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We present a new sampling method that allows the unique reconstruction of
(sparse) multivariate trigonometric polynomials. The crucial idea is to use several
rank-1 lattices as spatial discretization in order to overcome limitations of a sin-
gle rank-1 lattice sampling method. The structure of the corresponding sampling
scheme allows for the fast computation of the evaluation and the reconstruction of
multivariate trigonometric polynomials, i.e., a fast Fourier transform. Moreover,
we present a first algorithm that constructs a reconstructing sampling scheme con-
sisting of several rank-1 lattices for a given frequency index set. Various numerical
tests indicate the advantages of the constructed sampling schemes.
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1 Introduction

During the last years, sparse mathematical models has become very popular. Particularly, the
numerical treatment of high dimensional problems ask for suitable sparsity. However, even
sparse problems may deal with huge amounts of data such that efficient numerical methods
are on the main focus in various fields of research.

In this paper, we consider multivariate trigonometric polynomials and introduce a new
suitable spatial discretization scheme that allows for fast evaluation and reconstruction al-
gorithms. Previous papers on multivariate trigonometric polynomials that deal with single
rank-1 lattices as sampling schemes, cf. [16, 9], or randomly chosen sampling sets [5] led
to different limitations in the number of used sampling nodes and computational expense,
respectively. On the other hand, widely used concepts in higher dimensions are so-called
function spaces of dominating mixed smoothness and efficient approximation methods that
use hyperbolic cross trigonometric polynomials that are computed from sampling values along
sparse grids, cf. [6, 17, 14, 3, 4],. However, research results on hyperbolic cross trigonometric
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polynomials [10] point out that even sparse grid discretizations suffer from limitations, par-
ticularly, the condition number of the corresponding Fourier matrix increases with growing
problem sizes.

Anyhow, our new sampling method is motivated by the structure of sparse grids. A sparse
grid is a composition of specific rank-1 up to rank-d lattices, cf. [1, 18, 15], that are well-
suited in order to sample trigonometric polynomials with frequencies supported on hyperbolic
crosses. In the present paper, we introduce sampling schemes that are compositions of multiple
rank-1 lattices. We investigate necessary and sufficient conditions on the sampling scheme
in order to guarantee a unique reconstruction of multivariate trigonometric polynomials. We
emphasize that we are interested in arbitrary multivariate trigonometric polynomials, i.e., we
do not require any structure of the frequency support.

Furthermore, we present fast algorithms, i.e., fast Fourier transforms (FFTs), that computes

• the evaluation of multivariate trigonometric polynomials at all sampling nodes, cf. Al-
gorithm 3, and

• the reconstruction of multivariate trigonometric polynomials from the function values
at the sampling nodes, cf. Section 4.

As a matter of course, we are interested in sampling sets that allow for the unique recon-
struction of multivariate trigonometric polynomials supported on specific frequency index set.
For a given frequency index set, we present a method, cf. Algorithm 5, that determines a
set of rank-1 lattices that guarantees the unique reconstruction of multivariate trigonometric
polynomials supported on this frequency index set. The constructed sampling sets allow for
a specific fast algorithm that computes the reconstruction in a direct way, cf. Algorithm 6.

The present paper deals only with multivariate trigonometric polynomials. We stress on
the fact that one may use the new sampling method in an adaptive way similar to the
ideas from [13]. The main ingredient therein is to use reconstructing sampling schemes for
low-dimensional frequency index sets in order to approximate functions using multivariate
trigonometric polynomials in a dimension incremental way.

2 Prerequisites

In this paper, we deal with multivariate trigonometric polynomials

p : Td → C, x 7→
∑
k∈I

p̂ke2πik·x,

where Td ∼= [0, 1)d is the d-dimensional torus, the complex numbers (p̂k)k∈I ∈ C|I| are called
Fourier coefficients of p, and the frequency index set I ⊂ Zd is of finite cardinality. The term
k ·x =

∑d
j=1 kjxj is the usual scalar product of two d-dimensional vectors. Furthermore, the

space of all trigonometric polynomials supported on the frequency index set I is denoted by
ΠI := span{e2πik·x : k ∈ I}. The evaluation of the multivariate trigonometric polynomial p
at a finite set X ⊂ Td of sampling nodes is specified by the matrix-vector product

A(X , I)p̂ = p,

where p̂ = (p̂k)k∈I ∈ C|I| is the vector of the Fourier coefficients of the trigonometric polyno-
mial p, the right hand side p = (p(x))x∈X contains the function values of p at all nodes that
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belong to the sampling set X , and the Fourier matrix A(X , I) is given by

A(X , I) =
(

e2πik·x
)
x∈X ,k∈I

.

As usual, we assume a fixed order of the elements of the sampling set X and the frequency
index set I in order to use the matrix-vector notation.

