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Abstract
For ensuring network survivability in case of single component fail-

ures many routing protocols provide a primary and a back up routing
path for each origin destination pair. We address the problem of se-
lecting these paths such that in the event of multiple failures, occuring
with given probabilities, the total loss in routable demand due to both
paths being intersected is small with high probability. We present a
chance constraint model and solution approaches based on an explicit
integer programming formulation, a robust formulation and a cutting
plane approach that yield reasonably good solutions assuming that
the failures are caused by at most two elementary events, which may
each affect several network components.
Keywords: robust optimization, stochastic programming, network
design, network survivability
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1 Introduction

Designing and planning networks is an important and complex task and a
frequently occuring topic in the optimization community due to its large
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variety of applications, e.g. in transportation and communication networks.
In this, handling uncertainties is a central issue. There are two main sources
of uncertainty, one is the development of demand over time, the other is
network resilience. Both need to be dealt with in order to cost efficiently
provide a quality of service guarantee. The focus here is on network resilience
and is motivated by the following observation in operating communication
networks today. In routing protocols of communication networks each origin
destination pair is assigned a primary and a node disjoint back up routing
path, so that single component failures lead to no additional loss. The paths,
however, are often selected without further safety considerations. In the case
of two failures frequently more than half of the entire demand cannot be
routed over any of these paths even though most of the origin destination
pairs are still connected in the original graph. The task is thus to find for
each origin destination pair a pair of node disjoint paths (or more generally a
routing subgraph), so that in the event of multiple disruptions occuring with
given probabilities the total loss of demand over all origin destination pairs
that are still connected in the network is small with high probability.

While we address this question with respect to a given fixed demand,
several basic techniques that are useful in our context have been developed
for dealing with demand uncertainty. In this field there is a lot of (ongoing)
progress using the concept of Robust Optimization that was established by
Soyster [20] in 1973 and was further developed by Ben-Tal and Nemirovski
([2], [3], [4]) and Bertsimas and Sim [6]. For recent work concerning uncer-
tainty in demand see for example [12] or [5]. In the case of wireless networks
Koster et al. [9] used a chance-constrained approach to find a minimum cost
design of a fixed broadband wireless network such that the capacity is suffi-
cient with a certain probability. The concept of chance constraints has been
introduced by Charnes, Cooper and Symonds [8] in 1958 and was extended
by Miller and Wagner [15] and Prékopa ([17], [18]). In contrast to Robust
Optimization where a solution is called robust if it is feasible for any real-
ization of the uncertain data, in Stochastic Programming a feasible solution
has to satisfy the constraints that are influenced by uncertain data with a
given probability.

The setting of this paper consists of a telecommunication network with
given demands where the components (nodes and edges) of the network may
fail due to technical problems or physical influences like intersection of fibers
or ducts containing several fibers. Depending on the selected sets of routing
paths or the capacities of the connections, these failures can lead to a loss
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in data (demand). Our goal is to determine a routing (and therefore deter-
mine the necessary capacities of the fibers) such that the costs to install the
needed capacities are minimized subject to the constraint that the probabil-
ity of loosing too much data is reasonably small. We present three different
approaches to (approximately) solve the associated chance-constrained op-
timization problem. The first proposes a direct integer programming (IP)
formulation of the chance constraint. The second uses a robust approach via
a sufficient condition for solutions to satisfy the chance constraint. Finally,
we discuss a cutting plane approach that might be better suited for solving
the problem exactly if the direct IP formulation is excessive in size.

The paper is organized as follows. Section 2 explains the basic model
for the interaction of network, disruptions and routings; this results in a
chance constrained optimization problem (2) for selecting routing subgraphs
for each origin destination pair. Section 3 provides an illustrative example
on how such a disruption model with corresponding probabilities could be
set up for real world purposes. Section 4 gives an explicit IP-formulation of
the chance constraint based on introducing binary variables for all relevant
events. For larger instances this might no longer be feasible, so Section 5
presents a robust counterpart to (2) in the style of Ben-Tal and Nemirovski
[1] or Bertsimas and Sim [6], where the chance constraint is replaced by
a slightly more conservative convex model, resulting in a problem that is
faster to solve in practice. Section 6 is devoted to a further possibility to
solve (2) without introducing additional binary variables by enforcing the
chance constraint via a cutting plane approach for integer solutions. Some
preliminary numerical results discussing the effectiveness of the proposed
approaches on some examples of SND-LIB [16] are presented in Section 7.

2 Model Description

A network topology is given by a graph G = (V,E) with node set V :=
{1, . . . , n} (e.g. servers) and edge set E ⊆ {{i, j} : i, j ∈ V, i 6= j} (e.g.
optical fibers). For each ordered pair (i, j) ∈ W := {(i, j) : i, j ∈ V, i 6= j} of
nodes the (possibly uncertain) demand to be routed from node i to node j
over edges in G is denoted by dij. For brevity, we will simply write ij instead
of (i, j) or also instead of {i, j} if there is no danger of confusion.

Failures or disruptions may affect subsets of nodes or edges, i. e. any
subset of G := V ∪ E, and will be modeled as follows. For a given set of
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elementary disruptions R = {r1, . . . , rnR} a function F : R → 2G specifies

which nodes or edges in G fail if disruption r ∈ R occurs. These disruptions
may be considered to be, e. g., the failure of a single component of G or
the intersection of a single duct (which effects all fibers within it) due to
construction works or maybe an earthquake scenario affecting several ducts.

