
A Combinatorial Algorithm for

Minimizing the Maximum

Laplacian Eigenvalue of

Weighted Bipartite Graphs

C. Helmberg, I. Rocha, U. Schwerdtfeger

Preprint 2015-12

Preprintreihe der Fakultät für Mathematik
ISSN 1614-8835

A Combinatorial Algorithm for Minimizing the Maximum

Laplacian Eigenvalue of Weighted Bipartite Graphs

Christoph Helmberg1, Israel Rocha2 and Uwe Schwerdtfeger1

1Fakultät für Mathematik, Technische Universität Chemnitz
D-09107 Chemnitz, Germany

{helmberg,uwe.schwerdtfeger}@mathematik.tu-chemnitz.de
2Instituto de Matemática, Universidade Federal do Rio Grande do Sul

CEP 91509-900, Porto Alegre, RS, Brazil
israel.rocha@ufrgs.br

July 16, 2015

Abstract

We give a strongly polynomial time combinatorial algorithm to minimise the largest
eigenvalue of the weighted Laplacian of a bipartite graph G = (W ∪B,E). This is accom-
plished by solving the dual graph embedding problem which arises from a semidefinite
programming formulation. In particular, the problem for trees can be solved in time
O(|W ∪B|3).
Keywords: bipartite graph, tree, weighted Laplacian matrix, graph embedding
MSC 2010: 05C05, 05C10, 05C50, 05C85, 90C22, 90C35

1 Introduction

For a simple graph (no loops or multiple edges) G = (N = {1, . . . , n}, E) and a vector of
non-negative edge weights w ∈ RE+ we define the weighted Laplacian as the N ×N matrix

Lw(G) =
∑
ij∈E

wij(ei − ej)(ei − ej)T = Dw −Aw

where ei is the i-th canonical basis vector, Dw = Diag
(∑

j : ij∈E wij , i ∈ N
)

and Aw is

the weighted adjacency matrix. The first representation shows in particular that Lw(G) is
symmetric and positive semidefinite (Lw(G) � 0) and hence has eigenvalues

0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

We refer to the surveys [7, 8] for numerous applications of the Laplacian spectrum. For
instance, in [2] Fiedler studied λ2 subject to the constraint

∑
ij∈E wij = |E|. The maximum

value attained is known as the absolute algebraic connectivity of G and a corresponding
eigenvector is strongly related to partitions of the graph. The optimal λ2 was also found to
be related to mixing rates of Markov chains on G [1, 11]. In [5, 6] the authors studied a related

1

graph embedding problem and found a new minor monotone graph property referred to as
rotational dimension. The embedding problem arises as the Lagrangian dual of maximising
λ2, formulated as a semidefinite program (SDP).

Fiedler [3] also studied the problem of minimising the maximal eigenvalue λn which we
take as a starting point of our investigations. We slightly deviate from the original formulation
of the problem in [3] by assuming the edge weights to sum up to 1 rather than |E|. It then
reads as an SDP

minimise λn s.t.

λnI −

∑
ij∈E wijEij � 0,∑

ij∈E wij = 1,

wij ≥ 0 (ij ∈ E), λn ∈ R.
(1.1)

Fiedler gives bounds for the optimal λn and described properties of the corresponding eigen-
vectors of the optimally weighted Laplacian. The largest share of [3] is dedicated to bipartite
graphs and especially trees. Some of those results were rediscovered in our investigation of
the dual problem (1.3) below and new proofs “from the dual point of view” are given.

Since λn > 0 for any feasible solution we can set w̃ij =
wij

λn
and obtain an equivalent

program

maximise
∑
ij∈E

w̃ij s.t.

{
I −

∑
ij∈E w̃ijEij � 0,

w̃ij ≥ 0 (ij ∈ E)
(1.2)

whose Lagrangian dual is the embedding problem

minimise

n∑
i=1

‖vi‖2 s.t.

{
‖vi − vj‖2 ≥ 1 (ij ∈ E)

vi ∈ Rn (i ∈ N).
(1.3)

we shall mainly work with. In [4, 10] strong duality is shown to hold for (1.2) and (1.3),
i. e. both are solvable and attain the same optimal value. Geometric properties of optimal
embeddings are related to the separator structure of the graph.

Both [3] and [4] are interested in structural properties rather than computational issues.
With semidefinite programming (1.2) and (1.3) can be solved efficiently. Moreover, the work
[3] and Section 2 below show that for bipartite graphs optimal solutions to (1.1) and (1.3) have
a strong combinatorial flavour. This served as our main motivation to devise a combinatorial
algorithm which solves the problem in polynomial time. Its main ingredient is an efficient
method to solve the following problem:

For a given bipartite graph G = (W ∪̇B,E) compute S(G) which is defined
as the (unique) subset X ⊆ B of largest cardinality that minimises the ratio
|NG(X)|/|X|. Here NG(X) denotes the complete neighbourhood of X in G.

In our approach we first give a strongly polynomial time algorithm for trees and extend
this to provide a strongly polynomial time algorithm for bipartite graphs. After completing
this work it turned out that earlier work of Poljak [9] for minimising the spectral radius of
weighted adjacency matrices builds upon solving the same subproblem via network flows; for
the bipartite case this is in fact more elegant and faster. Still, our approach relies on new
structural properties, it is self contained and faster for trees, so we believe it is worth to
include the extension to the bipartite case, as well.

2

In Section 2 we give an optimality criterion for embeddings and Section 3 provides an
algorithm which computes the optimal embedding (viz. decomposition) of a tree in time
O(n3). Section 4 is devoted to computing S(·) with the help of the tree algorithm. Thus, our
approach has the additional feature that it outputs a spanning tree of the input graph with
the same optimal embedding as G. Our findings are summarised in

Theorem 1.1. For a bipartite graph G = (W ∪̇B,E) there is an algorithm which solves
problems (1.1), (1.2) and (1.3) in strongly polynomial time. In particular, if G is a tree these
problems can be solved in time O(|W ∪B|3).

2 Properties of optimal embeddings of bipartite graphs

A well written exposition of the basic properties of optimal embeddings is given in the thesis
[10] and propositions 2.1 and 2.3 are mostly special cases of results in [10, Sec. 4.2]. However,
some of the proofs simplify for bipartite graphs and for a selfcontained exposition we include
them here.
Notation: When we consider bipartite graphs G = (N(G), E(G)) we write the vertex set
as N(G) = W (G)∪̇B(G) and consider the edges to be directed from W (G) to B(G), i. e.
E(G) ⊆W (G)×B(G). We occasionally denote the vertices in W (G) as “white” and those in
B(G) rather unsurprisingly as “black” vertices. If there is no danger of ambiguity we set n =
|N(G)|. If C = (W (C)∪̇B(C), E(C) ⊆W (C)×B(C)) is another bipartite graph then C ⊆ G
means W (C) ⊆ W (G), B(C) ⊆ B(G) and E(C) ⊆ E(G) hold. Accordingly, when we write
G \C we mean the subgraph of G obtained by removing all vertices of C from the vertex set
of G together with all incident edges. In the same vein, for subgraphs C,D ⊂ G with disjoint
vertex sets we write C ∪D for the induced subgraph G [W (C) ∪B(C) ∪W (D) ∪B(D)] .

