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Abstract—We describe a fast method for the evaluation of an
arbitrary high-dimensional multivariate algebraic polynomial in
Chebyshev form at the nodes of an arbitrary rank-1 Chebyshev
lattice. Our main focus is on conditions on rank-1 Chebyshev
lattices allowing for the exact reconstruction of such polynomials
from samples along such lattices and we present an algorithm
for constructing suitable rank-1 Chebyshev lattices based on a
component-by-component approach. Moreover, we give a method
for the fast, exact and stable reconstruction.

I. INTRODUCTION

We denote the Chebyshev polynomials of the first kind by
Tk : [−1, 1] → [−1, 1], Tk(x) := cos(k arccosx), k ∈ N0.
Note that for each k ∈ N0, Tk is an algebraic polynomial
of degree deg(Tk) = k restricted to the domain [−1, 1].
Moreover, we define the multivariate Chebyshev polynomials
Tk : [−1, 1]d → [−1, 1], Tk(x) :=

∏d
t=1 Tkt(xt) for d ∈ N,

x := (x1, . . . , xd)
> ∈ [−1, 1]d and k := (k1, . . . , kd)

> ∈ Nd0.
Let ΠI := span {Tk(◦) : k ∈ I}, where I ⊂ Nd0, d ∈ N, is

a non-negative index set of finite cardinality, |I| < ∞. Then,
each multivariate polynomial p ∈ ΠI can be written as

p(x) =
∑
k∈I

ak Tk(x) =
∑
k∈I

ak

d∏
t=1

Tkt(xt), ak ∈ R, (1)

where x ∈ [−1, 1]d. We remark that if the index set
I = Idn := {k ∈ Nd0 : ‖k‖1 ≤ n}, n ∈ N0, is the `1-
ball, then ΠI is the space of all algebraic polynomials of
(total) degree ≤ n in d variables restricted to the domain
[−1, 1]d. Moreover, polynomials with hyperbolic cross index
sets I = Hd

n :=
{
k ∈ Nd0 :

∏d
t=1 max(1, |kt|) ≤ n

}
, where

n, d ∈ N, have already been used for approximations in
sparse high-dimensional spectral Galerkin methods, cf. [1,
Section 8.5].

In this paper, for a given arbitrary index set I ⊂ Nd0 of
finite cardinality, we present a method for the fast evaluation
of a polynomial p from (1) at the nodes xj := cos( j

M πz),
j = 0, . . . ,M , of a d-dimensional rank-1 Chebyshev lattice

Λ̃(z,M) :=
{
xj := cos

(
j
M πz

)
: j = 0, . . . ,M

}
,

where the generating vector z ∈ Nd0 and the size param-
eter M ∈ N0, cf. [2] for a more general definition of d-
dimensional rank-k Chebyshev lattices. Moreover, we discuss

conditions on a rank-1 Chebyshev lattice Λ̃(z,M) such that
the fast, exact and stable reconstruction of all coefficients ak,
k ∈ I , from sampling values p(xj) taken at the corresponding
nodes xj , j = 0, . . . ,M , is possible. Both, for the fast
evaluation and reconstruction, we only apply a single one-
dimensional discrete cosine transform of type I (DCT-I) and
additionally compute simple index transforms, see also [3].
Note that for the special case I = Idn, constructions of rank-1
Chebyshev lattices suitable for the exact reconstruction were
already discussed in [2], [4] and the references therein. Here,
we present an algorithm based on component-by-component
(CBC) construction for arbitrary index sets I ⊂ Nd0 using ideas
from [5]–[7].

We remark that our considerations for the reconstruction of
the coefficients ak, k ∈ I , of a polynomial p from (1) with
known index set I ⊂ Nd0 in this paper establish a basis for the
reconstruction of a polynomial p with unknown index set I
using a method similar to the one presented in [8].

The remaining parts of this paper are organized as follows:
In Secion II, we give prerequisites for the subsequent sections.
We discuss the fast evaluation and reconstruction in Sec-
tion III. In Section IV, we point out relations of our results to
existing work. Afterwards, in Section V, we present computed
rank-1 Chebyshev lattices suitable for reconstruction. Finally,
in Section VI, we summarize the results of this paper.

