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We present an efficient method to compute the electrostatic fields, torques and
forces in dipolar systems, which is based on the fast Fourier transform for nonequi-
spaced data (NFFT). We consider 3d-periodic, 2d-periodic, 1d-periodic as well as
0d-periodic (open) boundary conditions. The method is based on the correspond-
ing Ewald formulas, which immediately lead to an efficient algorithm only in the
3d-periodic case. In the other cases we apply the NFFT based fast summation in
order to approximate the contributions of the nonperiodic dimensions in Fourier
space. This is done by regularizing or periodizing the involved functions, which
depend on the distances of the particles regarding the nonperiodic dimensions.
The final algorithm enables a unified treatment of all types of periodic boundary
conditions, for which only the precomputation step has to be adjusted.
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1 Introduction

For a system of N dipoles at positions xj , located in a box [−L1/2, L1/2] × [−L2/2, L2/2] ×
[−L3/2, L3/2] with dimensions L1, L2, L3 ∈ R+, and their dipole moments µj ∈ R3 the electro-
static energy is given, in Gaussian units, by

US = 1
2
∑

n∈S

N∑

i,j=1

′(µi · ∇xj )(µi · ∇xi)
1

‖xij + n�L‖ (1.1)

= 1
2
∑

n∈S

N∑

i,j=1

′ µi · µj
‖xij + n�L‖3 −

3[µi · (xij + n�L)][µj · (xij + n�L)]
‖xij + n�L‖5 ,
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where we use the short notation xij := xi−xj and assume a certain type of periodic boundary
conditions, which is specified by the index set S ⊂ Z3. Thereby, we exclude all the terms
with i = j in the case n = 0, which is indicated by the prime on the second sum. By � we
denote the component wise product, i.e., the translation vectors appearing within the norm
are given by

n�L := (n1L1, n2L2, n3L3) ∈ R3,

where n = (n1, n2, n3) ∈ Z3 and the edge length vector L is defined by L := (L1, L2, L3) ∈ R3
+.

The ordinary scalar product is denoted by ·, i.e., for two vectors y, z ∈ R3 we set

y · z := y1z1 + y2z2 + y3z3 ∈ R.

In addition, we are also interested in computing the acting forces, which are for each particle
defined via

fS(j) := −∇xjUS . (1.2)

The torque τS(j) ∈ R3 acting on the particle j is given by

τS(j) := µj × eS(j), (1.3)

where the vector product is denoted by × and the electrostatic field eS(j) ∈ R3 is defined via

eS(j) :=−∇µj
US (1.4)

=−
∑

n∈S

N∑

i=1

′∇xj (µi · ∇xi)
1

‖xij + n�L‖

=−
∑

n∈S

N∑

i=1

′ µi
‖xij + n�L‖3 −

3[µi · (xij + n�L)](xij + n�L)
‖xij + n�L‖5 .

Thus, the energy can also be written as

US = −1
2

N∑

j=1
µj · eS(j). (1.5)

If we insert (1.5) into the definition of the forces (1.2) we obtain

fS(j) = ∇xj

[
µj · eS(j)

]
. (1.6)

We describe different cases of periodic boundary conditions as follows. Assuming periodic
boundary conditions in the first p ∈ {0, 1, 2, 3} dimensions combined with nonperiodic (open)
constraints for the remaining 3 − p dimensions, we set S := Zp × {0}3−p, which effects a
replication of the primary box along all dimensions subject to periodic boundary conditions.
Since the summands in (1.1) tend to zero like r−3, where r represents the distance between

two particles, the infinite sum is only conditionally convergent for p = 3, i.e., an order of
summation has to be specified, see [22] for more details. However, also for p ∈ {1, 2} the
infinite sum converges very slowly, which makes it impracticable to compute it directly after
truncation. For p = 0, i.e., no periodic boundary conditions are applied, a direct evaluation
is possible but only with a complexity of O(N2), which is not satisfying.
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A common approach in the case of periodic boundary conditions is the application of the
Ewald summation technique [13], which splits the badly converging sum into two rapidly
converging parts in spatial and Fourier domain, respectively. This is explained in Section 1.1
in more detail. In order to compute the Fourier space part efficiently we may apply the FFT.
Since the dipoles are not distributed on a uniform mesh, we use the generalization of the
FFT to nonequispaced data (nonuniform FFT, NFFT, NUFFT), to which we give a short
introduction in Section 1.2. In Section 2 we consider the 3d-periodic case, i.e., S := Z3, and
show how the electrostatic fields, forces and toques can be approximated based on the Ewald
formulas and the NFFT. The same is done in Sections 3–5 for the other types of periodic
boundary conditions, respectively. We conclude with a short summary in Section 6.

1.1 Ewald summation
A general approach to compute long range interactions efficiently is the application of the
Ewald summation technique [13], which makes use of the simple identity

1
r

= erfc(αr)
r

+ erf(αr)
r

, (1.7)

where erf(·) is the well known error function, erfc(·) := 1− erf(·) is the complementary error
function and α > 0 is referred to as the splitting parameter. Applying (1.7) the energy (1.1)
splits into two parts

US = 1
2
∑

n∈S

N∑

i,j=1

′(µi · ∇xj )(µi · ∇xi)
erfc(α‖xij + n�L‖)
‖xij + n�L‖

+ 1
2
∑

n∈S

N∑

i,j=1

′(µi · ∇xj )(µi · ∇xi)
erf(α‖xij + n�L‖)
‖xij + n�L‖ ,

where we refer to

U short
S := 1

2
∑

n∈S

N∑

i,j=1

′(µj · ∇xj )(µi · ∇xi)
erfc(α‖xij + n�L‖)
‖xij + n�L‖ (1.8)

as the short range part. Computing the present derivatives we obtain

(µj · ∇xj )(µi · ∇xi)
erfc(α‖xij + n�L‖)
‖xij + n�L‖

=
(

2αe−α2r2

√
πr2 + erfc(αr)

r3

)(
µj · µi − 3

(µj · r)(µi · r)
r2

)
− 4α3e−α2r2

√
πr2 (µj · r)(µi · r),

where we set r := ‖xij+n�L‖ and r := ‖r‖. Since the complementary error function erfc(r)
tends to zero exponentially fast in r, the sum (1.8) can be efficiently computed by a direct
summation after an appropriate truncation.
For the kernel function in the long range part we obtain

(µj · ∇xj )(µi · ∇xi)
erf(α‖xij + n�L‖)
‖xij + n�L‖

=
(
−2αe−α2r2

√
πr2 + erf(αr)

r3

)(
µj · µi − 3

(µj · r)(µi · r)
r2

)
+ 4α3e−α2r2

√
πr2 (µj · r)(µi · r).
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We compute the limit

lim
r→0
−2αre−α2r2

√
πr3 + erf(αr)

r3 = 4α3

3
√
π
,

and obtain

lim
‖xij‖→0

(µj · ∇xj )(µi · ∇xi)
erf(α‖xij‖)
‖xij‖

= 4α3

3
√
π
µj · µj = 4α3

3
√
π
‖µj‖2 (1.9)

as well as

1
2
∑

n∈S

N∑

i,j=1

′(µi · ∇xj )(µi · ∇xi)
erf(α‖xij + n�L‖)
‖xij + n�L‖ = U long

S + U self .

