
Automated Parameter Tuning based on RMS
Errors for nonequispaced FFTs

Franziska Nestler

In this paper we study the error behavior of the well known fast Fourier trans-
form for nonequispaced data (NFFT) with respect to the L2-norm. We compare
the arising errors for different window functions and show that the accuracy of
the algorithm can be significantly improved by modifying the shape of the window
function. Based on the considered error estimates for different window functions
we are able to state an easy and efficient method to tune the involved parameters
automatically. The numerical examples show that the optimal parameters depend
on the given Fourier coefficients, which are assumed not to be of a random struc-
ture or roughly of the same magnitude but rather subject to a certain decrease.

Key words and phrases : nonequispaced fast Fourier transform, nonuniform fast
Fourier transform, NFFT, NUFFT

2000 AMS Mathematics Subject Classification : 65T

1 Introduction
A broad variety of mathematical algorithms and applications depend on the calculation
of the nonequispaced discrete Fourier transform, which is a generalization of the discrete
Fourier transform to nonequispaced nodes. Especially, its fast approximate realization called
nonequispaced fast Fourier transform (NFFT) or rather nonuniform fast Fourier transform
(NUFFT) [5, 1, 23, 25, 21, 9, 15] led to the development of a large number of fast numerical
algorithms.
Basically, the NFFT, which is an approximate algorithm, consists of three steps. Using a

so called window function, the given coefficients are at first deconvolved in Fourier domain.
The result is transformed into spatial domain by an FFT and a discrete convolution with the
window function is the final step. Thereby, the window function is chosen such that it is well
localized in spatial as well as in Fourier domain. Given this property, the deconvolution step
can be realized very efficiently and the resulting aliasing errors can be kept small.
In this paper, we investigate the occurrent errors measured in the L2-norm. In some

numerical examples, we evaluate these errors for different window functions. We show that

Technische Universität Chemnitz, Faculty of Mathematics, 09107 Chemnitz, Germany

1

the accuracy of the algorithm can be improved by modifying the shape parameter of the
window function and that the optimal value of this shape parameter very much depends
on the given set of Fourier coefficients. If the input signals are assumed to be random and
uncorrelated, a prediction of the optimal shape parameter is possible for certain window
functions. As an example, for the Gaussian window function a convenient choice of the shape
parameter has already been derived in [23] as well as in [4]. Also other windows for which
the question concerning the optimal choice of the shape parameter is also interesting, as for
example Kaiser-Bessel functions [8, 12], have been suggested in the literature.
However, there are many applications, where the given Fourier coefficients are not of a

random structure. As an example, the NFFT can be used in order to evaluate sums of the
form

f(yk) :=
N∑
j=1

αjK(yk − xj), k = 1, . . . ,M,

where the nodes yk, xj , the coefficients αj and a certain smooth kernel function K is given, see
[20] for instance. The method, which is widely known as NFFT based fast summation, is based
on approximating the kernel function by a trigonometric polynomial, where the corresponding
Fourier coefficients are naturally subject to a certain decline. For the fast NFFT based Gauss
transform [17] we have an exponential decrease of the Fourier coefficients, for instance. The
NFFT based fast summation is also applied for the computation of the Coulomb energies and
forces in particle systems, where the kernel function is given by K(r) = r−1. This problem
can also be considered subject to periodic boundary conditions, where the analytical Fourier
coefficients are known and also underlie an exponential decrease, see [6, 11, 3, 18].
Thus, in our numerical examples we consider certain sets of decreasing Fourier coefficients

and show that an appropriate modification of the window’s shape parameter leads to sub-
stantially better results. For the Kaiser-Bessel window function the variability of the shape
parameter was also considered in [7], but an adaption was not done depending on the given
Fourier coefficients. In our tests we additionally compare the errors between two different
deconvolution approaches. We also consider the L2-optimized deconvolution, which has al-
ready been considered in [4, Appendix A] or [13], and also give numerical evidence that only
small improvements are possible by applying this optimized deconvolution scheme. Based on
the error estimates, we are able to state an easy and efficient method to tune all parameters
involved in the univariate NFFT algorithm. Note that it has already been observed that
in some applications the NFFT with very small oversampling factors [26] or even without
oversampling [3] leads to very precise approximations. The results presented in this paper
confirm that in some cases an oversampling is in fact not needed.
We remark that an overall tuning, which in addition optimizes the set of parameters with