Proposition 2.1. The embedding problem (1.3) is solvable for arbitrary G and if G = (N =
W ∪̇B,E ⊆W×B) is bipartite, there is a one-dimensional optimal solution V = (v1, . . . , vn) ∈
R1×n with vi ≤ 0 for i ∈ W and vi ≥ 0 for i ∈ B. Furthermore, any optimal embedding of a
bipartite graph lies within the unit ball.

Proof. The embedding vi = ei, i ∈ N , is feasible and has objective value n. Therefore, by
continuity of the objective function, all optimal solutions are inside the compact region{

(v1, . . . vn) ∈ Rn×n : ‖vi‖ ≤
√
n, i ∈ N‖vi − vj‖ ≥ 1, ij ∈ E

}
.

Outside this region the objective takes values greater than n. For a bipartite graph G =
(N = W ∪̇B,E ⊆ W × B) a one-dimensional optimal embedding can be chosen, namely if
(v∗i , i ∈ N) is an optimal embedding into Rn then W 3 i 7→ vi := −‖v∗i ‖, B 3 i 7→ vi := ‖v∗i ‖ is
an optimal embedding in the line: indeed, for ij ∈ E feasibility is implied by 1 ≤ ‖v∗i − v∗j ‖ ≤
|‖v∗i ‖+ ‖v∗j ‖| = |vi − vj | and the objective values coincide. As for the last assertion, if there
is a solution with, say, a black vertex i embedded at v∗i with ‖v∗i0‖ > 1 then construct the
corresponding one-dimensional embedding as above with all white embedding points ≤ 0.
Then vi0 > 1 can be replaced by, say vi0 = 1 without violating any constraint and thereby
improve the objective, a contradiction.

Definition 2.2. For G = (N,E) let V = (v1, . . . , vn) be an optimal solution of (1.3) and wij
a corresponding optimal solution of (1.2). The active subgraph GV = (N,EV) has edge set
E(GV) = {ij ∈ E : ‖vi − vj‖ = 1}. The strictly active subgraph Gw = (N,Ew) of G with
respect to w has edge set Ew = {ij ∈ E : wij > 0}.

3

By the complementarity conditions of both problems there holds Ew ⊆ EV ; the inclusion
is in general strict.

Proposition 2.3. Let V ∈ R1×N be an optimal one-dimensional embedding with vi ≤ 0 for
i ∈ W and vi ≥ 0 for i ∈ B, cf. Prop. 2.1. Let GV be the active subgraph of G w.r.t. V and
C = (W (C) ∪ B(C), E(C)) be a connected component of GV .

1. Then C is embedded as follows

W (C) 3 i 7→ −|B(C)|
|B(C)|+ |W (C)|

=: yC

B(C) 3 i 7→ |W (C)|
|B(C)|+ |W (C)|

= 1 + yC .

(2.1)

2. i0 is isolated in GV if and only if it is isolated in G. In that case in any optimal
embedding vi0 = 0.

3. All components of V lie in the open interval]− 1, 1[.

In order to visualise Prop. 2.3 consider the minimal meaningful example of a tree on five
nodes (Fig. 1a). Its optimal embedding is displayed in Fig. 1b, the two components of the
resulting active subgraph embedded according to (2.1) are displayed in Fig. 1c.

Figure 1

u

v

x

y
w

(a) Tree to be embedded

−1
3

2
3

−1
2

1
2

(b) Optimal embedding
−1

3
2
3

−1
2

1
2

v, w y

u x

(c) Two-point embeddings

Remarks: By 2 of Prop. 2.3 we can restrict our attention to graphs without isolated vertices.
Notice, however, that 2 is in accordance with (2.1). Moreover, for an optimal embedding of
a connected graph there is by 3 no choice in a one-dimensional embedding but sending the
white nodes to one side and the black nodes to the opposite side of the origin. Lastly, we
point out that the optimal values of (1.1),(1.2) and (1.3) are rational, cf. [3, Coro. 3.10].

Proof. 1. We first consider a connected component C of GV with W (C) 6= ∅ 6= B(C). By
definition of GV the vertices in W (C) are embedded at some nonpositive number y and
those in B(C) at 1 + y. Their contribution to the objective is the quadratic polynomial

|W (C)| ·y2 + |B(C)| · (1 +y)2 which has its unique minimum at yC = −|B(C)|
|B(C)|+|W (C)| . If y 6= yC ,

a small perturbation of C’s embedding towards yC would decrease the objective value without
changing the active subgraph. This would contradict minimality.
2. Let i0 be an isolated node in GV , w.l.o.g. i0 ∈W. Then vi0 = 0 because otherwise it could
be moved towards 0 to obtain a strictly smaller objective value. Now if i0 had a neighbour
j0 ∈ B with i0j0 ∈ E then j0 would have to be embedded at vj0 = 1, where vj0 ≤ 1 is granted
by Prop. 2.1. But then i0 and j0 are connected in GV as well.
3. By 2. a vertex i is either isolated (vi = 0) or belongs to a connected component C of GV
which by 1. is embedded at yC , 1 + yC ∈]− 1, 1[.

4

Embedding the entire graph in the two points determined by (2.1) always yields a feasible
solution for (1.3), albeit in general not an optimal one, and this two-point embedding will be
a convenient starting point.

Definition 2.4. Let G = (W (G)∪̇B(G), E ⊆ W (G)× B(G)) be a bipartite graph. Then the
embedding of G in yG and 1 + yG as in (2.1) is called the two-point embedding of G.

Remark: G does not have to be connected, neither is it required that both B(G) and W (G)
are non-empty (B(G) = ∅ ⇒ yG = 0, W (G) = ∅ ⇒ yG = −1).

Lemma 2.5. For bipartite graphs C,C ′ we have

yC < yC′ ⇔ |W (C)|
|B(C)|

<
|W (C ′)|
|B(C ′)|

. (2.2)

Here we use the convention that a
0 =∞ for a > 0 if necessary. Furthermore, if the two-point

embeddings of C,C ′ belong to a feasible embedding of a graph G then

yC < yC′ ⇒ E(G) ∩
(
W (C ′)×B(C)

)
= ∅. (2.3)

Proof. (2.2) is an easy computation. As for (2.3) assume there is an edge ij ∈W (C ′)×B(C).
Then i would be embedded at yC′ , j at 1 +yC , and 1 +yC −yC′ < 1 which is not feasible.