A very specific kind of sampling schemes are so-called rank-1 lattices

X = Λ(z,M) :=

{
j

M
z mod 1 : j = 0, . . . ,M − 1

}
⊂ Td,

which are well-investigated in the field of numerical integration, cf. [15, 2]. The d-dimensional
integer vector z ∈ Zd is called generating vector and the positive integer M ∈ N the lattice
size of the rank-1 lattice Λ(z,M). The author studied such sampling schemes for the re-
construction of trigonometric polynomials in [8]. Various specific examples illustrate the
advantages of rank-1 lattices for the unique reconstruction of trigonometric polynomials. The
main disadvantage of a single rank-1 lattice sampling is the necessarily growing oversampling,
i.e., M/|I| necessarily increases for growing |I| in order to ensure a unique reconstruction of
trigonometric polynomials supported on specifically structured frequency index sets I, e.g.,
hyperbolic cross frequency index sets I, cf. also [11, 7] for more details on this specific topic.

In order to overcome this problem, we would like to extend the method of rank-1 lattice
sampling in a more or less usual manner by sampling along multiple rank-1 lattices. The
corresponding sampling sets are joined rank-1 lattices

X = Λ(z1,M1, z2,M2, . . . ,zs,Ms) :=
s⋃
r=1

Λ(zr,Mr)

and called multiple rank-1 lattice.

The 0 is contained in each of the rank-1 lattices Λ(zr,Mr), r = 1, . . . , s. Consequently,
the number of distinct elements in Λ(z1,M1, z2,M2, . . . ,zs,Ms) is bounded from above by
|Λ(z1,M1, z2,M2, . . . ,zs,Ms)| ≤ 1−s+

∑s
r=1Mr. Due to the fact that there may be 1 ≤ r1 <

r2 ≤ s such that |Λ(zr1 ,Mr1)∩Λ(zr2 ,Mr2)| > 1 or 1 ≤ r3 ≤ s such that |Λ(zr3 ,Mr3)| < Mr3 ,
we have to expect a lower number of elements within Λ(z1,M1, z2,M2, . . . ,zs,Ms) than the
upper bound promises. However, we do not care about duplicate rows within the Fourier
matrix with the exception of the duplicates that arises from x = 0. We define the Fourier
matrix

A := A(Λ(z1,M1, z2,M2, . . . ,zs,Ms), I) :=



(
e
2πi j

M1
k·z1

)
j=0,...,M1−1,k∈I(

e
2πi j

M2
k·z2

)
j=1,...,M2−1,k∈I
...(

e2πi
j

Ms
k·zs

)
j=1,...,Ms−1,k∈I


,

where we assume that the frequency indices k ∈ I are in a fixed order.

In the following, we prove some basics about multiple rank-1 lattices.
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Lemma 2.1. Let Λ(z1,M1) and Λ(z2,M2) be two rank-1 lattices with relative prim lattice
sizes M1 and M2. Then, the rank-1 lattice Λ(M2z1 +M1z2,M1M2) is a supset of Λ(z1,M1)
and Λ(z2,M2), respectively. Thus, the multiple rank-1 lattice Λ(z1,M1, z2,M2) ⊂ Λ(M2z1 +
M1z2,M1M2) is a subset of the rank-1 lattice Λ(M2z1 + M1z2,M1M2). Furthermore, the
cardinality of Λ(z1,M1, z2,M2) is given by |Λ(z1,M1)|+ |Λ(z2,M2)| − 1.

Proof. Due to the coprimality of the numbers M1 and M2, the chinese reminder theorem
implies that there exists one ` ∈ {0,M1M2 − 1} such that

` ≡ j1 (mod M1) and ` ≡ j2 (mod M2).

Consequently, we obtain

`(M2z1 +M1z2)

M1M2
mod 1 =

(
`z1
M1

+
`z2
M2

)
mod 1 =

(
j1z1
M1

mod 1 +
j2z2
M2

mod 1

)
mod 1.

This yields

`(M2z1 +M1z2)

M1M2
mod 1 =

j1z1
M1

mod 1

and

`(M2z1 +M1z2)

M1M2
mod 1 =

j2z2
M2

mod 1

for j2 = 0 and j1 = 0, respectively.
The coprimality of M1 and M2 directly implies that Λ(z1,M1) ∩ Λ(z2,M2) = {0} and the

assertion follows.

Corollary 2.2. Let the multiple rank-1 lattice Λ(z1,M1, . . . ,zs,Ms) with pairwise coprime
lattice sizes M1, . . . ,Ms be given. Then, the cardinality of Λ(z1,M1, . . . ,zs,Ms) is given by

|Λ(z1,M1, . . . ,zs,Ms)| = 1− s+

s∑
r=1

|Λ(zr,Mr)|

and the embedding
Λ(z1,M1, . . . ,zs,Ms) ⊂ Λ(z,M)

holds, where the generating vector z =
∑s

r=1(
∏s
l=1
l 6=r

Ml)zr and the lattice size M =
∏s
r=1Mr

are explicitely given.

Proof. An iterative application of Lemma 2.1 yields the assertion.

