through the definitions we made above for ef and h

i and since we set x = y

n, we can deduce
the conjugate dual problem (DC) to problem (PC)

(DC) sup
z

n⇤2Q

⇤
, z

i⇤2K

⇤
i

i=0,...,n�1

inf
x2S, y

i2X

i

i=0,...,n�1

(

f(y0) + hz(n�1)⇤
, F

n(x)� y

n�1i+ hzn⇤, g(x)i+

n�1

P

i=1

hz(i�1)⇤
, F

i(yi)� y

i�1i
)

= sup
z

n⇤2Q

⇤
, z

i⇤2K

⇤
i

,

i=0,...,n�1

(

inf
x2S

{hz(n�1)⇤
, F

n(x)i+ hzn⇤, g(x)i}� sup
y

02X0

{hz0⇤, y0i � f(y0)}�

n�1

P

i=1

sup
y

i2X

i

,

i=1,...,n�1

{hzi⇤, yii � hz(i�1)⇤
, F

i(yi)i}
)

.

Hence, the conjugate dual problem (DC) to problem (PC) has the following form

(DC) sup
z

n⇤2Q

⇤
, z

i⇤2K

⇤
i

,

i=0,...,n�1

(

inf
x2S

{hz(n�1)⇤
, F

n(x)i+ hzn⇤, g(x)i}� f

⇤(z0⇤)�
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

.

The optimal objective values of the problems ( eDC) and (DC) are of course equal, i.e. v( eDC) =
v(DC).
The next result arises from the definition of the dual problem and is always fulfilled.
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Theorem 3.2. (weak duality) Between the primal problem (PC) and its conjugate dual problem
weak duality always holds, i.e. v(PC) � v(DC).

Proof. By Theorem 3.1.1 in [1] it holds v( ePC) � v( eDC). Moreover, by Theorem 3.1 and since
v( eDC) = v(DC) we have v(PC) = v( ePC) � v( eDC) = v(DC). ⇤

Remark 3.3. Let Z

i

be a locally convex Hausdor↵ space partially ordered by the non-empty
convex cone Q

i

, i = 0, ..., n�1. Then the introduced concept in this paper covers also optimization
problems of the form

(PCC) inf
x2L

'(x),

with

L := {x 2 S : (G1 � ... �Gn)(x) 2 �Q

0

},

where ' : X
n

! R is proper, Gi : Z
i

! Z

i�1

is proper and Q

i

-Q
i�1

-increasing on G

i+1(domG

i+1)+
Q

i

✓ domG

i, i = 1, ..., n � 1, and G

n : X
n

! Z

n�1

is proper. The problem (PCC) can equiva-
lently be rewritten as

(PCC) inf
x2X

n

{'(x) + �

S

(x) + (��Q0 �G1 � ... �Gn)(x)}

and by setting X

0

:= R⇥Z

0

, K
0

:= R
+

⇥Q

0

, X
i

:= R⇥Z

i

, K
i

:= R
+

⇥Q

i

, i = 1, ..., n� 1 and
by defining the following functions

• f : X
0

⇥ R, f(y0) := y

0

1

+ ��Q0(y
0

2

) with y

0 = (y0
1

, y

0

2

) 2 X

0

,

• F

i : X
i

! X

i�1

, F

i(yi
1

, y

i

2

) := (yi
1

, G

i(yi
2

)), i = 1, ..., n� 1 with y

i = (yi
1

, y

i

2

) 2 X

i

,

• F

n : X
n

! X

n�1

, F

n(x) := ('(x) + �

S

(x), Gn(x)),

the problem (PCC) turns into a special case of the problem (PC)

(PCC) inf
x2X

n

(f � F 1 � ... � Fn)(x)

with A ⌘ X

n

.

4 Regularity conditions and strong duality

In this section we want to characterize strong duality through the so-called generalized interior
point regularity conditions. Besides we will provide some optimality conditions for the primal
problem and its corresponding conjugate dual problem. For this purpose we additionally assume
for the rest of the paper that S ✓ X

n

is a convex set, f is a convex function, F i is a K

i�1

-
convex function for i = 1, ..., n and g is a Q-convex function. Hence, as can be easily seen,
(f � F 1 � ... � Fn) is a convex function and (PC) is a convex optimization problem. Moreover,
the problem ( ePC) is also convex.
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Remark 4.1. Let us point out that for the convexity of (f �F 1 � ...�Fn) we ask that the function
f be convex and K

0

-increasing on F

1(domF

1) + K

0

and the function F

i be K

i�1

-convex and
fulfills also the property of monotonicity for i = 1, ..., n � 1, while the function F

n need just be
K

n�1

-convex (see Theorem 2.1). This means that if Fn is an a�ne function, we do not need the
monotonicity of Fn�1, since the composition of an a�ne function and a function, which fulfills
the property of convexity, fulfills also the property of convexity. In this context let us pay also
attention to Remark 3.1, i.e. one can choose K

n�1

= {0
X

n�1}.

To derive regularity conditions which secure strong duality for the pair (PC)-(DC), we first
consider regularity conditions for strong duality between the problems ( ePC) and ( eDC), which
were presented in [1]. The first one is the well-known Slater constraint qualification

(gRC

C

1

) 9ey0 2 dom e

f \ eS such that eh(ey0) 2 � int eK.

Using the definitions of ef and eh as well as eS and e

K we get

dom e

f \ eS = (dom f ⇥X

1

⇥ ...⇥X

n

) \ (X
0

⇥X

1

⇥ ...⇥X

n�1

⇥ S)

= dom f ⇥X

1

⇥ ...⇥X

n�1

⇥ S (3)

and
int eK = int(K

0

⇥ ...⇥K

n�1

⇥Q) = intK
0

⇥ ...⇥ intK
n�1

⇥ intQ.

Therefore the condition (gRC

C

1

) can in the context of the primal-dual pair (PC)-(DC) be rewritten
as follows

(RC

C

1

) 9(y00 , y10 , ..., y(n�1)

0
, y

n

0
) 2 dom f ⇥X

1

⇥ ...⇥X

n�1

⇥ S such that
F

i(yi
0
)� y

(i�1)

0 2 � intK
i�1

, i = 1, ..., n, and g(yn
0
) 2 � intQ.

The condition (RC

C

1

) can also equivalently be formulated as

(RC

C

1

0 ) 9x0 2 S such that g(x0) 2 �intQ and F

n(x0) 2 (Fn�1)�1((Fn�2)�1(...
(F 1)�1(dom f � intK

0

)� intK
1

...)� intK
n�2

)� intK
n�1

.

This can be seen as follows: The assumption that there exists x0 2 S such that

F

n(x0) 2 (Fn�1)�1((Fn�2)�1(...(F 1)�1(dom f � intK
0

)� intK
1

...)� intK
n�2

)� intK
n�1

implies that there exists (y0
0
, ..., y

(n�1)

0
) 2 X

0

⇥ ...⇥X

n�1

such that

y

(n�1)

0 2 (Fn�1)�1((Fn�2)�1(...(F 1)�1(dom f � intK
0

)� intK
1

...)� intK
n�2

)

y

(n�2)

0 2 (Fn�2)�1((Fn�3)�1(...(F 1)�1(dom f � intK
0

)� intK
1

...)� intK
n�3

)
...

y

1

0 2 (F 1)�1(dom f � intK
0

)

y

0

0 2 dom f.