Next we consider partitioning a graph according to a given optimal one-dimensional em-
bedding into maximal subgraphs Ci so that w.r.t. the embedding each subgraph’s nodes form
a two-point embedding of the subgraph. Such a Ci may comprise several connected compo-
nents of the active subgraph GV if each of them has the same two-point embedding. It is
convenient to imagine the Ci as being sorted from “left” to “right” in increasing order of their
yci values. In characterising the leftmost and the rightmost components the neighbourhood
structure in G plays an important role.

Definition 2.6. For a graph G = (N(G), E(G)) and a subset A ⊆ N(G) we define by
NG(A) = {i ∈ N(G) : ∃ j ∈ A : ij ∈ E(G)} the (complete) neighbourhood of A in G.

Lemma 2.7. Consider an optimal one-dimensional embedding of a bipartite graph G =
(W (G)∪̇B(G), E(G) ⊆W (G)×B(G)) as in Prop.2.1. Then the vertex set of the subgraph C
of G with the leftmost two-point embedding is of the form NG(P) ∪ P where P ⊆ B(G). For
the rightmost two-point-embedding it is of the form Q ∪NG(Q) where Q ⊆W (G).

Proof. For this leftmost C a vertex in B(C) is embedded in 1 + yC and all its neighbours
must be embedded in y ≤ yC by feasibility, hence in y = yC . The discussion of the second
assertion is analogous.

Remark: This is in particular true if G contains isolated vertices in which case one point of
the corresponding two-point embedding has no vertex mapped to it.

The following simple observation is used throughout the text.

Lemma 2.8. Let m ≥ 2 and a1, a2, . . . , am, b1, . . . , bm > 0. Then

a1

b1
≤ a2

b2
≤ . . . ≤ am

bm
⇒ a1

b1
≤ a1 + a2 + . . .+ am

b1 + b2 + . . .+ bm
≤ am
bm

,

where the inequalities in the conclusion are strict if and only if at least one inequality in the
premise is strict.

5

When is a two-point embedding of a graph optimal? We provide an optimality criterion.

Lemma 2.9. For a bipartite graph G = (W ∪̇B,E ⊆W ×B) the following are equivalent:

1. The two-point embedding W → {yG} B → {1 + yG} of a bipartite graph G = (W ∪̇B,E)
is optimal.

2. ∀Q ⊆W, Q 6= ∅ : |Q|
|NG(Q)| ≤

|W |
|B| .

3. ∀P ⊆ B, P 6= ∅ : |NG(P)|
|P | ≥ |W ||B| .

Here we use the convention that a
0 =∞ for a > 0 if necessary.

Proof. 1. ⇒ 2.: Assume there is Q ⊆ W with |Q|
|NG(Q)| >

|W |
|B| and let H = G [NG(Q) ∪Q] .

Due to this particular form of H, for every y > yG the embedding of G where Q → {y},
NG(Q)→ {1 + y}, W \Q→ {yG} and B \NG(Q)→ {1 + yG} is also feasible.

y y + 1

yG yG + 1
G \H →

H →

H’s contribution to the objective value is |Q| · y2 + |NG(Q)| · (1 + y)2 which is minimal at
y = yH and yH > yG by assumption and (2.2). Therefore the objective value associated with
the two-point embedding of G can be decreased by perturbing the embedding points of H
slightly to the right and hence the two-point embedding of G is not optimal.
2.⇒ 1.: If the two-point embedding of G is not optimal then consider an embedding according
to Proposition 2.1. It consists by Prop. 2.3 of a collection of at least two two-point embeddings
of induced subgraphs of G. Consider the rightmost such two-point embedding. It is by Lemma
2.7 of the form Q ∪NG(Q) and with (2.2) and an application of Lemma 2.8 |Q|

|NG(Q)| >
|W |
|B| >

|W\Q|
|B\NG(Q)| .

2.⇔ 3.: Take complements.

Remark. The two-point embedding of a bipartite graph containing an isolated vertex is
optimal ⇔W = ∅ ∨B = ∅.

Definition 2.10. A bipartite graph G satisfying one of the conditions in Lemma 2.9 is called
balanced.

Remark. For disconnected graphs the assignment of the colours is important for balanced-
ness: the disjoint union G of two paths P1, P2 with 3 vertices is balanced if and only if the
two central vertices have the same colour.
Remark. This notion of balancedness has also been used by Fiedler1. His [3, Theorem 3.7]
states that the balancedness of G = (W ∪̇B,E) is equivalent to the optimal λn of Lw(G) being
equal to the optimal λn of Lw

(
K|W |,|B|

)
where K|W |,|B| = (W ∪̇B,W × B) is the complete

bipartite graph. The latter λn he obtains by symmetry argument [3, Theo. 2.5, Coro. 2.6].
Our criterion shows that the two-point embedding of K|W |,|B| is optimal and therefore our
Lemma 2.9 can be viewed as the dual analogue of Fiedler’s result.

The following lemma is turned in Section 3 into an algorithm for solving problem (1.3)
for trees.

1Amusingly, we introduced the term “balanced” independently!

6

Lemma 2.11. Let G = (W ∪̇B,E ⊆W ×B) be a bipartite graph.

1. If V is an optimal one-dimensional solution to (1.3) and C is a connected component
of GV then C is balanced.

2. Conversely, let (Wi)i∈J be a partition of W and (Bi)i∈J of B and Ci = G[Wi ∪ Bi]
(induced subgraphs). Let furthermore the following two conditions be satisfied.

(a) ∀wb ∈ E : w ∈Wi, b ∈ Bj ⇒ yCi ≤ yCj .

(b) ∀ i ∈ J : Ci is balanced.

Then the embedding V of G which sends each Ci, i ∈ J , to its two-point embedding is
an optimal solution to (1.3).

Proof. 1: Assume C is not balanced. We can then find Q ⊆W (C) with |Q|
|NC(Q)| >

|W (C)|
B(C) and

H = C[Q∪NC(Q)] as in the proof of Lemma 2.9. In the embedding V the white vertices of H
have distance > 1 to any of their neighbours in B(G) \B(C). Therefore H can be perturbed
to the right by a small positive amount without interfering with other components. Thus the
objective value strictly decreases.
2: The first condition 2a ensures feasibility, cf. (2.3). Because Ci is optimally embedded by
its two-point embedding there is a vector w(i) = (wab, ab ∈ E(Ci)) of optimal edge weights for
the primal problem (1.2) for Ci with the same objective value. Concatenating the w(i), i ∈ J
and setting wab = 0 for ab ∈ E \

⋃
i∈J E(Ci) yields a feasible vector w ∈ RE of edge weights

for G. The objective value of G in problem (1.2) equals the objective value of V in problem
(1.3) which proves optimality of both.