As a consequence of Corollary 2.2, a multiple rank-1 lattice Λ(z1,M1, . . . ,zs,Ms) with
pairwise coprime M1, . . . ,Ms and a full rank matrix A(Λ(z1,M1, z2,M2, . . . ,zs,Ms), I) is
a subset of the rank-1 lattice Λ(z,M), z =

∑s
r=1(

∏s
l=1
l 6=r

Ml)zr and M =
∏s
r=1Mr. The

matrix A(Λ(z,M), I) has full column rank and, in particular, pairwise orthogonal columns,
cf. [8, Lemma 3.1]. Further restrictions on the rank-1 lattices Λ(z1,M1), . . . ,Λ(zs,Ms) allow
for an easy determination of the number of distinct sampling values that are contained in
Λ(z1,M1, . . . , zs,Ms).
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Corollary 2.3. Under the assumptions of Corollary 2.2 and the additional requirements

• Mr is prim for all r = 1, . . . , s and

• 0 6= zr ∈ [0,Mr − 1]d ∩ Zd,

we conclude

|Λ(z1,M1, . . . ,zs,Ms)| = 1− s+

s∑
r=1

Mr.

Proof. The additional requirements of the corollary guarantee |Λ(zr,Mr)| = Mr, r = 1, . . . , s.
Hence, the statement follows directly from Corollary 2.2.

3 Evaluation of Trigonometric Polynomials

The evaluation of a trigonometric polynomial at all nodes of a multiple rank-1 lattice
Λ(z1,M1, . . . ,zs,Ms) is simply the evaluation at the s different rank-1 lattices Λ(z1,M1),
. . . , Λ(zs,Ms). A corresponding fast Fourier transform is given by using s-times the evalua-
tion along a single rank-1 lattice, cf. Algorithm 1, which uses only a single one-dimensional
fast Fourier transform. This yields to a complexity of the fast evaluation at all nodes of
the whole multiple rank-1 lattice Λ(z1,M1, . . . ,zs,Ms), cf. Algorithm 3, that is bounded
by terms contained in O (

∑s
r=1Mr logMr + sd|I|). For details on the single rank-1 lattice

Fourier transform confer [12, 8].

Algorithm 1 Single Lattice Based FFT (LFFT)

Input: M ∈ N lattice size of rank-1 lattice Λ(z,M)
z ∈ Zd generating vector of Λ(z,M)
I ⊂ Zd frequency index set
p̂ = (p̂k)k∈I Fourier coefficients of p ∈ ΠI

ĝ = (0)Ms−1
l=0

for each k ∈ I do
ĝk·zl modMl

= ĝk·zl modMl
+ p̂k

end for
p = iFFT 1D(ĝ)
p = Mp

Output: p = Ap̂ function values of p ∈ ΠI

Complexity: O (M logM + d|I|)

The evaluation of multivariate trigonometric polynomials along multiple rank-1 lattices is
guaranteed by the indicated algorithm. Hence, we shift our attention to the reconstruction
problem, i.e., to necessary and sufficient conditions on the sampling set Λ(z1,M1, . . . ,zs,Ms)
such that each trigonometric polynomial p ∈ ΠI , that belongs to a given space of trigonometric
polynomials, is uniquely specified by its sampling values p(x), x ∈ Λ(z1,M1, . . . ,zs,Ms) along
the multiple rank-1 lattice Λ(z1,M1, . . . ,zs,Ms). Moreover, we are interested in a fast and
unique reconstruction of each trigonometric polynomial p ∈ ΠI from its values along the
sampling set Λ(z1,M1, . . . ,zs,Ms).
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Algorithm 2 Adjoint Single Lattice Based FFT (aLFFT)

Input: M ∈ N lattice sizes of rank-1 lattice Λ(z,M)
z ∈ Zd generating vector of Λ(z,M)
I ⊂ Zd frequency index set

p =
(
p
(
j
M z
))

j=0,...,M−1
function values of p ∈ ΠI

ĝ = FFT 1D(p)
â = (0)k∈I
for each k ∈ I do
âk = âk + ĝk·zl modMl

end for

Output: â = A∗p adjoint evaluation of the Fourier matrix A∗

Complexity: O (M logM + d|I|)

Algorithm 3 Evaluation at multiple rank-1 lattices

Input: M1, . . . ,Ms ∈ N lattice sizes of rank-1 lattices Λ(zl,Ml)
z1, . . . zs ∈ Zd generating vectors of Λ(zl,Ml)
I ⊂ Zd frequency index set
p̂ = (p̂k)k∈I Fourier coefficients of p ∈ ΠI

1: for l = 1, . . . , s do
2: pl=LFFT(Ml, zl, I, p̂)
3: end for
4: p = (p1[1], . . . ,p1[M1],p2[2], . . . ,p2[M2], . . . ,ps[2], . . .ps[Ms])

>

Output: p = Ap̂ function values of p ∈ ΠI

Complexity: O (
∑s

l=1Ml logMl + sd|I|)

4 Reconstruction Properties of Multiple Rank-1 Lattices

In order to investigate the reconstruction properties of a sampling set X ⊂ Td, |X | <∞, with
respect to a given frequency index set I, we have to consider the corresponding Fourier matrix
A(X , I). A unique reconstruction of all trigonometric polynomials p ∈ ΠI from the sampling
values (p(x))x∈X implies necessarily a full column rank of the matrix A(X , I). We may use
single rank-1 lattices Λ(z,M) as sampling set X , i.e., X = Λ(z,M). In [8], we investigated
necessary and sufficient conditions on the reconstruction property of single rank-1 lattices
Λ(z,M) as spatial discretizations. Roughly speaking, we may have to expect oversampling
that increase with growing cardinality of the frequency index set I, due to the group structure
of the lattice nodes.