respect to runtime, should depend on the used hardware. In addition, the runtime behavior
regarding the window evaluation is different for the individual window functions and may also
depend on the used hardware as well as on the applied variant of the NFFT (multithreaded
NFFT [24], NFFT on GPUs [16], parallel NFFT [18]). However, in order to develop opti-
mal runtime models automated parameter tuning methods, as discussed in this paper, are
essential.
The outline of this paper is as follows. In Section 2 we give a short introduction to the

NFFT. We start by introducing the necessary notations and then give a formula for the
computation of the approximation error in the L2-norm. In Section 3 we introduce different
window functions and show how the corresponding aliasing errors can be estimated. We

2

compare two different deconvolution approaches and point out how the choice of the window’s
shape parameter can influence the goodness of the approximation. Therefore we consider some
univariate examples. A comparison to measured approximation errors is done in Section 4.
Based on these error estimates we describe an automatic parameter tuning for the univariate
case in Section 5. We continue with some remarks concerning the multivariate case and
conclude with a short summary.

2 NFFT

In the following we give a short introduction to the NFFT in d dimensions. At first, we will
introduce the necessary notations.
For some M = (M1, . . . ,Md) ∈ 2Nd we define the index set IM by

IM :=
d⊗
j=1
{−Mj/2, . . . ,Mj/2− 1}.

For two vectors x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , yd) ∈ Rd we define the component
wise product by x � y := (x1y1, . . . , xdyd) ∈ Rd as well as the inner product via x · y :=
x1y1 + · · · + xdyd ∈ R. For a vector x ∈ Rd with non vanishing components we set x−1 :=
(x−1

1 , . . . , x−1
d) ∈ Rd.

Let some arbitrary nodes xj ∈ Td, where T := R/Z ' [−1/2, 1/2) and j = 1, . . . , N , be
given. We are now interested in a fast evaluation of a given trigonometric polynomial in the
unequally spaced points xj , i.e., we want to compute the sums

f(xj) :=
∑
k∈IM

f̂ke−2πik·xj , j = 1, . . . , N, (2.1)

where the Fourier coefficients f̂k ∈ C for k ∈ IM ,M ∈ 2Nd, are also given.
The well known NFFT algorithm can be used to evaluate sums of the form (2.1) very

efficiently with O(|IM | log |IM |+N) arithmetic operations. In the following, we will give an
overview of the main steps.
The basic idea is to approximate the function f by a sum of translates of a one-periodic

function ϕ̃, i.e.,
f(x) ≈ f̃(x) :=

∑
l∈Iσ�M

glϕ̃
(
x− l� (σ �M)−1) , (2.2)

where we denote by σ ≥ 1 (component wise) the oversampling factor and the coefficients
gl ∈ C are by now unknown. In other words, the approximate function values are obtained
by computing a discrete convolution of a given window function with some coefficients gl,
which have to be determined. In the following we denote the oversampled grid size shortly
by Mo := σ �M . The function ϕ̃ is the periodization of a window function ϕ, which is
constructed based on a univariate function ϕ̃1d via a tensor product scheme, i.e.,

ϕ̃(x) :=
∑
r∈Zd

ϕ(x+ r), where ϕ(y) =
d∏
j=1

ϕ1d(yj) for y = (y1, . . . , yd) ∈ Rd. (2.3)

3

A transformation of f̃ into Fourier space gives

f̃(x) =
∑

k∈IMo

ĝkck(ϕ̃)e−2πik·x +
∑

r∈Zd\{0}

∑
k∈IMo

ĝkck+r�Mo(ϕ̃)e−2πi(k+r�Mo)·x, (2.4)

where we denote by

ck(ϕ̃) :=
∫
Td
ϕ̃(x)e2πik·xdx =

∫
Rd
ϕ(x)e2πik·xdx = ϕ̂(k)

the Fourier coefficients of ϕ̃ and the discrete Fourier coefficients ĝk are given by

ĝk =
∑
l∈IMo

gle2πik·(l�M−1
o).