Thereby, we define the long range part

U long
S := 1

2
∑

n∈S

N∑

i,j=1
(µi · ∇xj )(µi · ∇xi)

erf(α‖xij + n�L‖)
‖xij + n�L‖ , (1.10)

where we now insert the finite limit (1.9) in the case ‖xij+n�L‖ = 0, and the self interaction
energy

U self := − 2α3

3
√
π

N∑

j=1
‖µj‖2, (1.11)

which is the same for all types of periodic boundary conditions. Correspondingly, also the
electrostatic fields (1.4), the forces (1.2) as well as the torques (1.3) are split into short ranged
and long ranged portions, which we will discuss later in more detail.
The long range part (1.10) is still slowly and in the 3d-periodic case in addition condi-

tionally convergent, but its kernel function does not have a singularity. Thus, this part can
be transformed into a sum in Fourier space regarding the periodic dimensions, where in the
3d-periodic case the applied summation order comes into play. We obtain fundamentally
different Fourier space representations for the above described types of periodic boundary
conditions, see Sections 2–5.
In order to evaluate the obtained Fourier space sum efficiently many methods in the field

of molecular dynamics simulations make use of the fast Fourier transform (FFT). Especially
for charge-charge (Coulomb) interactions under 3d-periodic constraints a variety of so called
particle mesh methods have already been proposed, see [19, 7, 12, 8, 23] and references therein.
Since the FFT is a mesh based algorithm, the given continuous charge (or dipole) distribution
has at first to be approximated by a grid based charge (dipole) density. This approximation
is done by a sum of translates of a so called window function or rather assignment function,
which is typically a B-spline. Note that the well known P3M method has already been
generalized to dipolar systems, cf. [6, 5].
The P2NFFT [29, 30] method, which was also developed for the computation of Coulomb

interactions, is based on the FFT for nonequispaced data (NFFT). The NFFT is also a
combination of the ordinary FFT and an approximation via a window function and thus the
P2NFFT approach fits very well into the scope of particle mesh methods. Possible window
functions are B-splines, but also Gaussians or (Kaiser-)Bessel functions, see [21, 25, 26].
Furthermore, an oversampled FFT can be applied, which makes the tuning of the method
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with respect to accuracy as well as efficiency somewhat more flexible, cf. [26]. See [2] for a
comparison of the method to other well established algorithms in this field, such as the P3M
method, the fast multipole method or multigrid based methods.
Note that we are also able to treat mixed periodic as well as open boundary conditions, see

[27, 28]. In contrast to the 3d-periodic case we hereby need a precomputation step, in which
the nonperiodic contributions are embed into a periodic setting, such that the NFFT can be
applied similarly to the 3d-periodic case. In this paper we show that exactly the same ideas
can be applied in the case of dipolar systems.

1.2 The nonequispaced FFT
In the following we give a short overview of the NFFT, see [11, 4, 34, 35, 32, 16, 21], and
start with the introduction of some notations. For some vectorM ∈ 2Nd we define the index
set IM ∈ Zd by

IM :=
d⊗

j=1

{
−Mj

2 , . . . ,
Mj

2 − 1
}
.

Furthermore, for x ∈ Rd and y ∈ Rd (with non vanishing components) we set

x� y := (x1y1, . . . , xdyd) ∈ Rd and x� y :=
(
x1
y1
, . . . , xd

yd

)
∈ Rd.

For given Fourier coefficients f̂k ∈ C, k ∈ IM , consider a trigonometric polynomial

f(x) :=
∑

k∈IM

f̂ke−2πik·x,

which we aim to evaluate in N given nodes xj ∈ Td := Rd/Zd ' [−1/2, 1/2)d, i.e., we want to
compute

fj := f(xj) =
∑

k∈IM

f̂ke−2πik·xj , j = 1, . . . , N. (1.12)

The straightforward algorithm for the exact computation of (1.12), which is called nonequi-
spaced discrete Fourier transform (NDFT), takes O(N |IM |) arithmetical operations. Since
we do not have equispaced data we cannot directly apply the FFT in order to evaluate the
sums (1.12) more efficiently. The well known NFFT algorithm is a modification of the or-
dinary FFT and allows an approximate evaluation within O(|IM | log |IM | + N) arithmetic
operations. The basic idea of this method can be explained as follows.
We approximate f by a sum of equidistant translates of a 1-periodic window function ϕ,

which should be well localized in spatial as well as in frequency domain. In other words, we
approximate f by a discrete convolution of unknown coefficients with a given window function
located at points on a uniform grid Im, m ∈ 2Nd, which reads as

f(x) ≈
∑

`∈Im

g`ϕ(x− `�m).

Thereby, we use the oversampled mesh size m ≥M . Applying the aliasing formula and the
convolution theorem we obtain

∑

`∈Im

g`ϕ(x− `�m) =
∑

k∈Im

∑

r∈Zd

ĝkck+r�m(ϕ)e−2πi(k+r�m)·x, (1.13)
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where
ĝk := 1

|Im|
∑

`∈Im

g` e2πik·(l�m), k ∈ Im,

are the discrete Fourier coefficients of g`, ` ∈ Im, and

ck(ϕ) :=
∫

Td

ϕ(x)e2πik·xdx, k ∈ Zd,

are the analytical Fourier coefficients of the window function ϕ.
We see that it is reasonable so set

ĝk := f̂k
ck(ϕ) (k ∈ IM ) and ĝk := 0 (else), (1.14)

since then the Fourier coefficients of the approximation (1.13) coincide with f̂k for all k ∈ IM
and only the aliasing terms are left. After this step, the coefficients g` are obtained by
applying the inverse FFT to the coefficients ĝk.

Remark 1.1. The approach to set the coefficients ĝk can be further optimized with respect
to a specific application. As an example, in the field of particle simulation the root mean
square error in the forces is a common measure of accuracy. The optimal coefficients ĝk then
depend on which kind of particle interactions are considered (Coulomb, dipolar) as well as
which differentiation operator is applied for the computation of the forces. For more details
we refer to the derivations of the optimal influence functions for the P3M method, cf. [19, 9]
for point charge and [6, 5] for dipolar systems, as well as to [25] for error estimates concerning
the P2NFFT method. If the occurrent aliasing terms are left out in the obtained expression
for the optimized coefficients ĝk, we obtain the standard coefficients (1.14), which we use
within the NFFT and the NFFT based particle simulation.
Since the Fourier coefficients in this specific application tend to zero very rapidly, we expect

that we can achieve only minor improvements by using an optimized deconvolution approach,
see [26] for some numerical examples in the case of Coulomb interactions.

The NFFT algorithm can be summarized roughly as follows.

Algorithm 1.1 (NFFT).
Input: nodes xj ∈ Td (j = 1, . . . , N), coefficients f̂k (k ∈ IM ), oversampled mesh size
m ∈ 2Nd, m ≥M .

i) Set ĝk := f̂k
ck(ϕ) for all k ∈ IM and ĝk := 0 for k ∈ Im \ IM .

Complexity: O(|IM |).

ii) Use the inverse FFT for the computation of the coefficients

gl = 1
|Im|

∑

k∈Im

ĝk e−2πik·(l�m), l ∈ Im.

Complexity: O(|Im| log |Im|).
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iii) Compute
f(xj) ≈ f≈(xj) :=

∑

l∈Im

glϕ (xj − l�m)

for all j = 1, . . . , N . The sums are short due to the good localization or rather small
support of the window function ϕ. Complexity: O(N).

Output: Approximate function values f≈(xj) ≈ f(xj) for all j = 1, . . . , N .

The computation of sums of the form

h(k) :=
N∑

j=1
fje2πik·xj , k ∈ IM , (1.15)

where now the coefficients fj are given, is a very similar problem. Considering (1.12) as
the computation of a matrix vector product, the matrix representing (1.15) is obtained by
adjoining the matrix from (1.12). Thus, the efficient algorithm is known as the adjoint NFFT
and can be summarized as follows.

Algorithm 1.2 (adjoint NFFT).
Input: nodes xj and corresponding coefficients fj , j = 1, . . . , N , mesh size M ∈ 2Nd and
oversampled mesh size m ∈ 2Nd, m ≥M .

i) Set

g` :=
N∑

j=1
fjϕ (xj − l�m)

for all ` ∈ Im. The sums are short due to the good localization or rather small support
of the window function ϕ. Complexity: O(N).

ii) Use the FFT for the computation of the coefficients

ĝk = 1
|Im|

∑

`∈Im

g` e2πik·(l�m), k ∈ Im.

Complexity: O(|Im| log |Im|).

iii) Set h(k) ≈ h≈(k) := ĝk
ck(ϕ) for all k ∈ IM . Complexity: O(|IM |).

