Fast, exact and stable reconstruction of multivariate algebraic polynomials in Chebyshev form

Daniel Potts
Technische Universität Chemnitz
Faculty of Mathematics
09107 Chemnitz, Germany
Email: potts@mathematik.tu-chemnitz.de

Toni Volkmer
Technische Universität Chemnitz
Faculty of Mathematics
09107 Chemnitz, Germany
Email: toni.volkmer@mathematik.tu-chemnitz.de

Abstract

We describe a fast method for the evaluation of an arbitrary high-dimensional multivariate algebraic polynomial in Chebyshev form at the nodes of an arbitrary rank-1 Chebyshev lattice. Our main focus is on conditions on rank-1 Chebyshev lattices allowing for the exact reconstruction of such polynomials from samples along such lattices and we present an algorithm for constructing suitable rank-1 Chebyshev lattices based on a component-by-component approach. Moreover, we give a method for the fast, exact and stable reconstruction.

I. Introduction

We denote the Chebyshev polynomials of the first kind by $T_{k}:[-1,1] \rightarrow[-1,1], T_{k}(x):=\cos (k \arccos x), k \in \mathbb{N}_{0}$. Note that for each $k \in \mathbb{N}_{0}, T_{k}$ is an algebraic polynomial of degree $\operatorname{deg}\left(T_{k}\right)=k$ restricted to the domain $[-1,1]$. Moreover, we define the multivariate Chebyshev polynomials $T_{\boldsymbol{k}}:[-1,1]^{d} \rightarrow[-1,1], T_{\boldsymbol{k}}(\boldsymbol{x}):=\prod_{t=1}^{d} T_{k_{t}}\left(x_{t}\right)$ for $d \in \mathbb{N}$, $\boldsymbol{x}:=\left(x_{1}, \ldots, x_{d}\right)^{\top} \in[-1,1]^{d}$ and $\boldsymbol{k}:=\left(k_{1}, \ldots, k_{d}\right)^{\top} \in \mathbb{N}_{0}^{d}$.

Let $\Pi_{I}:=\operatorname{span}\left\{T_{\boldsymbol{k}}(\circ): \boldsymbol{k} \in I\right\}$, where $I \subset \mathbb{N}_{0}^{d}, d \in \mathbb{N}$, is a non-negative index set of finite cardinality, $|I|<\infty$. Then, each multivariate polynomial $p \in \Pi_{I}$ can be written as

$$
\begin{equation*}
p(\boldsymbol{x})=\sum_{\boldsymbol{k} \in I} a_{\boldsymbol{k}} T_{\boldsymbol{k}}(\boldsymbol{x})=\sum_{\boldsymbol{k} \in I} a_{\boldsymbol{k}} \prod_{t=1}^{d} T_{k_{t}}\left(x_{t}\right), \quad a_{\boldsymbol{k}} \in \mathbb{R} \tag{1}
\end{equation*}
$$

where $\boldsymbol{x} \in[-1,1]^{d}$. We remark that if the index set $I=I_{n}^{d}:=\left\{\boldsymbol{k} \in \mathbb{N}_{0}^{d}:\|\boldsymbol{k}\|_{1} \leq n\right\}, n \in \mathbb{N}_{0}$, is the ℓ_{1} ball, then Π_{I} is the space of all algebraic polynomials of (total) degree $\leq n$ in d variables restricted to the domain $[-1,1]^{d}$. Moreover, polynomials with hyperbolic cross index sets $I=H_{n}^{d}:=\left\{\boldsymbol{k} \in \mathbb{N}_{0}^{d}: \prod_{t=1}^{d} \max \left(1,\left|k_{t}\right|\right) \leq n\right\}$, where $n, d \in \mathbb{N}$, have already been used for approximations in sparse high-dimensional spectral Galerkin methods, cf. [1, Section 8.5].

In this paper, for a given arbitrary index set $I \subset \mathbb{N}_{0}^{d}$ of finite cardinality, we present a method for the fast evaluation of a polynomial p from (1) at the nodes $\boldsymbol{x}_{j}:=\cos \left(\frac{j}{M} \pi \boldsymbol{z}\right)$, $j=0, \ldots, M$, of a d-dimensional rank-1 Chebyshev lattice

$$
\tilde{\Lambda}(\boldsymbol{z}, M):=\left\{\boldsymbol{x}_{j}:=\cos \left(\frac{j}{M} \pi \boldsymbol{z}\right): j=0, \ldots, M\right\},
$$

where the generating vector $\boldsymbol{z} \in \mathbb{N}_{0}^{d}$ and the size parameter $M \in \mathbb{N}_{0}$, cf. [2] for a more general definition of d dimensional rank- k Chebyshev lattices. Moreover, we discuss
conditions on a rank-1 Chebyshev lattice $\tilde{\Lambda}(\boldsymbol{z}, M)$ such that the fast, exact and stable reconstruction of all coefficients $a_{\boldsymbol{k}}$, $\boldsymbol{k} \in I$, from sampling values $p\left(\boldsymbol{x}_{j}\right)$ taken at the corresponding nodes $\boldsymbol{x}_{j}, j=0, \ldots, M$, is possible. Both, for the fast evaluation and reconstruction, we only apply a single onedimensional discrete cosine transform of type I (DCT-I) and additionally compute simple index transforms, see also [3]. Note that for the special case $I=I_{n}^{d}$, constructions of rank-1 Chebyshev lattices suitable for the exact reconstruction were already discussed in [2], [4] and the references therein. Here, we present an algorithm based on component-by-component (CBC) construction for arbitrary index sets $I \subset \mathbb{N}_{0}^{d}$ using ideas from [5]-[7].

We remark that our considerations for the reconstruction of the coefficients $a_{k}, k \in I$, of a polynomial p from (1) with known index set $I \subset \mathbb{N}_{0}^{d}$ in this paper establish a basis for the reconstruction of a polynomial p with unknown index set I using a method similar to the one presented in [8].