Example 1 Consider Figure 1. The thin lines represent the fibers/edges

1 2

3

4

D1

D2

D3

Figure 1: Network section consisting of 4 nodes, 3 ducts and 5 fibers.

which connect the nodes of the network and are embedded in the three ducts
D1, D2 and D3. If a node v is not available due to technical problems
then no data can be sent to or from this node. The remaining graph, i. e.,
the network containing only available components is obtained by deleting
the set F (v) = {v, {v, u} ∈ E} from G which comprises the correspond-
ing node as well as all incident edges. A failing fiber {u, v} only deletes
the corresponding edge F ({u, v}) = {{u, v}}, a disrupted duct d removes
all fibers/edges that go through it. If for example duct D2 is disrupted,
F (D2) = {{1, 3}, {2, 3}, {2, 4}} and there is no way to maintain the con-
nection between 2 and 4. If, however, only the fiber {2, 4} from 2 to 4 is cut,
demand between 2 and 4 may still be routed from 2 to 3 to 4 or from 2 to 1
to 3 to 4.

We assume the elementary disruptions of R to be independent, each r ∈
R occuring with probability πr ∈ (0, 1), so that for each combination of
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several elementary disruptions R ∈ R := 2R the probability that exactly
the disruptions in R are occuring is pR :=

∏
r∈R πr

∏
r∈R\R(1 − πr). This

p ∈ [0, 1]R satisfies 1>p = 1 and gives rise to our basic probability space
(R, p). In this, each elementary event R ∈ R corresponds to the occurrence
of the combination of elementary disruptions R ⊆ R and this has probability
pR. A general event in the usual probabilistic sense is a subset S ⊆ R, it
takes place with probability p(S) =

∑
R∈S pR. A disruption combination

R ∈ R “deletes” all elements F (R) :=
⋃
r∈R F (r) from G. The resulting

graph is denoted by G − F (R), where the deletion of a node also implies
the loss of all its incident edges in G. In the presence of disruptions R the
demand still routable in G − F (R) is reduced to demand pairs W (R) :=
{ij ∈ W : i, j /∈ F (R), i and j are connected in G− F (R)} with a remaining
routable demand of d(R) =

∑
ij∈W (R) dij. Note that determining W (R)

simply amounts to finding the connected components of G− F (R).
The presence of elementary disruptions corresponding to single node fail-

ures or single edge failures due to technical failures in the corresponding hard-
ware may be thought of as being represented by the requirement V ∪ E =
G ⊆ R. In a resilient routing such “simple disruptions”, represented say
by R ∈ R for some appropriate collection R ⊂ R, should not lead to loss
of demand between nodes i and j as long as ij ∈ W (R). In practice this
is achieved for R = {{a} : a ∈ G ⊆ R} by assigning to each demand pair
(i, j) ∈ W two node disjoint paths from i to j (one working, one as fall back)
forming a cycle which connects i and j for any disruption R ∈ R. The task is
then to select a suitable cycle for each pair so that as little routing as possible
is lost in the entire network even if several disruptions occur. Say, we want
to find a design that is able to handle all events in the set R ⊆ R reasonably
well, then taking into account given probabilities p the goal for selecting the
cycles may be formulated as a so called chance constraint as follows. The
conditional probability that in the presence of exactly one of the disruption
combinations R ∈ R the amount routable along paths in the selected cycles
falls below some σ ∈ (0, 1)-fraction of the remaining routable demand d(R)
should be less than some appropriately chosen εR > 0.

In order to formalize this in slightly greater generality, collect inR ⊂ R all
simple disruptions like node and edge failures that should not cause any loss
of demand unless they affect the origin or destination node directly. Assume
furthermore that for each demand pair ij ∈ W there is a set of kij ∈ N
“routing subgraphs” Cij = {Ck

ij : k = 1, . . . , kij, Cij ⊆ G connects i and j}
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(each of them may be thought of as a collection of ij-paths) with the property
that for any single disruption combination R ∈ R with ij ∈ W (R), each of
these subgraphs C ∈ Cij still connects i and j by a path in C − F (R). We
collect all such index triples in K = {(i, j, k) : ij ∈ W, 1 ≤ k ≤ kij} and

use binary decision variables xkij ∈ {0, 1} with
∑kij

k=1 x
k
ij = 1, a so called

assignment, to select one out of these cycles for demand pair ij ∈ W . For a
disruption combination R ⊆ R the triples that still allow to route demand
are K(R) := {(i, j, k) ∈ K : Ck

ij − F (R) connects i and j}.
In order to allow explicit computation of the conditional probability that

a particular disruption combination R in R occurs if exactly one of them
occurs, we will assume throughout that R is rather small, e. g. that R con-
sists of all combinations of at most two elementary disruptions. Then the
conditional probabilities are easily precomputed by

p̂R :=
pR

p(R)
=

pR∑
R′∈R pR′

for R ∈ R.

This yields the vector p̂ ∈ (0, 1)R with 1T p̂ = 1 describing the required
probability distribution for the chance constraint. Likewise, the routable
demand d̂R := d(R) =

∑
ij∈W (R) dij can be precomputed in advance for

R ∈ R and will be assumed to be available in the form of a vector d̂ ∈ RR+ .
For a given assignment x ∈ {0, 1}K of routable graphs to demand pairs the

amount still routable in view of disruption combination R is
∑

ijk∈K(R) dijx
k
ij.

The disruption combinations in R leading to a loss of more than a (1− σ)-
fraction of the routable demand for assignment x form the event

R(x, σ) := {R ∈ R :
∑

ijk∈K(R)

dijx
k
ij < σd̂R}.