II. PREREQUISITES

A. One-dimensional DCT-I

First, we recall results for the fast reconstruction of a
(one-dimensional algebraic) polynomial p. We are able to
reconstruct the coefficients a0, . . . , an ∈ R of a polynomial p
from (1) with I := I1n from sampling values p(xj) at the
Chebyshev nodes xj := cos(jπ/n), j = 0, . . . , n. For
this, we apply a one-dimensional DCT-I to the sampling
values p(xj) and we obtain

∑n
j=0(εnj )2 p(xj) cos(jkπ/n) =∑

k′∈I1n
ak′
∑n
j=0(εnj )2 cos(jk′π/n) cos(jkπ/n) for k ∈ I1n,

εnl := 1/
√

2 for l ∈ {0, n} and εnl := 1 for l ∈ {1, . . . , n−1},
since Tk(xj) = Tk (cos (jπ/n)) = cos (jkπ/n). Due to

2

n
εnkε

n
k′

n∑
j=0

(εnj )2 cos

(
jkπ

n

)
cos

(
jk′π

n

)
=δk,k′ , k, k

′ ∈ I1n,

(2)
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Fig. 1. Index sets I28 , M(I28 ), M1(I28 ), M2(I28 ) (from left to right).

where δk,k′ is Kronecker’s delta, see e.g. [9, Section 2.4],
this yields ak =

2(εnk )
2

n

∑n
j=0(εnj )2 p(xj) cos (jkπ/n) for

k ∈ I1n. Note that the DCT-I can be computed by means of a
fast algorithm in O(n log n) arithmetic operations.

B. Index sets and tensor-products of cosines

Let I ⊂ Nd
0 be an arbitrary index set of finite cardinality.

For the description of the approach for the fast evaluation and
reconstruction, we define the extended symmetric index set

M(I) := {h ∈ Zd : (|h1|, . . . , |hd|)> ∈ I},

which contains all frequencies k ∈ I and versions of these
frequencies k mirrored at all coordinate axes. Moreover, we
define the index sets

Ms(I) := {h ∈M(I) : hs ≥ 0}, s ∈ {1, . . . , d},

which contain all frequencies k ∈ I and versions of these
frequencies mirrored at all coordinate axes except the s-th. For
instance, in the case d = 2 and n = 8, the index set I28 as well
as the corresponding extended symmetric index setM(I28 ) and
mirrored index sets M1(I28 ), M2(I28 ) are depicted in Fig. 1.

Next, we remark that for y1, y2 ∈ R, we have
cos(y1) cos(y2) = 1

2 (cos(y1 + y2) + cos(y1 − y2)). Using in-
duction on the dimension d ∈ N and due to cos(x) = cos(−x)
for all x ∈ R, we obtain for y := (y1, . . . , yd)

> ∈ R

d∏
t=1

cos(yt) =
∑

m∈Ms({1})

1

2d−1
cos (m · y) (3)

=
∑

m∈M({1})

1

2d
cos (m · y) , (4)

where 1 := (1, . . . , 1)> ∈ Nd and m · y :=
∑d
t=1mtyt.

III. FAST EVALUATION AND RECONSTRUCTION OF
MULTIVARIATE POLYNOMIALS FROM ΠI ALONG RANK-1

CHEBYSHEV LATTICES USING DCT-I

A. Fast evaluation at the nodes of rank-1 Chebyshev lattices

Briefly, we describe a simple method for the fast evaluation
of a polynomial p from (1) with arbitrary index set I ⊂ Nd0
at the nodes xj := cos( j

M πz), j = 0, . . . ,M , of an
arbitrary d-dimensional rank-1 Chebyshev lattice Λ̃(z,M).
Examples for two-dimensional rank-1 Chebyshev lattices are
shown in Fig. 2. We remark that not all (M + 1) nodes xj ,
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Fig. 2. Rank-1 Chebyshev lattices Λ̃(z,M).

