
Parameter tuning for the NFFT based fast
Ewald summation

Franziska Nestler

The computation of the Coulomb potentials and forces in charged particle sys-
tems under 3d-periodic boundary conditions is possible in an efficient way by
utilizing the Ewald summation formulas and applying the fast Fourier transform
(FFT). In this paper we consider the particle-particle NFFT (P2NFFT) approach,
which is based on the fast Fourier transform for nonequispaced data (NFFT) and
compare the error behaviors regarding different window functions, which are used
in order to approximate the given continuous charge distribution by a mesh based
charge density. While typically B-splines are applied in the scope of particle mesh
methods, we consider for the first time also an approximation by Bessel functions.
We show how the resulting root mean square errors in the forces can be predicted
precisely and efficiently. The results show that if the parameters are tuned appro-
priately the Bessel window function can keep up with the B-spline window and is
in many cases even the better choice with respect to computational costs.

Key words and phrases : Ewald summation, particle methods, nonequispaced fast
Fourier transform, NFFT, P3M, P2NFFT, ScaFaCoS

2000 AMS Mathematics Subject Classification : 65T

1. Introduction
In this paper we consider the computation of the Coulomb potentials and forces in charged
particle systems subject to 3d-periodic boundary conditions. Unfortunately, the underlying
infinite sums, which have to be evaluated, are very slowly and even conditionally convergent.
Nevertheless, there are already quite a lot methods for the efficient evaluation of the

Coulomb potentials and forces. Most of them, as for instance [17, 5, 10, 6, 24], are based on
the so called Ewald summation approach [11], which splits the badly converging sum into two
rapidly converging parts, where the underlying order of summation takes a central role. The
one part is a sum in spatial domain and can be evaluated efficiently. The other part is a sum
in Fourier space. An efficient evaluation of this part is possible by applying the fast Fourier
transform (FFT). Thereby, the sticking point is that the particles are not distributed on a

franziska.nestler@mathematik.tu-chemnitz.de
Technische Universutät Chemnitz, Faculty of Mathematics, 09107 Chemnitz, Germany

1

regular grid. Thus, the present continuous charge distribution has at first to be approximated
by a regular grid based charge density before the FFT can be applied.
Algorithms which are based on such an approximation are commonly known as particle

mesh methods [17, 5, 10, 6, 28, 29]. Most methods use B-splines in order to perform this grid
based approximation step, as for example the well-established particle-particle particle-mesh
(P3M) method [17, 6]. Also approximations via a Gaussian have already been considered,
see [24]. The particle-particle NFFT (P2NFFT) approach, which was suggested in [16, 28],
is based on the FFT for nonequispaced data (NFFT) and allows the usage of various types
of approximating window functions, as for example also (Kaiser-)Bessel functions besides B-
splines and Gaussian. In this context we remark that in a variety of applications the results
strongly depend on which window function is applied. As an example, in the field of magnetic
resonance imaging Kaiser-Bessel functions seem most suitable, see [12].
Note that [3] serves a detailed comparison between different efficient methods for the 3d-

periodic Coulomb problem. The results show that the P3M and P2NFFT solvers rank among
the best methods in this field. We further remark that the P2NFFT method has already been
generalized to mixed periodic boundary conditions, see [26].
It is widely unknown how the error can be estimated a priori for the different window

functions. How do we have to set the NFFT parameters and which window function do we
have to choose in order to reach a certain accuracy, while keeping the computational costs
as small as possible? In order to answer this question, we consider the root mean square
error (rms) in the forces, which is a common error measure in the field of molecular dynamics
simulations, and draw some comparisons between different window functions.
The outline of the paper is as follows. In Section 2 we give an introduction to the NFFT.

In Sections 3 we consider to the Coulomb problem for 3d-periodic boundary conditions and
introduce the corresponding Ewald formulas. We also discuss the estimation of the rms force
error which results from the truncation of the Ewald sums. In Section 4 we describe the
concept of the P2NFFT method, discuss how the rms errors caused by the applied NFFT
approximations can be estimated a priori and draw some comparisons between different win-
dow functions, where we concentrate on the B-spline as well as the Bessel window function,
based on the results presented in [25]. In addition, we present an efficient method to tune all
involved parameters automatically. An overall tuning, which in addition optimizes the set of
parameters with respect to runtime, should depend on the used hard- and software. Thus,
we may tune the method with respect to runtime for small particle systems by comparing the
runtimes obtained for different parameter combinations in order to apply the found optimal
set of parameters also to larger systems. We demonstrate the proposed tuning with the help
of some examples, for which we use the ScaFaCoS library [1]. In Section 5 we finish with
some conclusions.

2. The nonequispaced FFT

In the following we give a short introduction to the NFFT in three dimensions. At first,
we introduce some notations which we will stick to in the whole paper. For some M =
(M1,M2,M3) ∈ 2N3 we define the index set IM by

IM :=
3⊗
j=1
{−Mj/2, . . . ,Mj/2− 1}.

2

For two vectors x = (x1, x2, x3) ∈ R3 and y = (y1, y2, y3) ∈ R3 we define the component
wise product by x � y := (x1y1, x2y2, x3y3) ∈ R3 as well as the inner product via x · y :=
x1y1 + x2y2 + x3y3 ∈ R. For a vector x ∈ R3 with non vanishing components we define
x−1 := (x−1

1 , x−1
2 , x−1

3) ∈ R3.
Let the coefficients f̂k ∈ C for k ∈ IM ,M ∈ 2N3, and some arbitrary nodes xj ∈ T3, where

T := R/Z ' [−1/2, 1/2) and j = 1, . . . , N , be given. We are now interested in a fast evaluation
of the trigonometric polynomial

f(x) :=
∑
k∈IM

f̂ke−2πik·x (2.1)

at the given nodes xj , i.e., we want to compute

f(xj) =
∑
k∈IM

f̂ke−2πik·xj , j = 1, . . . , N. (2.2)

The straightforward and exact algorithm for the evaluation of such sums is called NDFT
and requires O(N |IM |) arithmetical operations. The NFFT algorithm [9, 4, 35, 38, 31, 14,
21] can be used in order to approximate sums of the form (2.2) very efficiently with only
O(|IM | log |IM |+N) arithmetic operations. In the following we will give an overview of the
main steps.
In principle, the function f is approximated by a sum of translates of a one-periodic function

ϕ̃, i.e.,
f(x) ≈ f̃(x) :=

∑
l∈Iσ�M

glϕ̃
(
x− l� (σ �M)−1) , (2.3)

where we denote by σ ≥ 1 (component wise) the oversampling factor. In the following we
denote the oversampled grid size shortly byMo := σ�M . The function ϕ̃ is the periodization
of a window function ϕ, which is constructed via a tensor product scheme, i.e., we set

ϕ̃(x) :=
∑
r∈Z3

ϕ(x+ r), where ϕ(y) =
3∏
j=1

ϕj(yj) for y = (y1, y2, y3) ∈ R3. (2.4)

Thereby, ϕj(·) are univariate functions. A transformation of f̃ into Fourier space gives

f̃(x) =
∑

k∈IMo

ĝkck(ϕ̃)e−2πik·x +
∑

r∈Z3\{0}

∑
k∈IMo

ĝkck+r�Mo(ϕ̃)e−2πi(k+r�Mo)·x, (2.5)

where we denote by

ck(ϕ̃) :=
∫
T3
ϕ̃(x)e2πin·xdx =

∫
R3
ϕ(x)e2πin·xdx = ϕ̂(k)

the Fourier coefficients of ϕ̃ and the coefficients ĝk are given by

ĝk =
∑
l∈IMo

gle−2πik·(l�M−1
o).

The Idea is now to choose the coefficients ĝk appropriately. Then, the coefficients gl in (2.3)
can be computed via the inverse FFT

gl = 1
|IMo |

∑
k∈IMo

ĝke2πik·(l�M−1
o)

3

and the evaluation of (2.3) gives the approximate function values f̃(xj) ≈ f(xj).
However, the evaluation of the sums (2.3) might be computationally demanding unless ϕ

is compactly supported on a comparable small domain or at least sufficiently small outside of
it. In the latter case we replace the window function ϕ̃ by a truncated version

ϕt(x) := ϕ(x) ·
3∏
j=1

χ[− m
σjMj

, m
σjMj

](xj) =
{
ϕ(x) : x ∈

⊗3
j=1[− m

σjMj
, m
σjMj

],
0 : else,

and approximate f by

f(x) ≈ f̃(x) :=
∑
l∈IMo

glϕ̃t
(
x− l�M−1

o
)
.

Thereby, we refer tom ∈ N as the support parameter. Note, that we could use different values
for m in the single dimensions, but for simplicity we choose the same for all three dimensions.
Comparing (2.2) and (2.5) shows that it is reasonable to set

ĝk :=
{
d̂kf̂k : k ∈ IM ,

0 : else,

where we define
d̂k := 1

ck(ϕ̃t)
. (2.6)

Optimizing the error with respect to the L2-norm shows that

d̂k := ck(ϕ̃t)∑
r∈Z3

c2
k+r�Mo

(ϕ̃t)
(2.7)

is the optimal choice of the coefficients d̂k, see [8, 19, 25].
Applying (2.1) and (2.5), where we have to replace ϕ̃ by ϕ̃t in the case that ϕ is not

compactly supported, we obtain the general representation of the resulting error

f(x)−f̃(x) =
∑
k∈IM

f̂k

[
1− d̂kck(ϕ̃t)

]
e−2πik·x+

∑
r∈Z3\{0}

∑
k∈IM

f̂kd̂kck+r�Mo(ϕ̃t)e−2πi(k+r�Mo)·x.

(2.8)
Finally, for the two different deconvolution approaches (2.6) and (2.7) we obtain the following
expressions for the error measured in the L2-norm

∥∥f − f̃∥∥2
2 =

∑
k∈IM

∣∣∣f̂k∣∣∣2 ∑
r∈Z3\{0}

c2
k+r�Mo

(ϕ̃t)
c2
k(ϕ̃t)

for d̂k := 1
ck(ϕ̃t)

, (2.9)

∥∥f − f̃∥∥2
2 =

∑
k∈IM

∣∣∣f̂k∣∣∣2
∑

r∈Z3\{0}
c2
k+r�Mo

(ϕ̃t)∑
r∈Z3

c2
k+r�Mo

(ϕ̃t)
for d̂k := ck(ϕ̃t)∑

r∈Z3
c2
k+r�Mo

(ϕ̃t)
. (2.10)

We summarize the NFFT algorithm as follows.

4

Algorithm 2.1 (NFFT).
Input: nodes xj ∈ T3 (j = 1, . . . , N), coefficients f̂k ∈ C (k ∈ IM ,M ∈ 2N3), oversampling
factor σ ∈ R3, σ ≥ 1.

i) (De-)convolution in Fourier domain:
Define the factors d̂k ∈ C for all k ∈ IM , e.g., as given in (2.6) or (2.7).
Set ĝk := d̂kf̂k for all k ∈ IM and ĝk := 0 for k ∈ IMo \ IM .

Complexity: O(|IM |).

ii) Use the (inverse) FFT for the computation of the coefficients

gl = 1
|IMo |

∑
k∈IMo

ĝke−2πik·(l�M−1
o), l ∈ IMo .

Complexity: O(|IMo | log |IMo |).

iii) Convolution in spatial domain: Compute

f(xj) ≈ f̃(xj) :=
∑
l∈IMo

glϕ̃t
(
xj − l�M−1

o
)

for all j = 1, . . . , N . Complexity: O(m3N).

Output: f̃(xj) ≈ f(xj) for j = 1, . . . , N .

The problem of evaluating sums of the form

h(k) :=
N∑
j=1

fje2πik·xj , k ∈ IM ,

where for each j = 1, . . . , N a coefficient fj ∈ C is given, can be treated very similarly.
We refer to the method for the exact evaluation of the sums h(k) to the adjoint NDFT. The
corresponding fast algorithm is known as the adjoint NFFT. Note that the matrix-vector form
of the adjoint NDFT is simply obtained by adjoining the matrix representing the NDFT. Thus,
the derivation of the fast algorithm for the adjoint problem is straightforward, see [31, 21],
and the error can be written as

h(k)− h̃(k) =
N∑
j=1

fj [1− d̂kck(ϕ̃t)]e2πik·xj −
∑

r∈Z3\{0}

N∑
j=1

fj d̂kck+r�Mo(ϕ̃t)e2πi(k+r�Mo)·xj .