Therefore, by setting x

0 = y

n

0
the elements (y0

0
, ..., y

n

0
) 2 dom f ⇥ X

1

⇥ ... ⇥ X

n�1

⇥ S fulfill
F

n(yn
0
) � y

(n�1)

0 2 � intK
n�1

, ..., F 1(y1
0
) � y

0

0 2 � intK
0

and from here we can now a�rm
that the condition (RC

C

1

) is fulfilled.
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On the other hand, if there exists (y0
0
, ..., y

n

0
) 2 dom f ⇥X

1

⇥ ...⇥X

n�1

⇥S such that g(yn
0
) 2

� intQ and F

i(yi
0
)� y

(i�1)

0 2 � intK
i�1

for i = 1, ..., n, then we set yn
0
= x

0 and get

F

n(x0)� y

(n�1)

0 2 � intK
n�1

) F

n(x0) 2 y

(n�1)

0 � intK
n�1

. (4)

Further, we have

F

n�1(y(n�1)

0
)� y

(n�2)

0 2 � intK
n�2

) F

n�1(y(n�1)

0
) 2 y

(n�2)

0 � intK
n�2

) y

(n�1)

0 2 (Fn�1)�1(y(n�2)

0 � intK
n�2

). (5)

From (4) and (5) follows

F

n(x0) 2 (Fn�1)�1(y(n�2)

0 � intK
n�2

)� intK
n�1

. (6)

Since

F

n�2(y(n�2)

0
)� y

(n�3)

0 2 � intK
n�3

) F

n�2(y(n�2)

0
) 2 y

(n�3)

0 � intK
n�3

) y

(n�2)

0 2 (Fn�2)�1(y(n�3)

0 � intK
n�3

)

we get for (6)

F

n(x0) 2 (Fn�1)�1((Fn�2)�1(y(n�3)

0 � intK
n�3

)� intK
n�2

)� intK
n�1

.

If we continue in this manner until y0
0 2 dom f we get finally

F

n(x0) 2 (Fn�1)�1((Fn�2)�1(...(F 1)�1(dom f � intK
0

)� intK
1

...)� intK
n�2

)� intK
n�1

.

This means that (RC

C

1

0 ) is fulfilled if it is supposed in its first formulation, i.e. (RC

C

1

).
Additionally, we consider a class of regularity conditions which assume that the underlying
spaces are Fréchet spaces:

(gRC

C

2

) e

X and eZ are Fréchet spaces, eS is closed, ef is lower semicontinuous,
e

h is eK-epi closed and 0 e
Z

2 sqri(eh(dom e

f \ eS \ domeh) + e

K).

If we exchange sqri for core or int we get stronger versions of this regularity condition:

(gRC

C

2

0) e

X and eZ are Fréchet spaces, eS is closed, ef is lower semicontinuous,
e

h is eK-epi closed and 0 e
Z

2 core(eh(dom e

f \ eS \ domeh) + e

K),

(gRC

C

2

00) e

X and eZ are Fréchet spaces, eS is closed, ef is lower semicontinuous,
e

h is eK-epi closed and 0 e
Z

2 int(eh(dom e

f \ eS \ domeh) + e

K),

where the last two conditions are equivalent (see [1]). If we work in finite dimensional spaces
the regularity condition can be written in the following way (see [1])
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(gRC

C

3

) dim(lin(eh(dom e

f \ eS \ domeh) + e

K)) < +1 and

0 e
Z

2 ri(eh(dom e

f \ eS \ domeh) + e

K).

To derive corresponding regularity conditions for the primal-dual pair (PC)-(DC) we first con-
sider the formulas (2) and (3), which imply that

e

h(dom e

f \ eS \ domeh) = e

h(dom f ⇥ domF

1 ⇥ ...⇥ domF

n�1 ⇥ (domF

n \ dom g \ S))

= h

1(domF

1 ⇥ dom f)⇥ h

2(domF

2 ⇥ domF

1)⇥ ...⇥
h

n�1(domF

n�1 ⇥ domF

n�2)⇥
h

n((domF

n \ dom g \ S)⇥ domF

n�1)⇥ g(domF

n \ dom g \ S)

= (F 1(domF

1)� dom f)⇥ (F 2(domF

2)� domF

1)⇥ ...⇥
(Fn�1(domF

n�1)� domF

n�2)⇥
(Fn(domF

n \ dom g \ S)� domF

n�1)⇥ g(domF

n \ dom g \ S)

and from here we get by Lemma 2.2 that

0 e
Z

2 sqri((F 1(domF

1)� dom f +K

0

)⇥ ...⇥ (Fn�1(domF

n�1)� domF

n�2 +K

n�2

)

⇥(Fn(domF

n \ dom g \ S)� domF

n�1 +K

n�1

)⇥ (g(domF

n \ dom g \ S) +Q))

, 0
X0 2 sqri(F 1(domF

1)� dom f +K

0

), 0
X

i

2 sqri(F i(domF

i)� domF

i�1 +K

i�1

),

i = 2, ..., n� 1, 0
X

n

2 sqri(Fn(domF

n \ dom g \ S)� domF

n�1 +K

n�1

) and

0
Z

2 sqri(g(domF

n \ dom g \ S) +Q).

Now, let % : X
0

⇥ ... ⇥ X

n

⇥ X

0

⇥ ... ⇥ X

n�1

⇥ Z ! X

2

0

⇥ ... ⇥ X

2

n�1

⇥ X

n

⇥ Z be defined by
%(y0, ..., yn, v0, ..., vn) := (y0, v0, ..., yn, vn). Further, let us define the functions %n

X

i

: X
i

⇥X

i�1

⇥
X

i�1

! X

i�1

⇥ X

i�1

⇥ X

i

by %

n

X

i

(yi, yi�1

, v

i�1) := (yi�1

, v

i�1

, y

i), i = 1, ..., n. Obviously, the
defined functions are homeomorphisms and map open sets to open sets and closed sets to closed
sets. More precisely, this means that %(epi e

K

e

h) is closed if and only if epi e
K

e

h is a closed set and
%

n

X

i

(epi
K

i�1
h

i) is closed if and only if epi
K

i�1
h

i is a closed set, i = 1, ..., n. Furthermore, we
have

epi e
K

e

h = {(y0, ..., yn, v0, ..., vn) 2 X

0

⇥ ...⇥X

n

⇥X

0

⇥ ...⇥X

n�1

⇥ Z :

(y1, y0, v0) 2 epi
K0

h

1

,

...

(yn, yn�1

, v

n�1) 2 epi
K

n�1
h

n

,

(yn, vn) 2 epi
Q

g},
= {(y0, ..., yn, v0, ..., vn) 2 X

0

⇥ ...⇥X

n

⇥X

0

⇥ ...⇥X

n�1

⇥ Z :

(y0, v0, y1) 2 %

n

X1
(epi

K0
h

1),

...