j = 0, . . . ,M , have to be distinct, i.e., |Λ̃(z,M)| ∈ {1, . . . ,
M + 1}, see Fig. 2a. Due to (3), we have

p(xj) =
∑
k∈I

ak
2d−1

∑
m∈Ms({1})

cos

(
j

M
π (m� k) · z

)
,

j = 0, . . . ,M , for any s ∈ {1, . . . , d} and for each polyno-
mial p from (1), where m � k := (m1k1, . . . ,mdkd)

>. For
M ∈ N and l ∈ Z, we define the even-mod relation

l emodM :=

{
l mod (2M), l mod (2M) ≤M,

2M − (l mod (2M)) else,

as well as in the special case M = 0, l emod 0 := 0 for
l ∈ Z. For each l ∈ I1M , we consider the frequencies k ∈ I
and m ∈ Ms({1}), such that l = (m � k) · z emodM .
Since we have cos(jlπ/M) = cos

(
j
M π (m� k) · z

)
for j =

0, . . . ,M in the case l = (m � k) · z emodM , we obtain
p(xj) =

∑M
l=0(εMl )2 b̂l cos(jlπ/M), where the coefficients

b̂l :=
∑
k∈I

∑
m∈Ms({1})

(m�k)·z emodM=l

ak
2d−1 (εMl )2

for l ∈ I1M . (5)

Therefore, for any s ∈ {1, . . . , d}, we build the index
set Ms(I) and we compute the coefficients b̂l by (5) for
l ∈ I1M . Then, we apply a one-dimensional DCT-I to these
coefficients b̂l and this yields the function values p(xj) for
j = 0, . . . ,M . In total, we require O(M logM + d 2d|I|)
arithmetic operations.

B. Fast, exact and stable reconstruction

In this section, we consider the fast reconstruction of a poly-
nomial p from (1) with arbitrary index set I ⊂ Nd0, |I| <∞.
Our approach is based on applying a one-dimensional DCT-I
to the sampling values p(xj) at the nodes xj := cos(jπz/M),
j = 0, . . . ,M , of a rank-1 Chebyshev lattice Λ̃(z,M) fulfill-
ing a certain property. Concretely, we compute the coefficients

âl :=

M∑
j=0

(εMj )2 p(xj) cos

(
jl

M
π

)
(6)

=

M∑
j=0

(εMj )2
∑
k∈I

ak

(
d∏
t=1

cos

(
j

M
π kt zt

))
cos

(
jl

M
π

)
for l ∈ I1M . Due to (4), this means âl =∑
k∈I

ak
2d

∑
m∈M({1})

M∑
j=0

(εMj )2 cos
(
j
M π (m� k) · z

)
cos
(
jl
M π
)
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Fig. 3. Examples for hyperbolic cross index sets I = H2
n and corresponding

rank-1 Chebyshev lattices Λ̃(z,M) fulfilling condition (7).
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Fig. 4. Examples for arbitrarily chosen index sets I ⊂ N2
0 and corresponding

rank-1 Chebyshev lattices Λ̃(z,M) fulfilling condition (7).

for l ∈ I1M and we consider the indices l := k ·z emodM for
k ∈ I . Since we have {m � k : m ∈ M({1})} = M({k})
for k ∈ I and due to the orthogonality condition (2), we are
able to exactly reconstruct all the coefficients ak, k ∈ I , of
the polynomial p from (1) using the computed coefficients
âl, l := k · z emodM for k ∈ I , from (6) if and only if

k · z emodM 6= h · z emodM

for all k ∈ I and h ∈M(I), k 6= (|h′1|, . . . , |h′d|)>. (7)

Examples for two-dimensional hyperbolic cross index sets
I = H2

4 and I = H2
8 with corresponding rank-1 Chebyshev

lattices Λ̃(z,M) fulfilling condition (7) are depicted in Fig. 3
as well as two-dimensional examples for index sets I with
less structure with corresponding Λ̃(z,M) in Fig. 4. More-
over, the rank-1 Chebyshev lattices Λ̃(z,M) in Fig. 2 fulfill
condition (7) for the `1-ball index set I = I28 in Fig. 1.