The chance constraint requires the probability of this event, i. e. the sum of
the probabilities of these disruption combinations, to be at most εR

PR∈R

 ∑
ijk∈K(R)

dijx
k
ij < σd̂R

 =
∑

R∈R(x,σ)

p̂R ≤ εR. (1)

For given σ ∈ (0, 1) and εR ∈ (0, 1) the feasible assignments are thus

X (σ, εR) =

x ∈ {0, 1}K :

kij∑
k=1

xkij = 1, ij ∈ W,
∑

R∈R(x,σ)

p̂R ≤ εR

 .
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For the choice of objective, one might either want to maximize the routable
fraction σ, minimize the probability εR or minimize the cost associated with
installing sufficient capacities. Here, we concentrate on the latter and intro-
duce, for each edge e ∈ E variables ye ∈ Z+ that give the amount of capacity
installed. The constraint ensuring sufficient capacity reads∑

e∈E(Ckij)

dijx
k
ij ≤ ye for e ∈ E.

Given cost functions ce : Z+ → R for e ∈ E (they will be assumed to be
linear), the problem to solve is

minimize
∑

e∈E ce(ye)
subject to

∑
1≤k≤kij x

k
ij = 1, ij ∈ W,∑

e∈E(Ckij)
dijx

k
ij ≤ ye, e ∈ E,∑

R∈R(x,σ) p̂R ≤ εR,

x ∈ {0, 1}K , y ∈ ZE+.

(2)

In spite of its rather abstract setting, this is a realistic problem to solve di-
rectly for reasonably practical choices of subgraphs indexed by K, disruption
scenarios R,R and cost functions c.

3 A Simple Model for Computing Failure Prob-

abilities

The task of this section is to illustrate how a sufficiently simple model of
elementary disruptions r ∈ R could be set up together with appropriate
probabilities, so that the resulting problem is still of practical relevance for
actual networks. As the authors are more than aware that they are no experts
in the field of network failures, the model largely relies on the studies in [22]
and should not be understood as an attempt to form a highly realistic model
with perfectly accurate parameters. The values that are typically used to
describe the availability of technical components are MTBF and MTTR rep-
resenting the mean time before failure and the mean time to repair in hours,
respectively. Hence, the mean time between two failures of one component is
MTBF + MTTR and the unavailability is given by MTTR

MTTR+MTBF
. Therefore,
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the probability that a node or an edge is unavailable due to technical failures
at some arbitrary time depends on the used components. For i ∈ G we have

πri =
MTTRi

MTTRi + MTBFi
.

The intersection of the ducts can be modeled in the same fashion. For this
purpose it seems common to use a value CC describing the cable cuts, i. e., the
average length in km suffering from one cable-cut a year, see [22]. Defining
lı̂ as the length of duct ı̂, the expected number of cuts in a time interval of
length t > 0 is lı̂t

CC·24·365
, hence, MTTRı̂ + MTBFı̂ = MTTRı̂ + CC·24·365

lı̂
in

this case. Thus, if rı̂ ∈ R denotes the intersection of a duct (resulting in the
intersection of several fibers/edges) the associated probability for this event
is

πrı̂ =
lı̂MTTRı̂

lı̂MTTRı̂ + CC · 24 · 365

assuming that MTTRı̂ is given in hours.

4 An explicit IP-Formulation of the Chance

Constraint

If the size of R is not too large so that introducing one binary variable
sR ∈ {0, 1} for each R ∈ R is an acceptable option, it is worth to consider
the following explicit integer programming formulation of (2).

For a given assignment x let sR represent the indicator variable for R ∈
R(X, σ) by requiring the inequality∑

ijk∈K(R)

dijx
k
ij + σd̂RsR ≥ σd̂R,

i. e. if the demand routed falls below the required percentage of routable
demand in the presence of disruption combination R, sR has to be set to
one. The chance constraint is satisfied if those forced to one are bounded by
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∑
R∈R p̂RsR ≤ εR. Thus an explicit IP-formulation of (2) reads

minimize
∑
e∈E

ce(ye)

subject to
∑

1≤k≤kij
xkij = 1, ij ∈ W,∑

e∈E(Ckij)

dijx
k
ij ≤ ye, e ∈ E,∑

ijk∈K(R) dijx
k
ij + σd̂RsR ≥ σd̂R, R ∈ R,

p̂T s ≤ εR,

x ∈ {0, 1}K , s ∈ {0, 1}R, y ∈ ZE+.

(3)

Because the sR are used as on/off indicator variables for the constraints, the
corresponding linear programming relaxation may be expected to be rather
weak and it is not quite clear for what sizes of R this is a realistic option.

5 A Robust Approach to the Chance Con-

straint

In order to avoid the introduction of additional binary variables for the chance
constraint of (2), the approach in this section formulates a sufficient condi-
tion for the assignments to satisfy the chance constraint. In general this
condition is too strong and also excludes some feasible assignments, but if it
still permits feasible solutions it has the advantage that it involves solving
one integer program with a reasonable number of binary variables.

The starting point is an attempt to identify in program (2) for given x
those events R ∈ R of joint probability ε that are worst in terms of loss of
demand. For this consider the program

δ(x, σ, ε) := maximize
∑

R∈R ηR(σd̂R −
∑

ijk∈K(R) dijx
k
ij)

subject to
∑

R∈R ηR = ε,
ηR ∈ [0, p̂R], R ∈ R.

(4)

Theorem 2 If δ(x, σ, εR) ≤ 0 for a given assignment x ∈ {0, 1}K, then (1)
holds.