(yn�1

, v

n�1

, y

n) 2 %

n

X

n

(epi
K

n�1
h

n),

(yn, vn) 2 epi
Q

g},
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= {(y0, ..., yn, v0, ..., vn) 2 X

0

⇥ ...⇥X

n

⇥X

0

⇥ ...⇥X

n�1

⇥ Z :

(y0, v0, y1, v1, y2, v2, ..., yn�1

, v

n�1

, y

n

, v

n) 2
%

n

X1
(epi

K0
h

1)⇥X

1

⇥X

2

2

⇥ ...⇥X

2

n�1

⇥X

n

⇥ Z,

...

(y0, v0, y1, v1, ..., yn�2

, v

n�2

, y

n�1

, v

n�1

, y

n

, v

n) 2
X

2

0

⇥X

2

1

⇥ ...⇥X

2

n�2

⇥ (%n
X

n

(epi
K

n�1
h

n))⇥ Z,

(y0, v0, ..., yn�1

, v

n�1

, y

n

, v

n) 2 X

2

0

⇥ ...⇥X

2

n�1

⇥ epi
Q

g}

=

⇢

(y0, ..., yn, v0, ..., vn) 2 X

0

⇥ ...⇥X

n

⇥X

0

⇥ ...⇥X

n�1

⇥ Z :

(y0, v0, ..., yi�2

, v

i�2

, y

i�1

, v

i�1

, y

i

, v

i

, y

i+1

, v

i+1

, ..., y

n

, v

n) 2

X

2

0

⇥ ...⇥X

2

i�2

⇥
⇣

%

n

X

i

(epi
K

i�1
h

i)
⌘

⇥X

i

⇥X

2

i+1

⇥ ...⇥X

n

⇥ Z, i = 1, ...n,

(y0, v0, ..., yn�1

, v

n�1

, y

n

, v

n) 2 X

2

0

⇥ ...⇥X

2

n�1

⇥ epi
Q

g

�

,

so we can write

%(epi e
K

e

h) =

 

n

\

i=1

⇣

X

2

0

⇥ ...⇥X

2

i�2

⇥
⇣

%

n

X

i

(epi
K

i�1
h

i)
⌘

⇥X

i

⇥X

2

i+1

⇥ ...⇥X

n

⇥ Z

⌘

!

\

�

X

2

0

⇥ ...⇥X

2

n�1

⇥ epi
Q

g

�

and get as a consequence that epi e
K

e

h is closed if epi
K

i�1
h

i, i = 1, ..., n, and epi
Q

g are closed sets.
Besides, we know by Lemma 2.1 that for a non-empty closed convex cone K

i�1

with intK
i�1

6= ;
it holds that epi

K

i�1
h

i is closed if and only if epi
K

i�1
F

i is closed, i = 1, ..., n. Bringing now the
last facts together implies that for a non-empty closed convex cone K

i�1

with intK
i�1

6= ; it
holds that epi e

K

e

h is closed if epi
Q

g and epi
K

i�1
F

i are closed sets, i = 1, ..., n.

Moreover, since eS is closed if and only if S is closed and ef is lower semicontinuous if and only
if f is lower semicontinuous (follows from the fact that epi f is closed , epi ef is closed), we get
the following regularity condition for the primal-dual pair (PC)-(DC) (call to mind that if X

i

is
a Fréchet space, i = 0, ..., n, then e

X = X

0

⇥ ...⇥X

n

is a Fréchet space, too)

(RC

C

2

) X

0

, ..., X

n

and Z are Fréchet spaces, f is l.s.c., S is closed, g is Q-epi,
closed, K

i�1

is closed, intK
i�1

6= ;, F i is K
i�1

-epi closed, i = 1, ..., n,
0
X0 2 sqri(F 1(domF

1)� dom f +K

0

),
0
X

i�1 2 sqri(F i(domF

i)� domF

i�1 +K

i�1

), i = 2, ..., n� 1,
0
X

n�1 2 sqri(Fn(domF

n \ dom g \ S)� domF

n�1 +K

n�1

) and
0
Z

2 sqri(g(domF

n \ dom g \ S) +Q).

In the same way we get equivalent formulations of the regularity conditions (RC

C

2

0 ) and (RC

C

2

00)
using core and int, respectively, instead sqri. The same holds also for the condition (RC

C

3

).

As we have seen the condition (RC

C

i

) implies the condition (gRC

C

i

), i 2 {2, 20, 200, 3}, while the

condition (RC

C

1

) implies the condition (gRC

C

1

) and vice versa. Moreover, since on the one hand

Theorem 3.1 is always fulfilled and on the other hand the optimal objective values between ( eDC)
and (DC) are equal, it holds the following theorem (see Theorem 3.2.9 and 3.2.10 in [1]).
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Theorem 4.1. (strong duality) If one of the conditions (RC

C

i

), i 2 {1, 10, 2, 20, 200, 3}, is fulfilled,
then between (PC) and (DC) strong duality holds, i.e. v(PC) = v(DC) and the conjugate dual
problem has an optimal solution.

Remark 4.2. If for some i 2 {1, ..., n} the function F

i is star K
i�1

-lower semicontinuous, then
we can omit asking that K

i�1

is closed, intK
i�1

6= ; and F

i is K

i�1

-epi closed in the regularity
conditions (RC

C

i

), i 2 {2, 20, 200}, because the star K

i�1

-lower semicontinuity of F i implies the
star K

i�1

-lower semicontinuity of hi, which then again implies the K

i�1

-epi closedness of hi.

We come now to the point where we can give necessary and su�cient optimality conditions for
the primal-dual pair v(PC)-v(DC

L).

Theorem 4.2. (optimality conditions) (a) Suppose that one of the regularity conditions (RC

C

i

),
i 2 {1, 10, 2, 20, 200, 3}, is fulfilled and let x 2 A be an optimal solution of the problem (PC). Then
there exists (z0⇤, ..., z(n�1)⇤

, z

n⇤) 2 K

⇤
0

⇥ ...⇥K

⇤
n�1

⇥Q

⇤, an optimal solution to (DC), such that

(i) f((F 1 � ... � Fn)(x)) + f

⇤(z0⇤) = hz0⇤, (F 1 � ... � Fn)(x)i,

(ii) (z(i�1)⇤
F

i)((F i+1�...�Fn)(x))+(z(i�1)⇤
F

i)⇤(zi⇤) = hzi⇤, (F i+1�...�Fn)(x)i, i = 1, ..., n�1,

(iii) (z(n�1)⇤
F

n)(x) + (zn⇤g)(x) + ((z(n�1)⇤
F

n) + (zn⇤g))⇤
S

(0
X

⇤
n

) = 0,

(iv) hzn⇤, g(x)i = 0,

(b) If there exists x 2 A such that for some (z0⇤, ..., z(n�1)⇤
, z

n⇤) 2 K

⇤
0

⇥ ... ⇥ K

⇤
n�1

⇥ Q

⇤ the
conditions (i)-(v) are fulfilled, then x is an optimal solution of (PC), (z0⇤, ..., zn⇤) is an optimal
solution for (DC) and v(PC) = v(DC).