The remaining parts of this paper are organized as follows: In Secion II, we give prerequisites for the subsequent sections. We discuss the fast evaluation and reconstruction in Section III. In Section IV, we point out relations of our results to existing work. Afterwards, in Section V, we present computed rank-1 Chebyshev lattices suitable for reconstruction. Finally, in Section VI, we summarize the results of this paper.

II. Prerequisites

A. One-dimensional DCT-I

First, we recall results for the fast reconstruction of a (one-dimensional algebraic) polynomial p. We are able to reconstruct the coefficients $a_{0}, \ldots, a_{n} \in \mathbb{R}$ of a polynomial p from (1) with $I:=I_{n}^{1}$ from sampling values $p\left(x_{j}\right)$ at the Chebyshev nodes $x_{j}:=\cos (j \pi / n), j=0, \ldots, n$. For this, we apply a one-dimensional DCT-I to the sampling values $p\left(x_{j}\right)$ and we obtain $\sum_{j=0}^{n}\left(\varepsilon_{j}^{n}\right)^{2} p\left(x_{j}\right) \cos (j k \pi / n)=$ $\sum_{k^{\prime} \in I_{n}^{1}} a_{k^{\prime}} \sum_{j=0}^{n}\left(\varepsilon_{j}^{n}\right)^{2} \cos \left(j k^{\prime} \pi / n\right) \cos (j k \pi / n)$ for $k \in I_{n}^{1}$, $\varepsilon_{l}^{n}:=1 / \sqrt{2}$ for $l \in\{0, n\}$ and $\varepsilon_{l}^{n}:=1$ for $l \in\{1, \ldots, n-1\}$, since $T_{k}\left(x_{j}\right)=T_{k}(\cos (j \pi / n))=\cos (j k \pi / n)$. Due to

$$
\begin{equation*}
\frac{2}{n} \varepsilon_{k}^{n} \varepsilon_{k^{\prime}}^{n} \sum_{j=0}^{n}\left(\varepsilon_{j}^{n}\right)^{2} \cos \left(\frac{j k \pi}{n}\right) \cos \left(\frac{j k^{\prime} \pi}{n}\right)=\delta_{k, k^{\prime}}, k, k^{\prime} \in I_{n}^{1}, \tag{2}
\end{equation*}
$$

Fig. 1. Index sets $I_{8}^{2}, \mathcal{M}\left(I_{8}^{2}\right), \mathcal{M}_{1}\left(I_{8}^{2}\right), \mathcal{M}_{2}\left(I_{8}^{2}\right)$ (from left to right).
where $\delta_{k, k^{\prime}}$ is Kronecker's delta, see e.g. [9, Section 2.4], this yields $a_{k}=\frac{2\left(\varepsilon_{k}^{n}\right)^{2}}{n} \sum_{j=0}^{n}\left(\varepsilon_{j}^{n}\right)^{2} p\left(x_{j}\right) \cos (j k \pi / n)$ for $k \in I_{n}^{1}$. Note that the DCT-I can be computed by means of a fast algorithm in $\mathcal{O}(n \log n)$ arithmetic operations.

B. Index sets and tensor-products of cosines

Let $I \subset N_{0}^{d}$ be an arbitrary index set of finite cardinality. For the description of the approach for the fast evaluation and reconstruction, we define the extended symmetric index set

$$
\mathcal{M}(I):=\left\{\boldsymbol{h} \in \mathbb{Z}^{d}:\left(\left|h_{1}\right|, \ldots,\left|h_{d}\right|\right)^{\top} \in I\right\}
$$

which contains all frequencies $k \in I$ and versions of these frequencies \boldsymbol{k} mirrored at all coordinate axes. Moreover, we define the index sets

$$
\mathcal{M}_{s}(I):=\left\{\boldsymbol{h} \in \mathcal{M}(I): h_{s} \geq 0\right\}, s \in\{1, \ldots, d\}
$$

which contain all frequencies $k \in I$ and versions of these frequencies mirrored at all coordinate axes except the s-th. For instance, in the case $d=2$ and $n=8$, the index set I_{8}^{2} as well as the corresponding extended symmetric index set $\mathcal{M}\left(I_{8}^{2}\right)$ and mirrored index sets $\mathcal{M}_{1}\left(I_{8}^{2}\right), \mathcal{M}_{2}\left(I_{8}^{2}\right)$ are depicted in Fig. 1.

Next, we remark that for $y_{1}, y_{2} \in \mathbb{R}$, we have $\cos \left(y_{1}\right) \cos \left(y_{2}\right)=\frac{1}{2}\left(\cos \left(y_{1}+y_{2}\right)+\cos \left(y_{1}-y_{2}\right)\right)$. Using induction on the dimension $d \in \mathbb{N}$ and due to $\cos (x)=\cos (-x)$ for all $x \in \mathbb{R}$, we obtain for $\boldsymbol{y}:=\left(y_{1}, \ldots, y_{d}\right)^{\top} \in \mathbb{R}$

$$
\begin{align*}
\prod_{t=1}^{d} \cos \left(y_{t}\right) & =\sum_{\boldsymbol{m} \in \mathcal{M}_{s}(\{\mathbf{1}\})} \frac{1}{2^{d-1}} \cos (\boldsymbol{m} \cdot \boldsymbol{y}) \tag{3}\\
& =\sum_{\boldsymbol{m} \in \mathcal{M}(\{\mathbf{1}\})} \frac{1}{2^{d}} \cos (\boldsymbol{m} \cdot \boldsymbol{y}) \tag{4}
\end{align*}
$$

where $\mathbf{1}:=(1, \ldots, 1)^{\top} \in \mathbb{N}^{d}$ and $\boldsymbol{m} \cdot \boldsymbol{y}:=\sum_{t=1}^{d} m_{t} y_{t}$.