For extracting the leftmost subgraph from the adjacency structure of G, Lem. 2.7 and
(2.2) suggest to consider the following candidate.

Proposition 2.12. Let G = (W (G)∪̇B(G), E(G) ⊆ W (G) × B(G)) be a bipartite graph
without isolated vertices. Then the set

M = Argmin
∅6=X⊆B(G)

|NG(X)|
|X|

contains a unique element S(G) ⊆ B(G) of maximal cardinality.

Proof. Let S ∈ M be a set of maximal cardinality. If there was another set T ∈ M with
|S| = |T |, then |NG(S)|

|S| = |NG(S)|+|NG(T)|
|S|+|T | ≥ |NG(S∪T)|+|NG(S∩T)|

|S∪T |+|S∩T | . Since S is a minimiser,

we have |NG(S∩T)|
|S∩T | ≥ |NG(S)|

|S| . Because S has maximal cardinality and S 6= T we have

|NG(S∪T)|
|S∪T | > |NG(S)|

|S| . Lemma 2.8 immediately gives |NG(S)|
|S| ≤ min

{
|NG(S∪T)|
|S∪T | , |NG(S∩T)|

|S∩T |

}
<

|NG(S∪T)|+|NG(S∩T)|
|S∪T |+|S∩T | , a contradiction.

Proposition 2.13. Let G be a bipartite graph without isolated vertices and consider the
set of vertices S(G) as in 2.12. Form the graph H from G by removing the set of vertices
NG(S(G)) ∪ S(G).

1. If the vertex set of the graph H is non-empty then it holds |NG(S(G))|
|S(G)| < |NH(S(H))|

|S(H)| .

7

2. The subgraph of G induced by NG(S(G)) ∪ S(G) is balanced.

Proof. First notice that B\S(G) and W \NG(S(G)) are either both empty or both non-empty.
For if S(G) = B then NG(S(G)) = W since there are no isolated vertices. If W = NG(S(G))
then that minimum ratio is obtained by taking S(G) = B. Now let H be non-empty. Since
|S(G)| is maximal it holds

|NG(S(G))|
|S(G)|

<
|NG(S(G)) ∪ (NG(S(H))\NG(S(G)))|

|S(G) ∪ S(H)|

=
|NG(S(G))|+ |(NG(S(H))\NG(S(G)))|

|S(G)|+ |S(H)|

=
|NG(S(G))|+ |NH(S(H))|

|S(G)|+ |S(H)|
,

With Lemma 2.8 we conclude that |NG(S(G))|
|S(G)| < |NH(S(H))|

|S(H)| .

Balancedness of the subgraph induced by NG(S(G))∪ S(G) follows from Lemma 2.9.

The previous proposition directly implies the correctness of the following

Algorithm 2.14.
Input: A bipartite graph G = (W ∪̇B,E ⊆W ×B) without isolated vertices.
Output: Partitions (W1, . . . ,WK) of W and (B1, . . . , BK) of B such that the induced sub-
graphs Ci = G [Wi ∪Bi] satisfy conditions (2a) and (2b) of Lemma 2.11. The collection of
their two-point embeddings then forms an optimal embedding of G.
Initialisation: i← 0.
while B 6= ∅ do

1. i← i+ 1.

2. Bi ← S(G).

3. Wi ← NG(S(G)).

4. G← G [(W \Wi) ∪ (B \Bi)] .

end while
return (Wj ∪Bj , j = 1, . . . , i) .

Remarks: The assumption “no isolated vertices” in the previous algorithm is only for nota-
tional convenience. Simply remove isolated vertices, embed them in 0 and invoke Algorithm
2.14 for the remaining graph. Furthermore, Algorithm 2.14 needs polynomial time if the
function S(·) does as the number of calls of S(·) is bounded by |B|.

Proposition 2.15. Let G = (W ∪̇B,E ⊆ W × B) without isolated vertices. Let S(G) be
defined as in Prop. 2.12 and let C = G [NG(S(G)) ∪ S(G)] . Then in any optimal embedding
C is embedded in its two-point embedding {yC , 1 + yC}. The remaining vertices are embedded
in points strictly greater than yC .

Proof. Let V be an optimal one-dimensional embedding and let (Ci, i = 1, . . . ,K) be the
connected components of GV (cf. Prop. 2.3 and Lemma 2.11). Assume w.l.o.g. that yC1 <

8

. . . < yCK
(otherwise unify those Ci with identical two-point embeddings). By Lemma 2.7

and the minimality property of S(G)

|NG(S(G))|
|S(G)|

≤ |W (C1)|
|B(C1)|

<
|W (C2)|
|B(C2)|

< . . . <
|W (CK)|
|B(CK)|

.

Let L be the largest index i such that (NG(S(G)) ∪ S(G)) ∩ (W (Ci) ∪B(Ci)) 6= ∅.
First case: L = 1, i. e. all of NG(S(G)) ∪ S(G) is embedded in {yC1 , 1 + yC1}. If yC = yC1

then C1 = C as S(G) is maximal w.r.t. inclusion. If yC < yC1

(
⇔ |NG(S(G))|

|S(G)| < |W (C1)|
|B(C1)|

)
then W (C) = NG(S(G)) (W (C1) and S(G) = B(C) ⊆ B(C1). Then C1 is not balanced by
Lemma 2.9 and V not optimal by Lemma 2.11.
Second case: L ≥ 2. W (CL) ∩W (C) 6= ∅ because otherwise a vertex i ∈ B(CL) ∩ B(C)
would be isolated in GV and therefore in G (Prop. 2.3), a contradiction. B(CL) ∩ B(C) = ∅
is also impossible because then all of S(G) is embedded strictly to the left of 1 + yCL

and by
relation (2.3) there could not be an edge from S(G) to W (CL) in G, again a contradiction.

Now let D = W (C)∩W (CL) = NG(S(G))∩W (CL). Then NC(D) ⊆ B(CL) by definition
of CL and the relation (2.3). Denote by H the subgraph of G induced by D ∪ NC(D).
Notice that we can move the embedding points of H to the left by a small amount without
loosing feasibility. H’s contribution to the objective in the current embedding is f(yCL

) where
f(y) = |D| · y2 + |NC(D)| · (1 + y)2. This f(y) is minimal for y = yH . We now show that
yH < yCL

and thus a slight perturbation to the left decreases the objective value which yields
the desired contradiction.