(2.11)

Window functions
In the following we consider different window functions and show how the error sums∑

r∈Z\{0}

c2
k+rσM (ϕ̃t) and

∑
r∈Z

c2
k+rσM (ϕ̃t),

in the univariate setting can be estimated, compare to (2.9) and (2.10) for three dimensions.
For details about the derivation of those estimates we refer to [25] and references therein.

5

We will come back to the three dimensional case in Section 4, where the NFFT based Ewald
summation is considered.
In this paper we restrict our considerations to the B-spline window and the Bessel I0 window

function, which showed the best performance in [25]. The considered window functions are
compactly supported in spatial domain, i.e., we have ϕt = ϕ. Note that the Gaussian window
function was outperformed by the other windows in the examples presented in [25]. Especially
in the case of rapidly decreasing Fourier coefficients, which we also have for to the Coulomb
problem, the B-spline and the Bessel window function produced much smaller approximation
errors.

B-spline window

For bj ∈ 1/2N, j = 1, . . . , 3, we define the B-spline window in three variables by [4, 30, 25]

ϕ(x) :=
3∏
j=1

B2bj

(
σjMjbjxj

m

)
.

We have suppϕ =
⊗3

j=1[−m/σjMj,m/σjMj] and the corresponding Fourier coefficients are given
by

ck(ϕ̃j) = m

σjMjbj
sinc2bj

(
mπk

σjMjbj

)
.

For bj = m we are in the setting of the standard cardinal B-spline window [4, 30]. In this
case we have ∑

r∈Z\{0}

c2
k+rσjMj

(ϕ̃j)
c2
k(ϕ̃j)

<
8m

4m− 1

(
|k|

|k| − σjMj

)4m
,

∑
r∈Z

c2
k+rσjMj

(ϕ̃j) = 1
σ2
jM

2
j

Φ4m

(
e−2πik/σjMj

)
, (2.12)

where we denote by Φn the well known Euler-Frobenius functions [34]. If bj 6= m and m/bj /∈ Z
we obtain with some R ∈ N

∑
r∈Z\{0}

c2
k+rσjMj

(ϕ̃j) ≤
∑

0<|r|≤R

c2
k+rσjMj

(ϕ̃j) + m2

σ2
jM

2
j b

2
j

(
|k|

σjMj
+R

)1−4bj
−
(
|k|

σjMj
−R

)1−4bj

(
mπ
bj

)4bj
(4bj − 1)

,

see [25].

Bessel window

We consider a window function which is constructed based on the Kaiser-Bessel window,
which was introduced in [30, Appendix]. In order to get a window function ϕ with compact
support we interchange the roles of time and frequency domain.
We refer to the resulting function as the Bessel (I0) window function, which is also found

under the name Kaiser-Bessel function in the literature [20, 12, 18]. We define the Bessel
window by

ϕ(x) :=
3∏
j=1

ϕj(xj),

6

where for the shape parameters bj > 0, j = 1, . . . , 3,

ϕj(x) :=
{
I0

(
bj
√
m2 − σ2

jM
2
j x

2
)

: x ∈ [−m/σjMj,m/σjMj],
0 : else.

Typically, the standard shape parameter

b := 2π(1− (2σ)−1) (2.13)

is used. However, in [25] we showed that a modification of the shape parameter can lead
to significant improvements in terms of the arising approximation errors. Thereby, it very
much depends on the given coefficients f̂k which shape parameter is optimal with respect to
accuracy.
The Fourier coefficients of the Bessel window read as

ck(ϕ̃j) = 1
σjMj


sinh

(
m
√
b2j − 4π2k2/(σ2

jM
2
j)
)

√
b2j − 4π2k2/(σ2

jM
2
j)

: |k| ≤ σjMjbj
2π ,

m sinc
(
m
√

4π2k2/(σ2
jM

2
j)− b2j

)
: else.

For some R ∈ N : R > |k|
σjMj

+ bj
2π we have [25]

∑
r∈Z\{0}

c2
k+rσjMj

(ϕ̃j) ≤
∑

0<|r|≤R

c2
k+rσjMj

(ϕ̃j) +
ln
(

2π(|k|/σjMj−R)−bj
2π(|k|/σjMj−R)+bj

)
+ ln

(
2π(|k|/σjMj+R)+bj
2π(|k|/σjMj+R)−bj

)
4πbσ2

jM
2
j

.

3. Ewald summation and rms errors
We consider a system of N charges qj distributed in a box of the size L1 × L2 × L3, where
L1, L2, L3 ∈ R+. The electrostatic potential for each particle j subject to 3d–periodic bound-
ary conditions is defined as

φj =
∑
n∈Z3

N∑
i=1

′ qi
‖xij +L� n‖ , (3.1)

where the prime indicates that for n = 0 the terms with i = j are omitted and the vector
L ∈ R3

+ is defined by L = (L1, L2, L3). In the following we assume that the system is electrical
neutral, i.e., we have

N∑
j=1

qj = 0. (3.2)

Note that if (3.2) is fulfilled, the infinite sum (3.1) is only conditional convergent, i.e., the
values of the potentials strongly depend on the underlying order of summation. In general, a
so called spherical limit is considered, see [22], for instance.
In molecular dynamics simulations one is also interested in calculating the forces acting on

the particles, which are given by
F j := −qj∇xjφj . (3.3)

7

As already indicated in the introduction, the so called Ewald summation technique is the basis
for a variety of efficient algorithms in this field. The basic idea behind the Ewald summation
approach can be explained as follows. It makes use of the trivial identity

1
r

= erf(αr)
r

+ erfc(αr)
r

, (3.4)

where α > 0 is named Ewald or splitting parameter, erf(x) := 2√
π

∫ x
0 e−t2dt is the error

function and erfc(x) := 1 − erf(x) is the complementary error function. Based on (3.4)
the potential is split into two rapidly converging parts. The complementary error function
erfc(x) tends to zero exponentially fast as x grows. Thus, the corresponding part is absolutely
converging and can be evaluated directly by truncating the infinite sum. The second part is
still long ranged and conditionally convergent, but for the error function we have

lim
r→0

erf(αr)
r

= 2α√
π
,

i.e., we do not have a singularity in this part. As a result, we can transform the remaining
infinite sum into a rapidly converging sum in Fourier space, where the underlying order of
summation is of importance.
If the spherical summation order is applied, we obtain [11, 23]

φj = φS
j + φL

j + φself
j . (3.5)

Thereby we define the short range part

φS
j :=

∑
n∈Z3

N∑
i=1

′qi
erfc(α‖xij +L� n‖)
‖xij +L� n‖ ,

the long range part

φL
j := 1

πV

∑
k∈Z3\{0}

e−π2‖k�L−1‖2/α2

‖k �L−1‖2
S(k) e−2πi(k�L−1)·xj ,

where we set

S(k) :=
N∑
i=1

qie2πi(k�L−1)·xi

and denote by V := L1L2L3 the volume of the box, and the self potential

φself
j := − 2α√

π
qj .

We are also interested in the computation of the forces F j acting on the particles, which we
define in (3.3). In most applications, the forces are computed by applying the differentiation
operator directly to the Ewald representation (3.5) of the potentials, i.e., also the force splits
into a short range and a long range part

F j = F S
j + F L

j ,

8

where the short range part is given by

F S
j := −qj

∑
n∈S

N∑
i=1

′qi

(
2α√
π

e−α2‖xij+L�n‖2 + erfc(α‖xij +L� n‖)
‖xij +L� n‖

)
xij +L� n
‖xij +L� n‖2 .

The differentiation in the long range part can be performed easily in Fourier space, which
results in

F L
j := 2iqj

V

∑
k∈Z3\{0}

e−π2‖k�L−1‖2/α2

‖k �L−1‖2
(k �L−1)S(k)e−2πi(k�L−1)·xj .

The rms error in the forces

∆F :=

√√√√ 1
N

N∑
j=1
‖F j − F j,≈‖2,

where F j,≈ denotes an approximately computed version of the exact force F j , is commonly
taken as a measure of accuracy. The estimation of the rms force error is discussed in the
following sections.

3.1. Rms force error in the short range part

Since the complementary error function erfc rapidly tends to zero, the real space parts of the
potentials as well as the forces can be computed approximately by direct evaluation, i.e., all
distances ‖xij +L� n‖ larger than an appropriate cutoff radius rcut are ignored. Note that
if we assume a sufficiently homogenous particle distribution, each particle only interacts with
a fixed number of neighbors and the short range parts can be computed with a linked cell
algorithm [13] in O(N) arithmetic operations.
An analysis of the rms errors in the energy as well as the forces for cubic box shapes was

investigated in [22] for the first time. The authors give an estimate of the rms force error in
the near field, which can be easily generalized for non cubic boxes. By [22, equation (18)] we
obtain

∆F S =

√√√√ 1
N

N∑
j=1

∥∥F S
j − F S

j,≈
∥∥2 ≈ 2Q√

rcutNV
e−α2r2

cut , (3.6)

where we define

Q :=
N∑
j=1

q2
j . (3.7)

Remark 3.1. Consider two different particle systems with numbers of particles N1,2, corre-
sponding box volumes V1,2 and sums of squared charge values Q1,2. It is easy to see that,
if

N1
V1

= N2
V2

and Q1
V1

= Q2
V2

(3.8)

is fulfilled, the expected rms force errors in the short range parts are equal, provided that the
same values for α and rcut are used.

9

3.2. Rms force error in the long range part

The Fourier coefficients

ψ̂(k) :=


e−π2‖k�L−1‖2/α2

‖k �L−1‖2
: k 6= 0

0 : k = 0

tend to zero exponentially fast as ‖k‖ → ∞ so that we can set

φL
j ≈ φL

t,j := 1
πV

∑
k∈IM

ψ̂(k)S(k)e−2πi(k�L−1)·xj

F L
j ≈ F L

t,j := 2iqj
V

∑
k∈IM

(k �L−1)ψ̂(k)S(k)e−2πik·(xj�L−1) (3.9)

for M ∈ 2N3 large enough, which leads to a truncation error.
In the following we introduce a general approach to the estimation of rms errors. This

approach has already been discussed and applied by several authors, see [7, 37] for instance.
Given the charges qj and the positions xj , we consider a vector valued expression (error

etc.) of the form

εj := qj

N∑
i=1
i 6=j

qiχij , (3.10)

where each vector χij only depends on the positions xi and xj . We assume that the contri-
butions from different particles are uncorrelated, which implies〈

χ∗ij · χik
〉

= δjk
〈
χ∗ij · χij

〉
=: δjkχ2.

Thereby, the angular brackets denote that the average over all possible configurations is
considered. Of course, this assumption is not always true but should at least be reasonable
for random particle distributions. We obtain

〈
‖εj‖2

〉
= q2

j

∑
i 6=j

∑
k 6=j

qiqk
〈
χ∗ij · χkj

〉
= q2

jχ
2
N∑
i=1

q2
i = q2

jχ
2Q,

where Q is defined as in (3.7), and finally√√√√ 1
N

N∑
j=1
‖εj‖2 ≈

χQ√
N
. (3.11)

In the following, we will see that the truncation errors regarding the long range parts of the
forces are of the form (3.10). Thus, the corresponding rms error can be estimated by (3.11).

Spherical coordinates

The rms force error in the long range part for cubic box shapes was also considered in [22]. In
the following we will see that estimating the rms force error by the above described approach

10

ends up with a very similar result. We now assume that the particles are distributed in a
cubic box of edge length L > 0, i.e., we set L = (L,L,L). We have

F L
j ≈

2iqj
V

∑
k∈IM

(k �L−1)ψ̂(k)S(k)e−2πi(k�L−1)·xj

= 2iqj
L4

∑
k∈IM

kψ̂(k)S(k)e−2πik·xj/L,

where now also the three components of the vector M ∈ 2N3 are assumed to coincide, i.e.
M := (M,M,M) with M ∈ 2N. The corresponding error is given by

∆F L
j := 2iqj

L4

∑
k∈Z3\IM

kψ̂(k)S(k)e−2πik·xj/L = qj

N∑
i=1

qiχij

with
χij := 2i

L4

∑
k∈Z3\IM

kψ̂(k)e2πik·xij/L.

Utilizing symmetry properties we see that χii = 0, i.e., the error ∆F L
j is of the form (3.10).

We easily estimate

χ2 = 1
L3

∫
LT3

1
L3

∫
LT3

∣∣χij∣∣2 dxjdxi = 4
L8

∑
k∈Z3\IM

‖k‖2ψ̂(k)2

≈ 4
L4

∫ ∞
M/2

e−2π2r2/(α2L2)

r2 r2dr
∫ π

0
sin θdθ

∫ 2π

0
dφ

= 16π
L4 ·

αL

23/2
√
π

erfc
(

πM√
2αL

)
= 8πα√

2πL3 erfc
(

πM√
2αL

)
(3.12)

and the rms error in the long range part is given by

∆FL :=

√√√√ 1
N

N∑
j=1

∥∥∆F L
j

∥∥2 ≈ χQ√
N
.