Proof. Let x be an assignment that violates (1) and let the elements of
R(x, σ) = {R1, . . . , Rm} be numbered so that the values

δRh := σd̂Rh −
∑

ijk∈K(Rh)

dijx
k
ij > 0
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are sorted nonincreasingly.

δR1 ≥ · · · ≥ δRm > 0.

Because x violates (1) there is a smallest index m̄ ≤ m so that
∑m̄

h=1 p̂Rh >
εR. Put ηRh = p̂Rh for h = 1, . . . , m̄− 1, ηRm̄ = εR −

∑m̄−1
h=1 p̂Rh (≤ p̂Rm̄ but

≥ 0) and put ηR = 0 for R ∈ R \ {R1, . . . , Rm̄}. Then η is feasible, because

εR =
m̄∑
h=1

ηRh =
∑
R∈R

ηR,

and its objective value is positive because

0 <
m̄∑
h=1

ηRhδRh =
∑
R∈R

ηR(σd̂R −
∑

ijk∈K(R)

dijx
k
ij).

The conservatism of the condition δ(x, σ, εR) ≤ 0 may be explained as follows.
Disruption combinations R ∈ R(x, σ) with small probability p̂R may already
contribute a strong positive term if their excess loss σd̂R −

∑
ijk∈K(R) dijx

k
ij

is quite large and it is only possible to reach a nonpositive objective if the
equation for ε forces the compensation of this by including the next worst
disruption combinations whose excess loss is already negative. In order to
mitigate this effect it is conceivable to require δ(x, σ, εR) to be below some
small positive number or to use δ(x, σ, ε) ≤ 0 for some parameter ε > εR, but
then feasibility cannot be guaranteed in general.

In order to arrive at an implementable form, we follow the standard pro-
cedure of robust optimization. In particular, any feasible solution to the dual
of (4)

minimize εµ+
∑

R∈R p̂RλR
subject to µ+ λR ≥ σd̂R −

∑
ijk∈K(R) dijx

k
ij, R ∈ R,

µ ∈ R, λR ≥ 0, R ∈ R,

provides an upper bound on δ(x, σ, ε). So requiring that the dual has a
feasible solution with nonpositive objective value for the current selection x
is a sufficient condition that x satisfies the chance constraint (1). This yields
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the following program,

minimize
∑
e∈E

ce(ye)

subject to
∑

1≤k≤kij
xkij = 1, ij ∈ W,∑

e∈E(Ckij)

dijx
k
ij ≤ ye, e ∈ E,

p̂Tλ+ µεR ≤ 0,

λR + µ ≥ σd̂R −
∑

ijk∈K(R) dijx
k
ij, R ∈ R,

λ ∈ RR+ , µ ∈ R
x ∈ {0, 1}K , y ∈ ZE+.

(5)

Depending on the choice of R this may be a rather large integer program,
but the number of binary variables has not increased in comparison to (2).

6 A Cutting Plane Approach to Solving the

Chance Constrained Problem

A further possibility to handle the chance constraint (1) of problem (2) is
to first solve the problem without the chance constraint and then to check
the resulting assignment x ∈ {0, 1}K for feasibility. If the assignment x
does not satisfy the chance constraint, this assignment is excluded by adding
appropriate inequalities as cutting planes and the problem is solved again
together with the added constraints. The efficiency of this approach depends
on the ability to describe the convex hull of the feasible solutions

P = conv X (σ, εR)

and the efficiency of the mixed integer solvers that compute integer solutions
for respective partial representations.

Given an assignment x ∈ {0, 1}K it is easy to compute the set R(x, σ)
of disruption combinations whose loss in routable demand is too high, and
by testing p̂(R(x, σ)) :=

∑
R∈R(x,σ) p̂R ≤ εR one quickly checks whether

x ∈ X (σ, εR). So the main question is what to do if the probability of the
event R(x, σ) is too high, i. e. p̂(R(x, σ)) > εR, and this is what we study
next.
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For assignment x each disruption combination R ∈ R has an associated
set of demand pairs that cannot be routed within the selected routing sub-
graphs but would be routable within G− F (R),

UR(x) := {ij ∈ W (R) : xkij = 1 and i and j are not connected in Ck
ij−F (R)}.

Thus, R ∈ R(x, σ) is equivalent to the loss
∑

ij∈UR(x) dij ≥ (1 − σ)d̂R being
too large for the given assignment x under the disruption combination R. A
different assignment will be better for R only if this other assignment picks
at least one routable subgraph from the set {ijk ∈ K(R) : ij ∈ UR(x)}. A
change in x is necessary only if the cumulative weight of all events in R(x, σ)
exceeds εR. This gives rise to the following result.

Theorem 3 Given events S ⊆ R with p̂(S) > εR and for each disruption

combination R ∈ S a set of destination pairs UR ⊆ W (R) with d̂(UR) :=∑
ij∈UR dij ≥ (1− σ)d̂R. Denote by

K(S, (UR)R∈S) :=
⋃
R∈S

{ijk ∈ K(R) : ij ∈ UR},

then the inequality ∑
ijk∈K(S,(UR)R∈S)

xkij ≥ 1 (6)

is valid for all x ∈ X (σ, εR). Furthermore an assignment x ∈ {0, 1}K is in
X (σ, εR) if and only if it satisfies all such inequalities.