To that end observe that NG(S(G))\D ⊇ NG (S(G) \NC(D)) ⊇ NG (S(G) \NG(D)) and
therefore by the minimality property of S(G)

|NG(S(G))|
|S(G)|

≤ |NG(S(G)) \D|
|S(G) \NG(D)|

=
|NG(S(G))| − |D|
|S(G)| − |NC(D)|

.

It follows with Lemma 2.8 that |D|
|NC(D)| ≤

|NG(S(G))|
|S(G)| < |W (CL)|

|B(CL)| ⇔ yH < yCL
.

The previous proposition and the uniqueness of S(G) show in particular that the de-
composition into balanced subgraphs produced by the previous algorithm is the only one
possible.

Corollary 2.16. Let G = (W ∪̇B,E ⊆W ×B) be a bipartite graph without isolated vertices.
Then there is a unique one-dimensional optimal solution to (1.3) which maps i ∈W to vi < 0
and j ∈ B to vj > 0.

3 Trees

Lemma 2.11 suggests to find a feasible decomposition into balanced subgraphs. However, in
a graph with many edges balancedness might be hard to be checked. For trees it turns out
to be simple. We first introduce some further

Notation: Let T = (V = W ∪̇B,E ⊆W×B) be a tree. For any subgraphG = (V (G), E(G)) ⊆
T define W (G) := V (G)∩W, B(G) := V (G)∩B and r(G) = |W (G)|

|B(G)| . The removal of an edge

e decomposes T into two subtrees namely the black subtree T b(e) and the white subtree Tw(e)
where T b(e) contains the black vertex of e and Tw(e) the white vertex of e.

9

Tw(e)→
e

← T b(e)

Using this notation Lemma 2.8 may be reformulated as follows for trees.

Lemma 3.1. Let T1, . . . , Tm be node disjoint subtrees of some tree T = (W ∪̇B,E), then

r(T1) ≤ · · · ≤ r(Tm) ⇒ r(T1) ≤ r(T1 ∪ · · · ∪ Tm) ≤ r(Tm),

where the inequalities in the conclusion are strict if and only if at least one inequality in the
premise is strict.

We state the tree version of Lemma 2.9.

Lemma 3.2. A tree T = (W ∪̇B,E) is balanced (i. e. its two-point embedding is optimal) if
and only if r(T b(e)) ≤ r(T) for all e ∈ E.

Proof. Notice that T b(e) = W (T b(e)) ∪NT (W (T b(e))). So, if there is e ∈ E with r(T b(e)) >
r(T), then by Lemma 2.9 T is not balanced. Conversely, if T ’s two-point embedding is
not optimal then consider the vertex set S(T) ∪ NT (S(T)) (cf. Prop. 2.12) and a connected

component C of the induced subgraph T [S(T) ∪NT (S(T))] . Then |NT (S(T))|
|S(T)| = r(C) < r(T).

Because C is embedded leftmost, any edge connecting C to T \C must have its white vertex
in C. Hence C is obtained from T by removing suitable subtrees T b(ei), i ∈ J , and we can
write T as a disjoint union T = C ∪

⋃
i T

b(ei). Now r(C) < r(T) together with Lemma 3.1
imply that r(T b(ei)) > r(T) for some i ∈ J .

Lemma 2.11 suggests to construct a decomposition into balanced subtrees. This can be
done quite efficiently with the following algorithm.

Algorithm 3.3.
Input: a tree G = (B(G)∪̇W (G), ∅ 6= E(G) ⊆ B(G)×W (G)).
Output: Decomposition of G into balanced trees as suggested in Lemma 2.11, hence an
optimal embedding.
Initialisation: P ← ∅ and Q ← {G}.
while Q 6= ∅ do:

Choose a tree T̂ ∈ Q, set Q ← Q \ {T̂}, T0 ← T̂ , k ← 0.

while m← max{r(T bk(e)) : e ∈ E(Tk)} > r(Tk) do

1. Choose an edge ek with r(T bk(ek)) = m.

2. Set Tk+1 ← Twk (ek).

3. Set k ← k + 1.

end while

Q ← Q∪ {C : C connected component of T̂ \ Tk}.
P ← P ∪ {Tk}.

10

end while
return P.

Remark. The algorithm produces one new component (each final Tk) of the optimal embed-
ding (viz. one new two-point embedding) in every round of the outer loop.

The correctness proof of the algorithm relies on the following

Lemma 3.4. The inner while loop processes a tree T̂ with E(T̂) 6= ∅ in k < |B(T̂)| iterations.
Let Dj = T bj (ej), j = 0, . . . , k − 1 denote the subtree cut off by edge ei, then

1. T̂ = Tk∪̇Dk−1∪̇ . . . ∪̇D0, E(Tk) 6= ∅ 6= E(Di), i = 1, . . . , k, and Tk is balanced,

2. r(D0) ≥ r(D1) ≥ · · · ≥ r(Dk−1) > r(Tk),

3. for E′ ⊆ E(T̂) and some i ∈ {0, . . . , k − 1} with (Tk ∪ ei) ⊆
⋂
e∈E′ T̂w(e) there holds

r(Di \
⋃
e∈E′ T b(e)) ≥ r(Di),

4. assuming k > 0, for E′ ⊆ E(T̂) with at least one i ∈ {0, . . . , k − 1} so that (Tk ∪ ei) ⊆⋂
e∈E′ T̂w(e) there holds r(T̂ \ (Tk ∪

⋃
e∈E′ T b(e))) > r(Tk),

5. any connected component C of T̂ \ Tk satisfies r(C) > r(Tk).

Proof. Starting with r(T̂ = T0) > 0 each further iteration 0 ≤ i < k chooses an ei with
r(T bi (ei)) > r(Ti) so that Ti = Twi (ei) ∪ T bi (ei) = Ti+1 ∪ Di satisfies r(Twi (ei)) < r(Ti) <
r(T bi (ei)) by Lemma 3.1. The tree Di contains a black node, so r(Di) > 0 requires edges and
thus |B(Ti+1)| < |B(Ti)|. Likewise the tree Ti+1 contains a white node, so by r(Ti+1) < r(Di)
it contains an edge. This proves the iteration bound and part of 1.

1: The expression for T̂ is a direct consequence of Ti = Ti+1 ∪Di for i = 0, . . . , k − 1. By
the loop’s stopping criterion and Lemma 3.2 Tk is balanced.

2: Proceeding inductively for i = 0, . . . , k − 1 we obtain r(Ti+1) = r(Twi (ei)) < r(Ti) <
r(T bi (ei)) = r(Di). For i < k − 1, maximality of r(T bi (ei)) and ei+1 ∈ E(Ti+1 = Twi (ei))
imply r(Di+1) = r(T bi+1(ei+1)) = r(T bi (ei+1) \ T bi (ei)) ≤ r(T bi (ei+1)) ≤ r(T bi (ei)) = r(Di) by
Lemma 3.1.