III. Fast evaluation and reconstruction of MULTIVARIATE POLYNOMIALS FROM Π_{I} ALONG RANK- 1 Chebyshev lattices using DCT-I

A. Fast evaluation at the nodes of rank-1 Chebyshev lattices

Briefly, we describe a simple method for the fast evaluation of a polynomial p from (1) with arbitrary index set $I \subset \mathbb{N}_{0}^{d}$ at the nodes $\boldsymbol{x}_{j}:=\cos \left(\frac{j}{M} \pi \boldsymbol{z}\right), j=0, \ldots, M$, of an arbitrary d-dimensional rank-1 Chebyshev lattice $\tilde{\Lambda}(\boldsymbol{z}, M)$. Examples for two-dimensional rank-1 Chebyshev lattices are shown in Fig. 2. We remark that not all $(M+1)$ nodes \boldsymbol{x}_{j},

(a) $\boldsymbol{z}:=(8,9)^{\top}$,
$M:=72$,
$|\tilde{\Lambda}(\boldsymbol{z}, M)|=45$.

(b) $\boldsymbol{z}:=(8,9)^{\top}$, $M_{\tilde{N}}:=73$,
$|\tilde{\Lambda}(\boldsymbol{z}, M)|=74$.

(c) $\boldsymbol{z}:=(1,16)^{\top}$,
$M_{\tilde{N}}:=76$,
$|\tilde{\Lambda}(\boldsymbol{z}, M)|=77$.

Fig. 2. Rank-1 Chebyshev lattices $\tilde{\Lambda}(\boldsymbol{z}, M)$.
$j=0, \ldots, M$, have to be distinct, i.e., $|\tilde{\Lambda}(\boldsymbol{z}, M)| \in\{1, \ldots$, $M+1\}$, see Fig. 2a. Due to (3), we have

$$
p\left(\boldsymbol{x}_{j}\right)=\sum_{\boldsymbol{k} \in I} \frac{a_{\boldsymbol{k}}}{2^{d-1}} \sum_{\boldsymbol{m} \in \mathcal{M}_{s}(\{\mathbf{1}\})} \cos \left(\frac{j}{M} \pi(\boldsymbol{m} \odot \boldsymbol{k}) \cdot \boldsymbol{z}\right)
$$

$j=0, \ldots, M$, for any $s \in\{1, \ldots, d\}$ and for each polynomial p from (1), where $\boldsymbol{m} \odot \boldsymbol{k}:=\left(m_{1} k_{1}, \ldots, m_{d} k_{d}\right)^{\top}$. For $M \in \mathbb{N}$ and $l \in \mathbb{Z}$, we define the even-mod relation

$$
l \operatorname{emod} M:= \begin{cases}l \bmod (2 M), & l \bmod (2 M) \leq M \\ 2 M-(l \bmod (2 M)) & \text { else }\end{cases}
$$

as well as in the special case $M=0, l \operatorname{emod} 0:=0$ for $l \in \mathbb{Z}$. For each $l \in I_{M}^{1}$, we consider the frequencies $\boldsymbol{k} \in I$ and $\boldsymbol{m} \in \mathcal{M}_{s}(\{\mathbf{1}\})$, such that $l=(\boldsymbol{m} \odot \boldsymbol{k}) \cdot \boldsymbol{z} \operatorname{emod} M$. Since we have $\cos (j l \pi / M)=\cos \left(\frac{j}{M} \pi(\boldsymbol{m} \odot \boldsymbol{k}) \cdot \boldsymbol{z}\right)$ for $j=$ $0, \ldots, M$ in the case $l=(\boldsymbol{m} \odot \boldsymbol{k}) \cdot \boldsymbol{z} \operatorname{emod} M$, we obtain $p\left(\boldsymbol{x}_{j}\right)=\sum_{l=0}^{M}\left(\varepsilon_{l}^{M}\right)^{2} \hat{b}_{l} \cos (j l \pi / M)$, where the coefficients

$$
\begin{equation*}
\hat{b}_{l}:=\sum_{\boldsymbol{k} \in I} \sum_{\substack{\boldsymbol{m} \in \mathcal{M}_{s}(\{\mathbf{1}\}) \\(\boldsymbol{m} \odot \boldsymbol{k}) \cdot \boldsymbol{z e m o d} M=l}} \frac{a_{\boldsymbol{k}}}{2^{d-1}\left(\varepsilon_{l}^{M}\right)^{2}} \quad \text { for } l \in I_{M}^{1} \tag{5}
\end{equation*}
$$

Therefore, for any $s \in\{1, \ldots, d\}$, we build the index set $\mathcal{M}_{s}(I)$ and we compute the coefficients \hat{b}_{l} by (5) for $l \in I_{M}^{1}$. Then, we apply a one-dimensional DCT-I to these coefficients \hat{b}_{l} and this yields the function values $p\left(\boldsymbol{x}_{j}\right)$ for $j=0, \ldots, M$. In total, we require $\mathcal{O}\left(M \log M+d 2^{d}|I|\right)$ arithmetic operations.

B. Fast, exact and stable reconstruction

In this section, we consider the fast reconstruction of a polynomial p from (1) with arbitrary index set $I \subset \mathbb{N}_{0}^{d},|I|<\infty$. Our approach is based on applying a one-dimensional DCT-I to the sampling values $p\left(\boldsymbol{x}_{j}\right)$ at the nodes $\boldsymbol{x}_{j}:=\cos (j \pi \boldsymbol{z} / M)$, $j=0, \ldots, M$, of a rank-1 Chebyshev lattice $\tilde{\Lambda}(\boldsymbol{z}, M)$ fulfilling a certain property. Concretely, we compute the coefficients

$$
\begin{align*}
\hat{a}_{l} & :=\sum_{j=0}^{M}\left(\varepsilon_{j}^{M}\right)^{2} p\left(\boldsymbol{x}_{j}\right) \cos \left(\frac{j l}{M} \pi\right) \tag{6}\\
& =\sum_{j=0}^{M}\left(\varepsilon_{j}^{M}\right)^{2} \sum_{\boldsymbol{k} \in I} a_{\boldsymbol{k}}\left(\prod_{t=1}^{d} \cos \left(\frac{j}{M} \pi k_{t} z_{t}\right)\right) \cos \left(\frac{j l}{M} \pi\right)
\end{align*}
$$

for $l \in I_{M}^{1}$. Due to (4), this means $\hat{a}_{l}=$
$\sum_{\boldsymbol{k} \in I} \frac{a_{\boldsymbol{k}}}{2^{d}} \sum_{\boldsymbol{m} \in \mathcal{M}(\{\mathbf{1}\})} \sum_{j=0}^{M}\left(\varepsilon_{j}^{M}\right)^{2} \cos \left(\frac{j}{M} \pi(\boldsymbol{m} \odot \boldsymbol{k}) \cdot \boldsymbol{z}\right) \cos \left(\frac{j l}{M} \pi\right)$