Motivated by the construction idea of sparse grids, which are in general a union of different
lattices of several ranks, we will join a few rank-1 lattices as spatial discretization in order
to construct sampling schemes Λ(z1,M1, . . . ,zs,Ms) that guarantee full column ranks of the
Fourier matrices A(Λ(z1,M1, . . . ,zs,Ms), I) for given frequency index sets I. In general, we
are interested in practically suitable construction strategies of such multiple rank-1 lattices
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Algorithm 4 Adjoint evaluation at multiple rank-1 lattices

Input: M1, . . . ,Ms ∈ N lattice sizes of rank-1 lattices Λ(zl,Ml)
z1, . . . zs ∈ Zd generating vectors of Λ(zl,Ml)
I ⊂ Zd frequency index set

p =

 p1
...
ps

 sampling values of p ∈ ΠI ,

pl =
(
p( j
Ml
zl)
)
j=1−δ1,l, ...,Ml

â = (0)k∈I
for l = 1, . . . , s do
g = (δ1,lp[1],p[M1 + · · ·+Ml−1 − l + 3], . . . ,p[M1 + · · ·+Ml − l + 1])>

â = â+ aLFFT(Ml, zl, I, g)
end for

Output: â = A∗f result of adjoint matrix times vector product

Complexity: O (
∑s

l=1Ml logMl + sd|I|)

Λ(z1,M1, . . . ,zs,Ms). We call a sampling set Λ(z1,M1, . . . ,zs,Ms) with

det (A∗(Λ(z1,M1, . . . ,zs,Ms), I)A(Λ(z1,M1, . . . ,zs,Ms), I)) > 0

a reconstructing multiple rank-1 lattice for the frequency index set I.
For a given frequency index set I and given sampling set Λ(z1,M1, . . . ,zs,Ms),
|Λ(z1,M1, . . . ,zs,Ms)| ≥ |I|, we can check the reconstruction property in different ways.
For instance, one can compute the echelon form or (lower bounds on) the smallest singular
value of the matrices A or A∗A in order to check whether the rank of the matrix is full or
not. We emphasize, that the complexity of the test methods is at least Ω

(
|I|2
)

and in the
case of the computation of lower bounds on the smallest singular values, cf. [19], the test may
fail.

However, if the matrix A is of full column rank, one can reconstruct the Fourier coefficients
of a multivariate trigonometric polynomial p ∈ ΠI by solving the normal equation

A∗Ap̂ = A∗p.

Usually, one approximates the inverse of the matrix A∗A using a conjugate gradient method
and fast algorithms that compute the matrix-vector products associated with A and A∗, cf.
Algorithm 3 and Algorithm 4 associated with Algorithm 2. Thus, the fast reconstruction
of a trigonometric polynomial p ∈ ΠI using the samples along a reconstructing multiple
rank-1 lattice Λ(z1,M1, . . . ,zs,Ms) for I is guaranteed. Anyway, we are still interested in a
practically suitable construction strategy in order to determine reconstructing multiple rank-1
lattices Λ(z1,M1, . . . ,zs,Ms) for given frequency index sets I. In the following subsection,
we present one possibility of such a construction.

4.1 Construction of reconstructing multiple rank-1 lattices

In this subsection we characterize an algorithm that determines reconstructing multiple rank-
1 lattice for given frequency index sets I ⊂ Zd, |I| < ∞. Accordingly, we assume the
frequency index set I of finite cardinality being given and fixed. We suggest to reconstruct a
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Algorithm 5 Determining reconstructing multiple rank-1 lattices

Input: I ⊂ Zd frequency index set
σ ∈ R oversampling factor σ ≥ 1
n ∈ N number of random test vectors

l = 0
while |I| > 1 do
l = l + 1
Ml = nextprime(σ|I|)
while Ml ∈ {M1, . . . ,Ml−1} do
Ml = nextprime(Ml)

end while
for j = 1, . . . , n do

choose random integer vector v
(l)
j ∈ [1,Ml − 1]d

compute K
(l)
j = |I \ {k ∈ I : ∃h ∈ I \ {k} with k · v(l)j ≡ h · v

(l)
j (mod Ml)}|

end for

determine zl = v
(l)
j0

such that K
(l)
j0

= maxj∈{1,...,n}K
(l)
j

I = {k ∈ I : ∃h ∈ I \ {k} with k · zl ≡ h · zl (mod Ml)}
end while

Output: M1, . . . ,Ml lattice sizes of rank-1 lattices and
z1, . . . ,zl generating vectors of rank-1 lattices such that
Λ(z1,M1, . . . ,zl,Ml) is a reconstructing multiple rank-1 lattice

trigonometric polynomial p ∈ ΠI step by step. Independent of the structure of the frequency
index set I, we fix a lattice size M1 ∼ |I| and a generating vector z1 ∈ [1,M1 − 1]d and
reconstruct only these frequencies p̂k that can be uniquely reconstructed by the means of the
used rank-1 lattice. The indices k of these frequencies p̂k are simply given by

I1 = {k ∈ I : k · z1 6≡ h · z1 mod M1 for all h ∈ I \ {k}}.