3: Any relevant i has D̄ = Di \
⋃
e∈E′ T b(e)) 6= ∅. W.l.o.g. we may assume E′ ⊂ E(Di)

and that the T bi (e) are disjoint, then Di = D̄∪̇
⋃̇
e∈E′T bi (e). The choice of ei guarantees

r(T bi (ei)) = r(Di) ≥ r(T bi (e)) for e ∈ E′. Thus r(D̄) ≥ r(Di) ≥ r(
⋃̇
e∈E′T bi (e)) by Lemma 3.1.

4: Let J = {i = 0, . . . , k − 1: ei ∈
⋂
e∈E′ T̂w(e)}, then T̂ \ (Tk ∪

⋃
e∈E′ T b(e)) =⋃

i∈J
(
Di \

⋃
e∈E′ T b(e))

)
, so the claim follows from 3 and 2.

5: This is a direct consequence of 2 and Lemma 3.1, because every connected component
of T̂ \ Tk is a disjoint union of some Di.

Proof of correctness of the algorithm. The algorithm terminates because by 1 of Lemma 3.4
each iteration j = 1, 2, . . . of the outer while loop stores a balanced final tree Fj (the final Tk
of the inner loop) in P with E(Fj) 6= 0 and reduces the number of nodes in Q by at least two.
The balancedness of the Fj of P ensures (2b) of the optimality conditions in Lemma 2.11,
so it remains to show (2a). For this it suffices by (2.2) to prove that the following invariant
conditions are satisfied at the test of the outer while loop:

11

1. No edge has its endpoints in distinct trees of Q and for each F ∈ P any outgoing edge
e = (w, b) ∈ E(G) \ E(F) with w ∈ W (F) ends in b ∈ B(T) for some T ∈ P ∪ Q. with
r(F) < r(T) and Any incoming edge e = (w, b) ∈ E(G)\E(F) with b ∈ B(F) originates
in w ∈W (F ′) for some F ′ ∈ P. with r(F ′) < r(F).

2. For F ∈ P and T ∈ P ∪Q and an edge e = (w, b) ∈ E(G) with w ∈W (F) and b ∈ B(T)
we have r(F) < r(T).

The proof is by induction. Initially P = ∅, Q = {G}, and the claim holds. So consider
iteration ̂ of the outer loop, where a tree T̂̂ ∈ Q has been chosen and the inner while
loop partitions this into a final subtree F̂ to be added to P and (possibly zero) connected

components S1, . . . , Sh of T̂̂ \F̂ to be added to Q; because the Si are connected components,
by induction no edge is incident to two distinct trees in Q. For S ∈ {S1, . . . , Sh} there is
exactly one edge e = (w, b) ∈ E(T̂̂) with w ∈ W (F̂) and b ∈ B(S), and r(F̂) < r(S) holds

by 5 of Lemma 3.4. No other edges of E(T̂̂) are involved in the edge cut that removes F̂
from T̂̂. Hence, by induction, no edge has its white vertex in a tree in Q and its black vertex
in some tree in P. This shows part 1 and the case T ∈ Q of part 2 of the invariant conditions.

For ̂ ≥ 2 there may be a tree F̄ ∈ P with ̄ < ̂ having an outgoing edge f̄ = (w̄, b̄) ∈
E(G) with w̄ ∈ W (F̄) and b̄ ∈ B(T̂̂). Let S′ ∈ {F̂, S1, . . . , Sh} with b ∈ B(S′), then the
proof is complete once r(F̄) < r(S′) is established.

For this put j0 = ̂, define the subtree H0 = S′ ∪ F̂ of T̂j0 , and recursively for i ≥ 1 put
ji = max{j < ji−1 : ∃fj = (w, b) ∈ E(G), w ∈ W (Fj), b ∈ B(Hi−1)} and define the subtree
Hi = Fji ∪ Hi−1 of T̂ji until ji = ̄ for some i = ı̄. Indeed, the recursion stops for some
ı̄ ≥ 1, because F̄ satisfies the requirements by S′ ⊆ Hi. Note that r(S′) = r(H0) if S′ = F̂
and otherwise r(S′) > r(H0) > r(F̂) by virtue of 5 of Lemma 3.4 and Lemma 3.1. Thus
it suffices to show r(Hi−1) = r(Hi \ Fji) > r(Fji) for i = 1, . . . , ı̄, then Lemma 3.1 implies
r(S′) ≥ r(H0) > · · · > r(Hı̄) > r(F̄).

For proving r(Hi−1) > r(Fji), i = 1, . . . , ı̄, observe that any edge e = (w, b) ∈ E(T̂ji) with

b ∈ B(Hi) also satisfies w ∈ V (Hi). Indeed, let l̄ = min{l = 0, . . . , i : b ∈ Hl =
⋃l
k=0 Fjk ∪S′}.

If w ∈W (Hl̄) then w ∈W (Hi). Otherwise b ∈ Fjl̄ ∪ S
′ (b ∈ S′ only for l̄ = 0) and, by part 1

of the invariant conditions, there must be some iteration j < jl̄ with w ∈W (Fj). Furthermore
j ≥ ji, because e ∈ E(T̂ji) ∩ E(T̂j). Therefore j = ji′ for some l̄ ≤ i′ ≤ i giving w ∈ W (Hi).
Hence, for Ei = {(w, b) ∈ E(T̂ji) : w ∈ W (Hi), b /∈ B(Hi)} and the fji used in the definition
of ji we obtain (Fji ∪ fji) ⊆ Hi =

⋂
e∈Ei

T̂ bji(e). Therefore 4 of Lemma 3.4 applied to T̂ = T̂ji ,
Tk = Fji , E

′ = Ei and ei = fji asserts r(Hi−1 = Hi \ Fji) > r(Fji), completing the proof.

The proof also establishes the following observation.

Corollary 3.5. Let P be the output of Algorithm 3.3 for a tree G = (B(G)∪̇W (G), ∅ 6=
E(G) ⊆ B(G) ×W (G)). If an edge (w, b) ∈ E(G) links distinct trees T1, T2 ∈ P with w ∈
W (T1) and b ∈ B(T2) then r(T1) < r(T2).

Proposition 3.6. The runtime of Algorithm 3.3 is O
(
min{|W |, |B|}2 · |W ∪B|

)
.

Proof. The outer while loop is traversed at most min{|W |, |B|} times, because in every iter-
ation at least one black and one white vertex is moved to P and then no longer considered.