Proof. For proving that any feasible assignment x satisfies all these inequal-

ities, let x ∈ X (σ, εR), i. e.
kij∑
k=1

xkij = 1, ij ∈ W ,
∑

R∈R(x,σ) p̂R ≤ εR and

assume, for contradiction, that inequality (6) does not hold for some S and
UR ⊆ W (R), R ∈ S, fulfilling the conditions above. Then∑

ijk∈K(S,(UR)R∈S)

xkij = 0

because x ∈ {0, 1}K . Hence, xkij = 0 for all ijk in K(S, (UR)R∈S), i. e. for
all ijk ∈

⋃
R∈S{ijk ∈ K(R) : ij ∈ UR}. So by definition of K(R) and UR

for each R ∈ S all the demand pairs ij ∈ UR cannot be routed within the
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selected subgraphs although they are routable within G− F (R). Therefore,
for each R ∈ S it holds that UR ⊆ UR(x), hence∑

ij∈UR(x)

dij ≥
∑
ij∈UR

dij = d̂(UR) ≥ (1− σ)d̂R.

As mentioned above, this is equivalent to R ∈ R(x, σ), thus S ⊆ R(x, σ) and∑
R∈R(x,σ)

p̂R ≥
∑
R∈S

p̂R = p̂(S) > εR

contradicting the feasibility of x.

Now, let x ∈ {0, 1}K ,
kij∑
k=1

xkij = 1, ij ∈ W and assume that x is not a feasible

assignment, i. e.
∑

R∈R(x,σ) p̂R > εR. Then we can choose S = R(x, σ) and

UR = UR(x) for all R ∈ R(x, σ) satisfying the conditions of the observation.
Because xkij = 0 for all ijk ∈ K(R) with ij ∈ UR(x), we have∑
ijk∈K(R(x,σ),(UR(x))R∈R(x,σ))

xkij ≤
∑

R∈R(x,σ)

∑
ijk∈K(R) : ij∈UR(x)

xkij =
∑

R∈R(x,σ)

0.

The second part of this proof already illustrates how to identify violated
inequalities and how to reduce their support in order to improve their quality.
This is summarized in the next observation.

Observation 4 Given an assignment x ∈ {0, 1}K with p̂(R(x, σ)) > εR,
then for R ∈ R(x, σ) the sets UR(x) = {ij ∈ W (R) : xkij = 1 and ijk /∈
K(R)} satisfy d(UR(x)) ≥ (1− σ)d̂R. For each S ⊆ R(x, σ) with p̂(S) > εR
and U ′R ⊆ UR(x) with d(U ′R) ≥ (1− σ)d̂R for R ∈ S the inequality∑

ijk∈K(S,(U ′
R)R∈S)

xkij ≥ 1 (7)

is valid for X (σ, εR) but violated by x.

There is an equivalent formulation of the inequalities above that might be
better to use in practice because it might be sparser. Indeed, the requirement
of the constraint is that for at least one ij with ij ∈ U ′R for some R ∈ S the

13



assignment ijk with xkij = 1 must change to some ijk′ ∈ K(R). Alternatively,
x may not use all those indices simultaneously, that do not satisfy one of these
requirements. For this put U(S, (U ′R)R∈S) :=

⋃
R∈S U

′
R, i. e. for each R ∈ S

this set contains a subset of demand pairs that are not connected for this
R and jointly exceed the demand loss bound. For each ij ∈ U(S, (U ′R)R∈S)
let K̄ij(S, (U ′R)R∈S) :=

⋂
R∈S : ij∈U ′

R
{ijk ∈ K \K(R)} collect all indices of ij-

subgraphs that fail for all R ∈ S with ij ∈ U ′R (it contains ijk with xkij = 1).
Because p̂(S) > εR, for at least one of these demand pairs ij a subgraph
with index outside K̄(S, (U ′R)R∈S) :=

⋃
ij∈U(S,(U ′

R)R∈S) K̄ij(S, (U ′R)R∈S) has to

be picked. This gives rise to the following reformulation of (7)∑
ijk∈K̄(S,(U ′

R)R∈S)

xkij ≤ |U(S, (U ′R)R∈S)| − 1. (8)

The equivalence may be proved by direct computation using the assignment
constraints

∑kij
k=1 x

k
ij = 1 for ij ∈ U(S, (U ′R)R∈S). Likely this constraint has

significantly fewer nonzero coefficients than (7).

7 Numerical results

In this section we present first comparisons of the performance of formulation
(3), the robust problem (5) and a proof-of-concept implementation of the
cutting plane approach. Before embarking on this we need to explain how
we provide the necessary data comprising the networks, the ducts and the
routing subgraphs Ck

ij. As usual, the latter will be cycles containing i and j
so that in the case of a single simple disruption like a node or edge failure,
i. e. R = {{a} : a ∈ G ⊆ R}, there is no loss of demand unless the disruption
affects the origin and destination node directly. Therefore we only consider
two-connected networks (any two nodes are connected by two node disjoint
paths).

7.1 Providing data

As described in Example 1, we assume that the network is given by nodes,
fibers/edges and ducts that contain these fibers. A disruption of a duct with
corresponding failure probability entails a failure of all fibers that go through
it. Because we had no access to network data that includes the specification
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of ducts, we generated it on the basis of instances from SNDlib [16] in the
following way. For a graph G = (V,E) with node set V = {1, . . . , n} and
fiber/edge set E representing a given network, we first decide which subset
of the given edges will also be considered as ducts. These ducts give rise a
coarser spanning network GD = (V,ED) ⊆ G; once GD is found, the original
fibers are routed through these ducts.