Proof. By Theorem 4.1 strong duality holds between the primal-dual pair (PC)-(DC), which
means that there exists x 2 A and (z0⇤, ..., z(n�1)⇤

, z

n⇤) 2 K

⇤
0

⇥ ... ⇥ K

⇤
n�1

⇥ Q

⇤, an optimal
solution to (DC), such that the following equality holds

(f � F 1 � ... � Fn)(x) = inf
x2S

{hz(n�1)⇤
, F

n(x)i+ hzn⇤, g(x)i}� f

⇤(z0⇤)�
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤).

Furthermore, since by definition it holds

n

X

i=1

(z(i�1)⇤
F

i)((F i+1 � ... � Fn)(x))

= hz0⇤, (F 1 � ... � Fn)(x)i+
n�1

X

i=1

hzi⇤, (F i+1 � ... � Fn)(x),

the assertions (i)-(iv) can be deduced immediately by the following consideration

(f � F 1 � ... � Fn)(x) + f

⇤(z0⇤) +
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤) +

((z(n�1)⇤
F

n) + (zn⇤g))⇤
S

(0
X

⇤
n

) = 0

13



, (f � F 1 � ... � Fn)(x) + f

⇤(z0⇤) +
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤) + ((z(n�1)⇤
F

n) + (zn⇤g))⇤
S

(0
X

⇤
n

)

+(zn⇤g)(x)� hzn⇤, g(x)i

+
n

X

i=1

(z(i�1)⇤
F

i)((F i+1 � ... � Fn)(x))

�hz0⇤, (F 1 � ... � Fn)(x)i �
n�1

X

i=1

hzi⇤, (F i+1 � ... � Fn)(x)i = 0

, [(f � F 1 � ... � Fn)(x) + f

⇤(z0⇤)� hz0⇤, (F 1 � ... � Fn)(x)i] +
n�1

X

i=1

[(z(i�1)⇤
F

i)((F i+1 � ... � Fn)(x)) + (z(i�1)⇤
F

i)⇤(zi⇤)� hzi⇤, (F i+1 � ... � Fn)(x)i] +

[(z(n�1)⇤
F

n)(x) + (zn⇤g)(x) + ((z(n�1)⇤
F

n) + (zn⇤g))⇤
S

(0
X

⇤
n

)] + [�hzn⇤, g(x)i] = 0.

By the Young-Fenchel inequality and the constraints of the primal and dual problem all the
terms within the brackets are non-negative and must be equal to zero. ⇤

Remark 4.3. The conditions (i)-(iv) can equivalently be expressed as

(i) z

0⇤ 2 @f((F 1 � ... � Fn)(x)),

(ii) z

i⇤ 2 @(z(i�1)⇤
F

i)((F i+1 � ... � Fn)(x)), i = 1, ..., n� 1,

(iii) 0
X

⇤
n

2 @((z(n�1)⇤
F

n) + (zn⇤g) + �

S

)(x),

(iv) hzn⇤, g(x)i = 0.

5 The conjugate function of a multi-composed function

Before we continue with our further approach we want to calculate the conjugate of the function
(f � F 1 � ... � Fn), or, to be more precise, we will determine of the function

�(x) = (f � F 1 � ... � Fn)(x), x 2 X

n

,

its conjugate function

�

⇤(x⇤) = sup
x2X

n

{hx⇤, xi � (f � F 1 � ... � Fn)(x)}, x

⇤ 2 X

⇤
n

.

With this in mind, we consider for fixed x

⇤ 2 X

⇤
n

the problem

(PK) inf
x2X

n

{(f � F 1 � ... � Fn)(x)� hx⇤, xi}

and the primal problem

( ePK) inf
F

i(yi)�y

i�12�K

i�1,

y

i2X

i

, i=0,...,n

{ ef(y0, y1, ..., yn)� hx⇤, yni}.

14



In the same way like in the proof of Theorem 3.1 one can show that it holds v(PK) = v( ePK)
(where v(PK) and v( ePK) denote the optimal objective values of the problems (PK) and ( ePK),
respectively). The corresponding Lagrange dual problem to problem ( ePK) looks like

( eDK) sup
z

i⇤2K

⇤
i

,

i=0,...,n�1

inf
y

i2X

i

,

i=0,...,n

(

e

f(y0, y1, ..., yn) +
n

X

i=1

hz(i�1)⇤
, F

i(yi)� y

i�1i � hx⇤, yni
)

= sup
z

i⇤2K

⇤
i

,

i=0,...,n�1

(

� sup
y

02X0

{hz0⇤, y0i � f(y0)}�

sup
y

n2S, y

i2X

i

,

i=1,...,n�1

(

n�1

X

i=1

hzi⇤, yii+ hx⇤, yni �
n

X

i=1

hz(i�1)⇤
, F

i(yi)i
))

= sup
z

i⇤2K

⇤
i

,

i=0,...,n�1

(

� f

⇤(z0⇤)� (z(n�1)⇤
F

n)⇤(x⇤)�
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

.

Hence, we define the conjugate dual problem corresponding to the primal problem (PK) as

(DK) sup
z

i⇤2K

⇤
i

,

i=0,...,n�1

(

� f

⇤(z0⇤)� (z(n�1)⇤
F

n)⇤(x⇤)�
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

.

Let us notice that for all x⇤ 2 X

⇤
n

one has dom e

f = dom( ef + hx⇤, ·i). To guarantee strong
duality between the problem (PK) and its conjugate dual problem (DK), we use the regularity
conditions we introduced above. Therefore, we set Z = X ordered by the trivial cone Q = X

and define the function g : X ! X by g(x) := x such that g is Q-epi closed and

0
X

2 sqri(g(X) +Q) = sqri(X +Q) = X.

Hence, we get for the pair (PK)-(DK) the following regularity conditions. The first one looks
like

(RC

K

1

) 9(y00 , y10 , ..., yn0
) 2 dom f ⇥X

1

⇥ ...⇥X

n

such that
F

i(yi
0
)� y

(i�1)

0 2 � intK
i�1

, i = 1, ..., n

and can also be written as

(RC

K

1

0 ) 9x0 2 X

n

such that Fn(x0) 2 (Fn�1)�1((Fn�2)�1(...
(F 1)�1(dom f � intK

0

)� intK
n�1

...)� intK
n�2

)� intK
n�1

.

For the interior point regularity condition we get

(RC

K

2

) X

0

, ..., X

n

are Fréchet spaces, f is l.s.c., K
i�1

is closed,
intK

i�1

6= ;, F i is K
i�1

-epi closed, i = 1, ..., n,
0
X0 2 sqri(F 1(domF

1)� dom f +K

0

) and
0
X

i�1 2 sqri(F i(domF

i)� domF

i�1 +K

i�1

), i = 2, ..., n.