Note that the error is for simplicity approximated by using a radial cutoff. Nevertheless,
the restriction to an index set IM is reasonable in order to approximate the remaining finite
sums by the NFFT algorithms, see Section 4. Thus, the actual truncation error resulting
from substituting Z3 by IM is supposed to be somewhat smaller than the presented estimate.
For M large enough we can simplify (3.12) by applying the asymptotic expansion of the

complementary error function [2, number 7.1.23] and obtain

χ2 ≈ 8
√
πα

L3
√

2
·
√

2αL
π3/2M

e−π2M2/(2α2L2) = 8α2

L2πM
e−π2M2/(2α2L2),

which for M := 2K almost coincides with [22, (32)]. In summary, we obtain

∆FL ≈ α
√

8Q
L
√
πMN

e−π2M2/(4α2L2).

11

Ellipsoidal coordinates

In this section we generalize the error estimate as presented above to the case of non cubic
box shapes using ellipsoidal coordinates. The vector valued errors χij can now be written as

χij = 2i
V

∑
k∈Z3\IM

(k �L−1)ψ̂(k)e2πi(k�L−1)·xij .

We obtain

χ2 = 1
V

∫
B

1
V

∫
B
|χij |2dxjdxi = 4

V 2

∑
Z3\IM

e−2π2‖k�L−1‖2/α2

‖k �L−1‖2
,

where B := L1T× L2T× L3T denotes the box in which the particles are distributed.
In the following we assume that for some β > 0 the vectors M and L fulfill the relation

M = βL,

i.e., the numbers of grid points, which are used in each dimension, are scaled accordingly to
the boxes’ side lengths. Based on this assumption, we continue by approximating the infinite
sum by integrating over all

k ∈ R : k2
1

(M1/2)2 + k2
2

(M2/2)2 + k2
3

(M3/2)2 > 1,

i.e., we exclude the ellipsoid with the semi-axis lengths M1/2,M2/2,M3/2. The domain can be
parameterized by k1

k2
k3

 =

rM1
2 sin θ cosφ

rM2
2 sin θ sinφ
rM3

2 cos θ

 ,

where r ∈ (1,∞), θ ∈ [0, π] and φ ∈ [0, 2π). With

‖k �L−1‖2 = k2
1
L2

1
+ k2

2
L2

2
+ k2

3
L2

3
= β2

4

(
k2

1
(M1/2)2 + k2

2
(M2/2)2 + k2

3
(M3/2)2

)
= β2r2

4

we obtain

χ2 ≈ 16
V 2

M1M2M3
8β2

∫ ∞
1

e−π2r2β2/2α2dr
∫ π

0
sin θdθ

∫ 2π

0
dφ

= 8π
V 2

M1M2M3
β2

∫ ∞
1

e−π2r2β2/2α2dr

= 8π
V 2

M1M2M3
β2

√
α2

2πβ2 erfc
(
πβ√
2α

)
= 8πα
V
√

2π
erfc

(
πβ√
2α

)
.

In the special case that we have M1 = M2 = M3 = M and L1 = L2 = L3 = L, which also
means β = M/L, we end up with (3.12). Again, if the cutoff parameters are large enough we
obtain by the asymptotic expansion of the complementary error function

χ2 ≈ 8πα
V
√

2π

√
2α

π3/2β
e−π2β2/2α2 = 8α2

V πβ
e−π2β2/2α2

.

12

Substituting
β = 1√

3
‖M �L−1‖

we end up with

χ2 ≈ 8
√

3α2

V π‖M �L−1‖
e−π2‖M�L−1‖2/6α2

and
∆FL ≈ 2

√
2 4√3αQ√

NV π‖M �L−1‖
e−π2‖M�L−1‖2/12α2

.

Remark 3.2. Using the parameter β, the rms force error in the long range part can be
written as

∆FL ≈ 2
√

2αQ√
V Nπβ

e−π2β2/4α2
. (3.13)

It is easy to see that for two different particle systems fulfilling (3.8) the expected rms force
errors in the long range parts are equal, provided that the same values for α and β are used.
As an example, consider the case that the long range parts of the forces for a system with

N1 = 100 particles distributed in the box B1 := T3 with charges qj = (−1)j , j = 1, . . . , N1, is
approximated by using the cutoff M1 = (32, 32, 32).
Then, the same expected long range part rms error is obtained for a particle system com-

posed of N2 = 800 particles distributed in the box B2 := 2T3 with charges qj = (−1)j ,
j = 1, . . . , N2, by using the far field cutoffM2 = (64, 64, 64), provided that the same splitting
parameter α is chosen.

3.3. Parameter tuning
The above derived error estimates allow a very precise prediction of the occurrent rms errors
when calculating the forces via the Ewald formulas.
In the following we consider a concrete particle system and compare the predicted rms force

errors with the actually obtained errors for different parameter settings.

Example 3.3. We consider a so called cloud wall system consisting of N = 600 charges
qj = (−1)j in a box with edge length vector L = (20, 10, 10). The cloud wall system consists
of a diffusive particle cloud surrounding two oppositely charged walls and was proposed in [3]
as a test system because of its significant long range part.
According to the box shape we applied different far field cutoffs M = (2M,M,M) with

M ∈ 2N to approximate the long range parts of the forces, where the summation was done
over the full mesh IM . The near field computations were done by inserting different cutoffs
rcut ∈ {4.0, 4.5, 5.0}. We applied the ScaFaCoS software library [1] for the computation of
the forces, where we used the NDFT as well as the adjoint NDFT in order to compute the
Fourier sums exactly, and estimated the resulting rms force errors with the available reference
data.
For relatively large values of α as well as for large mesh sizesM , the actual error in the far

field is somewhat overestimated by the derived upper bound. This is supposed to be due to
the fact that the algorithm uses the full mesh IM instead of the supposed ellipsoidal cutoff
scheme. However, we see that the achieved error behavior is described very well by the stated
estimates.

13

0.5 1 1.5 2
10−12

10−9

10−6

10−3

100

r
c
u
t
=

4
.0

r
c
u
t
=

4
.5

r
c
u
t
=

5
.0

M = (64, 32, 32)

M = (32, 16, 16)

M = (16, 8, 8)

α

rm
s
fo
rc
e
er
ro
r

Figure 3.1: Achieved rms force errors (solid) for different far field cutoffs M = (2M,M,M)
with M ∈ {8, 16, 32} and different near field cutoffs rcut ∈ {4.0, 4.5, 5.0}. We also
plot the estimates for the rms force error in the near field (dotted) as well as for
the far field with elliptical cutoff (dashed), see (3.6) and (3.13). (Test case: cloud
wall system with N = 600 particles in a box with edge lengths L = (20, 10, 10).)

Based on the derived error estimates we may tune the parameters as follows. Note that a
first tuning approach is discussed in [22]. A tuning similar to Algorithm 3.1 is already used
within the ScaFaCoS library [1] and can also be modified in order to tune the accuracy with
respect to the absolute rms potential error, see [24].
Algorithm 3.1 (Ewald tuning).
Input: required accuracy ε > 0, near field cutoff radius 0 < rcut ≤ min(L1, L2, L3).

i) Compute α via (3.6): Claiming

∆F S ≈ 2Q√
rcutNV

e−α2r2
cut = ε

2
we obtain

α = 1
rcut

√
ln
(

4Q
ε
√
rcutNV

)
.

ii) Compute β via (3.13): Inserting the above computed value for α we choose M such
that also the far field error is approximately of the size ε/2. We use the error estimate
for the elliptical cutoff scheme (3.13), i.e., we set

2
√

2αQ√
NV πβ

e−π2β2/(4α2) = ε

2
and obtain

π2β2

α2 eπ2β2/α2 = 210α2Q4

N2V 2ε4 ⇐⇒ β = α

π

√
W
(

210α2Q4

N2V 2ε4

)
,

14

where we denote by W(·) the well known Lambert W function, which is implicitly
defined by

W(x)eW(x) = x.

iii) Set M := 2
⌈
β
2L
⌉
∈ 2N3 (round up component wise).

Assuming that the near field and the far field part of the error are independent of each
other we have

∆F ≈
√

(∆F S
≈)2 + (∆FL

≈)2 ≈ ε√
2
< ε.

Thus, we expect that the overall rms force error is indeed bounded above by the given (abso-
lute) accuracy.

Example 3.4. We applied the above described tuning for the calculation of the forces in the
cloud wall system we already considered in the Example above. We started with different
near field cutoffs rcut as well as required accuracies and approximated the potentials as well
as the forces by using the ScaFaCoS library [1], where we applied the NDFT as well as the
adjoint NDFT in order to compute the Fourier sums. In the table we list the tuned values for
the splitting parameter α and for the mesh size M . Additionally, we give the corresponding
obtained rms force errors ∆F , which are computed by the given reference data. We see that
the required accuracy is achieved in each case.

rcut ε α M1 M2 M3 ∆F
3.0 1.0e-04 1.0244 42 22 22 4.3568e-05
3.0 1.0e-06 1.2495 60 30 30 4.0693e-07
3.0 1.0e-08 1.4397 80 40 40 3.9889e-09
3.0 1.0e-10 1.6077 100 50 50 3.8680e-11
4.0 1.0e-04 0.7625 30 16 16 4.4317e-05
4.0 1.0e-06 0.9323 46 24 24 4.1773e-07
4.0 1.0e-08 1.0756 60 30 30 3.9316e-09
4.0 1.0e-10 1.2020 74 38 38 3.7935e-11
5.0 1.0e-04 0.6063 24 12 12 5.2145e-05
5.0 1.0e-06 0.7428 36 18 18 5.0385e-07
5.0 1.0e-08 0.8579 48 24 24 5.2132e-09
5.0 1.0e-10 0.9593 60 30 30 4.6912e-11

Table 3.1: Tuned parameters (see Algorithm 3.1) as well as achieved rms force errors ∆F
(computed with the available reference data) for different combinations of the near
field cutoff rcut and the required accuracy ε. (Test case: cloud wall system with
N = 600 particles in a box with edge lengths L = (20, 10, 10).)

We have seen that the rms force error can be predicted very precisely. Additionally, given
some near field cutoff radius rcut and a required accuracy ε, the splitting parameter α and
the far field cutoff M can be tuned such that this accuracy is achieved. Based on the used
hard- and software, some specific value for rcut will be optimal with respect to runtime.

15

However, the computation of the long range part requires O(N2) arithmetic operations. In
order to enable a more efficient computation we apply the NFFT algorithms, as we describe
in the following section.

4. NFFT based fast Ewald summation and rms errors
We consider the efficient evaluation of the truncated long range parts of the potentials

φL
t,j := 1

πV

∑
k∈IM

ψ̂(k)S(k)e−2πi(k�L−1)·xj .

The sums

S(k) =
N∑
i=1

qie2πi(k�L−1)·xi =
N∑
i=1

qie2πik·(xi�L−1), k ∈ IM ,

can be approximated by the adjoint NFFT, S(k) ≈ S̃(k), k ∈ IM . After a multiplication
with the Fourier coefficients ψ̂(k) we can compute the outer sums

1
πV

∑
k∈IM

ψ̂(k)S̃(k)e−2πik·(xj�L−1), j = 1, . . . N,

via the NFFT.
The fast computation of the truncated versions of the forces’ long range parts F L

t,j , as
defined in (3.9), can be done in an analog manner. Note that the outer sums have to be
computed by a vector valued NFFT, i.e., three one-dimensional NFFTs are needed. The
above described method (P2NFFT) is part of the publicly available ScaFaCoS library [1].
The NFFT and the adjoint NFFT are computed by using the parallel FFT (PFFT) software
[27]. See [36] for another implementation of the described algorithm.
In the following we derive the expression of the corresponding rms error for arbitrary window

functions ϕ. At first we approximate the sums S(k) by S̃(k) via the adjoint NFFT

F L
t,j ≈ F L

nffth,j := 2iqj
V

∑
k∈IM

(k �L−1)ψ̂(k)S̃(k)e−2πik·(xj�L−1).

In the second step we approximate F L
nffth,j via a vector valued 3d-NFFT

F L
nffth,j ≈ F̃ L

nffth,j .