In an attempt to respect the actual geometry of the duct network as
well as two-connectedness we start constructing GD by solving the traveling
salesman problem for the complete graph on V with edge lengths correspond-
ing to the Euclidean distances between the nodes. If the TSP solution uses
connections that do not exist in G, we compute shortest paths between the
affected nodes using only the given connections in E and collect all these
edges in ED, so GD is not necessarily two-connected. If GD contains a bridge
eD ∈ ED giving rise to two connected components V1 and V2 in GD − eD,
every demand between V1 and V2 is routed over this duct. While we do not
exclude this possibility in the end, it could lead to a network architecture
where the failure of one or two ducts leads to a major loss of demand in
the whole network. Therefore we add a small number of additional edges
from E\ED in order to provide a certain connectedness in GD and to keep
the distance between any two nodes in the graph metric (number of edges)
adequately small if this is possible.

For this, we sort the connections in E\ED by their fiber length starting
with the smallest. Then we check for every connection e = uv ∈ E\ED if
there is a cycle that contains u and v whose number of edges is at most n/10
and only uses edges contained in ED. If this is the case, we check the next
edge in E\ED. If we cannot find a cycle at all, we simply add the edge e to
ED. In the case that we find a cycle whose number of edges is bigger than
n/10 we take a look at the two u-v paths that form the cycle. If one of these
two paths has less than n/5 edges we check the next edge, otherwise we add
the edge e to ED. This is motivated by the consideration that in practice
one might not want to build a duct if it generates a short cycle, nor to build
one if there is no significant improvement. Furthermore, this should help to
provide reasonable dependencies between the failure scenarios of the edges
to test our model.

Once GD is constructed, all fibers/edges in E are embedded into the
ducts by using shortest paths along the network GD. The set of elementary
disruptions is now formed by R = V ∪̇E∪̇ED and the failures by F (v) =
{v, {u, v} ∈ E} for v ∈ V , F (e) = {e} for e ∈ E, and F (d) = {e ∈
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E : e is embedded in d} for d ∈ ED. The considered disruption combina-
tions are all pairs of elementary disruptions, R = {{r1, r2} ⊆ R : r1 6= r2},
and the failure probabilities are computed as described in sections 2 and 3.

7.2 Providing the set of routing subgraphs

For every node pair we determine the set of routing subgraphs by solving
a sequence of constrained Min-Cost Flow Problems in a directed graph. In
order to ensure the generation of two node disjoint paths we employ the
standard technique of doubling every node v of the network and classify it
into a transmitter vt and a receiver vr and add a single arc going from vr to
vt. Then for every edge e = {u, v} of the undirected graph we add two arcs
(ut, vr) and (vt, ur). Let A be the node-arc-incidence matrix of this directed
graph, ξ a binary decision variable where each entry represents an arc used
by the solution and γ a vector that contains the weights of the arcs. The
first cycle is obtained by setting every entry of γ to one and solving

minimize γT ξ
subject to Aξ = b,

ξ ∈ {0, 1},

where b are the balances indicating the source and destination node, i. e. if
i is the source and j the destination, we put bi = −2, bj = 2 and bk = 0
for k ∈ V \{i, j}. By construction, this yields two edge and node disjoint i-j
paths in the original undirected graph. In the next steps we exclude previous
cycles by adding new constraints. Let C̄ be the set of cycles (given by their
edges) found so far, then for every c̄ ∈ C̄ the constraint c̄T ξ ≤ 1T c̄ − 1
excludes this cycle. Furthermore, we update the cost vector γ in each step
to increase the costs of edges that are already included in these cycles by
setting γe = 2Ne where Ne counts the number of cycles the edge e appears in
(for this specific node pair).

7.3 Separation heuristic

The cutting plane approach is based on formulation (8) and implemented in
C++ using Gurobi [11] as IP-solver. The initial problem is set up without the
chance constraint. During the branch-and-cut search a callback routine asks
to check for every new solution x whether it satisfies the chance constraint.
This is done by direct computation as described in Section 6. If it violates the
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chance constraint, x could be cut off by (8) for S = R(x, σ) and U ′R = UR(x),
R ∈ S, but in general this is rather inefficient. Instead we try to find, for
each x, several stronger inequalities (8) without too much overlap in their
supports by the following heuristic.

We use the reported solution x to construct a bipartite graph G̃x =
(Ṽx, Ẽx) with Ṽx of the form Rx∪Kx where the set Rx = R(x, σ) contains all
disruptions that lead to a loss of more than a (1−σ)-fraction of the routable
demand for the current assignment and Kx := {ijk : xkij = 1} contains the

indices of the chosen routing subgraphs. The edge set Ẽx is generated by
adding an edge {R, ijk} if the disruption R leads to a complete breakdown
of the cycle Ck

ij.

Let NR denote the neighborhood of a disruption R in the graph G̃x, for
J ⊆ Kx define Rx(J ) := {R ∈ Rx :

∑
ijk∈NR∩J

d̂ij ≥ (1 − σ)d̂R}. Then the

pair (Kx,F) with F := {J ⊆ Kx :
∑

R∈Rx(J )

p̂R ≤ εR} is an independence

system where the independent sets are subsets of Kx not yet violating the
chance constraint. It is well known that for J ⊆ Kx the rank inequality∑
ijk∈J

xijk ≤ r(J ) where r denotes the rank function, is a valid inequality and

if it is facet defining, then J is non-separable and closed ([13]). In general
(Kx,F) is not a matroid, so this is only a necessary condition. While we do
not know how to efficiently test a given set for being non-separable or closed,
we are able to find some circuits in dependent sets. This helps, because the
rank inequalities of the circuits ensure feasibility for integer variables. In
general the problem of enumerating all circuits of an independence system is
NP-complete ([21]), so we resort to a heuristic to find small circuits.