Fig. 3. Examples for hyperbolic cross index sets $I=H_{n}^{2}$ and corresponding rank-1 Chebyshev lattices $\tilde{\Lambda}(\boldsymbol{z}, M)$ fulfilling condition (7).

Fig. 4. Examples for arbitrarily chosen index sets $I \subset \mathbb{N}_{0}^{2}$ and corresponding rank-1 Chebyshev lattices $\tilde{\Lambda}(\boldsymbol{z}, M)$ fulfilling condition (7).
for $l \in I_{M}^{1}$ and we consider the indices $l:=\boldsymbol{k} \cdot \boldsymbol{z} \operatorname{emod} M$ for $\boldsymbol{k} \in I$. Since we have $\{\boldsymbol{m} \odot \boldsymbol{k}: \boldsymbol{m} \in \mathcal{M}(\{\mathbf{1}\})\}=\mathcal{M}(\{\boldsymbol{k}\})$ for $\boldsymbol{k} \in I$ and due to the orthogonality condition (2), we are able to exactly reconstruct all the coefficients $a_{k}, \boldsymbol{k} \in I$, of the polynomial p from (1) using the computed coefficients $\hat{a}_{l}, l:=\boldsymbol{k} \cdot \boldsymbol{z} \operatorname{emod} M$ for $\boldsymbol{k} \in I$, from (6) if and only if

$$
\begin{align*}
& \boldsymbol{k} \cdot \boldsymbol{z} \operatorname{emod} M \neq \boldsymbol{h} \cdot \boldsymbol{z} \operatorname{emod} M \\
& \text { for all } \boldsymbol{k} \in I \text { and } \boldsymbol{h} \in \mathcal{M}(I), \boldsymbol{k} \neq\left(\left|h_{1}^{\prime}\right|, \ldots,\left|h_{d}^{\prime}\right|\right)^{\top} . \tag{7}
\end{align*}
$$

Examples for two-dimensional hyperbolic cross index sets $I=H_{4}^{2}$ and $I=H_{8}^{2}$ with corresponding rank-1 Chebyshev lattices $\tilde{\Lambda}(\boldsymbol{z}, M)$ fulfilling condition (7) are depicted in Fig. 3 as well as two-dimensional examples for index sets I with less structure with corresponding $\tilde{\Lambda}(\boldsymbol{z}, M)$ in Fig. 4. Moreover, the rank-1 Chebyshev lattices $\tilde{\Lambda}(\boldsymbol{z}, M)$ in Fig. 2 fulfill condition (7) for the ℓ_{1}-ball index set $I=I_{8}^{2}$ in Fig. 1.

Due to the symmetry of the emod operator, we can reduce the number of tests in condition (7) by a factor of (about) two.

Lemma III.1. For $M \in \mathbb{N}_{0}$ and $l \in \mathbb{Z}$, we have $l \mathrm{emod} M=$ $(-l)$ emod M.
Proof. Considering the two different cases in the definition of the emod operator, the assertion follows straight forward.

Lemma III.2. For a given arbitrary index set $I \subset \mathbb{N}_{0}^{d}$ of finite cardinality, $|I|<\infty$, let $\tilde{I} \subset \mathbb{Z}^{d}$ be an arbitrary index set with the property $\mathcal{M}(I)=\tilde{I} \cup\{-\boldsymbol{h}: \boldsymbol{h} \in \tilde{I}\}$. Then, condition (7) is equivalent to

$$
\begin{aligned}
& \boldsymbol{k} \cdot \boldsymbol{z} \operatorname{emod} M \neq \boldsymbol{h} \cdot \boldsymbol{z} \operatorname{emod} M \\
& \text { for all } \boldsymbol{k} \in I \text { and } \boldsymbol{h} \in \tilde{I}, \boldsymbol{k} \neq\left(\left|h_{1}^{\prime}\right|, \ldots,\left|h_{d}^{\prime}\right|\right)^{\top} .
\end{aligned}
$$

Proof. Due to $(-\boldsymbol{h}) \cdot \boldsymbol{z}=-(\boldsymbol{h} \cdot \boldsymbol{z})$ for $\boldsymbol{h} \in \mathbb{Z}^{d}$, we obtain

$$
\begin{equation*}
(-\boldsymbol{h}) \cdot \boldsymbol{z} \operatorname{emod} M=\boldsymbol{h} \cdot \boldsymbol{z} \operatorname{emod} M \text { for } \boldsymbol{h} \in \mathbb{Z}^{d} \tag{8}
\end{equation*}
$$

from Lemma III. 1 and the assertion follows.

Input: index set $I_{\text {input }} \subset \mathbb{N}_{0}^{d}$, parameter $s \in\{1, \ldots, d\}$.
Determine suitable initial size parameter $M_{\text {start }}$, see e.g.
Remark IV.4.
for $t:=1, \ldots, d$ do
for $z_{t}:=0, \ldots, M_{\text {start }}$ do
if Condition (9) is valid for
$I:=\left\{\left(k_{1}, \ldots, k_{t}\right)^{\top}: \boldsymbol{k} \in I_{\text {input }}\right\}$,
$\boldsymbol{z}:=\left(z_{1}, \ldots, z_{t}\right)^{\top}, M:=M_{\text {start }}$ then break
end if
end for
end for
for $M:=\left|I_{\text {input }}\right|-1, \ldots, M_{\text {start }}$ do
if Condition (9) is valid for $I:=I_{\text {input }}$,
$\boldsymbol{z}:=\left(z_{1}, \ldots, z_{d}\right)^{\top}, M$ then
break
end if
end for
Output: generating vector $\boldsymbol{z} \in \mathbb{N}_{0}^{d}$ and size parameter $M \in \mathbb{N}_{0}$ fulfilling condition (7) for index set $I:=I_{\text {input }}$.