Due to the symmetry of the emod operator, we can reduce
the number of tests in condition (7) by a factor of (about) two.

Lemma III.1. For M ∈ N0 and l ∈ Z, we have l emodM =
(−l) emodM .

Proof. Considering the two different cases in the definition of
the emod operator, the assertion follows straight forward.

Lemma III.2. For a given arbitrary index set I ⊂ Nd0 of finite
cardinality, |I| <∞, let Ĩ ⊂ Zd be an arbitrary index set with
the property M(I) = Ĩ ∪ {−h : h ∈ Ĩ}. Then, condition (7)
is equivalent to

k · z emodM 6= h · z emodM

for all k ∈ I and h ∈ Ĩ , k 6= (|h′1|, . . . , |h′d|)>.

Proof. Due to (−h) · z = −(h · z) for h ∈ Zd, we obtain

(−h) · z emodM = h · z emodM for h ∈ Zd (8)

from Lemma III.1 and the assertion follows.

Input: index set Iinput ⊂ Nd0, parameter s ∈ {1, . . . , d}.
1: Determine suitable initial size parameter Mstart, see e.g.

Remark IV.4.
2: for t := 1, . . . , d do
3: for zt := 0, . . . ,Mstart do
4: if Condition (9) is valid for

I := {(k1, . . . , kt)> : k ∈ Iinput},
z := (z1, . . . , zt)

>, M := Mstart then
5: break
6: end if
7: end for
8: end for
9: for M := |Iinput| − 1, . . . ,Mstart do

10: if Condition (9) is valid for I := Iinput,
z := (z1, . . . , zd)

>, M then
11: break
12: end if
13: end for

Output: generating vector z ∈ Nd0 and size parameter
M ∈ N0 fulfilling condition (7) for index set I := Iinput.

Fig. 5. Algorithm for construction of rank-1 Chebyshev lattice Λ̃(z,M)
suitable for reconstruction of multivariate polynomials (1) supported on the
index set I := Iinput.

Corollary III.3. For any s ∈ {1, . . . , d}, condition (7) is
equivalent to

k · z emodM 6= h · z emodM

for all k ∈ I and h ∈Ms(I), k 6= (|h′1|, . . . , |h′d|)>. (9)

If condition (7) or (9) is fulfilled, we can reconstruct the
coefficients ak, k ∈ I , in the following way. We apply a
DCT-I to the sampling values p(xj) = p(cos(jπz/M)), j =
0, . . . ,M , which yields the coefficients âl, l ∈ I1M , in (6).
Then, we obtain the coefficients of the polynomial p by ak =

2(εMk·z emodM )2

M
âk·z emodM

· 2d−1

|{m ∈Ms({1}) : (m� k) · z emodM = k · z emodM}|
for all k ∈ I and any s ∈ {1, . . . , d}.

Using a fast algorithm for the DCT-I, this computation can be
performed in O(M logM + d 2d|I|) arithmetic operations.

Again, we stress the fact that the index set I ⊂ Nd0,
|I| <∞, may be arbitrarily chosen. Upper bounds on the size
parameter M for the existence of a rank-1 Chebyshev lattice
Λ̃(z,M) fulfilling condition (7) are discussed in Section IV-B.
A method for the construction of a suitable generating vec-
tor z ∈ Nd0 is described in the following subsection.

C. Construction of suitable rank-1 Chebyshev lattices

In Fig. 5, we present an algorithm for the construction of a
rank-1 Chebyshev lattice Λ̃(z,M) which allows for the exact
reconstruction of the coefficients ak, k ∈ I , of a polynomial
p from (1) based on samples taken at the nodes of Λ̃(z,M),
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where I ⊂ Nd0, |I| < ∞, is an arbitrary index set. Our
algorithm is based on [7, Algorithm 1 and 2] and uses a CBC
search for the generating vector z ∈ Nd0.