Output: Approximations h≈(k) ≈ h(k) for all k ∈ IM .

2 Periodic boundary conditions in all three dimensions
We are now interested in the fast computation of dipole-dipole interactions subject to fully
periodic boundary conditions. We define the resulting energy via

U3d := UZ3 ,

i.e., we set S = Z3 in (1.1). As derived in the introduction we can write

U3d = U3d,short + U3d,long + U self,
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where we set

U3d,short := U short
Z3 = 1

2
∑

n∈Z3

N∑

i,j=1

′(µj · ∇xj )(µi · ∇xi)
erfc(α‖xij + n�L‖)
‖xij + n�L‖ , (2.1)

U3d,long := U long
Z3 = 1

2
∑

n∈Z3

N∑

i,j=1
(µj · ∇xj )(µi · ∇xi)

erf(α‖xij + n�L‖)
‖xij + n�L‖ ,

and the self interaction energy U self is defined in (1.11).
The transformation of U3d,long into Fourier space under the assumption of a spherical

summation order gives, see [22, Section 4],

U3d,long = U3d,F + U3d,0,

where we define the Fourier sum

U3d,F := 1
2πV

∑

k∈Z3

ψ̂(k)
N∑

i,j=1
(µi · ∇xi)(µj · ∇xj )e2πi(k�L)·xij (2.2)

= 1
2πV

∑

k∈Z3

ψ̂(k)

∣∣∣∣∣
N∑

i=1
(µi · ∇xi)e2πi(k�L)·xi

∣∣∣∣∣

2

= 2π
V

∑

k∈Z3

ψ̂(k)

∣∣∣∣∣(k �L) ·
N∑

i=1
µie2πi(k�L)·xi

∣∣∣∣∣

2

with the Fourier coefficients

ψ̂(k) :=





e−π2‖k�L‖2/α2

‖k �L‖2
: k 6= 0,

0 : k = 0,

and the k = 0 contribution, also known as the surface term, by

U3d,0 := 2π
3V

N∑

i=1

N∑

j=1
µi · µj = 2π

3V

∥∥∥∥∥
N∑

i=1
µi

∥∥∥∥∥

2

. (2.3)

Thereby we denote by V := L1L2L3 the volume of the Box.

Remark 2.1. The surface term U3d,0 is the only part, which depends on the applied sum-
mation order. In the literature, see for instance [15, page 304], one often finds

U3d,0 := 2π
(2ε′ + 1)V

N∑

i=1

N∑

j=1
µi · µj ,

where ε′ is the dielectric constant of the surrounding medium. For vacuum we have ε′ = 1
and (2.3) applies. In the case of metallic boundary conditions we have ε′ =∞ and the surface
term vanishes.
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In the case of Coulomb interactions we have

U3d,F = 1
2πV

∑

k∈Z3

ψ̂(k)

∣∣∣∣∣
N∑

i=1
qie2πi(k�L)·xi

∣∣∣∣∣

2

,

U3d,0 = 2π
3V

N∑

i=1

N∑

i=1
qiqj(xi · xj) = 2π

3V

∥∥∥∥∥
N∑

i=1
qixi

∥∥∥∥∥

2

,

which can be obtained by using convergence factors, see [22]. Obviously, we simply have to
replace the charges qi by the operators µi · ∇xi to obtain (2.2) and (2.3), which are valid for
dipole-dipole interactions.

2.1 Computation of the electrostatic fields and torques
Based on the decomposition of the energy

U3d = U3d,short + U3d,F + U3d,0 + U self,

the electrostatic fields of the single dipoles, which we define via (1.4), can be written as

e3d(j) := eZ3(j) = e3d,short(j) + e3d,F(j) + e3d,0(j) + eself(j).

Thereby, we define the short range part

e3d,short(j) := eshort
Z3 (j),

where we define for S ⊂ Z3

eshort
S (j) := −∇xj

∑

n∈S

N∑

i=1

′(µi · ∇xi)
erfc(α‖xij + n�L‖)
‖xij + n�L‖ . (2.4)

Furthermore, we have

e3d,F(j) = −
∇xj

πV

∑

k∈Z3

ψ̂(k)
(

N∑

i=1
(µi · ∇xi)e2πi(k�L)·xi

)
e−2πi(k�L)·xj (2.5)

= −4π
V

∑

k∈Z3

ψ̂(k)(k �L) [(k �L) · S(k)] e−2πi(k�L)·xj (2.6)

with the structure factors

S(k) =
N∑

i=1
µie2πi(k�L)·xi , (2.7)

and

e3d,0(j) = − 4π
3V

N∑

i=1
µi,

eself(j) = 4α3

3
√
π
µj . (2.8)
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These identities follow immediately from the Ewald formulas (2.1), (2.2), (2.3) and (1.11)
for the energy U3d, since the energy is simply a sum over the scalar products µi · e3d(i), see
equation (1.5).
As already pointed out, the short range parts e3d,short(j) can be obtained by a direct

evaluation, i.e., we can compute an approximation e3d,short
≈ (j) via (2.4) by just considering

distances ‖xij + n � L‖ ≤ rcut, where rcut > 0 is an appropriate cutoff radius. Further, the
computation of e3d,0(j) as well as eself(j) for all j = 1, . . . , N is straight forward and only takes
O(N) arithmetic operations. The efficient approximation of the Fourier space contributions
e3d,F(j), j = 1, . . . , N , can be realized as follows.
The first approach is based on (2.6), i.e., the differentiation is done in Fourier space. We

refer to this as the ik-differentiation approach.

Algorithm 2.1 (Approximate e3d,F(j), ik-differentiation).
Input: positions xj ∈

⊗3
i=1[−Li/2, Li/2] and corresponding dipole moments µj ∈ R3 (j =

1, . . . , N), splitting parameter α > 0, far field cutoff M ∈ 2N3, NFFT parameters (window
function, oversampling).

i) Approximate the structure factors S(k) ≈ S≈(k), k ∈ IM , as defined in (2.7), by an
adjoint NFFT in each component (three adjoint 3d-NFFTs).

ii) Compute the scalar products (k �L) · S≈(k) for all k ∈ IM .

iii) Approximate the Fourier sums

4π
V

∑

k∈IM

ψ̂(k)(k �L) [(k �L) · S≈(k)] e−2πi(k�L)·xj
NFFT
≈ e3d,F

≈ (j)

by applying an NFFT in each component (three 3d-NFFTs).

Output: approximate Fourier space parts of the fields e3d,F
≈ (j) ≈ e3d,F(j), j = 1, . . . , N .

A second approach follows (2.5) and applies the differentiation operator to the NFFT
window function ϕ. We refer to this method as the analytical differentiation approach.

Algorithm 2.2 (Approximate e3d,F(j), analytic differentiation).
Input: positions xj ∈

⊗3
i=1[−Li/2, Li/2] and corresponding dipole moments µj ∈ R3 (j =

1, . . . , N), splitting parameter α > 0, far field cutoff M ∈ 2N3, NFFT parameters (window
function, oversampling).

i) Use the adjoint NFFT to approximate for all k ∈ IM the sums

A(k) :=
N∑

i=1
(µi · ∇xi)e2πi(k�L)·xi

NFFTH

≈ A≈(k), (2.9)

i.e, we replace step 1 of Algorithm 1.2 by

g` :=
N∑

i=1
µi · ∇ϕ(xi − `�m).

This means that we only need to compute one 3d-FFT (see step 2 in Algorithm 1.2),
while spending more effort in step 1.
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ii) Approximate the Fourier space parts of the fields

−
∇xj

πV

∑

k∈IM

ψ̂(k)A≈(k)e−2πi(k�L)·xj
NFFT
≈ e3d,F

≈ (j), j = 1, . . . , N,

by applying the NFFT, i.e., set f̂k := − 1
πV ψ̂(k)A≈(k) in Algorithm 1.1 and replace step

3 by
e3d,F
≈ (j) :=

∑

`∈Im

g`∇ϕ(xj − `�m).