Assuming that the frequencies (p̂k)k∈I1 are already determined, we have to reconstruct a
trigonometric polynomial p1 ∈ ΠI\I1 supported by the frequency index set I \ I1 now. We
determine the sampling values of this trigonometric polynomial by

p1(x) = p(x)−
∑
k∈I1

p̂ke2πik·x.

We apply this strategy successively as long as there are frequencies that have to be recon-
structed.

Algorithm 5 indicates one possibility of an algorithm that determines a set of rank-1 lattices
that allows for the application of the mentioned reconstruction strategy. Obviously, in each
step we are interested in a rank-1 lattice that allows for the reconstruction of as many as
possible frequencies. For that reason, we check a few generating vectors for its number of
reconstructable frequency indices in Algorithm 5.

We show that Algorithm 5 determines a sampling set such that Λ(z1,M1, . . . ,zs,Ms) im-
plies a full column rank matrix A(Λ(z1,M1, z2,M2, . . . ,zs,Ms), I).
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Lemma 4.1. Let the matrix B ∈ Cn×m of the following form

B =

(
B1 B2

B3 B4

)
be given. The matrices B1 ∈ Cn1×m1, . . . , B4 ∈ Cn2×m2 are submatrices of B, i.e., n =
n1 + n2 and m = m1 +m2. In addition, we assume that

• B1 has full column rank, i.e., the columns of B1 are linear independent,

• B4 has full column rank, i.e., the columns of B4 are linear independent, and

• the columns of B2 are not in the span of the columns of B1.

Then the matrix B has full column rank.

Proof. The matrix B ∈ Cn×m, n ≥ m, has full column rank iff the columns of the matrix B
are all linear independent, i.e. the formula

m∑
j=1

λjbj = 0 (4.1)

has the unique solution λ = 0. We will exploit the full column rank of the matrix B1 ∈
Cn1×m1 , n1 ≥ m1, and, thus, we consider the sum

m∑
j=1

λjb
′
j = 0,

where b′j = (bj,l)
n1

l=1 are vectors consisting of the first n1 elements of the vectors bj . Due to
the fact that the columns of B2 ∈ Cn1×m2 are not in the span of the columns of B1 and the
columns of B1 are linear independent, we achieve λj = 0 for all j = 1, . . . ,m1.

Accordingly, (4.1) simplifies to
m∑

j=m1+1

λjbj = 0.

For the remaining vectors bj , j = m1 + 1, . . . ,m, we know that the vectors of the last
m2 components of bj are linear independent and, consequently, we obtain λj = 0 for all
j = 1, . . . ,m.

Theorem 4.2. Algorithm 5 determines sampling sets such that the corresponding Fourier
matrix A(Λ(z1,M1, z2,M2, . . . ,zs,Ms), I) is a full column rank matrix.

Proof. In order to exploit Lemma 4.1 we will need to rearrange the order of the columns
of A(Λ(z1,M1, z2,M2, . . . ,zs,Ms), I) in a suitable way. We assume that M1, . . . ,Ms and
z1, . . . ,zs is the output of Algorithm 5. Consequently, we can determine the following fre-
quency index sets

I{1 = {k ∈ I : ∃h ∈ I \ {k} with k · z1 ≡ h · z1 (mod M1)} and I1 = I \ I{1 ,
I{2 = {k ∈ I{1 : ∃h ∈ I{1 \ {k} with k · z2 ≡ h · z2 (mod M2)} and I2 = I{1 \ I{2 ,

...
...

I{s = {k ∈ I{s−1 : ∃h ∈ I{s−1 \ {k} with k · zs ≡ h · zs (mod Ms)} = ∅ and Is = I{s−1 \ I{s .
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The resulting frequency index sets Ij , j = 1, . . . , s, yield a disjoint partition of I. We rearrange
the columns of the matrix A(Λ(z1,M1, z2,M2, . . . ,zs,Ms), I) and we achieve a matrix

Ã :=

 K1,1 . . . K1,s

...
. . .

...
Ks,1 . . . Ks,s

 ,

where the submatrices Kr,l are given by Kr,l :=
(

e2πi
j

Mr
k·zr

)
j=1−δ1,r,...,Mr−1,k∈Il

, (r, l) ∈

[1, s]2 ∩ N2.
We define the matrices

Ãl :=
(
Kr,t

)
r=1,...,l, t=1,...,l

=

 Ãl−1

K1,l

...