IV. RELATIONS TO EXISTING WORK

A. Padua points and higher-dimensional rank-s Chebyshev
lattices

In [10], special sampling points were discussed in
the two-dimensional case, so-called Padua points. For
a parameter n ∈ N, these are the nodes xj :=

(cos(jπ/(n+ 1)), cos(jπ/n))
>

= cos(jπz/M), j =
0, . . . ,M , of the rank-1 Chebyshev lattice An := Λ̃(z,M),
where the generating vector z := (n, n + 1)> and the size
parameter M := n(n + 1). As discussed in [10, Section 2],
the Padua point set An only consists of

(
n+2
2

)
= n2

2 + 3
2n+ 1

distinct points, whereas M = n2 + n.

Lemma IV.1. Let the index set I = I2n := {k ∈ N2
0 : k1+k2 ≤

n}, n ∈ N0, be the `1-ball. Then, condition (7) is fulfilled and
we can exactly reconstruct the coefficients ak, k ∈ I , of a
polynomial p from (1) from sampling values at the nodes of
the Padua point set An using (6).

Proof. The case n = 0 is trivial. For n ∈ N, we show
condition (9) for s = 1, which is equivalent to condition
(7) due to Corollary III.3. Let z := (n, n + 1)> and
M := n(n + 1) as well as let arbitrary frequencies k ∈ I
and h ∈ M1(I) = {h ∈ N0 × Z : h1 + |h2| ≤ n} with
k 6= (|h1|, . . . , |hd|)> be given. We show that k ·z emodM 6=
h · z emod follows. For this, we assume the contrary, i.e.,
k·z emodM = h·z emodM . We obtain that the only solution
for this condition is k = h for h2 ≥ 0 and h2 < 0, which is
a contradiction to the requirement k 6= (|h′1|, . . . , |h′d|)>.

In [4], an extensive search for higher-rank Chebyshev lat-
tices allowing for the reconstruction of polynomials p from (1)
with `1-ball index sets I := Idn was performed and numerical
results for the cases d = 3, 4, 5 were presented.

B. Reconstructing rank-1 lattices of multivariate trigonomet-
ric polynomials

In the following, we briefly show the relation to reconstruct-
ing rank-1 lattices of multivariate trigonometric polynomials
from [7].

Theorem IV.2. Let I ⊂ Nd0 be an arbitrary index set of
finite cardinality, |I| <∞. Moreover, let Λ(z, M̂) := {yj :=
j

M̂
z mod 1 : j = 0, . . . , M̂ − 1} be a reconstructing rank-1

lattice with generating vector z ∈ Nd0 and even rank-1 lattice
size M̂ ∈ 2N for the extended symmetric index setM(I), i.e.,

h·z 6≡ h′·z (mod M̂) for all h,h′ ∈M(I), h 6= h′. (10)

Then, the rank-1 Chebyshev lattice Λ̃(z, M̂2 ) fulfills condition
(7), i.e., we are able to exactly reconstruct the coefficients of
a polynomial from (1) using samples at the nodes of Λ̃(z, M̂2 ).

Proof. We consider the values

h·z emod
M̂

2
=

{
h·z mod M̂, h·z mod M̂ ≤ M̂

2 ,

M̂ − (h·z mod M̂) else,

for h ∈M(I). Due to property (10), all values h · z mod M̂
are distinct for h ∈ M(I) and we obtain for each l ∈ I1

M̂/2
that one of the following three cases may occur: Either

1. exactly two distinct frequencies h,h′ ∈ M(I) exist such
that h · z emod M̂

2 = h′ · z emod M̂
2 = l, or

2. exactly one frequency h ∈M(I) exists such that
h · z emod M̂

2 = l, or
3. such a frequency does not exist for l.