In the same way we get representations for (RC

K

i

), i = 20, 200, 3.

Let us denote by v(DK) the optimal objective value of the problem (DK), then by Theorem 4.1
we can state the following one:
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Theorem 5.1. (strong duality) If one of the conditions (RC

K

i

), i 2 {1, 10, 2, 20, 200, 3}, is fulfilled,
then between (PK) and (DK) strong duality holds, i.e. v(PK) = v(DK) and the conjugate dual
problem has an optimal solution.

Furthermore, it holds the following theorem.

Theorem 5.2. Let f : X
0

! R be proper, convex and K

0

-increasing on F

1(domF

1) + K

0

,
F

i : X

i

! X

i�1

, be proper, K

i�1

-convex and K

i

-K
i�1

-increasing on F

i+1(domF

i+1) + K

i

,
i = 1, ..., n � 1 and F

n : X

n

! X

n�1

be proper and K

n�1

-convex. If one of the regularity
conditions (RC

K

i

), i 2 {1, 10, 2, 20, 200, 3}, is fulfilled, then the conjugate function of � is given by

�

⇤(x⇤) = min
z

i⇤2K

⇤
i

,

i=0,...,n�1

(

f

⇤(z0⇤) + (z(n�1)⇤
F

n)⇤(x⇤) +
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

8x⇤ 2 X

⇤
n

. (7)

Proof. By using Theorem 5.1 it follows that

�

⇤(x⇤) = sup
x2X

{hx⇤, xi � (f � F 1 � ... � Fn)(x)}

= min
y

i⇤2K

⇤
i

,

i=0,...,n�1

(

f

⇤(y0⇤) + (y(n�1)⇤
F

n)⇤(x⇤) +
n�1

X

i=1

(y(i�1)⇤
F

i)⇤(yi⇤)

)

8x⇤ 2 X

⇤
n

.

⇤

Remark 5.1. The advantage of the introduced concept is that a “complicated” function � can be
splitted into n+1 “simple” functions such that the calculation of the conjugate can be simplified
by calculating just the conjugates of the n+ 1 “simple” functions.

Example 5.1. Let us consider the following generalized signomial function � : Rn ⇥ Rn ! R
defined by

�(x, y) =

(

sup
n

1

x

p1
1 y

q1
1
, ...,

1

x

p

n

n

y

q

n

n

o

, if (x, y) 2 intRn

+

⇥ intRn

+

+1, otherwise,

with p

i

, q

i

� 0 for all i = 1, ..., n, and x = (x
1

, ..., x

n

)T 2 Rn, y = (y
1

, ..., y

n

)T 2 Rn. Then, we
split the function � into the functions

• f : Rn ! R defined by

f(y0) :=

⇢

sup{y0
1

, ..., y

0

n

}, if y0 = (y0
1

, ..., y

0

n

)T 2 Rn

+

,

+1, otherwise,

• F

1 : Rn ! Rn, defined by

F

1(y1) :=

⇢

(ey1 , ..., eyn)T , if y1 = (y1
1

, ..., y

1

n

)T 2 Rn

+1Rn

+
, otherwise,

and
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• F

2 : Rn ⇥ Rn ! Rn, defined by

F

2(x, y) :=

⇢

(�p

1

lnx
1

� q

1

ln y
1

, ...,�p

n

lnx
n

� q

n

ln y
n

)T , if x, y 2 intRn

+

,

+1Rn

+
, otherwise,

such that � is writeable as

�(x, y) = (f � F 1 � F 2)(x, y) (8)

and set K

0

= K

1

= Rn

+

. Without much e↵ort one can observe that f is proper, convex and
Rn

+

-increasing on F

1(domF

1) + Rn

+

= intRn

+

+ Rn

+

= intRn

+

✓ Rn

+

, F 1 is proper, Rn

+

-convex
and Rn

+

-Rn

+

-increasing on F

2(domF

2) + Rn

+

= Rn and F

2 is proper and Rn

+

-convex. Moreover,
it is easy to verify that the regularity condition (RC

K

1

0 ) looks in this special case like

(RC

K

e

1

0 ) 9(x0, y0) 2 Rn ⇥ Rn such that �p

i

lnx0
i

� q

i

ln y0
i

2 R, i = 1, ..., n,

which, of course, is always fulfilled. Thus, we can apply the formula (7) of Theorem 5.2 for the
determination of the conjugate function of �:

�

⇤(x⇤, y⇤) = min
z

0⇤
, z

1⇤2Rn

+

�

f

⇤(z0⇤) + (z0⇤F 1)⇤(z1⇤) + (z1⇤F 2)⇤(x⇤, y⇤)
 

, 8(x⇤, y⇤) 2 Rn ⇥ Rn (9)

Now, we have to calculate the conjugate functions involved in the formula (9). We have for
z

0⇤ = (z0⇤
1

, ..., z

0⇤
n

)T 2 Rn

+

:

f

⇤(z0⇤) = sup
(y

0
1 ,...,y

0
n

)

T2Rn

(

n

X

i=1

z

0⇤
i

y

0

i

� f(y0)

)

= sup
(y

0
1 ,...,y

0
n

)

T2Rn

+

(

n

X

i=1

z

0⇤
i

y

0

i

� sup{y0
1

, ..., y

0

n

}
)

= sup
(y

0
1 ,...,y

0
n

)

T2Rn

+

8

<

:

n

X

i=1

z

0⇤
i

y

0

i

� inf
t2R+, y

0
i

t,

i=1,...,n

t

9

=

;

= sup
y

0
i

2R+, t2R+, y

0
i

t,

i=1,...,n

(

n

X

i=1

z

0⇤
i

y

0

i

� t

)

.

As one may see, f⇤ is for fixed z

0⇤ 2 Rn

+

a linear problem and thus, by elementary calculation,
we have that

f

⇤(z0⇤) =

8

<

:

0, if
n

P

i=1

z

0⇤
i

 1,

+1, otherwise.
(10)

From (9) and (10) follows for the conjugate function of �

�

⇤(x⇤, y⇤) = min
z

0⇤
i

, z

1⇤
i

2R+, i=1,...,n,

nP

i=1
z

0⇤
i

1

�

(z0⇤F 1)⇤(z1⇤) + (z1⇤F 2)⇤(x⇤, y⇤)
 

. (11)

Furthermore, we have for z0⇤
i

� 0, i = 1, ..., n,

(z0⇤F 1)⇤(z1⇤) = sup
y

i

2R, i=1,...,n

(

n

X

i=1

z

1⇤
i

y

i

�
n

X

i=1

z

0⇤
i

e

y

i

)