K l−1,l

K l,1 . . . K l,l−1 K l,l

 ,

which are in fact submatrices of Ã. In particular, we obtain Ã1 = K1,1 and Ãs = Ã.
In the following, we conclude the full column rank of Ãl from the full column rank of Ãl−1,

the full column rank of K l,l, and the linear independence of each column of the matrix K1,l

...

K l−1,l


and all columns of the matrix Ãl−1, cf. Lemma 4.1.

We start with l = 1, i.e., Ã1 = K1,1. Since Λ(z1,M1) is a reconstructing rank-1 lattice for
I1, the matrix Ã1 has linear independent columns. Due to the construction of I1 and I{1 , each
column of one of the matrices K1,r, r = 2, . . . , s, is not in the span of the columns of K1,1.

We prove the full rank of Ãl, l = 2, . . . , s, inductively. For that, we assume Ãl−1 to be of
full column rank. Additionally, we know that K l,l is of full column rank, since Λ(zl,Ml) is a
reconstructing rank-1 lattice for Il. In order to apply Lemma 4.1, we have to show, that no
column of the matrix  K1,l

...

K l−1,l

 (4.2)

is a linear combination of the columns of Ãl−1. We assume the contrary, i.e., let k ∈ Il be a
frequency index, ak the corresponding column of the matrix in (4.2), such that

ak = Ãl−1λ =

 K1,1 . . . K1,l−1

... . . .
...

K l−1,1 . . . K l−1,l−1


 λ1

...
λl−1

 , (4.3)

where we look for the vectors λr ∈ C|Ir|, r = 1, . . . , l − 1. We solve this linear equation
recursively. The first M1 rows of ak are not in the span of the pairwise orthogonal columns
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of K1,1 and the columns of the first M1 rows of K1,r, r = 2, . . . , l− 1 are also not in the span
of the columns of K1,1. Consequently, we observe that λ1 = 0 ∈ C|I1| holds.

Accordingly, the solution of (4.3) is given by λ := (λ>1 , . . . ,λ
>
l−1)

> = (0, . . . , 0︸ ︷︷ ︸
|I1| times

,λ>2 , . . . ,λ
>
l−1)

>

and we search for the solution of

ak =

 K1,2 . . . K1,l−1

... . . .
...

K l−1,2 . . . K l−1,l−1


 λ2

...
λl−1

 .

Next, we consider the rows numbered by M1 + 1, . . . ,M1 +M2 − 1 and obtain

(ak,j)
−1+M1+M2
j=1+M1

=
(
K2,2, . . . ,K2,l−1

) λ2
...

λl−1

 .

Since Λ(z2,M2) is a reconstructing rank-1 lattice for I2 and there is no k′ ∈
⋃l
j=3 Ij that

aliases to a frequency index k′′ ∈ I2 with respect to Λ(z2,M2), we obtain the result λ2 =
(0, . . . , 0)> ∈ C|I2|. These considerations lead inductively to the formulas

(ak,j)
1−t+

∑t
r=1 Mr

j=3−t+
∑t−1

r=1Mr
=
(
Kt,t, . . . ,Kt,l−1

) λt
...

λl−1

 , t = 1, . . . , l − 1

and the result λt = 0 ∈ C|It|, t = 1, . . . , l − 1, in (4.3), which implies ak = 0 and is in
contradiction to ‖ak‖1 = 1− (l − 1) +

∑l−1
r=1Mr > 0.

Consequently, we apply Lemma 4.1 on the matrix Ãl and observe the full column rank of
Ãl, in particular for l = s.

Algorithm 5 determines a reconstructing sampling scheme for all multivariate trigonomet-
ric polynomials with frequencies supported on the index set I. Moreover, the idea behind
Algorithm 5 is the stepwise reconstruction of trigonometric polynomials as mentioned above.
Accordingly, we indicate the corresponding reconstruction strategy in Algorithm 6, where we
use Algorithms 1 and 2 in order to compute the required single lattice based discrete Fourier
transforms. As a consequence, we achieve a computational complexity of this algorithm which
is bounded by C (

∑s
l=1Ml logMl + s(d+ log |I|)|I|), where the term C does not depend on

the multiple rank-1 lattice Λ(z1,M1, . . . ,zs,Ms), the frequency index set I, or the spatial
dimension d.

5 Numerics

Basically, we use Algorithm 5 with oversampling parameter σ = 1 and we choose n = 10d for
our numerical examples. There is only a slight modification of the implemented algorithm: If

there is an l such that maxj∈{1,....n}K
(l)
j = 0, then we do not use the corresponding sampling

values, since the sampling values do not ensure additional information for the reconstruction.