Fig. 5. Algorithm for construction of rank-1 Chebyshev lattice $\tilde{\Lambda}(\boldsymbol{z}, M)$ suitable for reconstruction of multivariate polynomials (1) supported on the index set $I:=I_{\text {input }}$.

Corollary III.3. For any $s \in\{1, \ldots, d\}$, condition (7) is equivalent to

$$
\boldsymbol{k} \cdot \boldsymbol{z} \operatorname{emod} M \neq \boldsymbol{h} \cdot \boldsymbol{z} \operatorname{emod} M
$$

$$
\begin{equation*}
\text { for all } \boldsymbol{k} \in I \text { and } \boldsymbol{h} \in \mathcal{M}_{s}(I), \boldsymbol{k} \neq\left(\left|h_{1}^{\prime}\right|, \ldots,\left|h_{d}^{\prime}\right|\right)^{\top} . \tag{9}
\end{equation*}
$$

If condition (7) or (9) is fulfilled, we can reconstruct the coefficients $a_{k}, k \in I$, in the following way. We apply a DCT-I to the sampling values $p\left(\boldsymbol{x}_{j}\right)=p(\cos (j \pi \boldsymbol{z} / M)), j=$ $0, \ldots, M$, which yields the coefficients $\hat{a}_{l}, l \in I_{M}^{1}$, in (6). Then, we obtain the coefficients of the polynomial p by $a_{k}=$
$\frac{2\left(\varepsilon_{\boldsymbol{k} \cdot \boldsymbol{z} \mathrm{emod} M}^{M}\right)^{2}}{M} \hat{a}_{\boldsymbol{k} \cdot \boldsymbol{z} \operatorname{emod} M}$
$\cdot \frac{2^{d-1}}{\left|\left\{\boldsymbol{m} \in \mathcal{M}_{s}(\{\mathbf{1}\}):(\boldsymbol{m} \odot \boldsymbol{k}) \cdot \boldsymbol{z} \mathrm{emod} M=\boldsymbol{k} \cdot \boldsymbol{z} \mathrm{emod} M\right\}\right|}$ for all $\boldsymbol{k} \in I$ and any $s \in\{1, \ldots, d\}$.

Using a fast algorithm for the DCT-I, this computation can be performed in $\mathcal{O}\left(M \log M+d 2^{d}|I|\right)$ arithmetic operations.

Again, we stress the fact that the index set $I \subset \mathbb{N}_{0}^{d}$, $|I|<\infty$, may be arbitrarily chosen. Upper bounds on the size parameter M for the existence of a rank-1 Chebyshev lattice $\tilde{\Lambda}(\boldsymbol{z}, M)$ fulfilling condition (7) are discussed in Section IV-B. A method for the construction of a suitable generating vector $\boldsymbol{z} \in \mathbb{N}_{0}^{d}$ is described in the following subsection.

C. Construction of suitable rank-1 Chebyshev lattices

In Fig. 5, we present an algorithm for the construction of a rank-1 Chebyshev lattice $\tilde{\Lambda}(\boldsymbol{z}, M)$ which allows for the exact reconstruction of the coefficients $a_{k}, k \in I$, of a polynomial p from (1) based on samples taken at the nodes of $\tilde{\Lambda}(\boldsymbol{z}, M)$,
where $I \subset \mathbb{N}_{0}^{d},|I|<\infty$, is an arbitrary index set. Our algorithm is based on [7, Algorithm 1 and 2] and uses a CBC search for the generating vector $\boldsymbol{z} \in \mathbb{N}_{0}^{d}$.

IV. RELATIONS TO EXISTING WORK

A. Padua points and higher-dimensional rank-s Chebyshev lattices

In [10], special sampling points were discussed in the two-dimensional case, so-called Padua points. For a parameter $n \in \mathbb{N}$, these are the nodes $\boldsymbol{x}_{j}:=$ $(\cos (j \pi /(n+1)), \cos (j \pi / n))^{\top}=\cos (j \pi \boldsymbol{z} / M), j=$ $0, \ldots, M$, of the rank-1 Chebyshev lattice $\mathcal{A}_{n}:=\tilde{\Lambda}(\boldsymbol{z}, M)$, where the generating vector $\boldsymbol{z}:=(n, n+1)^{\top}$ and the size parameter $M:=n(n+1)$. As discussed in [10, Section 2], the Padua point set \mathcal{A}_{n} only consists of $\binom{n+2}{2}=\frac{n^{2}}{2}+\frac{3}{2} n+1$ distinct points, whereas $M=n^{2}+n$.
Lemma IV.1. Let the index set $I=I_{n}^{2}:=\left\{\boldsymbol{k} \in \mathbb{N}_{0}^{2}: k_{1}+k_{2} \leq\right.$ $n\}, n \in \mathbb{N}_{0}$, be the ℓ_{1}-ball. Then, condition (7) is fulfilled and we can exactly reconstruct the coefficients $a_{\boldsymbol{k}}, \boldsymbol{k} \in I$, of a polynomial p from (1) from sampling values at the nodes of the Padua point set \mathcal{A}_{n} using (6).