=
n

X

i=1

sup
y

i

2R
{z1⇤

i

y

i

� z

0⇤
i

e

y

i}
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with (see [1] or also [9])

sup
y

i

2R
{z1⇤

i

y

i

� z

0⇤
i

e

y

i} =

8

>

<

>

:

z

1⇤
i

⇣

ln
z

1⇤
i

z

0⇤
i

� 1
⌘

, if z0⇤
i

, z

1⇤
i

> 0,

0, if z1⇤
i

= 0, z

0⇤
i

� 0,
+1, otherwise,

(12)

for i = 1, ..., n and for z1⇤
i

� 0, i = 1, ..., n, it holds

(z1⇤F 2)⇤(x⇤, y⇤) = sup
x

i

,y

i

>0, i=1,...,n

(

n

X

i=1

x

⇤
i

x

i

+
n

X

i=1

y

⇤
i

y

i

+
n

X

i=1

z

1⇤
i

p

i

lnx
i

+
n

X

i=1

z

1⇤
i

q

i

ln y
i

)

=
n

X

i=1

✓

sup
x

i

>0

{x⇤
i

x

i

+ z

1⇤
i

p

i

lnx
i

}+ sup
y

i

>0

{y⇤
i

y

i

+ z

1⇤
i

q

i

ln y
i

}
◆

for all x⇤ = (x⇤
1

, ..., x

⇤
n

)T , y

⇤ = (y⇤
1

, ..., y

⇤
n

)T 2 Rn, where (see [9])

sup
x

i

>0

{x⇤
i

x

i

+ z

1⇤
i

p

i

lnx
i

} =

8

>

<

>

:

�z

1⇤
i

p

i

⇣

1 + ln
⇣

� x

⇤
i

z

1⇤
i

p

i

⌘⌘

, if x⇤
i

< 0, z

1⇤
i

, p

i

> 0,

0, if x⇤
i

 0 and z

1⇤
i

= 0 or x⇤
i

 0 and p

i

= 0,
+1, otherwise,

(13)

and likewise

sup
y

i

>0

{y⇤
i

y

i

+ z

1⇤
i

q

i

ln y
i

} =

8

>

<

>

:

�z

1⇤
i

q

i

⇣

1 + ln
⇣

� y

⇤
i

z

1⇤
i

q

i

⌘⌘

, if y⇤
i

< 0, z

1⇤
i

, q

i

> 0,

0, if y⇤
i

 0 and z

1⇤
i

= 0 or y⇤
i

 0 and q

i

= 0,
+1, otherwise,

(14)

for i = 1, ..., n. Finally, we define the function ⇠ : R ! {0, 1} by

⇠(x) =

⇢

1, if x > 0,
0, otherwise,

(15)

which leads, by using (11), (12), (13), (14) and (15), to the following formula of the conjugate
function of �

�

⇤(x⇤, y⇤) = min
nP

n=1
z

0⇤
i

1, z

0⇤
i

�0,

z

1⇤
i

�0, i=1,...,n

(

n

P

i=1

z

1⇤
i

[
�

ln z1⇤
i

� ln z0⇤
i

� 1
�

⇠(z0⇤
i

)

�p

i

�

1 + lnx⇤
i

� ln z1⇤
i

p

i

�

� q

i

�

1 + ln y⇤
i

� ln z1⇤
i

q

i

�

]

)

for all x⇤
i

, y

⇤
i

� 0, i = 1, ..., n, with the convention 0 ln 0 = 0.

In the next, we will give an alternative representation for �. But, first pay attention to the
following function

�(x⇤) := inf
z

i⇤2X

⇤
i

,

i=0,...,n�1

(

f

⇤(z0⇤) + (z(n�1)⇤
F

n)⇤(x⇤) +
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

, 8x⇤ 2 X

⇤
n

.
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If f : X
0

! R is a K

0

-increasing function on {F 1(domF

1)+K

0

}�K

0

, it follows by Proposition
2.3.11. in [1] that

f

⇤(z0⇤) = +1, 8z0⇤ /2 K

⇤
0

, i.e. dom f

⇤ ✓ K

⇤
0

and thus, it holds

�(x⇤) = inf
z

0⇤2K

⇤
0 , z

i⇤2X

⇤
i

,

i=1,...,n�1

(

f

⇤(z0⇤) + (z(n�1)⇤
F

n)⇤(x⇤) +
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

, 8x⇤ 2 X

⇤
n

.

Moreover, if F 1 : X
1

! X

0

is K

1

-K
0

-increasing on {F 2(domF

2) + K

1

} � K

1

, then (z0⇤F 1) :
X

1

! R is K
1

-increasing on {F 2(domF

2)+K

1

}�K

1

for z0⇤ 2 K

⇤
0

. By using again Proposition
2.3.11. in [1] one gets for z0⇤ 2 K

⇤
0

(z0⇤F 1)⇤(z1⇤) = +1, 8z1⇤ /2 K

⇤
1

, i.e. dom(z0⇤F 1) ✓ K

⇤
1

and we can write

�(x⇤) = inf
z

0⇤2K

⇤
0 , z

1⇤2K

⇤
1 ,

z

i⇤2X

⇤
i

, i=2,...,n�1

(

f

⇤(z0⇤) + (z(n�1)⇤
F

n)⇤(x⇤) +
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

, 8x⇤ 2 X

⇤
n

.

If we proceed in this way, it reveals that

(z(i�1)⇤
F

i)⇤(zi⇤) = +1, 8zi⇤ /2 K

⇤
i

, i.e. dom(z(i�1)⇤
F

i)⇤ ✓ K

⇤
i

, i = 2, ..., n� 1,

and therefore, it holds

�(x⇤) = inf
z

i⇤2X

⇤
i

,

i=0,...,n�1

(

f

⇤(z0⇤) + (z(n�1)⇤
F

n)⇤(x⇤) +
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

= inf
z

i⇤2K

⇤
i

,

i=0,...,n�1

(

f

⇤(z0⇤) + (z(n�1)⇤
F

n)⇤(x⇤) +
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

, 8x⇤ 2 X

⇤
n

.

For the conjugate function of � one has

�

⇤(x) = sup
x

⇤2X⇤
n

{hx⇤, xi � �(x⇤)}

= sup
x

⇤2X⇤
n

(

hx⇤, xi �

inf
z

i⇤2X

⇤
i

,

i=0,...,n�1

(

f

⇤(z0⇤) + (z(n�1)⇤
F

n)⇤(x⇤) +
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

))

= sup
x

⇤2X

⇤
n

, z

i⇤2X

⇤
i

,

i=0,...,n�1

(

hx⇤, xi � f

⇤(z0⇤)� (z(n�1)⇤
F

n)⇤(x⇤)�
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

= sup
z

i⇤2X

⇤
i

,

i=0,...,n�1

(

sup
x

⇤2X⇤
n

{hx⇤, xi � (z(n�1)⇤
F

n)⇤(x⇤)}� f

⇤(z0⇤)�
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

= sup
z

i⇤2X

⇤
i

,

i=0,...,n�1

(

(z(n�1)⇤
F

n)⇤⇤(x)}� f

⇤(z0⇤)�
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

, 8x 2 X

n

. (16)
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Since F

n is proper and K

n�1

-convex and if we ask that Fn is also star K
n�1

-lower semicontin-
uous, (16) can by using the Fenchel-Moreau Theorem be written as