Again, we only need to compute one inverse 3d-FFT (see step 2 in Algorithm 1.1), but
step 3 is somewhat more expensive.

Output: approximate Fourier space parts of the fields e3d,F
≈ (j) ≈ e3d,F(j), j = 1, . . . , N .

Note that the above described approach is very similar to the P3M method for dipolar inter-
actions if the NFFT is applied without oversampling and with a B-spline as window function
ϕ. See [6] for a description of the P3M method based on the ik-differentiation approach and
error estimates as well as [5] for the analytical differentiation approach, corresponding error
estimates and some comparisons between the two different differentiation schemes.
Based on the computed approximations of the fields

e3d
≈ (j) := e3d,short

≈ (j) + e3d,F
≈ (j) + e3d,0(j) + eself(j)

the torques are simply obtained by (1.3), i.e., we approximate the torques by

τ 3d(j) ≈ τ 3d
≈ (j) := µj × e3d

≈ (j).

Following the identity (1.5), an approximation of the energy U3d is given by

U3d
≈ := −1

2

N∑

j=1
µj · e3d

≈ (j).

2.2 Computation of the forces
The forces are obtained by applying (1.6). Since the contributions e3d,0(j) and e3d,self(j) do
not depend on the particle positions, we obtain with (1.6) and the Ewald summation formulas
for the fields e3d(j)

f3d(j) = ∇xj

[
µj · e3d(j)

]
= f3d,short(j) + f3d,F(j),

where we define the short range parts by

f short
S (j) := −∇xj (µj · ∇xj )

∑

n∈S

N∑

i=1

′(µi · ∇xi)
erfc(α‖xij + n�L‖)
‖xij + n�L‖ (2.10)

and set f3d,short(j) := f short
Z3 (j). We can compute an approximation f3d,short

≈ (j) for each j by
simply truncating the sum (2.10), i.e., for an appropriate cutoff radius rcut we only consider
distances ‖xij + n�L‖ ≤ rcut.

11



Again, we may apply the ik-differentiation or the analytic differentiation approach. If the
differentiation operators are applied in Fourier space we obtain from (2.5) and (2.6)

f3d,F(j) := ∇xj

[
µj · e3d,F(j)

]

= −
∇xj

πV
(µj · ∇xj )

∑

k∈Z3

ψ̂(k)
(

N∑

i=1
(µi · ∇xi)e2πi(k�L)·xi

)
e−2πi(k�L)·xj (2.11)

= 8π2i
V

∑

k∈Z3

ψ̂(k)
[
µj · (k �L)

]
[(k �L) · S(k)] (k �L) e−2πi(k�L)·xj

= 8π2i
V


∑

k∈Z3

ψ̂(k)(k �L)(k �L)> [(k �L) · S(k)] e−2πi(k�L)·xj


µj ,

i.e., in order to approximate the outer sums we have to compute a 3d-FFT in all 9 components.
Applying symmetry properties, we can reduce the amount of work to the computation of 6
FFTs in three variables.
Algorithm 2.3 (Approximate f3d,F(j), ik-differentiation).
Input: positions xj ∈

⊗3
i=1[−Li/2, Li/2] and corresponding dipole moments µj ∈ R3 (j =

1, . . . , N), splitting parameter α > 0, far field cutoff M ∈ 2N3, NFFT parameters (window
function, oversampling).

i) Approximate the structure factors S(k) ≈ S≈(k), k ∈ IM , as defined in (2.7), by an
adjoint NFFT in each component (three adjoint 3d-NFFTs).

ii) Compute the scalar products (k �L) · S≈(k) for all k ∈ IM .

iii) Approximate the matrix-valued sums
∑

k∈IM

ψ̂(k)(k �L)(k �L)> [(k �L) · S≈(k)] e−2πi(k�L)·xj
NFFT
≈ F (j), j = 1, . . . , N,

by applying an NFFT in each component (six 3d-NFFTs, exploit symmetry properties).

iv) Finally, the Fourier space parts of the forces are approximated by computing the matrix-
vector products

f3d,F
≈ (j) := 8π2i

V
F (j)µj .

Output: approximate Fourier space parts of the forces f3d,F
≈ (j) ≈ f3d,F(j), j = 1, . . . , N .

For the analytical differentiation approach we write the Fourier space contributions of the
forces based on (2.11) as

f3d,F(j) = −
∇xj

πV
(µj · ∇xj )

∑

k∈IM

ψ̂(k)A(k) e−2πi(k�L)·xj

= − 1
πV

(∇xj
∇>xj

)µj
∑

k∈IM

ψ̂(k)A(k) e−2πi(k�L)·xj ,

where we define the sums A(k) in (2.9) and the operator ∇xj
∇>xj

symbolizes the application
of the Hessian matrix.
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Algorithm 2.4 (Approximate f3d,F(j), analytic differentiation).
Input: positions xj ∈

⊗3
i=1[−Li/2, Li/2] and corresponding dipole moments µj ∈ R3 (j =

1, . . . , N), splitting parameter α > 0, far field cutoff M ∈ 2N3, NFFT parameters (window
function, oversampling).

i) Use the adjoint NFFT to approximate the sums A(k) ≈ A≈(k), k ∈ IM , as defined in
(2.9), i.e, we replace step 1 of Algorithm 1.2 by

g` :=
N∑

i=1
µi · ∇ϕ(xi − `�m).

This means that we only need to compute one 3d-FFT (see step 2 of Algorithm 1.2),
whereas step 1 is now more expensive.

ii) Apply the NFFT to approximate the sums

− 1
πV

(∇xj
∇>xj

)
∑

k∈IM

ψ̂(k)A≈(k)e−2πi(k�L)·xj
NFFT
≈ F (j),

i.e., set f̂k := − 1
πV ψ̂(k)A≈(k) in Algorithm 1.1 and replace step 3 by

F (j) :=
∑

`∈Im

g` H(ϕ)(xj − `�m),

where we denote by H(ϕ)(·) the Hessian matrix of the window function ϕ. Again, we
only need to compute one inverse 3d-FFT (see step 2 in Algorithm 1.12), whereas step
3 is now more expensive.

iii) Finally, the Fourier space parts of the forces are approximated by computing the matrix-
vector products

f3d,F
≈ (j) := 8π2i

V
F (j)µj .

Output: approximate Fourier space parts of the forces f3d,F
≈ (j) ≈ f3d,F(j), j = 1, . . . , N .

3 Periodic boundary conditions in two of three dimensions
We consider systems that are periodic only in the first two dimensions, i.e., we set S := Z2×{0}
and define the energy

U2d := UZ2×{0}

via (1.1). By applying the splitting (1.7) we end up as in the 3d-periodic case with the
decomposition

U2d = U2d,short + U2d,long + U self

=: U short
Z2×{0} + U long

Z2×{0} + U self

via (1.8), (1.10) and (1.11), respectively.
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The Fourier space representation of the long range part has already been derived in [17]. It
is easy to see that the same Fourier space representation is obtained by replacing the charges
qj in the Ewald formula for Coulomb interactions by the operators µj · ∇xj , see also [17]. By
doing this we can formally write the Fourier space part of the energy as

U2d,long = U2d,F = 1
2L1L2

∑

k∈Z2

N∑

i,j=1
(µi · ∇xi)(µj · ∇xj )Θ2d(‖k‖, xij,3)e2πi(k�L̃)·x̃ij , (3.1)

where we use the notation

xj = (xj,1, xj,2, xj,3) =: (x̃j , xj,3), L̃ := (L1, L2),

with x̃j ∈ [−L1/2, L1/2]× [−L2/2, L2/2] and the function Θ2d is defined via

Θ2d(k, r) :=





1
2k

[
e2πkrerfc

(
πk

α
+ αr

)
+ e−2πkrerfc

(
πk

α
− αr

)]
: k 6= 0,

−2
√
π

α

(
e−α2r2 +

√
παr erf(αr)

)
: k = 0.