Lemma 4.1. Let an electrical neutral system (3.2) of N charges qj ∈ R at positions xj ∈
B := L1T × L2T × L3T be given. Suppose that the truncated long range parts of the forces
F L

t,j as defined in (3.9) are computed via the NFFT based method by using the oversampled
mesh IMo and a symmetric window function ϕ. Then, the resulting error in the forces can
for each j = 1, . . . , N be written in the form

F L
t,j − F̃ L

nffth,j = qj

N∑
i=1
i 6=j

qiχij .

16

Thereby, the quadratic mean of the error terms χij has the lower bound

χ2 := 1
V

∫
B

1
V

∫
B

∣∣χij∣∣2 dxjdxi ≥ χ2
opt,

where

χ2
opt := 4

V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2

1−

∑
r∈Z3

c2
k+r�Mo

(ϕ̃t)
c2
k(ϕ̃t)

−2 . (4.1)

The corresponding optimal NFFT deconvolution coefficients are given by (2.7). If the decon-
volution coefficients are set as in (2.6), the expected quadratic error reads as

χ2 = 4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2

∑
r∈Z3

c2
k+r�Mo

(ϕ̃t)
c2
k(ϕ̃t)

2

− 1

 =: χ2
standard. (4.2)

Proof. See Appendix A.

We denote by

∆FL
fast :=

√√√√ 1
N

N∑
j=1

∥∥∥F L
t − F̃ L

nffth,j

∥∥∥2
≈ χQ√

N
(4.3)

the resulting RMS error.

Remark 4.2. Note the difference to the derivation of the optimal influence function by
Hockney and Eastwood [17, Section 8-3-3]. The optimal influence function is derived by
considering the approximation of

∑
k∈Z3

(k �L−1)ψ̂(k)
(

N∑
i=1

qie2πik·(xi�L−1)

)
e−2πik·(xj�L−1)

by transforming the continuous charge distribution into a grid based charge density. In
contrast, we already start with the truncated sum

∑
k∈IM

(k �L−1)ψ̂(k)
(

N∑
i=1

qie2πik·(xi�L−1)

)
e−2πik·(xj�L−1).

However, an appropriate comparison of the obtained errors or rather the optimal deconvolu-
tion coefficients shows the equivalence of the P3M and the P2NFFT method, where we have
to set the oversampling factor σ := (1, 1, 1) and apply the B-spline window function. In other
words, the P3M method is a special case of the P2NFFT.

4.1. Efficient computation of the resulting rms errors

In the following we will discuss how the above derived expressions for the rms force error can
be estimated efficiently. In three dimensions we use a tensor product approach (2.4) in order
to construct the window function ϕ by only using univariate functions.

17

Thus, also the Fourier coefficients ck(ϕ̃t), k ∈ Z3, are of a tensor product structure

ck(ϕ̃t) =
3∏
j=1

ckj (ϕ̃j,t).

In order to estimate the rms force error efficiently, we separate the computations regarding
the three dimensions by using an approximation of the form

1
x
≈

n∑
i=1

rie−wix for x ∈ [1, `),

where `� 1 should be chosen large enough. Such an approximation can be obtained with the
help of the well known ESPRIT algorithm [33], see [32] for instance, or by using the Remez
algorithm, which was also used by the authors of [15].
For k ∈ IM and Lmax := max{L1, L2, L3} we have

1 ≤ x := L2
max‖k �L−1‖2 ≤ L2

max

(
M2

1
4L2

1
+ M2

2
4L2

2
+ M2

3
4L2

3

)
= 3β2L2

max
4 .

Thus, we should choose ` ≥ L2
max

(
M2

1
4L2

1
+ M2

2
4L2

2
+ M2

3
4L2

3

)
.

Example 4.3. For quadratic box shapes, i.e., L := (L,L,L) and M := (M,M,M) we have

L2
max‖k �L−1‖2 ≤ ‖k‖2 ≤ 3M2

4 < 2 · 105 ∀M ≤ 512.

In [15] the authors provide an approximation with only n = 11 exponential terms with

max
x∈[1,2·105)

∣∣∣∣∣1x −
11∑
i=1

rie−wix
∣∣∣∣∣ ≤ 7 · 10−6.

For the numerical experiments considered in this paper, it is sufficient to use this approxima-
tion, as we will see later. For larger values of M , another approximation has to be selected.
Of course, in the case M � 512, we could also use even shorter approximation sums.

Now, we have for k 6= 0

‖k �L−1‖2ψ̂(k)2 = e−2π2‖k�L−1‖2/α2

‖k �L−1‖2
= L2

maxe−2π2‖k�L−1‖2/α2

L2
maxk12

L2
1

+ L2
maxk22

L2
2

+ L2
maxk32

L2
3

≈ L2
max

n∑
i=1

rie−(2π2/α2+wiL2
max)(k2

1/L
2
1+k2

2/L
2
2+k2

3/L
2
3). (4.4)

Assume that we know the upper bounds∑
r∈Z\{0}

c2
k+rσjMj

(ϕ̃j,t) ≤ sj(k), (4.5)

where k ∈ IMj . Then(∑
r∈Z

c2
k+rσjMj

(ϕ̃j,t)
)2

≤ c4
k(ϕ̃j,t) + 2c2

k(ϕ̃j,t)sj(k) + s2
j (k) =: c4

k(ϕ̃j,t) + s̃j(k)

18

and for k = (k1, k2, k3) ∈ IM we obtain

∑
r∈Z3

c2
k+r�Mo

(ϕ̃t)
c2
k(ϕ̃t)

2

≤
3∏
j=1

[
1 + s̃j(kj)

c4
kj

(ϕ̃j,t)

]

= 1 +
3∑
j=1

s̃j(kj)
c4
kj

(ϕ̃j,t)
+
∑
j1<j2

s̃j1(kj1)
c4
kj1

(ϕ̃j1,t)
s̃j2(kj2)
c4
kj2

(ϕ̃j2,t)
+

3∏
j=1

s̃j(kj)
c4
kj

(ϕ̃j,t)
.

For i = 1, . . . , n and j = 1, . . . , 3 we define the sums

S0,i,j :=
∑
k∈IMj

e−(2π2/α2+wiL2
max)k2/L2

j

S1,i,j :=
∑
k∈IMj

s̃j(k)
c4
k(ϕ̃j,t)

e−(2π2/α2+wiL2
max)k2/L2

j

and obtain for χ2
standard, as defined in (4.2), by applying (4.4)

χ2
standard ≤

4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2

 3∏
j=1

[
1 + s̃j(kj)

c4
kj

(ϕ̃j,t)

]
− 1


≈ 4L2

max
V 2

n∑
i=1

ri

 ∑
j1,j2,j3

(S0,i,j1S0,i,j2S1,i,j3 + S1,i,j1S1,i,j2S0,i,j3) + S1,i,j1S1,i,j2S0,i,j3


− 4L2

max
V 2

 3∏
j=1

[
1 + s̃j (0)

c4
0(ϕ̃j,t)

]
− 1

 n∑
i=1

ri, (4.6)

i.e., we can estimate the error with O(n(M1 +M2 +M3)) arithmetic operations.

For the computation of χ2
opt as defined in (4.1) we define the sums

R0,i,j :=
∑
k∈IMj

c4
k(ϕ̃j,t)

c4
k(ϕ̃j,t) + s̃j(k)e−(2π2/α2+wiL2

max)k2/L2
j

R1,i,j :=
∑
k∈IMj

s̃j(k)
c4
k(ϕ̃j,t) + s̃j(k)e−(2π2/α2+wiL2

max)k2/L2
j

19

and obtain

χ2
opt ≤

4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2

1−
3∏
j=1

c4
kj

(ϕ̃j,t)
c4
kj

(ϕ̃j,t) + s̃j(kj)


= 4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2
3∏
j=1

c4
kj

(ϕ̃j,t)
c4
kj

(ϕ̃j,t) + s̃j(kj)

 3∏
j=1

[
1 + s̃j(kj)

c4
kj

(ϕ̃j,t)

]
− 1


≈ 4L2

max
V 2

n∑
i=1

ri

 ∑
j1,j2,j3

(R0,i,j1R0,i,j2R1,i,j3 +R1,i,j1R1,i,j2R0,i,j3) +R1,i,j1R1,i,j2R0,i,j3


− 4L2

max
V 2

1−
3∏
j=1

c4
0(ϕ̃j,t)

c4
0(ϕ̃j,t) + s̃j(0)

 n∑
i=1

ri. (4.7)

In the case that the sums ∑
r∈Z

c2
k+rσjMj

(ϕ̃j,t)

can be computed exactly (standard B-splines, for instance) we obtain

χ2
opt ≤

4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2
3∏
j=1

c4
kj

(ϕ̃j,t)(∑
r∈Z

c2
kj+rσjMj

(ϕ̃j,t)
)2

 3∏
j=1

[
1 + s̃j(kj)

c4
kj

(ϕ̃j,t)

]
− 1



≈ 4L2
max
V 2

n∑
i=1

ri

 ∑
j1,j2,j3

(Q0,i,j1Q0,i,j2Q1,i,j3 +Q1,i,j1Q1,i,j2Q0,i,j3) +Q1,i,j1Q1,i,j2Q0,i,j3


− 4L2

max
V 2

3∏
j=1

c4
0(ϕ̃j,t)(∑

r∈Z
c2
kj+rσjMj

(ϕ̃j,t)
)2

 3∏
j=1

[
1 + s̃j(0)

c4
0(ϕ̃j,t)

]
− 1

 n∑
i=1

ri, (4.8)

where

Q0,i,j :=
∑
k∈IMj

c4
k(ϕ̃j,t)(∑

r∈Z
c2
k+rσjMj

(ϕ̃j,t)
)2 e−(2π2/α2+wiL2

max)k2/L2
j

Q1,i,j :=
∑
k∈IMj

s̃j(k)(∑
r∈Z

c2
k+rσjMj

(ϕ̃j,t)
)2 e−(2π2/α2+wiL2

max)k2/L2
j .

4.2. B-spline vs. Bessel window

We consider the the two window functions we introduced in Section 2 and evaluate the
occurrent rms errors, as described above, for some test scenarios.

20

B-spline window

For the B-spline window the upper bounds sj(k) as introduced by (4.5) are given in

sj(k) = c2
k(ϕ̃j) ·

8m
4m− 1

(
|k|

|k| − σjMj

)4m
(4.9)

in the case bj = m. The sums ∑
r∈Z

c2
k+rσjMj

(ϕ̃j)

are known exactly, see (2.12), so that we can apply (4.8) in order to approximate the L2-
optimized rms error. On the other hand, if bj 6= m and m/bj /∈ Z we obtain with some
appropriate R ∈ N

sj(k) =
∑

0<|r|≤R

c2
k+rσjMj

(ϕ̃) + m2

σ2
jM

2
j b

2
j

(
|k|

σjMj
+R

)1−4bj
−
(
|k|

σjMj
−R

)1−4bj

(
mπ
bj

)4bj
(4bj − 1)

, (4.10)

as provided in Section 2.

Example 4.4. We consider a cubic box shape with L = (L,L,L), where we set L = 10, and
compute the quadratic means χopt as well as χstandard for different values of α. Thereby, we
use different values for m, M := (M,M,M) and σ := (σ, σ, σ), i.e., the same oversampling
factor σ is used for all three dimensions. Thus, we also use the same shape parameter b in
each dimension, i.e., we set

b := (b, b, b) (4.11)

for b ∈ 1/2N.
For each configuration, we computed the predicted errors (4.6) and (4.7)/(4.8) (depending

on the shape parameter) for all

b ∈ 1/2N : m/2 < b ≤ m,

as suggested in [25], and picked out the smallest error as well as the corresponding optimal
shape parameter bopt. The results are plotted in Figures 4.1, 4.2 and 4.3. For comparison we
also plot the errors obtained by using the standard B-spline window, i.e. b := m.
It can be seen, that there are only insignificant differences between the two errors χopt

and χstandard, which is supposed to be due to the rapid decrease of the Fourier coefficients
‖k � L−1‖2ψ̂(k)2. Furthermore, the usage of a shape parameter b 6= m allows only small
improvements.