For the following considerations we assume that we have ck(ϕ̃) ∈ R. The idea is now to
choose the coefficients ĝk appropriately. Then, the coefficients gl in (2.2) can be computed
by a d-variate (inverse) FFT

gl = 1
|IMo |

∑
k∈IMo

ĝke−2πik·(l�M−1
o)

and the evaluation of (2.2) gives the approximate function values f̃(xj) ≈ f(xj).
However, the evaluation of the sums (2.2) might be computationally demanding unless ϕ

is compactly supported on a comparable small domain or at least sufficiently small outside of
it. In the latter case we replace the window function ϕ by a truncated version

ϕt(x) := ϕ(x) ·
d∏
j=1

χ[− m
σjMj

, m
σjMj

](xj) =
{
ϕ(x) : x ∈

⊗d
j=1[− m

σjMj
, m
σjMj

],
0 : else,

and approximate f by

f(x) ≈ f̃(x) :=
∑
l∈IMo

glϕ̃t
(
x− l�M−1

o
)
,

where now only m3 � |IMo | summands are not equal to zero. In the following we will refer
to m as the support parameter.
It is an interesting question how to choose the unknown coefficients ĝk. A comparison

of (2.1) and (2.4), where we have to replace ϕ̃ by ϕ̃t in the case that ϕ is not compactly
supported, gives f(x)− f̃(x) =

∑
k∈IM

e−2πik·xf̂k −
∑

k∈IMo

e−2πik·x

ĝkck(ϕ̃t) +
∑

r∈Zd\{0}

ĝkck+r�Mo(ϕ̃t)e−2πi(r�Mo)·x


and∣∣f(x)− f̃(x)

∣∣ ≤ ∑
k∈IM

∣∣∣f̂k − ĝkck(ϕ̃t)
∣∣∣+

∑
k∈IMo\IM

|ĝkck(ϕ̃t)|+
∑

k∈IMo

∑
r∈Zd\{0}

|ĝkck+r�Mo(ϕ̃t)| .

4

Thus, at first glance it seems advantageous to set

ĝk :=
{
d̂kf̂k : k ∈ IM
0 : else

,

where we define
d̂k := 1

ck(ϕ̃t)
, (2.5)

cf. [21] for instance. On the other hand, estimating the error in the L2-norm∥∥f − f̃∥∥2 :=
(∫

Td
|f(x)− f̃(x)|2dx

)1/2

,

which we also refer to as the root mean square (RMS) error, gives∥∥f − f̃∥∥2
2 =

∑
k∈IM

∣∣∣f̂k − ĝkck(ϕ̃t)
∣∣∣2 +

∑
k∈IMo\IM

|ĝkck(ϕ̃t)|2 +
∑

k∈IMo

∑
r∈Zd\{0}

|ĝkck+r�Mo(ϕ̃t)|2 .

In order to minimize this error, we again have to set ĝk = 0 for k /∈ IM . For k ∈ IM we
assume again a linear dependence between ĝk and f̂k, i.e., we write ĝk in the form

ĝk = d̂kf̂k, d̂k ∈ R.

Since we assumed that ck(ϕ̃), d̂k ∈ R we obtain∥∥f − f̃∥∥2
2 =

∑
k∈IM

∣∣∣f̂k∣∣∣2 (1− d̂kck(ϕ̃t)
)2

+
∑
k∈IM

∣∣∣f̂k∣∣∣2 ∑
r∈Zd\{0}

d̂2
kc

2
k+r�Mo

(ϕ̃t).