(3.2)

Remark 3.1. In the 3d-periodic case the k = 0 contribution as given in (2.3) has a very
special form and thus we have to write the long range part of the energy as

U3d,long = U3d,F + U3d,0,

i.e., we separate the k = 0 term.
Also in the 2d-periodic case the k = 0 contribution takes a slightly different form than in

the case k 6= 0. But by defining Θ2d as in (3.2) we are able to express the long range part as
a single sum in Fourier space, see (3.1). In order to ensure consistency with the 3d-periodic
case we introduce the double designation

U2d,long = U2d,F,

see equation (3.1).

It is easy to show that we have Θ2d(k, r) = o(k−2e−k2) as k →∞, see [27, Lemma 4.2], i.e.,
the infinite sum in (3.1) converges rapidly. Thus, we are able to replace the infinite sum over
k ∈ Z2 by a finite sum over k ∈ I(M1,M2), where we choose M1,M2 ∈ 2N large enough.
We follow the approach as presented in [27, 28] and approximate the functions Θ2d(‖k‖, ·)

for all k ∈ I(M1,M2) by trigonometric polynomials. In the following we describe two different
approaches to compute such a Fourier space approximation, namely the regularization ap-
proach, see [27, Section 4.2.1] for more details, as well as the periodization technique, which
we already introduced in [28, Section 4]. After replacing the functions by their Fourier space
approximations we apply the operators µj ·∇xj , i.e., we follow a Fourier space differentiation
approach at this point.

Regularization

Assuming that xj,3 ∈ [−L3/2, L3/2] we obtain xij,3 ∈ [−L3, L3]. Now, we proceed as follows.

i) We choose an interval length h, which fulfills h > 2L3.

14



ii) For each k = ‖k‖, k ∈ I(M1,M2), we construct a polynomial P (k, ·), which lives on the
interval [L3, h− L3] and interpolates the derivatives

∂n

∂rn
Θ2d(k, r)

at the end points r = ±L3 of the interval up to a certain order p ∈ N, i.e., we construct
P (k, ·) such that

∂n

∂rn
P (k, L3) = ∂n

∂rn
Θ2d(k, L3) and ∂n

∂rn
P (k, h− L3) = ∂n

∂rn
Θ2d(k,−L3)

for all n = 0, . . . , p. The computation of the polynomial P (k, ·) is possible via the
two-point Taylor interpolation approach, see [1] or [14], for instance.
Then we define the regularized function R(k, ·) ∈ Cp[−h/2, h/2] by

R(k, r) :=
{

Θ2d(k, r) : |r| ≤ L3,

P (k, |r|) : |r| > L3.

For a graphical illustration see Figure 3.1.

0

−L3 L3

−h/2 h/2
h− L3

R(k, ·)

Θ2d(k, ·)

P (k, ·)

1

Figure 3.1: Example for a regularization R(k, ·) for k > 0.

iii) The regularized functions R(k, ·) are smooth on [−h/2, h/2] and can thus be approximated
by trigonometric polynomials

R(k, r) ≈
∑

`∈IM3

b̂k,`e2πi`r/h,

where we choose M3 ∈ 2N large enough. The Fourier coefficients b̂k,` are obtained by
applying the FFT after sampling the function R(k, ·) on an equispaced grid, i.e., we set

b̂k,` := 1
|IM3 |

∑

j∈IM3

R(k, jhM3
)e−2πij`/M3 , ` ∈ IM3 .

Since the function R(k, ·) coincides with Θ2d(k, ·) on the interval [−L3, L3] we have

Θ2d(‖k‖, xij,3) ≈
∑

`∈IM3

b̂‖k‖,`e2πi`xij,3/h. (3.3)
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Periodization

The Fourier transform of Θ2d(k, r) with respect to r exists and is known in an analytically
closed form for all k > 0. We obtain

Θ̂2d(k, ξ) :=
∫ ∞

−∞
Θ2d(k, r)e−2πirξdξ = e−π2(k2+ξ2)/α2

π(k2 + ξ2) , (3.4)

which we easily compute by making use of the identity, cf. [27, Appendix A],

Θ2d(k, r) = 2
√
π

∫ α

0

1
z2 e−π2k2/z2−r2z2dz.

The function Θ2d(0, ·) is non decreasing and thus the Fourier transform does not exist. In
other words, at least in the case k = 0 we need to apply the regularization approach as
described above. For k 6= 0 we can use the analytical Fourier transform as given in (3.4) as
follows.
If k > 0 is large enough we expect that we only make a negligible error when approximating

the function Θ2d(k, ·) by its h-periodic version, i.e., we have

Θ2d(k, r) ≈
∑

n∈Z
Θ2d(k, r + hn) (3.5)

for all r ∈ [−L3, L3] ⊂ [−h/2, h/2], see Figure 3.2.

−h/2 h/2

Θ2d(k, r) ≈
∞∑

n=−∞
Θ2d(k, r + nh)

Θ2d(k, ·)h-periodization

1

Figure 3.2: Approximation of Θ2d(k, ·), k > 0, by its h-periodization.

Via the Poisson summation formula and truncation in Fourier space, which is possible since
the Fourier transform (3.4) tends to zero exponentially fast in ξ, we obtain

Θ2d(k, r) ≈
∑

n∈Z
Θ2d(k, r + hn) = 1

h

∑

`∈Z
Θ̂2d(k, `/h)e2πi`r/h ≈ 1

h

∑

`∈IM3

Θ̂2d(k, `/h)e2πi`r/h,

i.e., we simply set b̂k,` := 1
hΘ̂2d(k, `/h) and end up with an approximation of the form (3.3).

Note that this approach is equivalent to truncating the integral

Θ2d(k, r) =
∫

R
Θ̂2d(k, ξ)e2πirξdξ

and approximating the remaining finite integral via the trapezoidal quadrature rule, which
is the basic idea of the 2d-periodic fast and spectrally accurate Ewald summation [24] for
Coulomb interactions.
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3.1 Computation of the electrostatic fields and torques
In a precomputation step we compute the coefficients b̂‖k‖,` such that we have for each k ∈
I(M1,M2) an approximation of the form (3.3). Thereby, we use the same cutoff M3 as well as
the same period h for all k. The approximations are obtained by

i) regularizing the function in the case ‖k‖ = 0 or ‖k‖ 6= 0 small,

ii) periodizing the function if ‖k‖ 6= 0 is large enough,

as described above.
Note that this precomputation step only depends on the box length L3 in the nonperiodic

dimension and not on the positions xj of the dipoles themselves. This means that the pre-
computations have to be done only once if the particles do not leave the box with respect
to the nonperiodic coordinate during a simulation. If at least one particle leaves the box,
the precomputations have to be done again. Thus, the value for L3 should always be chosen
somewhat larger than actually necessary.

Remark 3.2. The combination of the above described regularization and periodization ap-
proaches serves several advantages.
On the one hand, the regularization approach does not require a localization or rather

decrease of the kernel function Θ2d(k, ·). This is especially crucial in the case k = 0. Ad-
ditionally, for k 6= 0 we are able to embed Θ2d(k, ·) into a periodic function whose period
h is not too large compared to the double box length 2L3. Especially for small values of k
we would have to choose a very large period h in order to approximate the function by its
periodization (3.5), which would also lead to a larger number M3 of required approximating
terms. On the other hand, the amount of precomputations is larger for the regularization
technique, since for each k we have to compute the interpolating polynomial P (k, ·) and com-
pute the coefficients b̂k,` by using the FFT, for which the regularized kernel R(k, ·) has to be
sampled on an equispaced grid.
Less precomputations are required for the periodization approach since the corresponding

Fourier coefficients are known analytically, but the function has to be sufficiently small outside
the interval [−h/2, h/2]. Furthermore, the approximating function is in C∞(R) and not only
smooth of order p ∈ N as it is the case for the regularized kernels R(k, ·).
Combining the two approaches serves a compromise between the required amount of pre-

computations and the needed number of grid points M3 in the nonperiodic dimension. The
same is possible in the 1d-periodic setting, see Section 4.
Note that the mixed periodic case, using these two approximation techniques in the pre-

computation step, has already been implemented for Coulomb interactions, cf. [27] and [28].
The software is publicly available as a part of the ScaFaCoS library [3]. For numerical results
see [27, Section 4.3] for the 2d-periodic case and [27, Section 5.3] for the 1d-periodic case.