Bessel window

For the Bessel I0 window the upper bounds sj(k) for k ∈ IMj are obtained as described in
Section 2, i.e., we set

sj(k) =
∑

0<|r|≤R

c2
k+rσjMj

(ϕ̃) +
ln
(

2π(|k|/σjMj−R)−bj
2π(|k|/σjMj−R)+bj

)
+ ln

(
2π(|k|/σjMj+R)+bj
2π(|k|/σjMj+R)−bj

)
4πbσ2

jM
2
j

. (4.12)

21

,
0 0.5 1 1.5 2 2.5

@

10-30

10-25

10-20

10-15

10-10

10-5

100

M = 16, standard
M = 16, optimized
M = 32, standard
M = 32, optimized
M = 64, standard
M = 64, optimized

,
0 0.5 1 1.5 2 2.5

b o
p
t

3.5

4

4.5

5

5.5

6

6.5

Figure 4.1: Approximate values for χopt (4.7)/(4.8) (*) and χstandard (4.6) (o) for different
far field cutoffs M with respect to the splitting parameter α (left). Thereby we
choose the support parameter m = 6 and the oversampling factor σ = 1. The
corresponding optimal shape parameters bopt are given in the plot on the right
hand side. On the left hand side we also plot the results obtained by using the
standard B-spline window (gray), where b := m.

,
0 0.5 1 1.5 2 2.5

@

10-30

10-25

10-20

10-15

10-10

10-5

100

M = 16, standard
M = 16, optimized
M = 32, standard
M = 32, optimized
M = 64, standard
M = 64, optimized

,
0 0.5 1 1.5 2 2.5

b o
p
t

3.5

4

4.5

5

5.5

6

6.5

Figure 4.2: Approximate values for χopt (4.7)/(4.8) (*) and χstandard (4.6) (o) for different
far field cutoffs M with respect to the splitting parameter α (left). Thereby we
choose the support parameter m = 6 and the oversampling factor σ = 1.25. The
corresponding optimal shape parameters bopt are given in the plot on the right
hand side. On the left hand side we also plot the results obtained by using the
standard B-spline window (gray), where b := m.

for some appropriate R > |k|
σjMj

+ bj
2π .

We suggest the following approach to tune the shape parameter b automatically, similar
to [25, Alg. 5.2]. For simplicity we again assume that approximately the same oversampling
factor is applied in all three dimensions, i.e., we have

σ ≈ (σ, σ, σ)

where σ ≥ 1. Thus, it is reasonable to use also the same shape parameter b > 0 in the single
dimensions, i.e., we define b via (4.11). Note that the oversampled grid size has to be set via

Mo,j := 2
⌈
σ
2Mj

⌉
,

22

,
0 0.5 1 1.5 2 2.5

@

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

M = 16, standard
M = 16, optimized
M = 32, standard
M = 32, optimized
M = 64, standard
M = 64, optimized

,
0 0.5 1 1.5 2 2.5

@

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

M = 16, standard
M = 16, optimized
M = 32, standard
M = 32, optimized
M = 64, standard
M = 64, optimized

Figure 4.3: Approximate values for χopt (4.7)/(4.8) (*) and χstandard (4.6) (o) for different far
field cutoffs M with respect to the splitting parameter α. Thereby we choose the
support parameter m = 3 combined with the oversampling factors σ = 1 (left)
and σ = 1.25 (right). For each configuration we use the optimal shape parameter
bopt. For comparison, we also plot the results obtained by using the standard
B-spline window (gray), where b := m.

since we need Mo ∈ 2N3. Thus, the oversampling factors σj := Mo,j/Mj , which are actually
applied in the single dimensions, may slightly differ from σ.
In Algorithm 4.1 we denote by

∆Ffast(b,m,σ)

the predicted rms error (4.3), which depends on the chosen shape parameter b, the support
parameter m, the oversampling factor σ as well as the applied deconvolution scheme. Based
on the given sets of parameters the resulting error terms χ can be approximated by (4.6) and
respectively (4.7).

Algorithm 4.1 (Shape parameter tuning for the Bessel window).
Input: Splitting parameter α, box size vector L, far field cutoff M , support parameter m,
oversampling factor σ, which is to be applied in all three dimensions.

i) Compute the actual applied oversampling factor: Mo,j := 2
⌈
σ
2Mj

⌉
, σj := Mo,j

Mj
.

ii) Set bopt := 2π(1 − 1/2σ), i.e., take the standard shape parameter (2.13) as a first guess
for the optimal shape parameter.

iii) Choose a start step size d, e.g. d := bopt
2 = π(1− 1/2σ).

iv) Compute ∆F 2
fast,opt := ∆F 2

fast(bopt,m,σ).

v) Set bleft := bopt − d and ∆F 2
fast,left := ∆F 2

fast(bleft,m,σ).

vi) Set bright := bopt + d and ∆F 2
fast,right := ∆F 2

fast(bright,m,σ).

vii) Until max{∆F 2
fast,left,∆F 2

fast,opt,∆F 2
fast,right} ≈ min{∆F 2

fast,left,∆F 2
fast,opt,∆F 2

fast,right}

• If min{∆F 2
fast,left,∆F 2

fast,opt,∆F 2
fast,right} = ∆F 2

fast,opt:
a) Set d := d/2, i.e., choose a smaller step size.
Else:

23

a) bopt := arg min
bleft,bopt,bright

{∆F 2
fast,left,∆F 2

fast,opt,∆F 2
fast,right}.

b) ∆F 2
fast,opt := min{∆F 2

fast,left,∆F 2
fast,opt,∆F 2

fast,right}.

• Set bleft := bopt − d and ∆F 2
fast,left := ∆F 2

fast(bleft,m,σ).

• Set bright := bopt + d and ∆F 2
fast,right := ∆F 2

fast(bright,m,σ).

Output: Optimal shape parameter bopt and predicted quadratic error ∆F 2
fast,opt.

Example 4.5. We again consider the case of a cubic box shape with L = (L,L,L), where
we set L = 10, and compute the quadratic means χopt as well as χstandard for different values
of α, now for the Bessel window function. Thereby, we tune the shape parameter b, which is
applied in all three dimensions, by the suggested tuning Algorithm 4.1. We plot the resulting
values of the error terms over α in Figures 4.4, 4.5 and 4.6.
As already observed for the B-spline window, we cannot see significant differences between

χopt as well as χstandard for the Bessel window as well. The tuned optimal shape parameters
bopt adopt very different values for the different splitting parameters α. A comparison to the
results obtained by using the standard shape parameter (2.13) yields significant improvements
of the resulting rms errors, similar as in the numerical examples presented in [25], but is
omitted here for overview purposes.

,
0 0.5 1 1.5 2 2.5

@

10-25

10-20

10-15

10-10

10-5

100

M = 16, standard
M = 16, optimized
M = 32, standard
M = 32, optimized
M = 64, standard
M = 64, optimized

,
0 0.5 1 1.5 2 2.5

b o
p
t

3

3.5

4

4.5

5

5.5

6

6.5

Figure 4.4: Approximate values for χopt (4.7) (*) and χstandard (4.6) (o) for different far field
cutoffs M with respect to the splitting parameter α (left). Thereby we choose the
support parameter m = 6 and the oversampling factor σ = 1. The correspond-
ing optimal shape parameters bopt are given in the plot on the right hand side.
(window function: Bessel)

Comparison

We reconsider the results of the previous Examples 4.4 as well as 4.5 and compare the obtained
error terms χstandard for the two window functions. For the Bessel window we used the optimal
shape parameters as obtained in Example 4.5. In the case of B-splines we only consider the
standard B-spline window, i.e., the case b = m.
In Figures 4.7 and 4.8 we directly compare the obtained error sums for the two window

functions. For large enough splitting parameters α the Bessel window function produces much
smaller errors than the B-spline window. This is especially the case for small mesh sizes and

24

,
0 0.5 1 1.5 2 2.5

@

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

M = 16, standard
M = 16, optimized
M = 32, standard
M = 32, optimized
M = 64, standard
M = 64, optimized

,
0 0.5 1 1.5 2 2.5

b o
p
t

3.5

4

4.5

5

5.5

6

6.5

Figure 4.5: Approximate values for χopt (4.7) (*) and χstandard (4.6) (o) for different far field
cutoffs M with respect to the splitting parameter α (left). Thereby we choose the
support parameter m = 6 and the oversampling factor σ = 1.25. The correspond-
ing optimal shape parameters bopt are given in the plot on the right hand side.
(window function: Bessel)

,
0 0.5 1 1.5 2 2.5

@

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

M = 16, standard
M = 16, optimized
M = 32, standard
M = 32, optimized
M = 64, standard
M = 64, optimized

,
0 0.5 1 1.5 2 2.5

@

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

M = 16, standard
M = 16, optimized
M = 32, standard
M = 32, optimized
M = 64, standard
M = 64, optimized

Figure 4.6: Approximate values for χopt (4.7) (*) and χstandard (4.6) (o) for different far field
cutoffs M with respect to the splitting parameter α. Thereby we choose the
support parameter m = 3 combined with the oversampling factors σ = 1 (left)
and σ = 1.25 (right). For each configuration we use the optimal shape parameter
bopt. (window function: Bessel)

relatively large support parameters m. On the other hand, for relatively small values of α
the B-spline window seems to be the better choice.

4.3. Parameter tuning and numerical examples

We recall Remarks 3.1 and 3.2, which show that the predicted errors in the Ewald summation
are equal for particle systems with the same particle or rather charge density, if the same
Ewald parameters rcut, α and β are used.
Based on this, we hope to be able to tune all the parameters of our fast algorithm for a

small particle system and apply the tuned sets of parameters also to larger systems while
keeping the performance of the algorithm in terms of accuracy as well as efficiency, similar as
done in [26].

25

,
0 0.5 1 1.5 2 2.5

@

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

B-spline, < = 1.00
Bessel, < = 1.00
B-spline, < = 1.25
Bessel, < = 1.25

,
0 0.5 1 1.5 2 2.5

@

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

B-spline, < = 1.00
Bessel, < = 1.00
B-spline, < = 1.25
Bessel, < = 1.25

,
0 0.5 1 1.5 2 2.5

@

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

B-spline, < = 1.00
Bessel, < = 1.00
B-spline, < = 1.25
Bessel, < = 1.25

Figure 4.7: Comparison of the obtained errors χstandard (≈ χopt), approximated via (4.6), for
the two window functions. We choose the support parameter m = 3 and use
different meshes I(M,M,M), where M := 16 (left), M := 32 (center) and M := 64
(right).

,
0 0.5 1 1.5 2 2.5

@

10-25

10-20

10-15

10-10

10-5

100

B-spline, < = 1.00
Bessel, < = 1.00
B-spline, < = 1.25
Bessel, < = 1.25

,
0 0.5 1 1.5 2 2.5

@

10-25

10-20

10-15

10-10

10-5

100

B-spline, < = 1.00
Bessel, < = 1.00
B-spline, < = 1.25
Bessel, < = 1.25

,
0 0.5 1 1.5 2 2.5

@

10-30

10-25

10-20

10-15

10-10

10-5

B-spline, < = 1.00
Bessel, < = 1.00
B-spline, < = 1.25
Bessel, < = 1.25

Figure 4.8: Comparison of the obtained errors χstandard (≈ χopt), approximated via (4.6), for
the two window functions. We choose the support parameter m = 6 and use
different meshes I(M,M,M), where M := 16 (left), M := 32 (center) and M := 64
(right).

Choice of the oversampling factor

With the help of the error estimates (4.9), (4.10) and (4.12) we are able to tune the over-
sampling factor for a given mesh size M and support parameter m. For simplicity we again
assume that approximately the same oversampling factor is applied in all three dimensions,
i.e., we have σ ≈ (σ, σ, σ) with σ ≥ 1.
Assume that we have given some near field cutoff rcut and a required accuracy ε. With

the help of Algorithm 3.1 we are able to tune the Ewald summation parameters α and β
appropriately.
Now, we aim to tune the NFFT parameters such that

∆FL
fast ≤

ε

4 =: ε2 (4.13)

is fulfilled, i.e., we force the approximation error ∆FL
fast as defined in (4.3) to be somewhat

smaller that the Ewald type rms errors int the near field as well as in the far field. Our hope
is that the the NFFT approximation errors are thus small enough such that the required
accuracy ε can still be reached.
We apply a simple binary search algorithm in order to tune the required oversampling

factor, see Algorithm 4.2.

26

Algorithm 4.2 (Tune the oversampling factor).
Input: support parameter m, Ewald parameter α, NFFT mesh size M , box length vector L,
required accuracy ε2.

i) Define a maximum oversampling factor σmax, e.g., σmax := 2.

ii) Compute the resulting rms error ∆FL
fast for σ := 1 (use the optimal shape parameter

bopt in case of the Bessel window). If already ∆FL
fast ≤ ε2, then set σmin := 1.

iii) Else: set σmin := σmax, s := 1/2(σmax − 1) and σ := 1 + s.
While s ≥ 1

Mmax
:

a) Compute the actual oversampling factor: Mo,j := 2
⌈
σ
2Mj

⌉
, σj := Mo,j

Mj
.

b) Compute the resulting rms error ∆FL
fast for the current value of σ.