�

⇤(x) = sup
z

i⇤2X

⇤
i

,

i=0,...,n�1

(

(z(n�1)⇤
F

n)(x)� f

⇤(z0⇤)�
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

, 8x 2 X

n

. (17)

If we additionally ask that the function F

i is star K

i�1

-lower semicontinuous, i = 1, ..., n, and
if we assume that f is lower semicontinuous, then one gets for (17) by using again the Fenchel-
Moreau Theorem

�

⇤(x) = sup
z

i⇤2X

⇤
i

,

i=0,...,n�2

(

sup
z

(n�1)⇤2X⇤
n�1

{hz(n�1)⇤
, F

n(x)i � (z(n�2)⇤
F

(n�1))⇤(z(n�1)⇤)}�

f

⇤(z0⇤)�
n�2

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

= sup
z

i⇤2X

⇤
i

,

i=0,...,n�2

(

(z(n�2)⇤
F

n�1)⇤⇤(Fn(x))� f

⇤(z0⇤)�
n�2

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

= sup
z

i⇤2X

⇤
i

,

i=0,...,n�2

(

(z(n�2)⇤
F

n�1)(Fn(x))� f

⇤(z0⇤)�
n�2

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

= sup
z

i⇤2X

⇤
i

,

i=0,...,n�3

(

sup
z

(n�2)⇤2X⇤
n�2

{hz(n�2)⇤
, F

n�1(Fn(x))i � (z(n�3)⇤
F

(n�2))⇤(z(n�2)⇤)}�

f

⇤(z0⇤)�
n�3

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

= sup
z

i⇤2X

⇤
i

,

i=0,...,n�3

(

(z(n�3)⇤
F

n�2)(Fn�1(Fn(x)))� f

⇤(z0⇤)�
n�3

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

...

= sup
z

0⇤2X⇤
0

{hz0⇤, (F 1 � ... � Fn)(x)i � f

⇤(z0⇤)} = f

⇤⇤((F 1 � ... � Fn)(x))

= (f � F 1 � ... � Fn)(x) = �(x), 8x 2 X

n

.

Since the weak duality always holds, i.e. v(PK) � v(DK), we have �

⇤(x⇤)  �(x⇤) for all
x

⇤ 2 X

⇤
n

. Moreover, it holds �(x) � �

⇤⇤(x) for all x 2 X

n

and from here it follows that
�(x) � �

⇤⇤(x) � �

⇤(x) = �(x), x 2 X

n

, i.e. �(x) = �

⇤⇤(x) for all x 2 X

n

. The latter means that
� is proper, convex and lower semicontinuous. Summarizing, we get the following theorem:

Theorem 5.3. Let f : X
0

! R be a proper, convex, K
0

-increasing on {F 1(domF

1) +K

0

} �
K

0

and lower semicontinuous function, F i : X
i

! X

i�1

be a proper, K
i�1

-convex, K
i

-K
i�1

-
increasing on {F i+1(domF

i+1) + K

i

} � K

i

and star K

i�1

-lower semicontinuous function, i =
1, ..., n�1, and F

n : X
n

! X

n�1

be a proper, K
n�1

-convex and star K
n�1

-lower semicontinuous
function. Then the function � = f � F

1 � ... � F

n : X

n

! R is proper, convex and lower
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semicontinuous and can alternatively be written as

�(x) = �

⇤(x) = sup
z

i⇤2X

⇤
i

,

i=0,...,n�1

(

(z(n�1)⇤
F

n)(x)� f

⇤(z0⇤)�
n�1

X

i=1

(z(i�1)⇤
F

i)⇤(zi⇤)

)

, 8x 2 X

n

.

6 An Optimization problem having as objective function the
sum of reciprocals of concave functions

Let E
i

be a non-empty convex subset of X, i = 1, ..., n, where X is defined like in the beginning,
a locally convex Hausdor↵ space partially ordered by the non-empty convex cone K. Then, we
consider a convex optimization problem having as objective function the sum of reciprocals of
concave functions h

i

: E
i

! R with strict positive values, i = 1, .., n, and geometric and cone
constraints, i.e. the optimization problem that we discuss in this section (cf. the definitions
from Section 3) is given by

(PG) inf
x2S,

g(x)2�Q

(

n

X

i=1

1

h

i

(x)

)

.

Optimization problems of this type arise, for instance, in the study of power functions by setting
h

i

: R
+

! R, h

i

(x) = c

i

x

p

i with c

i

p

i

(p
i

� 1)  0, i = 1, ..., n, (see [17]) and have a wide range
of applications in economics, engineering and finance.
To apply the results from the previous section to (PG), i.e. to characterize strong duality and to
derive optimality conditions, we assume that the function �h

i

is K-increasing on E

i

, i = 1, ..., n,
and set X

0

= Rn, K
0

= Rn

+

, X
1

= X

n, K
1

= K

n and X

2

= X. Additionally, we define the
following functions

• f : Rn ! R, f(y0) =

8

<

:

�
n

P

i=1

1

y

0
i

, if y0
i

< 0, i = 1, ..., n,

+1, otherwise,

• F

1 : Xn ! Rn, F 1(y1) =

⇢

(�h

1

(y1
1

), ...,�h

n

(y1
n

))T , if y1
i

2 E

i

, i = 1, ..., n,
+1Rn

+
, otherwise

and

• F

2 : X ! X

n, F 2(x) := (x, ..., x) 2 X

n

and we assume that F 2(S \ dom g) ✓ E

1

⇥ ...⇥E

n

(cf. Remark 3.2). From here, it reveals that
the problem (PG) can equivalently be written as

(PG) inf
x2S,

g(x)2�Q

�

(f � F 1 � F 2)(x)
 

and by using the formula from Section 3 its corresponding conjugate dual problem (DG) turns
into

(DG) sup
z

0⇤2Rn+, z

1⇤2(K⇤)n,

z

2⇤2Q

⇤

(

inf
x2S

(*

n

X

i=1

z

1⇤
i

, x

+

+ hz2⇤, g(x)i
)

� f

⇤(z0⇤)� (z0⇤F 1)⇤(z1⇤)

)

.
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Furthermore, one has (see [2], [12] or [13])

f

⇤(z0⇤) =
n

X

i=1

sup
y

i

<0

⇢

z

0⇤
i

y

0

i

+
1

y

0

i

�

= �2
n

X

i=1

q

z

0⇤
i

for all z0⇤
i

� 0, i = 1, ..., n, and since, it holds

(z0⇤F 1)⇤(z1⇤) =
n

X

i=1

sup
y

1
i

2E
i

�

hz1⇤
i

, y

1

i

i+ z

0⇤
i

h

i

(y1
i

)
 

=
n

X

i=1

(�z

0⇤
i

h

i

)⇤
E

i

(z1⇤
i

),

one gets for the conjugate dual problem

(DG) sup
z

0⇤2Rn+, z

1⇤2(K⇤)n,

z

2⇤2�Q

⇤

(

�(z2⇤g)⇤
S

 

�
n

X

i=1

z

1⇤
i

!

+
n

X

i=1

✓

2
q

z

0⇤
i

� (�z

0⇤
i

h

i

)⇤
E

i

(z1⇤
i

)

◆

)

.