Having the approximations (3.3) for all vectors k ∈ I(M1,M2), the electrostatic fields can be
approximated analogously to the 3d-periodic case.
From the Ewald formulas for the energy U2d, which we describe at the very beginning of

Section 3, we easily obtain the Ewald formulas for the fields e2d(j) via (1.5). The splitting of
the electrostatic fields reads as

e2d(j) = e2d,short(j) + e2d,F(j) + eself(j),
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where the short range parts e2d,short(j) := eshort
Z2×{0}(j) are defined via (2.4) and the self inter-

action term eself(j) is given by (2.8). Using an appropriate far field cutoff (M1,M2) ∈ 2N2

and the approximations (3.3) we obtain for the Fourier space parts

e2d,F(j) ≈ −
∇xj

L1L2

∑

k∈I(M1,M2)

N∑

i=1
(µi · ∇xi)Θ2d(‖k‖, xij,3)e2πi(k�L̃)·x̃ij

≈ −
∇xj

L1L2

∑

(k,`)∈IM

b̂‖k‖,`




N∑

i=1
(µi · ∇xi)e

2πi


k�L̃
`/h


·xi


 e
−2πi


k�L̃
`/h


·xj

= − 4π2

L1L2

∑

(k,`)∈IM

b̂‖k‖,`

(
k�L̃
`/h

)[(
k�L̃
`/h

)
· S(k, `)

]
e
−2πi


k�L̃
`/h


·xj

,

(3.6)

where we set M := (M1,M2,M3) ∈ 2N3 and

S(k, `) :=
N∑

i=1
µie

2πi


k�L̃
`/h


·xi

.

The efficient approximation of the Fourier space parts e2d,F(j) ≈ e2d,F
≈ (j) can be done as in

the 3d-periodic case via Algorithm (2.1) (ik-differentiation) or via Algorithm (2.2) (analytic
differentiation), where we formally replace

1
V
ψ̂(k),k ∈ IM , by π

L1L2
b̂‖k‖,`, (k, `) ∈ IM (3.7)

and
k �L ∈ R3 by

(
k�L̃
`/h

)
∈ R3. (3.8)

As already mentioned in Section 2, the short range parts can be approximated by e2d,short
≈ (j)

via a direct evaluation. Finally, we obtain the approximations of the single fields by

e2d
≈ (j) := e2d,short

≈ (j) + e2d,F
≈ (j) + eself(j).

Based on the computed approximations of the fields e2d
≈ (j) the torques are simply obtained

by (1.3), i.e., we set
τ 2d(j) ≈ τ 2d

≈ (j) := µj × e2d
≈ (j).

An approximation of the energy U2d is obtained via

U2d
≈ := −1

2

N∑

j=1
µj · e2d

≈ (j),

following the identity (1.5).

18



3.2 Computation of the forces
The Ewald formulas for the forces f2d(j) are obtained via (1.6), i.e.,

f2d(j) = ∇xj

[
µj · e2d(j)

]
= f2d,short(j) + f2d,F(j),

where the short range parts f2d,short(j) := f short
Z2×{0}(j) are defined via (2.10) and can be

computed directly.
For the Fourier space parts we obtain from (3.6)

f2d,F ≈ −
∇xj (µj · ∇xj )

L1L2

∑

k∈I(M1,M2)

N∑

i=1
(µi · ∇xi)Θ2d(‖k‖, xij,3)e2πi(k�L)·x̃ij

≈ −
∇xj (µj · ∇xj )

L1L2

∑

(k,`)∈IM

b̂‖k‖,`




N∑

i=1
(µi · ∇xi)e

2πi


k�L̃
`/h


·xi


 e
−2πi


k�L̃
`/h


·xj

= 8π3i
L1L2

∑

(k,`)∈IM

b̂‖k‖,`

[
µj ·

(
k�L̃
`/h

)][(
k�L̃
`/h

)
· S(k, `)

](
k�L̃
`/h

)
e
−2πi


k�L̃
`/h


·xj

= 8π3i
L1L2

∑

(k,`)∈IM

b̂‖k‖,`

(
k�L̃
`/h

)(
k�L̃
`/h

)> [(
k�L̃
`/h

)
· S(k, `)

]
µje

−2πi


k�L̃
`/h


·xj

.

The efficient computation of the Fourier space parts f2d,F(j) can be done analogously to
the 3d-periodic case via Algorithm (2.3) (ik-differentiation) or via Algorithm (2.4) (analytic
differentiation), where we make the replacements (3.7) and (3.8).

4 Periodic boundary conditions in one of three dimensions
We consider systems that are periodic only in the first dimension, i.e., we set S := Z× {0}2
and define the energy

U1d := UZ×{0}2 .

As in the 2d-periodic case the energy can be written as

U1d = U1d,short + U1d,long + U self

=: U short
Z×{0}2 + U long

Z×{0}2 + U self

via (1.8), (1.10) and (1.11), respectively.
The Fourier space representation of the long range part has already been derived in [31]. It

is easy to see that the same Fourier space representation is obtained by replacing the charges
qj in the Ewald formula for Coulomb interactions by the operators µj · ∇xj , see also [31]. By
doing this we can formally write the Fourier space part of the energy as

U1d,long = U1d,F = 1
2L1

∑

k∈Z

N∑

i,j=1
(µi · ∇xi)(µj · ∇xj )Θ1d(k, xij,3)e2πi(k/L1)·xij,1 , (4.1)
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where we use the notation

xj = (xj,1, xj,2, xj,3) =: (xj,1, x̃j),

and the function Θ1d is defined via

Θ1d(k, r) :=
{
K0

(
π2k2

α2 , α2r2
)

: k 6= 0,
−γ − Γ(0, α2r2)− ln(α2r2) : k = 0.

Thereby, γ is the Euler-Mascheroni constant,

Ks(x, y) :=
∫ ∞

1
t−s−1e−xt−y/tdt

is the incomplete modified Bessel function of the second kind, see [18] for more information,
and

Γ(s, x) :=
∫ ∞

x
ts−1e−tdt

is the upper incomplete Gamma function, which can also be expressed in terms of the well
known exponential integral function in the case s = 0.
It is easy to show that Θ1d(k, r) = o(k−2e−k2) as k → ∞, see [27, Lemma 5.2], i.e., the

infinite sum in (4.1) converges rapidly. Thus, we can simply replace the infinite sum over
k ∈ Z by a finite sum over k ∈ IM1 , where we choose M1 ∈ 2N large enough.
Again, we follow the approach as presented in [27, 28] and approximate the functions

Θ1d(k, ·) for all k ∈ IM1 by trigonometric polynomials, where we apply the operators µj ·∇xj

after replacing the functions by their precomputed Fourier space approximations.

Regularization

The regularization has to be done somewhat different to the 2d-periodic case since we now
have to deal with bivariate functions.
Assuming that x̃j ∈ [−L2/2, L2/2] × [−L3/2, L3/2] we have ‖x̃ij‖ ≤

√
L2

2 + L2
3 and we can

proceed as follows.

i) We choose an interval length h > 2
√
L2

2 + L2
3.

ii) For each k ∈ IM1 we construct a polynomial P (k, ·), which lives on the interval
[
√
L2

2 + L2
3,
h/2] and interpolates the derivatives of Θ1d(k, r) with respect to r at r =√

L2
2 + L2

3 and has vanishing derivatives at r = h/2 up to a certain degree p ∈ N, i.e.,
we construct P (k, ·) such that

∂n

∂rn
P (k,

√
L2

2 + L2
3) = ∂n

∂rn
Θ1d(k,

√
L2

2 + L2
3)

for all n = 0, . . . , p and
∂n

∂rn
P (k, h/2) = 0

for all n = 1, . . . , p. The computation of the polynomial P (k, ·) is possible via a modified
two-point Taylor interpolation approach, which we describe in [27, Appendix C]. Then
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we define the regularized function R(k, ·) ∈ Cp[−h/2, h/2]2 for y ∈ [−h/2, h/2]2 by

R(k,y) :=





Θ1d(k, ‖y‖) : ‖y‖ ≤
√
L2

2 + L2
3,

P (k, ‖y‖) :
√
L2

2 + L2
3 < ‖y‖ ≤ h/2,

P (k, h/2) : ‖y‖ > h/2.