If ∆FL
fast ≤ ε2, then set σmin := σ and σ := σ − s (try a smaller value).

Else, set σ := σ + s (try a larger value).

c) Set s := s/2.

Output: required oversampling factor σmin. If the required accuracy ε2 cannot be achieved,
we simply return σmax.

Example 4.6. We consider again the cloud wall system with N = 600 particles. For different
values of rcut we tune the Ewald parameters α and β with Algorithm 3.1 in order to reach a
certain accuracy ε. In order to tune the NFFT parameters we claim (4.13) to be fulfilled.
For different values of the support parameter m we tune the oversampling factor σ by

applying Algorithm 4.2 for the B-spline window as well as for the Bessel window function,
where we set the maximum oversampling factor to σmax := 2.
In Tables 4.1 and 4.2 we list the tuned parameters for the two different window functions.

We also list the achieved rms force errors ∆F as well as computation times t. For the
given required accuracy ε there are several possible combinations of the parameters m and
σ. Of course, one combination is supposed to be optimal regarding the required runtime,
which may also depend on the used hardware, compiler and the like. The achieved runtimes
presented in this paper include the computation of the potentials as well as the forces and
have been measured on an Intel i5-2400 single core processor that runs on 3.10 GHz with 8
GB main memory. The software was built with the Gnu C Compiler at version 4.7.1 and
optimization flags “-O3”. For the repeated evaluation of the window function we use a third
order interpolation scheme based on interpolation tables instead of evaluating the functions
directly. Thus, the speed of the evaluation is independent from the used window function.
In our example, where we set ε := 10−4, the support parameter m = 4 is in each case

optimal with respect to runtime. Of course, for different required accuracies we expect other
optimal parameter sets. For small values of the support parameter m the B-spline window
requires less oversampling in order to reach the required accuracy. In contrast, for m ≥ 4 the
Bessel window function demands less or equal oversampling. This is reflected by the measured
runtimes.

27

rcut m = 2 m = 3 m = 4 m = 5 m = 6
3.0 σmin ≈ 2.0000 1.3125 1.0625 1.0312 1.0000
3.0 t = 9.35e-02 4.14e-02 3.18e-02 3.40e-02 3.53e-02
3.0 ∆F = 7.32e-05 4.24e-05 4.85e-05 4.69e-05 5.51e-05
4.0 σmin ≈ 2.0000 1.3125 1.1250 1.0625 1.0625
4.0 t = 3.94e-02 2.26e-02 2.03e-02 2.28e-02 2.68e-02
4.0 ∆F = 1.81e-04 4.43e-05 5.65e-05 4.79e-05 4.52e-05
5.0 σmin ≈ 2.0000 1.3750 1.0625 1.0625 1.0625
5.0 t = 2.87e-02 2.23e-02 2.11e-02 2.41e-02 2.81e-02
5.0 ∆F = 1.03e-04 5.17e-05 7.19e-05 5.56e-05 5.31e-05

Table 4.1: Tuned oversampling factors σmin, achieved computation times t in seconds and
measured rms force errors ∆F for the B-spline window. The required absolute
accuracy was set to ε := 10−4.

rcut m = 2 m = 3 m = 4 m = 5 m = 6
3.0 σmin ≈ 2.0000 1.6250 1.0000 1.0000 1.0000
3.0 t = 9.36e-02 6.01e-02 2.77e-02 3.09e-02 3.53e-02
3.0 ∆F = 4.77e-04 4.28e-05 4.93e-05 4.46e-05 4.40e-05
4.0 σmin ≈ 2.0000 1.5625 1.0625 1.0000 1.0000
4.0 t = 3.99e-02 2.90e-02 1.97e-02 2.10e-02 2.50e-02
4.0 ∆F = 7.35e-04 4.49e-05 4.41e-05 4.35e-05 4.36e-05
5.0 σmin ≈ 2.0000 1.5000 1.0625 1.0625 1.0625
5.0 t = 2.85e-02 2.25e-02 2.10e-02 2.44e-02 2.80e-02
5.0 ∆F = 5.49e-04 5.10e-05 5.30e-05 5.22e-05 5.21e-05

Table 4.2: Tuned oversampling factors σmin, achieved computation times t in seconds and
measured rms force errors ∆F for the Bessel window. The required absolute accu-
racy was set to ε := 10−4.

Runtime over rcut

In addition to the above described parameter tuning, which needs the value of the near field
cutoff rcut as input, we also want to tune the parameter rcut in order to achieve an (almost)
optimal runtime.
For very small particle systems we may apply the above described tuning for different values

of rcut and compare the achieved runtimes. As an example, we again consider the (small)
cloud wall system with N = 600 particles, see Example 4.7.

Example 4.7. For the cloud wall system consisting of N = 600 charges we tune the param-
eters as described in the previous considerations for different near field cutoffs rcut, compare
to Example 4.6. We consider two different required accuracies ε ∈ {10−4, 10−7} and plot the
measured runtimes over rcut in Figure 4.9. Note the jumps in the runtime plots, which result
from the increased computation time of the FFT in the long range part, if the oversampled
grid size shows an unprofitable decomposition into prime factors.
The corresponding tuned parameters as well as the achieved rms force errors can be found

in Appendix B. It can bee seen that the required accuracy is always achieved. In many cases

28

we obtain a more inconvenient parameter set for the B-spline window, which results in higher
computation times compared to the Bessel window.

3.5 4 4.5 5 5.5

10−1.7

10−1.65

10−1.6

rcut

co
m
p
u
ta
ti
on

ti
m
e
[s
]

B-spline
Bessel

4.5 5 5.5 6 6.5

10−1.35

10−1.3

10−1.25

rcut

co
m
p
u
tu
at
io
n
ti
m
e
[s
]

B-spline
Bessel

Figure 4.9: Measured runtimes for different values of rcut. The required rms force accuracy
was set to ε := 10−4 (left) and to ε := 10−7 (right). The parameters where chosen
by applying Algorithms 3.1 and 4.2. For each rcut we considered different com-
binations of m and σ, where we chose the one yielding the smallest computation
time.

Scale parameters to larger particle systems

Based on the above described tuning algorithms we may tune all parameters for a small
particle system, also with respect to runtime, in order to apply the obtained set of parameters
also to larger systems. Provided that (3.8) is fulfilled, the Ewald type rms errors are supposed
to be of a comparable size among a set of systems with increasing numbers of particles.
Provided that the rms errors resulting from the NFFT approximations behave in an analog
manner we expect to achieve also similar overall rms field errors.

Example 4.8. Based on Example 4.7 we choose the optimal parameters obtained for the
small particle system (N = 600) and apply the same parameters (rcut, α, β, m, σ, b) for
computations with larger systems, for which (3.8) is fulfilled.
In the case ε := 10−4 we choose rcut ∈ {4.1, 4.4} and for ε := 10−7 we consider rcut ∈
{5.7, 6.0}. We plot the obtained runtimes (scaled by the numbers of particles) in Figures 4.10
and 4.11. Again, the unexpected jumps in the runtimes concerning the long range parts
result from the increased computation time of the FFT in case that the grid size shows an
unprofitable decomposition into prime factors.
The achieved overall rms force errors can be found in Tables B.3–B.6 in Appendix B. We

can see that the achieved errors are indeed of a comparable size among the considered particle
systems. Note that for the Bessel window function the achieved errors are almost constant
among all particle systems, whereas for the B-spline window the achieved rms force errors are
in some cases somewhat larger than the required accuracy ε. In other words, the proposed
approach seems to be more stable for the Bessel window function.

29

103 104 105 106

1

2

3

4
·10−5

#charges N

ti
m

e/
N

[s
]

B-spline
Bessel
near field
far field
total

103 104 105 106

1

2

3

4
·10−5

#charges N

ti
m

e/
N

[s
]

B-spline
Bessel
near field
far field
total

Figure 4.10: Achieved runtimes scaled by the numbers of particles. We set the required rms
force accuracy to ε := 10−4 and used the near field cutoffs rcut := 4.1 (left) as
well as rcut := 4.4 (right), respectively.

103 104 105 106

2

4

6

8

·10−5

#charges N

ti
m

/N
[s

]

B-spline
Bessel
near field
far field
total

103 104 105 106

2

4

6

8

·10−5

#charges N

ti
m

e/
N

[s
]

B-spline
Bessel
near field
far field
total

Figure 4.11: Achieved runtimes scaled by the numbers of particles. We set the required rms
force accuracy to ε := 10−7 and used the near field cutoffs rcut := 5.7 (left) as
well as rcut := 6.0 (right), respectively.

5. Conclusion

In the present work we studied the error behavior of the P2NFFT method and investigated
the performance of the algorithm for the B-spline as well as the Bessel window function. We
presented an approach to predict the occurrent rms errors in the forces precisely and efficiently.
Based on this, we also suggest a method to tune all involved parameters automatically.
Given a required accuracy and an appropriate near field cutoff rcut the splitting parameter

α and the far field cutoff M can be computed easily by utilizing the error formulas for
the Ewald sums. With the help of the stated error estimates for the errors caused by the
NFFT approximations the NFFT parameters, as for instance the required oversampling factor
and parameters describing the used window function, can also be tuned such that a certain
accuracy is achieved. The presented numerical examples show that the error estimates are
indeed very precise and that the proposed parameter tuning is adequate.

30

The results of the comparison between the two window functions can be summarized as
follows. The applied combination of the near field cutoff rcut, the splitting parameter α and
the far field cutoff M very much influences which window function performs best in terms
of accuracy. In order to achieve a required accuracy, different combinations of all involved
parameters are possible. It will especially depend on the used hardware and software which set
of parameters is optimal with respect to runtime. In order to optimize the method regarding
runtime we claim that we can tune all involved parameters for a small particle system and
apply the same parameters also to larger particle systems. We tested the described approach
by considering a set of particle systems of increasing size. By applying the tuned parameters,
we could achieve almost the same rms errors among all systems, which seems to be more stable
if the Bessel window function is used. Furthermore, the Bessel window functions was in many
cases also the better choice with respect to the required number of arithmetic operations or
rather computation time.
Note that the derived representation of the rms error caused by the NFFT approximations

shows that the P2NFFT and the P3Mmethod are in principle equivalent. A relevant difference
is that that the P2NFFT approach enables the usage of different window functions and offers
the possibility to use oversampling in the far field computations. The differences in the applied
deconvolution schemes in terms of accuracy are negligible, as approved by some numerical
examples. The tests also showed that spending some oversampling combined with a smaller
support of the window function is in many cases more efficient than applying no oversampling,
which requires the usage of a wider supported window function in order to achieve the same
accuracy.

Appendix

A. Proof of Lemma 4.1
We can write the error F L

t,j − F̃ L
nffth,j as

F L
t,j − F̃ L

nffth,j =
(
F L

t,j − F L
nffth,j

)
+
(
F L

nffth,j − F̃ L
nffth,j

)
,

where the first part can be expressed by F L
t,j − F L

nffth,j =

2iqj
V

∑
k∈IM

(k �L−1)ψ̂(k)
[
N∑
i=1

qi[1− d̂kck(ϕ̃t)]e2πik·(xi�L−1)

]
e−2πik·(xj�L−1)

−2iqj
V

∑
k∈IM

(k �L−1)ψ̂(k)

 ∑
r∈Z3\{0}

N∑
i=1

qid̂kck+r�Mo(ϕ̃t)e2πi(k+r�Mo)·(xi�L−1)

 e−2πik·(xj�L−1),

where we applied (2.11), and the second part of the error can be written as F L
nffth,j − F̃ L

nffth,j

2iqj
V

∑
k∈IM

(k �L−1)ψ̂(k)S̃(k)[1− d̂kck(ϕ̃t)]e−2πik·(xj�L−1)

−2iqj
V

∑
r∈Z3\{0}

∑
k∈IM

(k �L−1)ψ̂(k)S̃(k)d̂kck+r�Mo(ϕ̃t)e−2πi(k+r�Mo)·(xj�L−1),

31

cf. (2.8). The window function ϕ̃ : R3 → R is defined on R3 and is periodic with period 1
regarding each dimension. Inserting

S̃(k) =
∑

r∈Z3\{0}

N∑
i=1

qid̂kck+r�Mo(ϕ̃t)e2πi(k+r�Mo)·(xi�L−1) +
N∑
i=1

qid̂kck(ϕ̃t)e2πik·(xi�L−1),

which is obtained from (2.11), we can rewrite the error by

F L
t,j − F̃ L

nffth,j = qj

N∑
i=1

qiχij ,

where χij =

2i
V

∑
k∈IM

(k �L−1)ψ̂(k)
[
1− d̂kck(ϕ̃t)