11



Algorithm 6 Direct reconstruction of trigonometric polynomials p ∈ ΠI from samples along
reconstructing multiple rank-1 lattices that are determined by Algorithm 5

Input: M1, . . . ,Ms ∈ N lattice sizes of rank-1 lattices Λ(zl,Ml)
z1, . . . zs ∈ Zd generating vectors of Λ(zl,Ml)
I ⊂ Zd frequency index set

p =

 p1
...
ps

 sampling values of p ∈ ΠI ,

pl =
(
p( j
Ml
zl)
)
j=1−δ1,l, ...,Ml

IR = {}
p̂ = (0)k∈I
for l = 1, . . . , s do
Il = {k ∈ I \ IR : k · zl 6≡ h · zl (mod Ml) for all h ∈ I \ (IR ∪ {k})}
gl = (p[1],p[3− l +

∑l−1
r=1Mr], . . . ,p[1− l +

∑l
r=1Mr])

> − LFFT(Ml, zl, IR, (p̂k)k∈IR)
(p̂k)k∈Il = aLFFT(Ml, zl, Il, gl)
IR = IR ∪ Il

end for

Output: p̂ = (A∗A)−1A∗p Fourier coefficients of p ∈ ΠI

Complexity: O (
∑s

l=1Ml logMl + s(d+ log |I|)|I|)

5.1 Axis Crosses

We consider so-called axis crosses of a specific width N = 2n ∈ N defined by

I = Idac,N := {k ∈ Zd : ‖k‖∞ = ‖k‖1 ≤ 2n}

as frequency index sets. One can use sampling values along single rank-1 lattices Λ(z,M)
for the reconstruction of multivariate trigonometric polynomials supported on axis crosses,
cf. [8, Ex. 3.27]. The main disadvantage of this approach is the necessary oversampling,
i.e., one needs at least |Λ(z,M)| ≥ (N + 1)2 sampling values in order to ensure a unique
reconstruction of trigonometric polynomials p ∈ ΠIdac,N

. We compare this lower bound on

the number of sampling values to the number of frequency indices within Idac,N . This yields
oversampling factors of

|Λ(z,M)|
|Idac,N |

≥ (N + 1)2

2dN + 1
≥ N

2d

and thus the oversampling increases linearly in N .

On the other hand, we want to use multiple rank-1 lattices as spatial discretizations. Our
numerical tests, illustrated in Figure 5.1, allows for the conjecture that the oversampling
factors stagnate for growing width N of the considered axis crosses of fixed dimension d.
Moreover, we observe small oversampling factors which are always below three. For compar-
ison, sampling along a reconstructing single rank-1 lattice necessarily implies oversampling
factors greater than 400 for N ≥ 214 and all dimensions 2 ≤ d ≤ 20.
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Figure 5.1: Oversampling factors of reconstructing multiple rank-1 lattices for axis crosses
Idac,N .

5.2 Dyadic Hyperbolic Crosses

In this secion, we consider so-called dyadic hyperbolic crosses defined by

I = Iddhc,N :=
⋃
l∈Nd

0
‖l‖1=n

Ĝl, Ĝl = Zd ∩
d

×
s=1

(−2ls−1, 2ls−1],

where the number N = 2n, n ∈ N0, is a power of two.
We applied Algorithm 5 to dyadic hyperbolic crosses of different refinements and dimensions

in order to determine reconstructing multiple rank-1 lattices. The resulting oversampling
factors slightly grows with respect to the refinement and dimension, cf. Figure 5.2. We
observe that the oversampling factors seem to stagnate. In particular, Euler’s number e
bounds them from above in all our numerical tests.
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Figure 5.2: Oversampling factors of reconstructing multiple rank-1 lattices for dyadic hyper-
bolic crosses Iddhc,N .

In the following, we compare three different sampling methods in order to reconstruct
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Figure 5.3: Six-dimensional hyperbolic cross fast Fourier transforms for comparison.

multivariate trigonometric polynomials with frequencies supported on dyadic hyperbolic cross
index sets:

• Sampling along sparse grids (HCFFT, cf. [6]),

• sampling along a reconstructing single rank-1 lattices (LFFT, cf. [7]),

• sampling along multiple rank-1 lattices (MLFFT).

Our numerical tests illustrate the characteristics of the discrete Fourier transforms (condi-
tion number of A(X , I), spent oversampling |X |/|I|) and the corresponding fast algorithms
(computational times).
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Fixed Dimension d = 6

Since we are interested in numerical tests that visualize in some sense the asymptotic behavior
of the three different sampling methods, we fix the moderate dimension d = 6. Thus, we can
compute condition numbers even for moderate refinements N = 2n up to N = 1024, cf.
Figure 5.3. We observe, that the discrete Fourier transform based on multiple rank-1 lattice
sampling need only low overampling factors and that the corresponding Fourier matrices
are well-conditioned. Moreover, the computational complexity of the fast Algorithm of the
Fourier transform (MLFFT) is illustrated and at least almost as good as the computational
complexity of the HCFFT with respect to N . Accordingly, the MLFFT seems to avoid both
the disadvantage of the HCFFT (growing condition numbers, cf. [10]) and the disadvantage
of the LFFT (growing oversampling factors and the associated fast growing computational
times, cf. [11]).

Fixed Refinement N = 22, . . . , 25

In [11, Fig. 4.2] we compared the computational times of sampling along sparse grids to
sampling along reconstructing single rank-1 lattices. The lesson of this figure is clear: Unique
sampling along reconstructing single rank-1 lattices may be not optimal due to the fact that
the number of necessarily used sampling values, cf. [7], may be not optimal, in general.