We collect the cycles that will be used for the new constraint in a set
J and the disruptions in a set S, both are initialized to the empty set.
Because disruptions that lead to a high loss in demand could have small
probability or vice versa, we sort the disruptions of Rx in a descending order
with respect to the product of the loss in demand and the probability of
the disruption, i. e. with respect to the expected loss. Let R1 be the first
disruption in this ordering, NR1 its neighborhood in G̃x, set S ← {R1},
J ← NR1 . Assuming p̂(S) ≤ εR, the next step is to find disruptions in Rx

such that the cardinality of the intersection of their neighborhood with J is
maximal. Let R2 be a disruption inRx that satisfies this condition (if it is not
unique, we pick one with maximum expected loss) and NR2 its neighborhood
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in G̃x. Subsequently, we calculate the loss in demand for J ∩NR2 . If it already
satisfies

∑
ijk∈J∩NR2

xkijdij ≥ (1−σ)d̂R2 , i. e. R2 ∈ Rx(J ), we put S ← S∪{R2}

and go on with the next disruption in the mentioned order. If it is too small,
we add the neighbors, sorted by their demand in descending order, in NR2\J
to J until the loss in demand is big enough. As mentioned above, we check
p̂(S) in each step and repeat this procedure until the resulting probability is
greater than εR such that as soon as this algorithm terminates it returns a
subset J with the desired property.
Now we use the set J to find circuits of the mentioned independence system
as follows. We initialize C ← J and check for each element ijk ∈ J if C\{ijk}
is still a dependent set of (Kx,F). If this is the case, we set C ← C\{ijk} and
continue with the next element in J . Eventually C is a circuit of (Kx,F).
If C = J (i.e. J is a circuit), we only use J to add a new rank inequality∑

ijk∈J x
k
ij ≤ |J | − 1. In the other case we look for other circuits C by first

trying to exclude elements that are already contained in some circuit that was
found before until all elements in J are covered by the circuits. Furthermore,
we stop this loop if we end up with a circuit that we found before. The rank
inequalities of all these circuits are then added to the problem description.

7.4 Results

We give numerical results for several instances taken from SNDlib [16] to
compare the explicit formulation (3) to the robust (5) and the cutting plane
approach. The biggest test instance was nobel-eu–D-B-E-N-C-A-N-S with
28 nodes and 41 links, see Figure 2, the others are norway–D-B-E-N-C-A-
N-N (27 nodes, 51 links), janos-us–D-D-L-N-C-A-N-N (26 nodes, 84 links),
newyork–D-B-E-N-C-A-N-N (16 nodes, 49 links) and atlanta–D-B-M-N-C-
A-N-S (15 nodes, 22 links). All other test instances of SNDlib in the range of
30 nodes were not two-connected, so we could not apply our approach there.
The costs are calculated by multiplying the edge length and the respective
computed capacity for every edge and summing all these values. By calling
CPLEX 12.6 [10] using YALMIP [23] in MATLAB [14] we were able to gen-
erate integral solutions of (3) and (5) for σ = 0.9 (in our experiments we
found only very few solutions for greater σ) and different choices of ε. All
computation times refer to a QUAD-core processor INTEL-Core-I7-4770 (4x
3400MHz, 8 MB cache) machine with 32 GB RAM operating under open-
SUSE Linux 13.1.
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Figure 2: nobel-eu–D-B-E-N-C-A-N-S [16]

The columns of Table 1 give the name of the network, the value of ε,
the optimal solution and computation time in seconds for the explicit formu-
lation (3) and for the robust approach (5) and the gap (robust−IP)/IP in
percent. CPLEX solves these instances of the IP-formulation in surprisingly
reasonable time, but in most cases the robust approach yields high quality
solutions in much shorter time. One problem that stands out is Norway.
In the Norway network there are several significant nodes whose breakdown
affects a large number of the cycles between the nodes. Furthermore, by our
approach to select the ducts in this network, some of the ducts contain a lot
of fibers. So there are many disruption combinations that lead to a loss of
several cycles. In consequence, we only got a solution starting at ε = 0.3
(this need not be the minimum feasible value for σ = 0.9). For this network
the robust condition is too strong and (5) has no feasible solutions.
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explicit IP-formulation robust approach gap to minimum
network ε solution (time) solution (time) (in %)
nobel 0.01 70824.04 (4648.01s) 71581.06 (16.43s) 1.07

0.05 70717.19 (4672.43s) 70717.19 (13.39s) 0
norway 0.3 1584567.76 (4548.24s) – (15s) –

0.4 1569664.04 (4576.39s) – (16s) –
janos-us 0.01 4819928.28 (14033.9s) 4836246.72 (62.02s) 0.34

0.05 4783310.85 (13258.14s) 4786321.66 (232.25s) 0.06
newyork 0.01 1750727.25 (1609.98s) 1781783.15 (8.64s) 1.77

0.05 1690383.39 (2457.82s) 1752799.22 (8.98s) 3.69
atlanta 0.01 102169654.67 (424.58s) 102169654.67 (1.32s) 0

0.05 102169654.67 (437.65s) 102169654.67 (2.3s) 0

Table 1: Comparison of the cutting plane and the robust approach

cutting plane approach explicit IP-formulation
network ε lower bound best solution (time) solution (time)
nobel 0.01 70826.59 70835.49 (10563s) 70824.04 (4648.01s)