In the first case, h′ = −h follows, since for each h ∈
M(I)\{0}, also the frequency −h ∈M(I)\{0} and we have
(8) with M := M̂

2 , i.e., (−h)·z emod M̂
2 = h·z emod M̂

2 = l.
The second case can only occur for h = 0, since otherwise
the (non-zero) frequency −h ∈ M(I) \ {0}, −h 6= h, and
this would yield (−h) ·z emod M̂

2 = h ·z emod M̂
2 which cor-

responds to the first case. In total, we obtain h · z emod M̂
2 6=

h′ · z emod M̂
2 for all h,h′ ∈ M(I), (|h1|, . . . , |hd|)> 6=

(|h′1|, . . . , |h′d|)>, implying condition (7).

Remark IV.3. Condition (7) and (10) with M̂ = 2M are
not equivalent in general. For instance, the generating vector
z := (8, 9)> and size parameter M := 72 from Fig. 2a fulfill
condition (7) for I = I28 but not condition (10) with M̂ = 2M .
However, there exist special cases where both conditions are
fulfilled, see e.g. the examples in Fig. 2b and 2c which fulfill
condition (7) as well as condition (10).

Remark IV.4. There always exists a reconstructing rank-1
lattice Λ(z, M̂) for M(I) with even rank-1 lattice size

M̂ ≤ 2 max

{
2

3
(|M(I)|2 − |M(I)|+ 8),max

k∈I
3‖k‖∞

}
and consequently a rank-1 Chebyshev lattice Λ̃(z,M) with
size parameter M := M̂/2. This result is due to [8, Theo-
rem 2.1] which is a direct consequence of the results from [7].

C. Tent-transformed rank-1 lattices for cosine polynomials

In [11], [12], tent-transformed rank-1 lattices Pφ(z, M̂) :=
{φ(jz/M̂ mod 1) : j = 0, . . . , M̂ − 1}, fulfilling a condition
equivalent to (10) are used, where z ∈ Nd0, M̂ ∈ N
and the tent transform φ : [0, 1] → [0, 1], φ(x) := 1 −
|2x − 1|, is component-wise applied. Then, the exact re-
construction of cosine polynomials p̃ : [0, 1] → R, p̃(x) :=∑

k∈I ãk
∏d
t=1 cos(πktxt), I ⊂ Nd0, can be performed by

applying a fast Fourier transform to samples at these nodes,
cf. [12]. Note that these polynomials p̃ are not algebraic
polynomials in general.

4



TABLE I
CARDINALITIES OF `1-BALL INDEX SETS Idn AS WELL AS SIZE

PARAMETERS M OF CORRESPONDING RANK-1 CHEBYSHEV LATTICES
Λ̃(z,M), WHERE M FULFILLS CONDITION (7) AND M̂ = 2M

CONDITION (10) FOR I := Idn .

Parameters Cardinalities Condition (7) / (9) / (10)