Now, it is easy to determine the optimal coefficients d̂k by differentiating with respect to d̂k
and setting the result to zero for each k. We obtain

0 = −2ck(ϕ̃t)(1− d̂kck(ϕ̃t)) + 2d̂k
∑

r∈Zd\{0}

c2
k+r�Mo

(ϕ̃t)

= −2ck(ϕ̃t) + 2d̂k
∑
r∈Zd

c2
k+r�Mo

(ϕ̃t).

Thus, the optimal choice of d̂k with respect to the L2-norm is

d̂k := ck(ϕ̃t)∑
r∈Zd

c2
k+r�Mo

(ϕ̃t)
, (2.6)

which can also be found in [4, Appendix A] or [13], for instance. In summary, we obtain the
following expressions for the error measured in the L2-norm.∥∥f − f̃∥∥2

2 =
∑
k∈IM

∣∣∣f̂k∣∣∣2 ∑
r∈Zd\{0}

c2
k+r�Mo

(ϕ̃t)
c2
k(ϕ̃t)

for d̂k := 1
ck(ϕ̃t)

, (2.7)

∥∥f − f̃∥∥2
2 =

∑
k∈IM

∣∣∣f̂k∣∣∣2
∑

r∈Zd\{0}
c2
k+r�Mo

(ϕ̃t)∑
r∈Zd

c2
k+r�Mo

(ϕ̃t)
for d̂k := ck(ϕ̃t)∑

r∈Zd
c2
k+r�Mo

(ϕ̃t)
. (2.8)

5

Since the coefficients ck+r�Mo(ϕ̃t) for r 6= 0 are supposed to be small, the two approaches
seem to be very similar.
The NFFT algorithm as described above requires O(|IMo | log |IMo | + mdN) arithmetic

operations and can be summarized as follows.

Algorithm 2.1 (NFFT).
Input: nodes xj ∈ Td (j = 1, . . . , N), coefficients f̂k ∈ C (k ∈ IM ,M ∈ 2Nd), oversampling
factor σ ∈ Rd, σ ≥ 1.

i) (De-)convolution in Fourier domain:
Define the factors d̂k ∈ C for all k ∈ IM , e.g., as given in (2.5) or (2.6).
Set ĝk := d̂kf̂k for all k ∈ IM and ĝk := 0 for k ∈ IMo \ IM .

Complexity: O(|IM |).

ii) Use the (inverse) FFT for the computation of the coefficients

gl = 1
|IMo |

∑
k∈IMo

ĝke−2πik·(l�M−1
o), l ∈ IMo .

Complexity: O(|IMo | log |IMo |).

iii) Convolution in spatial domain: Compute

f(xj) ≈ f̃(xj) :=
∑
l∈IMo

glϕ̃t
(
xj − l�M−1

o
)

for all j = 1, . . . , N . Complexity: O(mdN).

Output: f̃(xj) ≈ f(xj) for j = 1, . . . , N .

Using a matrix-vector notation we may write

f̃ = BFDf̂ ,

where we define the vectors f̃ := [f̃(xj)]Nj=1 ∈ CN and f̂ := [f̂k]k∈IM ∈ C|IM |. The matrix
D is a diagonal matrix with entries d̂k and 0, F is the matrix representing the d-dimensional
(inverse) FFT of size |IMo | and B is a block band matrix, assumed that the nodes xj are
correspondingly ordered, with entries ϕ̃t

(
xj − l�M−1

o
)
.

The problem of evaluating sums of the form

h(k) :=
N∑
j=1

fje2πik·xj , k ∈ IM ,

where for each j = 1, . . . , N a coefficient fj ∈ C is given, can be treated very similarly. The
corresponding algorithm is known as the adjoint NFFT. Note that the matrix-vector form
of the adjoint NFFT is simply obtained by transposing the matrix representing the NFFT
algorithm. Thus, the derivation of the algorithm is straightforward, see [21, 15]. However,
since the roles of the two sets of indices have been interchanged the corresponding error
analysis has to be considered in a different context, which should not be discussed this paper.