] [
1 + d̂kck(ϕ̃t)

]
e2πik·(xi�L−1)e−2πik·(xj�L−1)

−2i
V

∑
k∈IM

(k �L−1)ψ̂(k)d̂kck(ϕ̃t)

 ∑
r∈Z3\{0}

d̂kck+r�Mo(ϕ̃t)e2πi(k+r�Mo)·(xi�L−1)

 e−2πik·(xj�L−1)

−2i
V

∑
k∈IM

(k �L−1)ψ̂(k)d̂kck(ϕ̃t)e2πik·(xi�L−1)

 ∑
r∈Z3\{0}

d̂kck+r�Mo(ϕ̃t)e−2πi(k+r�Mo)·(xj�L−1)


−2i
V

∑
k∈IM

(k �L−1)ψ̂(k)

 ∑
s∈Z3\{0}

d̂kck+s�Mo(ϕ̃t)e2πi(k+s�Mo)·(xi�L−1)

×
 ∑
r∈Z3\{0}

d̂kck+r�Mo(ϕ̃t)e−2πi(k+r�Mo)·(xj�L−1)

 .
If the window function ϕ is symmetric we obtain χjj = 0. In order to compute the rms error
of our approximation we consider the quadratic mean

χ2 := 1
V

∫
B

1
V

∫
B

∣∣χij∣∣2 dxjdxi,

where the integration domain B is defined as B := L1T× L2T× L3T. We obtain

1
V

∫
B

∣∣χij∣∣2 dxj = 4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2

∣∣∣∣∣1− d̂2
kc

2
k(ϕ̃t)

− d̂kck(ϕ̃t)
∑

r∈Z3\{0}

d̂kck+r�Mo(ϕ̃t)e2πi(r�Mo)·(xi�L−1)

∣∣∣∣∣
2

+ 4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2
∑

r∈Z3\{0}

d̂2
kc

2
k+r�Mo(ϕ̃t)×

∣∣∣∣∣∣d̂kck(ϕ̃t) +
∑

s∈Z3\{0}

d̂kck+s�Mo(ϕ̃t)e2πi(s�Mo)·(xi�L−1)

∣∣∣∣∣∣
2

32

and finally

χ2 = 4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2
∣∣∣1− d̂2

kc
2
k(ϕ̃t)

∣∣∣2
+ 4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2d̂2
kc

2
k(ϕ̃t)

∑
r∈Z3\{0}

d̂2
kc

2
k+r�Mo(ϕ̃t)

+ 4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2
∑

r∈Z3\{0}

d̂2
kc

2
k+r�Mo(ϕ̃t)

∑
r∈Z3

d̂2
kc

2
k+r�Mo(ϕ̃t).

Further simplifications give

χ2 = 4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2
∣∣∣1− d̂2

kc
2
k(ϕ̃t)

∣∣∣2 − 4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2d̂4
kc

4
k(ϕ̃t)

+ 4
V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2

∑
r∈Z3

d̂2
kc

2
k+r�Mo(ϕ̃t)

2

.

(A.1)
For d̂k, ck(ϕ̃t) ∈ R we can compute the optimal coefficients d̂k as follows. Since

(
1− d̂2

kc
2
k(ϕ̃t)

)2
− d̂4

kc
4
k(ϕ̃t) +

∑
r∈Z3

d̂2
kc

2
k+r�Mo(ϕ̃t)

2

= 1− 2d̂2
kc

2
k(ϕ̃t) + d̂4

k

∑
r∈Z3

c2
k+r�Mo(ϕ̃t)

2

=

d̂2
k

∑
r∈Z3

c2
k+r�Mo(ϕ̃t)−

c2
k(ϕ̃t)∑

r∈Z3
c2
k+r�Mo

(ϕ̃t)


2

+ 1− c4
k(ϕ̃t)(∑

r∈Z3
c2
k+r�Mo

(ϕ̃t)
)2

χ2 is minimized by choosing

d̂k := ck(ϕ̃t)∑
r∈Z3

c2
k+r�Mo

(ϕ̃t)
,

i.e., we have to optimize the NFFT algorithms with respect to the error in the L2-norm. The
resulting optimal rms error in the forces is

∆FL
fast ≈

χoptQ√
N

,

where we obtain from (A.1)

χ2
opt := 4

V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2

1− c4
k(ϕ̃t)

∑
r∈Z3

c2
k+r�Mo(ϕ̃t)

−2 .

33

Setting d̂k := c−1
k (ϕ̃t) we would end up with

χ2
standard = 4

V 2

∑
k∈IM

‖k �L−1‖2ψ̂(k)2

∑
r∈Z3

c2
k+r�Mo

(ϕ̃t)
c2
k(ϕ̃t)

2

− 1

 .

B. Tables

In Example 4.7 we considered the cloud wall system with N = 600 particles and tuned all
involved parameters for different near field cutoffs rcut. The corresponding tuned parameters
as well as the achieved rms force errors are listed in Tables B.1 and B.2.

B-spline Bessel
rcut α M1 M2 M3 mopt σ ∆F mopt σ bopt ∆F
3.5 0.87 36 18 18 4 1.11,1.11,1.11 5.38e-05 4 1.06,1.11,1.11 4.05 4.26e-05
3.6 0.85 34 18 18 4 1.12,1.11,1.11 5.49e-05 4 1.00,1.00,1.00 3.93 4.71e-05
3.7 0.83 34 18 18 4 1.06,1.11,1.11 6.09e-05 4 1.00,1.00,1.00 3.93 5.42e-05
3.8 0.80 32 16 16 4 1.12,1.12,1.12 5.71e-05 4 1.06,1.12,1.12 4.05 4.33e-05
3.9 0.78 32 16 16 4 1.06,1.12,1.12 5.79e-05 4 1.06,1.12,1.12 4.05 4.48e-05
4.0 0.76 30 16 16 4 1.13,1.12,1.12 5.65e-05 4 1.07,1.12,1.12 3.74 4.41e-05
4.1 0.74 30 16 16 4 1.07,1.12,1.12 6.53e-05 4 1.00,1.00,1.00 3.93 5.41e-05
4.2 0.73 30 16 16 4 1.07,1.12,1.12 6.47e-05 4 1.00,1.00,1.00 3.93 5.82e-05
4.3 0.71 28 14 14 4 1.14,1.14,1.14 6.44e-05 4 1.07,1.14,1.14 3.74 4.65e-05
4.4 0.69 28 14 14 4 1.07,1.14,1.14 5.91e-05 4 1.07,1.14,1.14 4.16 4.68e-05
4.5 0.68 28 14 14 4 1.07,1.14,1.14 6.02e-05 4 1.00,1.00,1.00 3.93 4.92e-05
4.6 0.66 26 14 14 4 1.08,1.14,1.14 5.62e-05 4 1.00,1.00,1.00 3.93 5.23e-05
4.7 0.65 26 14 14 4 1.08,1.14,1.14 5.65e-05 4 1.00,1.00,1.00 3.93 5.28e-05
4.8 0.63 26 14 14 4 1.08,1.14,1.14 5.67e-05 4 1.00,1.00,1.00 3.93 5.39e-05
4.9 0.62 24 12 12 4 1.17,1.17,1.17 7.04e-05 4 1.08,1.17,1.17 3.74 5.26e-05
5.0 0.61 24 12 12 4 1.08,1.17,1.17 7.19e-05 4 1.08,1.17,1.17 4.16 5.30e-05
5.1 0.59 24 12 12 3 1.33,1.33,1.33 5.94e-05 4 1.08,1.17,1.17 4.16 4.89e-05
5.2 0.58 24 12 12 3 1.33,1.33,1.33 5.23e-05 4 1.00,1.00,1.00 3.93 4.91e-05
5.3 0.57 24 12 12 3 1.25,1.33,1.33 4.76e-05 4 1.00,1.00,1.00 3.93 4.36e-05
5.4 0.56 22 12 12 3 1.36,1.33,1.33 4.84e-05 4 1.00,1.00,1.00 3.93 4.50e-05
5.5 0.55 22 12 12 3 1.27,1.33,1.33 4.64e-05 4 1.00,1.00,1.00 3.93 4.25e-05

Table B.1: Tuned parameters and achieved rms force errors ∆F for the cloud wall system with
N = 600 particles in a box of size 20 × 10 × 10, where we started with different
near field cutoffs rcut. The required accuracy was set to ε := 10−4.

In Example 4.8 we applied the tuned parameter sets for the small particle system (N = 600)
also to larger systems. We list the particle sizes, the applied oversampled mesh sizes Mo as
well as the achieved rms force errors ∆F (by reference data) in the Tables B.3–B.6. It is easy
to see that the different particle systems have the same particle or rather charge density, i.e.,
(3.8) is fulfilled. Furthermore, the obtained rms force errors are almost constant among all
systems. In general, a slightly higher oversampling factor is needed in case of the B-spline
window. Note that for the Bessel window function the achieved errors are almost constant
among all particle systems, whereas for the B-spline window the achieved rms force errors are
in some cases somewhat larger than the required accuracy ε.

34

B-spline Bessel
rcut α M1 M2 M3 mopt σ ∆F mopt σ bopt ∆F
4.5 0.89 46 24 24 6 1.13,1.17,1.17 4.34e-08 6 1.04,1.08,1.08 4.05 4.52e-08
4.6 0.87 46 24 24 7 1.04,1.08,1.08 4.76e-08 6 1.04,1.08,1.08 4.05 4.55e-08
4.7 0.85 44 22 22 6 1.14,1.18,1.18 4.72e-08 6 1.05,1.09,1.09 4.05 4.77e-08
4.8 0.84 44 22 22 6 1.14,1.18,1.18 4.81e-08 6 1.05,1.09,1.09 4.05 4.88e-08
4.9 0.82 42 22 22 6 1.14,1.18,1.18 4.74e-08 6 1.05,1.09,1.09 3.84 4.82e-08
5.0 0.80 42 22 22 6 1.10,1.09,1.09 5.59e-08 6 1.05,1.09,1.09 4.05 5.14e-08
5.1 0.79 42 22 22 6 1.10,1.09,1.09 4.89e-08 6 1.05,1.09,1.09 4.05 4.77e-08
5.2 0.77 40 20 20 6 1.15,1.20,1.20 4.74e-08 6 1.05,1.10,1.10 4.05 4.73e-08
5.3 0.76 40 20 20 5 1.25,1.30,1.30 4.53e-08 6 1.05,1.10,1.10 4.05 4.13e-08
5.4 0.74 38 20 20 5 1.26,1.30,1.30 4.23e-08 6 1.05,1.10,1.10 4.05 4.32e-08
5.5 0.73 38 20 20 6 1.11,1.10,1.10 4.38e-08 6 1.05,1.10,1.10 4.05 4.05e-08
5.6 0.72 38 20 20 6 1.11,1.10,1.10 4.28e-08 6 1.05,1.10,1.10 4.05 4.11e-08
5.7 0.70 36 18 18 5 1.28,1.33,1.33 4.97e-08 6 1.06,1.11,1.11 4.05 4.34e-08
5.8 0.69 36 18 18 5 1.28,1.33,1.33 4.55e-08 6 1.06,1.11,1.11 4.05 4.26e-08
5.9 0.68 36 18 18 6 1.11,1.11,1.11 6.56e-08 6 1.06,1.11,1.11 4.05 4.54e-08
6.0 0.67 34 18 18 6 1.12,1.11,1.11 5.38e-08 6 1.06,1.11,1.11 4.05 4.25e-08
6.1 0.66 34 18 18 6 1.12,1.11,1.11 5.07e-08 6 1.06,1.11,1.11 4.05 4.26e-08
6.2 0.64 34 18 18 5 1.24,1.22,1.22 4.47e-08 6 1.06,1.11,1.11 4.05 4.27e-08
6.3 0.63 34 18 18 5 1.24,1.22,1.22 4.29e-08 6 1.06,1.11,1.11 4.05 4.37e-08
6.4 0.62 32 16 16 5 1.31,1.38,1.38 4.70e-08 6 1.06,1.12,1.12 4.05 4.52e-08
6.5 0.61 32 16 16 6 1.12,1.12,1.12 5.98e-08 6 1.06,1.12,1.12 4.05 4.45e-08

Table B.2: Tuned parameters and achieved rms force errors ∆F for the cloud wall system with
N = 600 particles in a box of size 20 × 10 × 10, where we started with different
near field cutoffs rcut. The required accuracy was set to ε := 10−7.