d n |Idn| |M1(Idn)| M =
M̂

2

M + 1

|Idn|

2 64 2 145 4 225 4 192 1.95

2 128 8 385 16 641 16 576 1.98

2 256 33 153 66 049 65 920 1.99

3 16 969 3 281 4 265 4.40

3 32 6 545 23 969 33 361 5.10

3 64 47 905 183 105 264 353 5.52

4 8 495 2 241 2 693 5.44

4 16 4 845 28 033 37 865 7.82

4 32 58 905 396 033 565 073 9.59

5 4 126 501 630 5.01

5 8 1 287 8 361 14 276 11.09

5 16 20 349 192 593 393 361 19.33

6 4 210 985 1 461 6.96

6 8 3 003 26 577 63 369 21.10

6 16 74 613 1 110 049 3 242 322 43.46

7 4 330 1 765 2 777 8.42

7 8 6 435 74 313 223 332 34.71

7 16 245 157 5 529 233 21 254 517 86.70

8 2 45 129 116 2.60

8 4 495 2 945 5 645 11.41

8 8 12 870 187 137 733 748 57.01

9 2 55 163 152 2.78

9 4 715 4 645 10 760 15.05

9 8 24 310 432 073 2 252 367 92.65

10 2 66 201 202 3.08

10 4 1 001 7 001 19 423 19.40

10 8 43 758 927 441 5 912 807 135.13

V. NUMERICAL RESULTS

Using the algorithm in Fig. 5, we construct rank-1 Cheby-
shev lattices Λ̃(z,M) fulfilling condition (7) for the `1-ball
index sets I := Idn for various refinements n ∈ N and dimen-
sions d. The corresponding size parameters M and oversam-
pling factors (M +1)/|Idn| are shown in Table I. Additionally,
we apply [7, Algorithm 1 and 2] to the extended symmetric
index sets M(Idn) with the modification that an even rank-1
lattice size M̂ ∈ 2N is returned. We obtain reconstructing
rank-1 lattices Λ(z, M̂) for M(Idn) and consequently rank-1
Chebyshev lattices Λ̃(z, M̂/2) fulfilling condition (7) for Idn
due to Theorem IV.2. For the dimensions d and refinements n
in Table I except the case d = 7 and n = 16, these rank-1
Chebyshev lattices are identical to the ones constructed by the
algorithm in Fig. 5. In the mentioned case, the algorithm in
Fig. 5 yielded a slightly larger size parameter M = 21 344 934.
The reason for this is the greedy search for the generating
vector z with fixed initial size parameter M = Mstart and
both approaches returned a distinct generating vector z. If we
run the algorithm in Fig. 5 setting Mstart := 21 254 517, then

TABLE II
CARDINALITIES OF HYPERBOLIC CROSS INDEX SETS Hd

n AS WELL AS

SIZE PARAMETERS M := M̃ AND M := M̂/2 OF CORRESPONDING
RANK-1 CHEBYSHEV LATTICES Λ̃(z,M) FULFILLING CONDITION (7)

AND (10) FOR I := Hd
n , RESPECTIVELY.

Parameters Card. Condition (7) / (9) Condition (10)

d n |Hd
n| M̃

M̃ + 1

|Hd
n|

M̂/2

2 256 1 979 66 050 33.38 66 050

2 512 4 305 263 170 61.13 263 170

2 1 024 9 311 1 050 626 112.84 1 050 626

3 256 10 303 302 883 29.40 359 075

3 512 23 976 1 424 613 59.42 1 424 662

3 1 024 55 202 4 600 672 83.34 5 560 838

4 128 17 700 860 284 48.60 1 083 747

4 256 44 403 3 136 383 70.63 4 355 469

4 512 109 395 14 659 035 134.00 19 550 612

5 64 23 853 1 382 832 57.97 1 703 741

5 128 64 373 6 843 471 106.31 9 138 634

5 256 170 299 31 997 990 187.89 41 255 293

6 16 8 684 303 396 34.94 557 773

6 32 26 088 1 751 513 67.14 2 867 903

6 64 76 433 8 979 932 117.49 13 603 339

7 8 7 184 291 267 40.54 529 877

7 16 23 816 1 659 143 69.67 3 575 914

7 32 75 532 10 375 340 137.36 21 375 543

8 4 5 120 196 522 38.38 629 597

8 8 18 176 1 334 559 73.42 2 975 159

8 16 63 328 8 615 461 136.05 22 270 727

9 2 2 816 132 708 47.13 473 013

9 4 12 032 781 974 64.99 3 449 019

9 8 45 056 6 329 397 140.48 16 125 059

both approaches yield an identical rank-1 Chebyshev lattice.
Moreover, we consider hyperbolic cross index sets I := Hd

n.
Again, we apply both algorithms for the construction of rank-1
Chebyshev lattices Λ̃(z,M) suitable for reconstruction. The
results of these construction processes are shown in Table II.
We remark that the size parameters M of the rank-1 Cheby-
shev lattices Λ̃(z,M) are distinctly larger for d ≥ 3 when
using [7, Algorithm 1 and 2], which itself uses condition (10).

VI. CONCLUSION

In this paper, we considered the fast evaluation as well as
the fast, exact and stable reconstruction of high-dimensional
multivariate algebraic polynomials in Chebyshev form at the
nodes of rank-1 Chebyshev lattices. Moreover, we presented
an algorithm for the construction of such lattices based on
ideas for the CBC construction in the periodic case.
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