6

3 Window functions and error estimates
There are many possible choices for an NFFT window function. In this section we aim to
derive accurate bounds for the above derived error in the L2-norm, which can be evaluated
in a fast way. For simplicity we restrict our considerations to the univariate case. In order
to get very precise error bounds we only consider window functions for which the Fourier
coefficients of the truncated window are known analytically. We will see that the derived
error bounds enable a very precise prediction of the occurrent errors. This can be applied in
order to develop an automatic parameter tuning, as we describe later on in more detail.

3.1 Cardinal B-Splines
We define the centered cardinal B-splines by

B1(x) :=
{

1 : x ∈ [−1/2, 1/2)
0 : else

Bn+1(x) := (Bn ∗B1)(x),

where we denote by ∗ the convolution operator on R. The cardinal B-spline of order n is
compactly supported with suppBn = [−n/2, n/2] and the Fourier transform is given by

B̂n(ξ) = sincn(πξ),

where we define the sinc function

sinc(x) :=
{

sinx
x : x 6= 0

1 : x = 0
.

In the following we denote by

Φn(x) :=
∑
r∈Z

Bn(r)xr = Bn(0) +
∞∑
r=1

Bn(r)(xr + x−r)

the well know Euler-Frobenius functions [22]. The Fourier coefficients of the cardinal B-spline
B̂n(k) fulfill the relation, see [2, page 135] and [19],∑

r∈Z
|B̂n(k + r)|2 = Φ2n(e−2πik) = B2n(0) + 2

∞∑
r=1

B2n(r) cos(2πkr). (3.1)

In the univariate case we define the B-spline window function as follows [1, 20].

ϕ(x) := B2m(σMx), supp(ϕ) =
[
− m
σM ,

m
σM

]
.

The corresponding Fourier coefficients are given by

ck(ϕ̃) = 1
σM

sinc2m (πk
σM

)
.

With the help of (3.1) we end up with∑
r∈Z

c2
k+rσM (ϕ̃) = 1

σ2M2

∑
r∈Z

B̂2
2m
(
k
σM + r

)
= 1
σ2M2 Φ4m

(
e−2πik/σM

)
.

7

Especially for the introduced B-spline window it is easy to derive an upper bound for sums
of the form ∑

r∈Z\{0}

c2
k+rσM (ϕ̃)
c2
k(ϕ̃) .

Utilizing sin2(x+ rπ) = sin2 x and estimating the infinite sum by an integral we obtain [23]

∑
r∈Z\{0}

c2
k+rσM (ϕ̃)
c2
k(ϕ̃) =

∑
r∈Z\{0}

(
k
σM
k
σM + r

)4m

<
8m

4m− 1

(|k|
σM
|k|
σM − 1

)4m

, (3.2)

which can be evaluated in a numerically stable way. In contrast, the evaluation via

∑
r∈Z\{0}

c2
k+rσM (ϕ̃)
c2
k(ϕ̃) =

Φ4m
(
e−2πik/σM)− sinc4m (πk

σM

)
sinc4m (πk

σM

)
seems numerically unstable. The error terms obtained by using the L2-optimized coefficients
d̂k can be estimated by∑

r∈Z\{0}
c2
k+rσM (ϕ̃)∑

r∈Z
c2
k+rσM (ϕ̃) =

sinc4m (πk
σM

)
Φ4m

(
e−2πik/σM

) ∑
r∈Z\{0}

c2
k+rσM (ϕ̃)
c2
k(ϕ̃)

<
sinc4m (πk

σM

)
Φ4m

(
e−2πik/σM

) 8m
4m− 1

(|k|
σM
|k|
σM − 1

)4m

, (3.3)

i.e., they are obtained by multiplying the error terms (3.2) resulting from setting d̂k := ck(ϕ̃)−1

by the factors
sinc4m (πk

σM

)
Φ4m

(
e−2πik/σM

) < 1.