Proof. The case $n=0$ is trivial. For $n \in \mathbb{N}$, we show condition (9) for $s=1$, which is equivalent to condition (7) due to Corollary III.3. Let $\boldsymbol{z}:=(n, n+1)^{\top}$ and $M:=n(n+1)$ as well as let arbitrary frequencies $\boldsymbol{k} \in I$ and $\boldsymbol{h} \in \mathcal{M}_{1}(I)=\left\{\boldsymbol{h} \in \mathbb{N}_{0} \times \mathbb{Z}: h_{1}+\left|h_{2}\right| \leq n\right\}$ with $\boldsymbol{k} \neq\left(\left|h_{1}\right|, \ldots,\left|h_{d}\right|\right)^{\top}$ be given. We show that $\boldsymbol{k} \cdot \boldsymbol{z} \operatorname{emod} M \neq$ $\boldsymbol{h} \cdot \boldsymbol{z}$ emod follows. For this, we assume the contrary, i.e., $\boldsymbol{k} \cdot \boldsymbol{z} \operatorname{emod} M=\boldsymbol{h} \cdot \boldsymbol{z} \operatorname{emod} M$. We obtain that the only solution for this condition is $\boldsymbol{k}=\boldsymbol{h}$ for $h_{2} \geq 0$ and $h_{2}<0$, which is a contradiction to the requirement $\boldsymbol{k} \neq\left(\left|h_{1}^{\prime}\right|, \ldots,\left|h_{d}^{\prime}\right|\right)^{\top}$.

In [4], an extensive search for higher-rank Chebyshev lattices allowing for the reconstruction of polynomials p from (1) with ℓ_{1}-ball index sets $I:=I_{n}^{d}$ was performed and numerical results for the cases $d=3,4,5$ were presented.

B. Reconstructing rank-1 lattices of multivariate trigonometric polynomials

In the following, we briefly show the relation to reconstructing rank-1 lattices of multivariate trigonometric polynomials from [7].
Theorem IV.2. Let $I \subset \mathbb{N}_{0}^{d}$ be an arbitrary index set of finite cardinality, $|I|<\infty$. Moreover, let $\Lambda(\boldsymbol{z}, \hat{M}):=\left\{\boldsymbol{y}_{j}:=\right.$ $\left.\frac{j}{\hat{M}} \boldsymbol{z} \bmod 1: j=0, \ldots, \hat{M}-1\right\}$ be a reconstructing rank-1 lattice with generating vector $\boldsymbol{z} \in \mathbb{N}_{0}^{d}$ and even rank-1 lattice size $\hat{M} \in 2 \mathbb{N}$ for the extended symmetric index set $\mathcal{M}(I)$, i.e.,

$$
\begin{equation*}
\boldsymbol{h} \cdot \boldsymbol{z} \not \equiv \boldsymbol{h}^{\prime} \cdot \boldsymbol{z}(\bmod \hat{M}) \text { for all } \boldsymbol{h}, \boldsymbol{h}^{\prime} \in \mathcal{M}(I), \boldsymbol{h} \neq \boldsymbol{h}^{\prime} . \tag{10}
\end{equation*}
$$

Then, the rank-1 Chebyshev lattice $\tilde{\Lambda}\left(\boldsymbol{z}, \frac{\hat{M}}{2}\right)$ fulfills condition (7), i.e., we are able to exactly reconstruct the coefficients of a polynomial from (1) using samples at the nodes of $\tilde{\Lambda}\left(\boldsymbol{z}, \frac{\hat{M}}{2}\right)$.

Proof. We consider the values
$\boldsymbol{h} \cdot \boldsymbol{z} \operatorname{emod} \frac{\hat{M}}{2}= \begin{cases}\boldsymbol{h} \cdot \boldsymbol{z} \bmod \hat{M}, & \boldsymbol{h} \cdot \boldsymbol{z} \bmod \hat{M} \leq \frac{\hat{M}}{2}, \\ \hat{M}-(\boldsymbol{h} \cdot \boldsymbol{z} \bmod \hat{M}) & \text { else, }\end{cases}$
for $\boldsymbol{h} \in \mathcal{M}(I)$. Due to property (10), all values $\boldsymbol{h} \cdot \boldsymbol{z} \bmod \hat{M}$ are distinct for $\boldsymbol{h} \in \mathcal{M}(I)$ and we obtain for each $l \in I_{\hat{M} / 2}^{1}$ that one of the following three cases may occur: Either

1. exactly two distinct frequencies $\boldsymbol{h}, \boldsymbol{h}^{\prime} \in \mathcal{M}(I)$ exist such that $\boldsymbol{h} \cdot \boldsymbol{z} \operatorname{emod} \frac{\hat{M}}{2}=\boldsymbol{h}^{\prime} \cdot \boldsymbol{z} \operatorname{emod} \frac{\hat{M}}{2}=l$, or
2. exactly one frequency $\boldsymbol{h} \in \mathcal{M}(I)$ exists such that
$\boldsymbol{h} \cdot \boldsymbol{z} \operatorname{emod} \frac{\hat{M}}{2}=l$, or
3. such a frequency does not exist for l.

In the first case, $\boldsymbol{h}^{\prime}=-\boldsymbol{h}$ follows, since for each $\boldsymbol{h} \in$ $\mathcal{M}(I) \backslash\{\mathbf{0}\}$, also the frequency $-\boldsymbol{h} \in \mathcal{M}(I) \backslash\{\mathbf{0}\}$ and we have (8) with $M:=\frac{\hat{M}}{2}$, i.e., $(-\boldsymbol{h}) \cdot \boldsymbol{z} \operatorname{emod} \frac{\hat{M}}{2}=\boldsymbol{h} \cdot \boldsymbol{z} \operatorname{emod} \frac{\hat{M}}{2}=l$. The second case can only occur for $\boldsymbol{h}=\mathbf{0}$, since otherwise the (non-zero) frequency $-\boldsymbol{h} \in \mathcal{M}(I) \backslash\{\mathbf{0}\},-\boldsymbol{h} \neq \boldsymbol{h}$, and this would yield $(-\boldsymbol{h}) \cdot \boldsymbol{z} \operatorname{emod} \frac{\hat{M}}{2}=\boldsymbol{h} \cdot \boldsymbol{z} \operatorname{emod} \frac{\hat{M}}{2}$ which corresponds to the first case. In total, we obtain $\boldsymbol{h} \cdot \boldsymbol{z} \operatorname{emod} \frac{\hat{M}}{2} \neq$ $\boldsymbol{h}^{\prime} \cdot \boldsymbol{z} \operatorname{emod} \frac{\hat{M}}{2}$ for all $\boldsymbol{h}, \boldsymbol{h}^{\prime} \in \mathcal{M}(I),\left(\left|h_{1}\right|, \ldots,\left|h_{d}\right|\right)^{\top} \neq$ $\left(\left|h_{1}^{\prime}\right|, \ldots,\left|h_{d}^{\prime}\right|^{\top}\right)^{\top}$, implying condition (7).