For a graphical illustration see Figure 4.1.

∂j

∂rj
P (k, h/2) = 0

P (k, ·)

0

√
L2
2 + L2

3

h/2

−h/2

Θ1d(k, ·)

Rotation

1

Figure 4.1: Example for regularizing Θ1d(k, ·) for k > 0.

iii) The regularized functions R(k, ·) are smooth on [−h/2, h/2]2 and can thus be approxi-
mated by bivariate trigonometric polynomials

R(k,y) ≈
∑

`∈IM̃

b̂|k|,`e2πi(`/h)·y,

where we choose M̃ ∈ 2N2 large enough. The Fourier coefficients are obtained by
applying the FFT after sampling the function R(k, ·) on a two-dimensional equispaced
grid, i.e., we set

b̂k,` := 1
|IM̃ |

∑

j∈IM̃

R(k, (j � M̃)h)e−2πi(j�M̃)·`, ` ∈ IM̃ .

Since R(k,y) = Θ1d(k, ‖y‖) for all y ∈ R2 : ‖y‖ ≤
√
L2

2 + L2
3 we have

Θ1d(k, ‖x̃ij‖) ≈
∑

`∈IM̃

b̂|k|,`e2πi(`/h)·x̃ij . (4.2)

Note that the evaluation of the incomplete modified Bessel functionK0 and their deriva-
tives raises several numerical difficulties. The method presented in [33] is one of very
few publicly available algorithms for the evaluation of the incomplete modified Bessel
function. In the P2NFFT method for 1d-periodic boundary conditions we use this iter-
ative algorithm with some modifications in order to overcome numerical instabilities in
certain cases, see [27, Section 5.2.2].
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Periodization

The Fourier transform of the radial function Θ1d(k, ‖y‖) with respect to y ∈ R2 exists and is
known in an analytically closed form for all k > 0. We obtain

∫

R2
Θ1d(k, ‖y‖)e−2πiy·ξdy = e−π2(k2+‖ξ‖2)/α2

π(k2 + ‖ξ‖2) =: Θ̂1d(k, ξ),

where we set ξ := ‖ξ‖. As in the 2d-periodic case, the function Θ1d(0, ·) is non decreasing,
i.e., the Fourier transform does not exist and we have to follow the regularization approach.
If k > 0 is large enough we expect that the function Θ1d(k, ·) is well approximated by its

bivariate h-periodization, i.e., we have

Θ1d(k, ‖y‖) ≈
∑

n∈Z2

Θ1d(k, ‖y + hn‖),

for all {y ∈ R2 : ‖y‖ ≤
√
L2

2 + L2
3} ⊂ [−h/2, h/2]2.

Via the Poisson summation formula we obtain

Θ1d(k, ‖y‖) ≈
∑

n∈Z2

Θ1d(k, ‖y + hn‖) = 1
h2

∑

`∈Z2

Θ̂1d(k, h−1‖`‖)e2πi(`/h)·y

≈ 1
h2

∑

`∈IM̃

Θ̂1d(k, h−1‖`‖)e2πi(`/h)·y,

i.e., we end up with an approximation of the form (4.2).

4.1 Computation of the electrostatic fields and torques
In a precomputation step we compute the coefficients b̂|k|,` such that we have for each k ∈ IM1

an approximation of the form (4.2). Thereby, we use the same cutoff M̃ as well as the same
period h for all k. The approximations are obtained by

i) regularizing the function in the case k = 0 or |k| 6= 0 small,

ii) periodizing the function if |k| 6= 0 is large enough,

as described above. Analogously to the 2d-periodic case, the described precomputation step
only depends on the box lengths L2, L3 in the nonperiodic dimensions and not on the positions
xj of the dipoles. Thus, the precomputations have to be done only once if the particles do
not leave the box with respect to the nonperiodic coordinates.
Having the approximations (4.2) for all k ∈ IM1 , the electrostatic fields can be approximated

analogously to the 3d-periodic case.
From the Ewald formulas for the the energy U1d, which we describe at the very beginning of

Section 4, the Ewald formulas for the fields e1d(j) are obtained easily via (1.5). The splitting
of the electrostatic fields reads as

e1d(j) = e1d,short(j) + e1d,F(j) + eself(j),

where the short range parts e1d,short(j) := eshort
Z×{0}2(j) are defined via (2.4) and the self inter-

action term eself(j) is given by (2.8).
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Using an appropriate far field cutoff M1 ∈ 2N and the approximations (4.2) we obtain for
the Fourier space parts

e1d,F(j) ≈ −
∇xj

L1

∑

k∈IM1

N∑

i=1
(µi · ∇xi)Θ1d(|k ‖x̃ij‖)e2πi(k/L1)xij,1

≈ −
∇xj

L1

∑

(k,`)∈IM

b̂|k|,`




N∑

i=1
(µi · ∇xi)e

2πi


k/L1

`/h


·xi


 e
−2πi


k/L1

`/h


·xj

= −4π2

L1

∑

(k,`)∈IM

b̂|k|,`

(
k/L1

`/h

)[(
k/L1

`/h

)
· S(k, `)

]
e
−2πi


k/L1

`/h


·xj

,

(4.3)

where we set M := (M1,M̃) ∈ 2Z3 and

S(k, `) :=
N∑

i=1
µie

2πi


k/L1

`/h


·xi

.

The efficient computation of the Fourier space parts e1d,F(j) is done as in the 3d-periodic
case via Algorithm (2.1) (ik-differentiation) or via Algorithm (2.2) (analytic differentiation),
where we formally replace

1
V
ψ̂(k),k ∈ IM , by π

L1
b̂|k|,`, (k, `) ∈ IM (4.4)

and
k �L ∈ R3 by

(
k/L1

`/h

)
∈ R3. (4.5)

As described above, we can compute an approximation of the short range part e1d,short
≈ (j) ≈

e1d(j) by a direct summation. We denote the approximated fields by

e1d
≈ (j) := e1d,short

≈ (j) + e1d,long
≈ (j) + eself(j).

Based on the computed approximations of the fields e1d
≈ (j) the torques are simply obtained

by (1.3), i.e., we approximate the torques by

τ 1d(j) ≈ τ 1d
≈ (j) := µj × e1d

≈ (j).

An approximation of the energy U1d is given by

U1d
≈ := −1

2

N∑

j=1
µj · e1d

≈ (j),

following the identity (1.5).
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4.2 Computation of the forces
The Ewald formulas for the forces f1d(j) are obtained by applying (1.6), i.e.,

f1d(j) = ∇xj

[
µj · e1d(j)

]
= f1d,short(j) + f1d,F(j),

where the short range parts f1d,short(j) := f short
Z×{0}2(j) are defined via (2.10) and can be

computed directly.
For the Fourier space parts we obtain from (4.3)

f1d,F ≈ −
∇xj (µj · ∇xj )

L1

∑

k∈IM1

N∑

i=1
(µi · ∇xi)Θ1d(‖k‖, ‖x̃ij‖)e2πi(k/L1)·xij,1

≈ −
∇xj (µj · ∇xj )

L1

∑

(k,`)∈IM

b̂|k|,`




N∑

i=1
(µi · ∇xi)e

2πi


k/L1

`/h


·xi


 e
−2πi


k/L1

`/h


·xj

= 8π3i
L1

∑

(k,`)∈IM

b̂|k|,`

[
µj ·

(
k/L1

`/h

)][(
k/L1

`/h

)
· S(k, `)

](
k/L1

`/h

)
e
−2πi


k/L1

`/h


·xj

= 8π3i
L1

∑

(k,`)∈IM

b̂|k|,`

(
k/L1

`/h

)(
k/L1

`/h

)> [(
k/L1

`/h

)
· S(k, `)

]
µje

−2πi


k/L1

`/h


·xj

.