Similar to this, we illustrate the computational times of different fast algorithms in Figure
5.4. In particular, we mapped the computational times of the

• hyperbolic cross fast Fourier transform (HCFFT), i.e., the fast algorithm for the eval-
uation of hyperbolic cross trigonometric polynomials at all nodes of a sparse grid and
the fast algorithm for the reconstruction of hyperbolic cross trigonometric polynomials
from the sampling values at sparse grid nodes,

• multiple lattice fast Fourier transform (MLFFT) applied to hyperbolic cross trigonomet-
ric polynomials, i.e., the fast algorithm for the evaluation of multivariate trigonometric
polynomials at all nodes of a reconstructing multiple rank-1 lattice and different fast
algorithms for the reconstruction of multivariate trigonometric polynomials from the
sampling values at a reconstructing multiple rank-1 lattice.

In addition to the direct reconstruction, cf. Algorithm 6, we applied a CG method with
starting vector p̂ = 0 and a CG method with starting vector p̂ that is the result of the direct
reconstruction. We are interested in the application of such a CG method since the direct
reconstruction suffers from growing relative errors

err2 :=
‖ ˜̂p− p̂‖2
‖p̂‖2

, (5.1)

where ˜̂p is the result of the reconstruction from sampling values of the hyperbolic cross trigono-
metric polynomial with frequencies p̂, cf. Figure 5.5. This figure also contains the relative
errors of the fast reconstruction method from sampling values at sparse grids (HCFFT). We
point out that this fast algorithm also suffers from growing relative errors. We did not apply
a conjugate gradient method on the HCFFT since we expect huge computational costs due
to the expected number of iterations of the CG method which is indicated by the growing
condition numbers of the corresponding Fourier matrices.
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Figure 5.4: Computational times in seconds of the fast algorithms computing the dyadic hy-
perbolic cross discrete Fourier transforms with respect to the problem size |Iddhc,N |.

However, the runtime of the new fast algorithms (MLFFT) behave similar to the runtime
of the HCFFT with respect to the dimension d. Even the CG methods have a similar runtime
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Figure 5.5: Relative errors, cf. (5.1), of the fast algorithms computing the dyadic hyperbolic
cross discrete Fourier transforms with respect to the problem size |Iddhc,N |.

behavior. This indicates that the number of iterations that are used during the CG method
only slightly increases with growing dimension which may be caused by bounded condition
numbers of the Fourier matrices, cf. Figure 5.6.
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Figure 5.6: Condition numbers of the Fourier matrices using corresponding sparse grids and
reconstructing multiple rank-1 lattices as sampling schemes.
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5.3 Random frequency index sets

The complexity of the new fast Fourier transform algorithms, cf. Algorithms 3, 4, and 6,
mainly depends on the number s of rank-1 lattices that are joined in order to build the multiple
rank-1 lattice Λ(z1,M1, . . . ,zs,Ms). We demonstrate the behavior of s for ten-dimensional
randomly chosen frequency index sets. Each component of the indices k ∈ I ⊂ Z10 are
rounded values that are chosen from a normal distribution with mean zero and variance
10 000.

We considered frequency index sets I of different cardinalities which are powers of two,
i.e. |I| ∈ {2, 4, 8, . . . , 220}. We produced 1 000 different frequency index sets for each of
the cardinalities and constructed one reconstructing multiple rank-1 lattice for each of the
frequency index sets. Figure 5.7 plots the cardinality of the frequency index set I against the
maximal number s, the minimal number s and the average of the numbers s that occurred
in our numerical tests. We observe that the number s behave logarithmically with respect to
the cardinality of I. We would like to point out that we observed a similar behavior in all
numerical tests that we treated before.

Furthermore, the oversampling factors
∑s

r=1Mr/|I| are less than Euler’s number e. In addi-
tion, we computed the condition numbers of the Fourier matrices A(Λ(z1,M1, . . . ,zs,Ms), I)
for the cases |I| ≤ 212 and obtained low condition numbers less than 16. The average of the
condition numbers were less than seven in each of the cases |I| = 2n, n = 1, . . . , 12.

6 Conclusion

The paper presents a new sampling method that allows for the unique sampling of sparse
multivariate trigonometric polynomials. The main idea is to sample along more than one
lattice grid similar to the sparse grids. In contrast to sparse grids we restrict the used lat-
tices to rank-1 lattices. The constructive idea that determines reconstructing multiple rank-1
lattices, cf. Algorithm 5, allows for another point of view. The resulting multiple rank-1
lattices Λ(z1,M1, . . . ,zs,Ms) are subsampling schemes of huge single reconstructing rank-1
lattices Λ(z,M) for the frequency index set I, where z and M are specified in Corollary
2.2. The Fourier matrix A(Λ(z,M), I) that belongs to this huge rank-1 lattice Λ(z,M) has
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orthogonal columns. All numerical tests indicate that the reconstructing multiple rank-1 lat-
tice Λ(z1,M1, . . . ,zs,Ms) is a stable subsampling scheme of the corresponding reconstructing
rank-1 lattice Λ(z,M).
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