Remark IV.3. Condition (7) and (10) with $\hat{M}=2 M$ are not equivalent in general. For instance, the generating vector $\boldsymbol{z}:=(8,9)^{\top}$ and size parameter $M:=72$ from Fig. 2a fulfill condition (7) for $I=I_{8}^{2}$ but not condition (10) with $\hat{M}=2 M$. However, there exist special cases where both conditions are fulfilled, see e.g. the examples in Fig. $2 b$ and $2 c$ which fulfill condition (7) as well as condition (10).

Remark IV.4. There always exists a reconstructing rank-1 lattice $\Lambda(\boldsymbol{z}, \hat{M})$ for $\mathcal{M}(I)$ with even rank-1 lattice size

$$
\hat{M} \leq 2 \max \left\{\frac{2}{3}\left(|\mathcal{M}(I)|^{2}-|\mathcal{M}(I)|+8\right), \max _{\boldsymbol{k} \in I} 3\|\boldsymbol{k}\|_{\infty}\right\}
$$

and consequently a rank-1 Chebyshev lattice $\tilde{\Lambda}(\boldsymbol{z}, M)$ with size parameter $M:=\hat{M} / 2$. This result is due to $[8$, Theorem 2.1] which is a direct consequence of the results from [7].

C. Tent-transformed rank-1 lattices for cosine polynomials

In [11], [12], tent-transformed rank-1 lattices $P_{\phi}(\boldsymbol{z}, \hat{M}):=$ $\{\phi(j \boldsymbol{z} / \hat{M} \bmod \mathbf{1}): j=0, \ldots, \hat{M}-1\}$, fulfilling a condition equivalent to (10) are used, where $\boldsymbol{z} \in \mathbb{N}_{0}^{d}, \hat{M} \in \mathbb{N}$ and the tent transform $\phi:[0,1] \rightarrow[0,1], \phi(x):=1-$ $|2 x-1|$, is component-wise applied. Then, the exact reconstruction of cosine polynomials $\tilde{p}:[0,1] \rightarrow \mathbb{R}, \tilde{p}(\boldsymbol{x}):=$ $\sum_{k \in I} \tilde{a}_{\boldsymbol{k}} \prod_{t=1}^{d} \cos \left(\pi k_{t} x_{t}\right), I \subset \mathbb{N}_{0}^{d}$, can be performed by applying a fast Fourier transform to samples at these nodes, cf. [12]. Note that these polynomials \tilde{p} are not algebraic polynomials in general.

TABLE I
Cardinalities of ℓ_{1}-Ball Index Sets I_{n}^{d} as well as Size Parameters M of Corresponding Rank-1 Chebyshev Lattices $\Lambda(\boldsymbol{z}, M)$, where M Fulfills Condition (7) and $\bar{M}=2 M$ CONDITION (10) FOR $I:=I_{n}^{d}$.

Parameters		Cardinalities		Condition (7) / (9) / (10)	
d	n	$\left\|I_{n}^{d}\right\|$	$\left\|\mathcal{M}_{1}\left(I_{n}^{d}\right)\right\|$	$M=\frac{\hat{M}}{2}$	$\frac{M+1}{\left\|I_{n}^{d}\right\|}$
2	64	2145	4225	4192	1.95
2	128	8385	16641	16576	1.98
2	256	33153	66049	65920	1.99
3	16	969	3281	4265	4.40
3	32	6545	23969	33361	5.10
3	64	47905	183105	264353	5.52
4	8	495	2241	2693	5.44
4	16	4845	28033	37865	7.82
4	32	58905	396033	565073	9.59
5	4	126	501	630	5.01
5	8	1287	8361	14276	11.09
5	16	20349	192593	393361	19.33
6	4	210	985	1461	6.96
6	8	3003	26577	63369	21.10
6	16	74613	1110049	3242322	43.46
7	4	330	1765	2777	8.42
7	8	6435	74313	223332	34.71
7	16	245157	5529233	21254517	86.70
8	2	45	129	116	2.60
8	4	495	2945	5645	11.41
8	8	12870	187137	733748	57.01
9	2	55	163	152	2.78
9	4	715	4645	10760	15.05
9	8	24310	432073	2252367	92.65
10	2	66	201	202	3.08
10	4	1001	7001	19423	19.40
10	8	43758	927441	5912807	135.13

V. Numerical results

Using the algorithm in Fig. 5, we construct rank-1 Chebyshev lattices $\tilde{\Lambda}(\boldsymbol{z}, M)$ fulfilling condition (7) for the ℓ_{1}-ball index sets $I:=I_{n}^{d}$ for various refinements $n \in \mathbb{N}$ and dimensions d. The corresponding size parameters M and oversampling factors $(M+1) /\left|I_{n}^{d}\right|$ are shown in Table I. Additionally, we apply [7, Algorithm 1 and 2] to the extended symmetric index sets $\mathcal{M}\left(I_{n}^{d}\right)$ with the modification that an even rank-1 lattice size $\hat{M} \in 2 \mathbb{N}$ is returned. We obtain reconstructing rank-1 lattices $\Lambda(\boldsymbol{z}, \hat{M})$ for $\mathcal{M}\left(I_{n}^{d}\right)$ and consequently rank-1 Chebyshev lattices $\tilde{\Lambda}(\boldsymbol{z}, \hat{M} / 2)$ fulfilling condition (7) for I_{n}^{d} due to Theorem IV.2. For the dimensions d and refinements n in Table I except the case $d=7$ and $n=16$, these rank- 1 Chebyshev lattices are identical to the ones constructed by the algorithm in Fig. 5. In the mentioned case, the algorithm in Fig. 5 yielded a slightly larger size parameter $M=21344934$. The reason for this is the greedy search for the generating vector \boldsymbol{z} with fixed initial size parameter $M=M_{\text {start }}$ and both approaches returned a distinct generating vector \boldsymbol{z}. If we run the algorithm in Fig. 5 setting $M_{\text {start }}:=21254517$, then