The efficient computation of the Fourier space parts f1d,F(j) can be done analogously to
the 3d-periodic case via Algorithm (2.3) (ik-differentiation) or via Algorithm (2.4) (analytic
differentiation), where we make the replacements (4.4) and (4.5).

5 Open boundary conditions
In some applications no periodic boundary conditions are required, i.e., we set S := {0}3 and
define the energy U0d by

U0d := U{0}3 = 1
2

N∑

i,j=1

′(µi · ∇xi)(µj · ∇xj ) 1
‖xij‖

.

We could compute the energy as well as the fields, torques and forces directly since we only
have to compute finite sums, but the computational cost is O(N2). In order to enable a more
efficient evaluation we apply the splitting (1.7) and obtain

U0d = U0d,short + U0d,long + U self,

where we set

U0d,short := 1
2

N∑

i,j=1

′(µi · ∇xi)(µj · ∇xj )erfc(α‖xij‖)
‖xij‖

,

U0d,long := 1
2

N∑

i,j=1
(µi · ∇xi)(µj · ∇xj )erf(α‖xij‖)

‖xij‖
,
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and the self interaction energy is defined in (1.11).
The complementary error function tends to zero very rapidly and thus the short range part

can be obtained by only considering small distances ‖xij‖ for a reasonable choice of α and
the near field cutoff rcut.
We apply the regularization approach, as described for the 1d-periodic case in Section 4,

to the kernel function in the long range part

erf(α‖xij‖)
‖xij‖

.

Note, that the periodization of this function is not possible since it does not decrease fast
enough.
If the dipoles are distributed in the box [−L1/2, L1/2] × [−L2/2, L2/2] × [−L3/2, L3/2] we have
‖xij‖ ≤

√
L2

1 + L2
2 + L2

3. For the regularization we choose h > 2
√
L2

1 + L2
2 + L2

3 and construct
the interpolating polynomial

P :
[√

L2
1 + L2

2 + L2
3,
h/2

]
→ R

such that
dn

drn
erf(αr)

r

∣∣∣∣
r=
√
L2

1+L2
2+L2

3

= dn

drnP (r)
∣∣∣∣
r=
√
L2

1+L2
2+L2

3

for all n = 0, . . . , p and
dn

drnP (r)
∣∣∣∣
r=h/2

= 0

for all n = 1, . . . , p. We define the regularization R ∈ Cp[−h/2, h/2]3 by

R(y) :=





erf(α‖y‖)
‖y‖

: ‖y‖ ≤
√
L2

1 + L2
2 + L2

3,

P (‖y‖) :
√
L2

1 + L2
2 + L2

3 < ‖y‖ ≤ h/2,

P (h/2) : ‖y‖ > h/2.

Now we can approximate the function R by a trivariate trigonometric polynomial

R(y) ≈
∑

`∈IM

b̂`e2πi(`/h)·y,

where we choose M ∈ 2N3 large enough and the Fourier coefficients

b̂` := 1
|IM |

∑

j∈IM

R((j �M)h)e−2πi(j�M)·`

can be computed via the FFT after sampling the function R on the equispaced grid IM .
Inserting the distances of the particles we obtain

erf(α‖xij‖)
‖xij‖

= R(‖xij‖) ≈
∑

`∈IM

b̂`e2πi(`/h)·xij . (5.1)
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5.1 Computation of the electrostatic fields and torques
With (1.5) we obtain

e0d(j) = e0d,short(j) + e0d,long(j) + eself(j),

where we set

e0d,short(j) := −∇xj

N∑

i=1

′(µi · ∇xi)
erfc(α‖xij‖)
‖xij‖

,

e0d,long(j) := −∇xj

N∑

i=1
(µi · ∇xi)

erf(α‖xij‖)
‖xij‖

,

and the self term eself(j) is the same as in (2.8).
Inserting the precomputed approximation (5.1) we obtain for the long range parts

e0d,long(j) ≈ −∇xj

∑

`∈IM

b̂`

(
N∑

i=1
(µi · ∇xi)e2πi(`/h)·xi

)
e−2πi(`/h)·xj

= −4π2
∑

`∈IM

b̂`(`/h) [(`/h) · S(`)] e−2πi(`/h)·xj ,

where we define

S(`) :=
N∑

i=1
µie2πi(`/h)·xi .

The efficient approximation of the long range parts e0d,long(j) can be done as in the 3d-
periodic case via Algorithm (2.1) (ik-differentiation) or via Algorithm (2.2) (analytic differ-
entiation), where we formally replace

1
V
ψ̂(k),k ∈ IM , by πb̂`, ` ∈ IM , (5.2)

and
k �L ∈ R3 by (`/h) ∈ R3. (5.3)

We denote the approximated fields by

e0d
≈ (j) ≈ e0d,short

≈ (j) + e0d,long
≈ (j) + eshort(j),

where the short range parts e0d,short
≈ (j) are obtained by a direct summation.

Based on the computed approximations of the fields e0d
≈ (j) the torques are simply obtained

by (1.3), i.e., we approximate the torques by

τ 0d(j) ≈ τ 0d
≈ (j) := µj × e0d

≈ (j).

An approximation of the energy U0d is given by

U0d
≈ := −1

2

N∑

j=1
µj · e0d

≈ (j),

following the identity (1.5).
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5.2 Computation of the forces
We rewrite the forces in the 0d-periodic case as

f0d(j) = ∇xj

[
µj · e0d(j)

]
= f0d,short(j) + f0d,long(j),

where we set f0d,short(j) := f short
{0}3 (j) via (2.10) and for the long range part we obtain

f0d,long(j) = −∇xj (µj · ∇xj )
N∑

i=1
(µi · ∇xi)

erf(α‖xij‖)
‖xij‖

≈ −∇xj (µj · ∇xj )
∑

`∈IM

b̂`

(
N∑

i=1
(µi · ∇xi)e2πi(`/h)·xi

)
e−2πi(`/h)·xj

= 8π2i
∑

`∈IM

b̂`
[
µj · (`/h)

]
[(`/h) · S(`)] (`/h)e−2πi(`/h)·xj

= 8π2i
∑

`∈IM

b̂`(`/h)(`/h)> [(`/h) · S(`)]µje−2πi(`/h)·xj .

The efficient computation of the long range parts f0d,long(j) can be done analogously to
the 3d-periodic case via Algorithm (2.3) (ik-differentiation) or via Algorithm (2.4) (analytic
differentiation), where we make the replacements (5.2) and (5.3).

6 Summary
In this paper we presented an NFFT based approach to the efficient computation of dipole-
dipole interactions. For 3d-periodic boundary conditions the presented method is very similar
to the well known P3M method for dipolar systems [6]. We considered for the first time also
mixed periodic boundary conditions as well as open boundary conditions, for which the final
algorithms are completely of the same structure as for 3d-periodic constraints. Thereby, we
considered the well known ik-differentiation and analytical differentiation approaches in order
to compute the electrostatic fields as well as the acting forces.
For mixed periodic as well as open boundary conditions the Fourier coefficients are not

known analytically, in contrast to the 3d-periodic case, and the contributions in the nonpe-
riodic dimensions have at first to be approximated by trigonometric polynomials before fast
Fourier transforms can be applied. This is done in a precomputation step, which has to be
done only once if the particles do not leave the initial simulation box.
The same idea has already been applied successfully to the computation of Coulomb inter-

actions under all considered types of periodic boundary conditions, see [27, 28]. The method
for Coulomb interactions has already been implemented and is part of the publicly available
ScaFaCoS library [3]. In this paper we showed that the method can be generalized to the
computation of dipole-dipole interactions. The implementation as well as the testing of the
method is subject of ongoing research. Numerical results will be published in a future paper.
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