0.05 70717.20 70717.20 (15.38s) 70717.19 (4672.43s)
norway 0.3 1569665.12 – (1120609s) 1584567.76 (4548.24s)

0.4 1569665.12 1569665.12 (14s) 1569664.04 (4576.39s)
janos-us 0.01 4783309.73 – (1114676s) 4819928.28 (14033.9s)

0.05 4783309.73 4783309.73 (32s) 4783310.85 (13258.14s)
newyork 0.01 1569665.12 1999198.56 (1109434s) 1750727.25 (1609.98s)

0.05 1670334.77 1728348.59 (1098388s) 1690383.39 (2457.82s)
atlanta 0.01 102169663.61 102169663.61 (1s) 102169654.67 (424.58s)

0.05 102169663.61 102169663.61 (1s) 102169654.67 (437.65s)

Table 2: Comparison of the cutting plane approach and the IP-formulation
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For comparing the IP-formulation to the cutting plane approach Table 2
displays the lower bound and the best solution generated by the cutting plane
approach (a proof-of-concept implementation in C++ using Gurobi [11] as
IP-solver) together with their computation times and repeats the IP-solution
(3). The slight deviations in the optimal values are due to the different
environments C++ and MATLAB; indeed, evaluating the solutions in the
same environment resulted in identical values. While the cutting approach
produces good solutions quickly on some instances, it is also significantly
slower on several others. These ambiguous results indicate that there is
hope to outperform the explicit IP-formulation so as to allow for significantly
large sizes of R, but a lot more work has to be invested into the polyhedral
properties of the feasible set and the separation routines.

We complete this section with a plot of the development of the gap (in %,
Figure 3(a)) and of the upper and lower bounds (Figure 3(b)) depending on
the time (seconds) of the cutting plane approach for the New York network
with ε = 0.05 and σ = 0.9. This illustrates that the lower bound is of
reasonable quality while finding good feasible solutions takes time.
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Figure 3: time plots

8 Conclusion

Chance constraints offer a practically viable approach to multi-failure re-
silience. Realistic stochastic disruption models for single and multiple failures
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can be set up algorithmically. With respect to these predetermined probabil-
ities the proposed chance constraint formulation selects among several given
possibilities for each demand pair simultaneously a primary and a back up
routing path so that probability is small to loose more than a given fraction
of the routable demand. The model may be formulated explicitly as a mixed
integer programming problem and is solvable exactly for backbone networks
with up to 30 nodes within a few hours. For larger networks the robust vari-
ant (5) is likely the better choice because in most test cases it produced high
quality solutions in much shorter time. The cutting plane approach needs
more work to be competitive but it may offer a useful alternative when the
number of considered disruption events is excessively large.

The approach may be extended in several directions. Some possibilities
are including demand uncertainties, generating routing subgraphs dynami-
cally, limiting network modifications, or using more elaborate failure models.
Similar ideas may also be applicable in logistics or production. In mathe-
matical terms it would be desirable to gain a better understanding of the
convex hull of the feasible routing subgraph selections induced by the chance
constraint. Indeed, there is a natural extension of Theorem 3 to general
probability measures, so the cutting plane approach is not limited to discrete
settings.

References

[1] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization.
Princeton University Press, 2009.

[2] A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear pro-
grams. Operations Research Letters 25(1999)1-14.

[3] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming
problems contaminated with uncertain data. Mathematical Programming
88(2000)411-424.

[4] A. Ben-Tal and A. Nemirovski, Robust optimization - methodology and
application. Mathematical Programming 92(2002)453-480.

[5] D. Bertsimas and M. Sim, Robust discrete optimization and network flows.
Mathematical Programming 98(2003)49-71.

22



[6] D. Bertsimas and M. Sim, The Price of Robustness. Operations Research
52(2004)35-53.

[7] A. Bley, F. D’Andreagiovanni, and D. Hanemann, Robustness in Com-
munication Networks: Scenarios and Mathematical Approaches. Proc. of
the ITG Symposium on Photonic Networks 2011, 1-8, VDE Verlag, Berlin
(2011).

[8] A. Charnes, W.W. Cooper, and G.H. Symonds, Cost Horizons and Cer-
tainty Equivalents: An Approach to Stochastic Programming of Heating
Oil. Management Science 4(1958)235-263.

[9] G. Claßen, D. Coudert, A.M.C.A Koster, and N. Nepomuceno. A Chance-
Constrained Model & Cutting Planes for Fixed Broadband Wireless Net-
works. Network Optimization, 5th International Conference, INOC 2011,
Hamburg, Germany, June 2011, Proceedings, 37-42, Springer (2011).

[10] CPLEX Optimizer, version 12.6.1. URL (June 25, 2015):
http://www-01.ibm.com/support/knowledgecenter/SSSA5P 12.6.1/

ilog.odms.studio.help/Optimization Studio/topics/COS home.html

[11] Gurobi Optimization, version 6.0.4. URL (June 25, 2015):
http://www.gurobi.com/documentation/6.0/refman/index.html

[12] A.M.C.A. Koster, M. Kutschka, and C. Raack, Robust Network De-
sign: Formulations, Valid Inequalities, and Computations. Networks
61(2013)128-149.

[13] M. Laurent, A generalization of antiwebs to independence systems and
their canonical facets. Mathematical Programming 45(1989)97-108.

[14] MATLAB, R2015a. URL (June 25, 2015): http://www.mathworks.com

[15] L.B. Miller and H. Wagner, Chance-Constrained Programming with
Joint Constraints. Operations Research 13(1965)930-945.
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