TABLE II
Cardinalities of Hyperbolic Cross Index Sets H_{n}^{d} as well as Size Parameters $M:=\widetilde{M}$ and $M:=\hat{M} / 2$ of Corresponding Rank-1 Chebyshev Lattices $\tilde{\Lambda}(\boldsymbol{z}, M)$ Fulfilling Condition (7) AND (10) FOR $I:=H_{n}^{d}$, RESPECTIVELY.

Parameters		Card.	Condition (7) / (9)	Condition (10)	
	n	$\left\|H_{n}^{d}\right\|$	\widetilde{M}	$\frac{\widetilde{M}+1}{\left\|H_{n}^{d}\right\|}$	$\hat{M} / 2$
2	256	1979	66050	33.38	66050
2	512	4305	263170	61.13	263170
2	1024	9311	1050626	112.84	1050626
3	256	10303	302883	29.40	359075
3	512	23976	1424613	59.42	1424662
3	1024	55202	4600672	83.34	5560838
4	128	17700	860284	48.60	1083747
4	256	44403	3136383	70.63	4355469
4	512	109395	14659035	134.00	19550612
5	64	23853	1382832	57.97	1703741
5	128	64373	6843471	106.31	9138634
5	256	170299	31997990	187.89	41255293
6	16	8684	303396	34.94	557773
6	32	26088	1751513	67.14	2867903
6	64	76433	8979932	117.49	13603339
7	8	7184	291267	40.54	529877
7	16	23816	1659143	69.67	3575914
7	32	75532	10375340	137.36	21375543
8	4	5120	196522	38.38	629597
8	8	18176	1334559	73.42	2975159
8	16	63328	8615461	136.05	22270727
9	2	2816	132708	47.13	473013
9	4	12032	781974	64.99	3449019
9	8	45056	6329397	140.48	16125059

both approaches yield an identical rank-1 Chebyshev lattice.
Moreover, we consider hyperbolic cross index sets $I:=H_{n}^{d}$. Again, we apply both algorithms for the construction of rank-1 Chebyshev lattices $\tilde{\Lambda}(\boldsymbol{z}, M)$ suitable for reconstruction. The results of these construction processes are shown in Table II. We remark that the size parameters M of the rank- 1 Chebyshev lattices $\tilde{\Lambda}(\boldsymbol{z}, M)$ are distinctly larger for $d \geq 3$ when using [7, Algorithm 1 and 2], which itself uses condition (10).

VI. Conclusion

In this paper, we considered the fast evaluation as well as the fast, exact and stable reconstruction of high-dimensional multivariate algebraic polynomials in Chebyshev form at the nodes of rank-1 Chebyshev lattices. Moreover, we presented an algorithm for the construction of such lattices based on ideas for the CBC construction in the periodic case.

Acknowledgment

We gratefully acknowledge support by the German Research Foundation (DFG) within the Priority Program 1324, project PO 711/10-2.

References

[1] J. Shen, T. Tang, and L.-L. Wang, Spectral Methods, ser. Springer Ser. Comput. Math. Berlin: Springer-Verlag Berlin Heidelberg, 2011, vol. 41.
[2] R. Cools and K. Poppe, "Chebyshev lattices, a unifying framework for cubature with Chebyshev weight function," BIT Numerical Mathematics, vol. 51, pp. $275-288,2011$.
[3] K. Poppe and R. Cools, "CHEBINT: A MATLAB/Octave Toolbox for Fast Multivariate Integration and Interpolation Based on Chebyshev Approximations over Hypercubes," ACM Trans. Math. Softw., vol. 40, no. 1, pp. 2:1-2:13, Oct. 2013.
[4] —_, "In Search for Good Chebyshev Lattices," in Monte Carlo and Quasi-Monte Carlo Methods 2010, ser. Springer Proceedings in Mathematics \& Statistics, L. Plaskota and H. Woźniakowski, Eds. Springer Berlin Heidelberg, 2012, vol. 23, pp. 639 - 654.
[5] I. H. Sloan and A. V. Reztsov, "Component-by-component construction of good lattice rules," Math. Comp., vol. 71, pp. 263 - 273, 2002.
[6] R. Cools and D. Nuyens, "Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces," Math. Comp., vol. 75, pp. 903 - 920, 2004.
[7] L. Kämmerer, "Reconstructing multivariate trigonometric polynomials from samples along rank-1 lattices," in Approximation Theory XIV: San Antonio 2013, G. E. Fasshauer and L. L. Schumaker, Eds. Springer International Publishing, 2014, pp. 255-271.
[8] D. Potts and T. Volkmer, "Sparse high-dimensional FFT based on rank-1 lattice sampling," Preprint 171, DFG Priority Program 1324, 2014.
[9] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications. Boston: Academic Press, 1990.
[10] L. Bos, M. Caliari, S. D. Marchi, M. Vianello, and Y. Xu, "Bivariate Lagrange interpolation at the Padua points: The generating curve approach," J. Approx. Theory, vol. 143, pp. $15-25,2006$, special Issue on Foundations of Computational Mathematics.
[11] J. Dick, D. Nuyens, and F. Pillichshammer, "Lattice rules for nonperiodic smooth integrands," Numerische Mathematik, vol. 126, pp. 259 - 291, 2014.
[12] D. Nuyens, "Approximation in cosine space using tent transformed lattice rules," 2014, Slides of talk given at ICERM Semester Program, September 15-19 2014, Brown University, Providence, RI.