The inner while loop is also traversed at most min{|W |, |B|} times (with analogous rea-
soning). It can be worked out that a maximising edge can be found in O(|W ∪B|) along with
its value by one depth first traversal of the tree. This gives the bound.

12

4 Bipartite graphs

We now use the tree Algorithm 3.3 to find the minimum ratio pair set and thereby implement
Algorithm 2.14.

Algorithm 4.1.
Input: Connected bipartite graph G = (N(G), E(G)), N(G) = W (G)∪̇B(G), E(G) ⊆
W (G)×B(G).

Output: A ∈ Argmin
(
|NG(X)|
|X| : X ⊆ B(G)

)
, |A| maximal.

Initialisation: T ← spanning tree of G.
repeat

1. Compute an optimal decomposition of T into balanced subtrees (T1, . . . , TK)
with Algorithm 3.3.

2. Determine all indices il, l = 1, . . . , L ≤ K for which r (Til) = min{r(Ti), i =
1, . . . ,K} holds and set A =

⋃L
l=1B(Til). (By Prop. 2.15 A = S(T), the

unique set of maximal cardinality in Argmin
(
|NT (X)|
|X| : X ⊆ B(G)

)
)

3. E′ = {((w, b) ∈ E(G) \ E(T) : b ∈ A and w /∈ NT (A)} .
4. if E′ 6= ∅ then

(a) Choose an edge f = (wf , bf) ∈ E′.
(b) E(T)← E(T) ∪ {f}. (This creates a unique cycle.)

(c) Find the component Ti0 ∈ {Ti1 , . . . , TiL} with bf ∈ Ti0 and the
(unique) edge e0 = (w0, b0) on the cycle in T with w0 ∈ Ti0 and
b0 /∈ A.

(d) E(T)← E(T) \ {e0}
end if

until E′ = ∅.
return (A,NG(A)).

Proof of correctness. Observe that the minimum ratio sets of any spanning subgraph T of
G provide a lower bound because |NT (X)|

|X| ≤ |NG(X)|
|X| for every nonempty X ⊆ B(G). If the

algorithm produces a tree T for which E′ is empty then NT (A) = NG(A) and A is the sought
for set. Therefore it remains to show that the algorithm indeed terminates. Let T ′ be a tree
that is obtained from T in one exchange step (T ′ = (T \ e0) ∪ f) and let A′ and A be their
respective minimum ratio sets of maximum cardinality. We prove the following

Assertion: Either
|NT ′ (A′)|
|A′| > |NT (A)|

|A| or
|NT ′ (A′)|
|A′| = |NT (A)|

|A| and A′ (A.

Once this is shown the proof is complete. W.l.o.g. assume for the decomposition of T that

r(T1) = . . . = r(TL) < r(Ti), i = L+ 1, . . . ,K

and T1 and TL+1 are the trees incident with the edge f ∈ E(G) \ E(T) of 4a. Then A =⋃L
i=1B(Ti), edge e0 of 4c leads out of T1 and all Ti remain balanced for the forest F =

(V (T), E(T) \ {e0}). In particular they are still balanced subtrees (though infeasible ones) of
the next tree T ′ (= F ∪ f). For relating these to the next set A′ let T ′1 be some connected

13

component of T ′ [A′ ∪NT ′(A′)]. Because r(T ′1) is minimal in T ′ and by Corollary 3.5, splitting
T ′ along the edge set H = {(w, b) ∈ E(T ′) : w ∈ W (T ′1), b ∈ B(T \ T ′1)} yields T ′1, i. e.
T ′1 = T ′\

⋃
e∈H(T ′)b(e). This H decides, which part of each Ti belongs to T ′1, thus partitioning

the node set of T ′1 into subsets of the node sets of Ti by

V (T ′1) =

K⋃
i=1

V (Ti \ T̃i) (4.1)

where T̃i is either empty (Ti ⊆ T ′1), or a collection of black subtrees T̃i =
⋃
e∈H∩E(Ti)

T bi (e),

or T̃i = Ti (i. e. no vertex of Ti in T ′1). The last case occurs in particular if f ∈ H and
Ti ⊆ (T ′)b(f), because f is contained in no Ti.

Whenever Ti \ T̃i is nonempty, the fact that T̃i is a collection of black subtrees ensures
NTi(B(Ti \ T̃i)) ⊆W (Ti). For these i the balancedness of Ti and Lemma 2.9 yield

r(Ti \ T̃i) ≥ r(Ti) ≥ r(T1).

We can now proceed to prove the assertion.
Case 1: For some i ≥ L + 1 we have a nonempty Ti \ T̃i. Then r(Ti \ T̃i) ≥ r(Ti) > r(T1)
and therefore r(T ′1) > r(T1) by Lemma 3.1 because every set in the union in (4.1) has ratio
≥ r(T1) with the inequality strict for at least one set.
Case 2: Otherwise we have T ′1 =

⋃L
i=1(Ti \ T̃i). Observe that there are no edges between

any of T1, . . . , TL in T ′ because by Corollary 3.5 this is true in T and hence in F and the
edge f links T1 and TL+1. Therefore, as T ′1 is connected, we actually have T ′1 = Ti \ T̃i for
some i ∈ {1, . . . , L}. Assuming that r(T ′1) = r(T1) this shows in particular that A′ ⊆ A and
also NT ′(A′) ⊆ NT (A). Equality cannot hold: recall that f = (bf , wf) with bf ∈ B(T1) and
wf ∈ W (TL+1) and therefore NT ′(B(T1)) = NT (B(T1)) ∪ {wf}. This completes the proof of
the assertion.

Proposition 4.2. The runtime of Algorithm 4.1 is O
(
|B|2 · |W | ·min{|W |, |B|}2 · |W ∪B|

)
.

Proof. Notice that the function 2B \ {∅} → Q, X 7→ |NT (X)|
|X| takes at most |B| · |W | different

values. The correctness proof of the previous algorithm shows that either the cardinality
of A decreases (at most |B| times before a change in ratio occurs) or the ratio increases
(at most |B| · |W | times) so there are no more than |B|2 · |W | iterations of the loop. The
dominant cost within the loop is the call of Algorithm 3.3. Therefore the running time is
O
(
|B|2 · |W | ·min{|W |, |B|}2 · |W ∪B|

)
.

Poljak’s method [9] to compute S(G) requires O(n|E| log(n)2) and clearly outperforms
Algorithm 4.1. Observe, however, that our approach actually constructs a spanning tree T
of G with S(T) = S(G) and NT (S(T)) = NG(S(G)) and therefore T [S(T) ∪NT (S(T))] is a
spanning forest of G[S(G)∪NG(S(G))]. This observation applied successively to the subgraphs
produced by Algorithm 2.14 yield therefore the following corollary, cf. [3, Theo. 3.9].