Remark 6.1. We want to note that for i = 1, ..., n the representation of the conjugate function
of (�z

0⇤
i

h

i

) can be improved by the following one (see [2], [12] or [13])

(�z

0⇤
i

h

i

)⇤
E

i

(z1⇤
i

) =

(

z

0⇤
i

(�h

i

)⇤
E

i

⇣

z

1⇤
i

z

0⇤
i

⌘

, if z0⇤
i

> 0

�

E

i

(z1⇤
i

), if z0⇤
i

= 0.

Therefore, by using (15) one can write for the problem (DG) also

(DG) sup
z

0⇤2Rn+, z

1⇤2(K⇤)n,

z

2⇤2�Q

⇤

(

� (z2⇤g)⇤
S

 

�
n

X

i=1

z

1⇤
i

!

+
n

X

i=1

✓

2
q

z

0⇤
i

� z

0⇤
i

(�h

i

)⇤
E

i

✓

z

1⇤
i

z

0⇤
i

◆

⇠(z0⇤
i

)� �

E

i

(z1⇤
i

)(1� ⇠(z0⇤
i

))

◆

)

.

Remark 6.2. One may see that the function F

2 has been introduced in order to decompose the
functions h

i

, i = 1, ..., n, and g or, more precisely, to decompose its conjugate functions in the
formulation of the dual problem (DG).

It is easy to observe that f is proper, Rn

+

-increasing on dom f = int(�Rn

+

), convex and lower
semicontinuous, F 1 is proper, Kn-Rn

+

-increasing on domF

1 = E

1

⇥ ... ⇥ E

n

and Rn

+

-convex
and that F 1(domF

1) ✓ int(�Rn

+

) = dom f (in this context pay attention on Remark 3.2). For
that reason we can now attach the regularity condition (RC

C

1

), specialized for the optimization
problem (PG),

(RC

G

1

) 9(y00 , y10 , y20) 2 (�1, 0)n ⇥X

n ⇥ S such that h
i

(y1
0

i

) + y

0

0
i

> 0,
y

2

0 � y

1

0
i

2 � intK, i = 1, ..., n, and g(y2
0
) 2 � intQ.

As h

i

is a concave function with strict positive values on E

i

, there exist y

0⇤
i

< 0 and y

1⇤
i

2 E

i

such that h
i

(y1
0

i

) + y

0

0
i

> 0, i = 1, ..., n, and hence, (RC

G

1

) reduces to

(RC

G

1

) 9(y10 , y20) 2 X

n ⇥ S such that y2
0 � y

1

0
i

2 � intK, i = 1, ..., n, and g(y2
0
) 2 � intQ.
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or, equivalently, in the light of (RC

C

1

0 ),

(RC

G

1

0 ) 9x0 2 S such that x0 2 E

i

� intK, i = 1, ..., n, and g(x0) 2 � intQ.

The generalized interior point regularity conditions (RC

C

2

), specialized for (PG), looks like

(RC

G

2

) X and Z are Fréchet spaces, S is closed, g is Q-epi closed,
�h

i

is lower semicontinuous, 0
X

2 sqri(dom g \ S � E

i

+K),
i = 1, ..., n, and 0

Z

2 sqri(g(dom g \ S) +Q).

In the same way one can formulate a specialized regularity condition (RC

G

i

) in respect to the
condition (RC

C

i

) for i 2 {20, 200, 3}.

Remark 6.3. Recall, that in respect to Remark 3.1 and 4.1 the function F

1 does not need to
be monotone, because F

2 is a linear function. In this case we set, like mentioned in Remark
3.1, K

1

= {0
X

n} = {0
X

}n. But take attention to the circumstance that the regularity conditions
(RC

G

1

) and (RC

G

1

0 ) are no more applicable in this framework, as int{0
X

} = ;.

By Theorem 4.1 and 4.2 the strong duality statement and the optimality conditions follows
immediately.

Theorem 6.1. (strong duality) If one of the conditions (RC

G

i

), i 2 {1, 10, 2, 20, 200, 3}, is fulfilled,
then between (PG) and (DG) strong duality holds, i.e. v(PG) = v(DG) and the conjugate dual
problem has an optimal solution.

Theorem 6.2. (optimality conditions) (a) Suppose that one of the regularity conditions (RC

G

i

),
i 2 {1, 10, 2, 20, 200, 3}, is fulfilled and let x 2 S be an optimal solution of the problem (PG). Then
there exists (z0⇤, z1⇤, z2⇤) 2 Rn

+

⇥ (K⇤)n ⇥Q

⇤, an optimal solution to (DC), such that

(i)
n

P

i=1

1

h

i

(x)

� 2
n

P

i=1

q

z

0⇤
i

= �
n

P

i=1

z

0⇤
i

h

i

(x),

(ii)
n

P

i=1

(�z

0⇤
i

h

i

)⇤
E

i

(z1⇤
i

)�
n

P

i=1

z

0⇤
i

h

i

(x) =

⌧

n

P

i=1

z

1⇤
i

, x

�

,

(iii) hz2⇤, g(x)i+ (z2⇤g)⇤
S

✓

�
n

P

i=1

z

1⇤
i

◆

=

⌧

�
n

P

i=1

z

1⇤
i

, x

�

,

(iv) hz2⇤, g(x)i = 0.

(b) If there exists x 2 S such that for some (z0⇤, z1⇤, z2⇤) 2 Rn

+

⇥ (K⇤)n ⇥ Q

⇤ the conditions
(i)-(iv) are fulfilled, then x is an optimal solution of (PG), (z0⇤, z1⇤, z2⇤) is an optimal solution
for (DG) and v(PG) = v(DG).

Remark 6.4. In view of the Young-Fenchel inequality, we can refine the conditions (i) and (ii)
of Theorem 6.2 like follows

(i) z

0⇤
i

h

i

(x) = 2
q

z

0⇤
i

� 1

h

i

(x)

, i = 1, ..., n,

(ii) (�z

0⇤
i

h

i

)⇤
E

i

(z1⇤
i

)� z

0⇤
i

h

i

(x) = hz1⇤
i

, xi, i = 1, ..., n.
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In the end of this paper we give, for completeness, alternative representations of the optimality
conditions presented in Theorem 6.2 and refined in the previous remark.

Remark 6.5. In accordance with Remark 4.3 and 6.4 the optimality conditions (i)-(iv) of
Theorem 6.2 can equivalently be rewritten as

(i) z

0⇤
i

2 @

�

�1

·
�

(�h

i

(x)), i = 1, ..., n,

(ii) z

1⇤
i

2 @(�z

0⇤
i

h

i

)(x), i = 1, ..., n,

(iii) �
n

P

i=1

z

1⇤
i

2 @((z2⇤g) + �

S

)(x),

(iv) hz2⇤, g(x)i = 0.
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[3] R. I. Boţ, A. Heinrich: Regression Tasks in Machine Learning via Fenchel Duality. To
appear in Annals of Operations Research, 2012.
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