Bessel B-spline
N L1 L2 L3 Mo,1 Mo,2 Mo,3 ∆F Mo,1 Mo,2 Mo,3 ∆F

600 20 10 10 30 16 16 5.41e-05 32 18 18 6.53e-05
1200 20 10 20 30 16 30 4.91e-05 32 18 32 1.15e-04
2400 20 20 20 30 30 30 4.94e-05 32 32 32 1.17e-04
5400 30 30 20 44 44 30 4.92e-05 48 48 32 1.17e-04
8100 30 30 30 44 44 44 5.84e-05 48 48 48 1.17e-04
9000 20 30 50 30 44 74 5.65e-05 32 48 80 1.17e-04
19200 40 40 40 58 58 58 6.12e-05 62 62 62 7.10e-05

102900 70 70 70 102 102 102 6.08e-05 110 110 110 9.43e-05
153600 80 80 80 116 116 116 6.12e-05 124 124 124 7.10e-05
1012500 150 150 150 218 218 218 6.26e-05 232 232 232 1.10e-04

Table B.3: Oversampled mesh sizes and achieved rms force errors for the Bessel window func-
tion and the B-spline window applied to cloud wall systems of different size. We
set rcut := 4.1 and ε := 10−4. See Table B.1 for the tuned parameters (α, m, σ,
b).

Acknowledgments

The author gratefully acknowledges support by the German Research Foundation (DFG),
project PO 711/12-1.

35

Bessel B-spline
N L1 L2 L3 Mo,1 Mo,2 Mo,3 ∆F Mo,1 Mo,2 Mo,3 ∆F

600 20 10 10 30 16 16 4.68e-05 30 16 16 5.91e-05
1200 20 10 20 30 16 30 4.61e-05 30 16 30 8.50e-05
2400 20 20 20 30 30 30 4.60e-05 30 30 30 8.57e-05
5400 30 30 20 46 46 30 4.61e-05 46 46 30 8.57e-05
8100 30 30 30 46 46 46 4.65e-05 46 46 46 6.37e-05
9000 20 30 50 30 46 74 4.88e-05 30 46 74 7.81e-05
19200 40 40 40 58 58 58 4.93e-05 58 58 58 6.55e-05

102900 70 70 70 100 100 100 4.96e-05 100 100 100 1.07e-04
153600 80 80 80 116 116 116 4.93e-05 116 116 116 6.55e-05
1012500 150 150 150 216 216 216 4.94e-05 216 216 216 9.93e-05

Table B.4: Oversampled mesh sizes and achieved rms force errors for the Bessel window func-
tion and the B-spline window applied to cloud wall systems of different size. We
set rcut := 4.4 and ε := 10−4. See Table B.1 for the tuned parameters (α, m, σ,
b).

Bessel B-spline
N L1 L2 L3 Mo,1 Mo,2 Mo,3 ∆F Mo,1 Mo,2 Mo,3 ∆F

600 20 10 10 38 20 20 4.34e-08 46 24 24 4.97e-08
1200 20 10 20 38 20 38 4.34e-08 46 24 46 5.85e-08
2400 20 20 20 38 38 38 4.34e-08 46 46 46 5.87e-08
5400 30 30 20 56 56 38 4.40e-08 68 68 46 5.87e-08
8100 30 30 30 56 56 56 4.41e-08 68 68 68 5.24e-08
9000 20 30 50 38 56 94 4.38e-08 46 68 114 5.19e-08
19200 40 40 40 76 76 76 4.34e-08 90 90 90 4.96e-08

102900 70 70 70 130 130 130 4.44e-08 158 158 158 5.28e-08
153600 80 80 80 150 150 150 4.40e-08 180 180 180 4.96e-08
1012500 150 150 150 280 280 280 4.41e-08 338 338 338 5.29e-08

Table B.5: Oversampled mesh sizes and achieved rms force errors for the Bessel window func-
tion and the B-spline window applied to cloud wall systems of different size. We
set rcut := 5.7 and ε := 10−7. See Table B.2 for the tuned parameters (α, m, σ,
b).

References

[1] ScaFaCoS - Scalable Fast Coloumb Solvers. http://www.scafacos.de.

[2] M. Abramowitz and I.A. Stegun (eds.): Handbook of Mathematical Functions. National
Bureau of Standards, Washington, DC, USA, 1972.

[3] A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel, R. Halver,
I. Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hofmann, M. Pippig, D. Potts,
and G. Sutmann: Comparison of scalable fast methods for long-range interactions. Phys.
Rev. E, 88:063308, 2013.

36

http://www.scafacos.de

Bessel B-spline
N L1 L2 L3 Mo,1 Mo,2 Mo,3 ∆F Mo,1 Mo,2 Mo,3 ∆F

600 20 10 10 36 20 20 4.25e-08 38 20 20 5.38e-08
1200 20 10 20 36 20 36 4.29e-08 38 20 38 7.65e-08
2400 20 20 20 36 36 36 4.28e-08 38 38 38 7.68e-08
5400 30 30 20 54 54 36 4.29e-08 56 56 38 7.74e-08
8100 30 30 30 54 54 54 4.29e-08 56 56 56 9.06e-08
9000 20 30 50 36 54 90 4.29e-08 38 56 92 1.14e-07
19200 40 40 40 72 72 72 4.28e-08 74 74 74 5.73e-08

102900 70 70 70 124 124 124 4.25e-08 128 128 128 1.28e-07
153600 80 80 80 142 142 142 4.24e-08 146 146 146 1.33e-07
1012500 150 150 150 264 264 264 4.27e-08 272 272 272 1.49e-07

Table B.6: Oversampled mesh sizes and achieved rms force errors for the Bessel window func-
tion and the B-spline window applied to cloud wall systems of different size. We
set rcut := 6.0 and ε := 10−7. See Table B.2 for the tuned parameters (α, m, σ,
b).

[4] G. Beylkin: On the fast Fourier transform of functions with singularities. Appl. Comput.
Harmon. Anal., 2:363 – 381, 1995.

[5] T. Darden, D. York, and L. Pedersen: Particle mesh Ewald: An N log(N) method for
Ewald sums in large systems. J. Chem. Phys., 98:10089–10092, 1993.

[6] M. Deserno and C. Holm: How to mesh up Ewald sums. I. A theoretical and numerical
comparison of various particle mesh routines. J. Chem. Phys., 109:7678 – 7693, 1998.

[7] M. Deserno and C. Holm: How to mesh up Ewald sums. II. An accurate error estimate for
the Particle-Particle-Particle-Mesh algorithm. J. Chem. Phys., 109:7694 – 7701, 1998.

[8] A.J.W. Duijndam and M.A. Schonewille: Nonuniform fast Fourier transform. Geo-
physics, 64:539 – 551, 1999.

[9] A. Dutt and V. Rokhlin: Fast Fourier transforms for nonequispaced data. SIAM J. Sci.
Stat. Comput., 14:1368 – 1393, 1993.

[10] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen: A smooth
particle mesh Ewald method. J. Chem. Phys., 103:8577 – 8593, 1995.

[11] P.P. Ewald: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys.,
369:253–287, 1921.

[12] K. Fourmont: Non equispaced fast Fourier transforms with applications to tomography.
J. Fourier Anal. Appl., 9:431 – 450, 2003.

[13] D. Frenkel and B. Smit: Understanding molecular simulation: From algorithms to appli-
cations. Academic Press, 2002.

[14] L. Greengard and J.Y. Lee: Accelerating the nonuniform fast Fourier transform. SIAM
Rev., 46:443 – 454, 2004.

37

[15] W. Hackbusch: Entwicklungen nach Exponentialsummen. Techn. rep., Max Planck
Institute for Mathematics in the Sciences, 2005. http://www.mis.mpg.de/de/
publications/andere-reihen/tr/report-0405.html.

[16] F. Hedman and A. Laaksonen: Ewald summation based on nonuniform fast Fourier
transform. Chem. Phys. Lett., 425:142 – 147, 2006.

[17] R.W. Hockney and J.W. Eastwood: Computer simulation using particles. Taylor &
Francis, Inc., Bristol, PA, USA, 1988.

[18] J.I. Jackson, C.H. Meyer, D.G. Nishimura, and A. Macovski: Selection of a convolution
function for Fourier inversion using gridding. IEEE Trans. Med. Imag., 10:473 – 478,
1991.

[19] M. Jacob: Optimized least-square nonuniform Fast Fourier Transform. IEEE Trans.
Signal Process., 57:2165 – 2177, 2009.

[20] J.F. Kaiser: Digital filters. In F.F. Kuo and J.F. Kaiser (eds.): System analysis by digital
computer. Wiley, New York, 1966.

[21] J. Keiner, S. Kunis, and D. Potts: Using NFFT3 - a software library for various noneq-
uispaced fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19, 1 – 30,
2009.

[22] J. Kolafa and J.W. Perram: Cutoff errors in the Ewald summation formulae for point
charge systems. Molecular Simulation, 9(5):351 – 368, 1992.

[23] S.W. de Leeuw, J.W. Perram, and E.R. Smith: Simulation of electrostatic systems in
periodic boundary conditions. I. Lattice sums and dielectric constants. Proc. Roy. Soc.
London Ser. A, 373:27 – 56, 1980.

[24] D. Lindbo and A.K. Tornberg: Spectral accuracy in fast Ewald-based methods for particle
simulations. J. Comput. Phys., 230:8744 – 8761, 2011.

[25] F. Nestler: Automated parameter tuning based on RMS errors for nonequispaced FFTs.
Preprint 2015-01, Faculty of Mathematics, Technische Universität Chemnitz, 2015.

[26] F. Nestler, M. Pippig, and D. Potts: Fast Ewald summation based on NFFT with mixed
periodicity. J. Comput. Phys., 285:280 – 315, 2015.

[27] M. Pippig: PFFT - An extension of FFTW to massively parallel architectures. SIAM J.
Sci. Comput., 35:C213 – C236, 2013.

[28] M. Pippig and D. Potts: Particle simulation based on nonequispaced fast Fourier trans-
forms. In G. Sutmann, P. Gibbon, and T. Lippert (eds.): Fast Methods for Long-Range
Interactions in Complex Systems, IAS-Series, pp. 131 – 158, Jülich, 2011. Forschungszen-
trum Jülich.

[29] M. Pippig and D. Potts: Parallel three-dimensional nonequispaced fast Fourier transforms
and their application to particle simulation. SIAM J. Sci. Comput., 35:C411 – C437, 2013.

[30] D. Potts and G. Steidl: Fast summation at nonequispaced knots by NFFTs. SIAM J. Sci.
Comput., 24:2013 – 2037, 2003.

38

http://www.mis.mpg.de/de/publications/andere-reihen/tr/report-0405.html
http://www.mis.mpg.de/de/publications/andere-reihen/tr/report-0405.html

[31] D. Potts, G. Steidl, and M. Tasche: Fast Fourier transforms for nonequispaced data:
A tutorial. In J.J. Benedetto and P.J.S.G. Ferreira (eds.): Modern Sampling Theory:
Mathematics and Applications, pp. 247 – 270, Boston, MA, USA, 2001. Birkhäuser.

[32] D. Potts and M. Tasche: Parameter estimation for nonincreasing exponential sums by
Prony-like methods. Linear Algebra Appl., 439:1024 – 1039, 2013.

[33] R. Roy and T. Kailath: ESPRIT—estimation of signal parameters via rotational invari-
ance techniques. IEEE Trans. Acoustic speech and Signal Process., 37:984 – 994, 1989.

[34] I.J. Schoenberg: Cardinal interpolation and spline functions. J. Approx. Theory, 2(2):167
– 206, 1969.

[35] G. Steidl: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput.
Math., 9:337 – 353, 1998.

[36] Y.L. Wang, F. Hedman, M. Porcu, F. Mocci, and A. Laaksonen: Non-uniform FFT and
its applications in particle simulations. App. Math., 5:520 – 541, 2014.

[37] Z.W. Wang and C. Holm: Estimate of the cutoff errors in the Ewald summation for
dipolar systems. J. Chem. Phys., 115:6277–6798, 2001.

[38] A.F. Ware: Fast approximate Fourier transforms for irregularly spaced data. SIAM Rev.,
40:838 – 856, 1998.

39

	Introduction
	The nonequispaced FFT
	Ewald summation and rms errors
	Rms force error in the short range part
	Rms force error in the long range part
	Parameter tuning

	NFFT based fast Ewald summation and rms errors
	Efficient computation of the resulting rms errors
	B-spline vs. Bessel window
	Parameter tuning and numerical examples

	Conclusion
	Proof of Lemma 4.1
	Tables