Corollary 4.3. If G = (W∪B,E) is bipartite then there is a spanning forest of G all of whose
connected components are balanced trees and which has the same optimal one-dimensional
solution to (1.3) as G.

14

5 Conclusion

Let G = (N,E) and (λn, w = (wij , ij ∈ E)) be an optimal solution to (1.1) and V =
(v1, . . . , vn) be an optimal solution to (1.3). Then the Karush-Kuhn-Tucker conditions (cf.
[10, 4]) assert

λnvi =
∑
ij∈E

wij(vi − vj) (i ∈ N)
(
⇔ Lw(G)V T = λnV

T
)

(5.1)

wij(‖vi − vj‖2 − 1) = 0 (ij ∈ E). (5.2)

Given V, we immediately get λn =
(∑

i‖vi‖2
)−1

. For the spanning tree output by our algo-
rithm (cf. Coro. 4.3) the optimal edge weights are uniquely determined by (5.1), simply solve
the equations starting from the leaves. All edges of G not contained in that forest receive
wij = 0.

Those weights can also be made explicit: For a balanced tree (W ∪B,F) and its two-point

embedding we have in particular λn = |W |+|B|
|W ||B| and (5.1) reads

∑
j : ij∈F

wij =

{
1
|W | , i ∈W,
1
|B| , i ∈ B.

(5.3)

For edge e ∈ F consider assigning the weight (cf. [3, Theorem 3.7])

we =
|B(T b(e))|
|B|

− |W (T b(e))|
|W |

(5.4)

which is non-negative by the balancedness of T . These weights satisfy (5.3): Fix i ∈ B and let
d(i) be its degree. In the sums

∑
j : ij∈F |W (T b(ij))| resp.

∑
j : ij∈F |B(T b(ij))| every w ∈ W

and b ∈ B \ {i} is counted d(i)− 1 times while i is counted d(i) times, thus∑
j : ij∈F

wij =
(|B| − 1)(d(i)− 1) + d(i)

|B|
− |W |(d(i)− 1)

|W |
=

1

|B|
.

The argument for i ∈ W is similar. Summing the previous equation over i ∈ B proves∑
e∈F we = 1, so the weights (5.4) are feasible and satisfy the optimality conditions. For a

non-balanced tree one can compute the edge weights for every balanced subtree in an optimal
decomposition individually by (5.4) and rescale them suitably. To summarise:

Corollary 5.1. For a bipartite graph G = (N,E), in particular a tree, an optimal solution
(λn, w = (wij , ij ∈ E)) to (1.1) and an eigenvector of Lw(G) corresponding to λn can be
determined by a strongly polynomial time algorithm.

The above weights yield also the multiplicity of the weight optimised λn for a tree.

Corollary 5.2. If T = (W ∪ B,E) is a balanced tree and k = |{e ∈ E : r(T b(e)) = r(T)}|
then the multiplicity of the weight optimised λn is equal to k + 1.

Proof. By (5.4) an edge e receives weight 0 if and only if r(T b(e)) = r(T). In this case the
strictly active subgraph Tw is not connected and Lw(T) can be considered block diagonal
with k + 1 blocks. For each block λn is a simple eigenvalue by a Perron-Frobenius argument
[3].

15

In [3, Theo. 2.8] Fiedler shows under the assumption that λn is a simple eigenvalue of
Lw(G) with eigenvector V T = (v1, . . . , vn)T , that conditions (5.1) and (5.2) are equivalent
to the optimality of (λn, w), and in particular that Gw is bipartite. That assumption of
simplicity can only be satisfied by bipartite graphs as (5.1) together with the following result
show.

Proposition 5.3. Let V be an optimal solution to (1.3) and let C be a connected component of
GV such that V restricted to C is one-dimensional. Then G[N(C)] is bipartite. In particular,
G is bipartite if and only if it admits a one-dimensional optimal solution to (1.3).

Proof. In [4] it is shown that for all graphs any optimal solution to (1.3) satisfies ‖vi‖ < 1.
Thus, for a one-dimensional optimal embedding there is h ∈ Rn, ‖h‖ = 1 and ci ∈] − 1, 1[
such that i ∈ C is embedded at vi = cih. Then W = {i : ci < 0} and B = {i : ci ≥ 0} yield the
desired bipartition of C, because edges within W or B would violate the distance constraints.
The converse is Prop. 2.1.

Acknowledgments This work was partially supported by CAPES Grant PROBRAL
408/13 - Brazil and DAAD PROBRAL Grant 56267227 - Germany.

References

[1] S. Boyd, P. Diaconis and L. Xiao. Fastest mixing Markov chain on a graph, SIAM Rev. 46 (2004),
No. 4, 667–689.

[2] M. Fiedler. Algebraic connectivity of graphs, Czechoslovak Mathematical Journal 23 (1973),
298–305.

[3] M. Fiedler. A Minimax Problem for Graphs and Its Relation to Generalized Doubly Stochastic
Matrices, Linear and Multilinear Algebra 27 (1990), 1–23.

[4] F. Göring, C. Helmberg and S. Reiss, Graph Realizations Associated with Minimizing the Max-
imum Eigenvalue of the Laplacian. Mathematical Programming 131 (2012), No. 1, 95–111.

[5] F. Göring, C. Helmberg and M. Wappler. Embedded in the Shadow of the Separator, SIAM J.
Optim. 19 (2008), No. 1, 472–501.

[6] F. Göring, C. Helmberg and M. Wappler. The Rotational Dimension of a Graph, Journal of
Graph Theory 66 (2011), No. 4, 283–302.

[7] B. Mohar, The Laplacian spectrum of graphs, in Graph Theory, Combinatorics, and Applications,
Vol. 2, Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk (Eds.), Wiley, 1991, pp. 871-898.

[8] B. Mohar, Graph Laplacians, Chapter 4 in Topics in Algebraic Graph Theory, L.W. Beineke
and R.J. Wilson (Eds.), Encyclopedia of Mathematics and Its Applications, Vol. 102, Cambridge
University Press, Cambridge, 2004, pp. 113-136.

[9] S. Poljak, Minimum spectral radius of a weighted graph, Linear Algebra and its Applications 171
(1992), 53–63.

[10] S. Reiß. Optimizing Extremal Eigenvalues of Weighted Graph Laplacians and Associated Graph
Realizations, Dissertation, Chemnitz University of Technology, Department of Mathematics
(2012).

[11] J. Sun, S. Boyd, L. Xiao and P. Diaconis. The Fastest Mixing Markov Process on a Graph and a
Connection to a Maximum Variance Unfolding Problem, SIAM Rev. 48 (2006), No. 4, 681–699.

16