We plot these factors for different values of m for all

x := |k|/σM ∈ [0, 1/2σ] ⊂ [0, 1/2]

in Figure 3.1. It can be seen that only for relatively large values of |k|/σM noticeable improve-
ments can be achieved. In other words, if we choose an oversampling factor σ > 1 or if the
coefficients f̂k are comparable small for |k|/σM ≈ 1/2, we do not expect a significant decrease
of the error measured in the L2-norm by using the optimized coefficients (2.6) instead of
following the standard approach to define d̂k via (2.5). We illustrate this by the following
example.

Example 3.1. We consider the univariate case and compare the results of the above described
error estimates for two different choices of f̂k. We set M := 64 and choose

f̂k := 1
1 + k2 for k ∈ I64 (3.4)

as a first example and
f̂k := e−(k/5)2 for k ∈ I64 (3.5)

8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

m = 2
m = 4
m = 6
m = 8

Figure 3.1: sinc4m(πx)Φ−1
4m
(
e−2πix) for x := |k|

σM ∈ [0, 1/2] for different values of m.

in a second test. Note the difference between the two examples. The coefficients f̂k as given
in (3.5) tend to zero exponentially fast, i.e., for large values of k the factors f̂k only have an
insignificant influence on the overall error. In contrast, the coefficients given in (3.4) tend to
zero very slowly.
In Figure 3.2 we plot the estimate of ‖f − f̃‖22 with respect to m for the two different

settings. We have

‖f − f̃‖22 <


8m

4m− 1
∑
k∈IM

|f̂k|2
(|k|

σM
|k|
σM − 1

)4m

: d̂k via (2.5),

8m
4m− 1

∑
k∈IM

|f̂k|2
(
sinc πk

σM

)4m

Φ4m
(
e−2πik/σM

) (|k|
σM
|k|
σM − 1

)4m

: d̂k via (2.6).
(3.6)

For the coefficients (3.4) we observe that the error can be somewhat reduced by using the
optimized coefficients (2.6) in the case σ = 1. Already for a small oversampling factor σ = 5/4
the errors are almost the same. In the case that the very fast decreasing coefficients (3.5) are
given, already for σ = 1 no difference between the two approaches can be seen.

3.2 Modified B-spline window

We introduce a shape parameter b ∈ 1/2N = {1/2, 1, 3/2, 2, . . . } and define the modified B-spline
window function ϕ by

ϕ(x) := B2b

(
σMb

m
x

)
.

As for the standard B-spline window we have supp(ϕ) = [−m/σM,m/σM], but we also allow a
different order of the B-spline, which is 2b. The Fourier coefficients of the periodic version ϕ̃
are given by

ck(ϕ̃) = m

σMb
sinc2b

(
mπk

σMb

)
.

For b = m we are in the case of the standard B-spline window and can apply the error
estimation described in the previous section. In the case that we have m/b ∈ {2, 3, 4, . . . } we

9

m
2 3 4 5 6 7 8

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

< = 1.0
< = 1.25

m
2 3 4 5 6 7 8

10-30

10-25

10-20

10-15

10-10

10-5

< = 1.0
< = 1.25

Figure 3.2: Estimated erorrs (3.6) for different values of m and σ. We set f̂k := (1 + k2)−1,
k ∈ I64, (left) and f̂k := e−(k/5)2 , k ∈ I64, (right). We compare the error terms for
the two different approaches to set d̂k (variant 1 (o): define d̂k by (2.5), variant 2
(*): set d̂k as given in (2.6)).

may exploit sin2(x+ m/b · rπ) = sin2(x) in order obtain the following estimate.

∑
r∈Z\{0}

c2
k+rσM (ϕ̃)
c2
k(ϕ̃) =

∑
r∈Z\{0}

(
k
σM
k
σM + r

)4b

≥
∑

r∈Z\{0}

(
k
σM
k
σM + r

)4m

(3.7)

i.e., we obtain the same error by choosing the window function ϕ(x) := B2b(σMx) with
smaller support supp(ϕ) = [−b/σM, b/σM]. This error is obviously larger than for the case
b = m. In other words, it is not necessary to consider the case that b 6= m is a divisor of m.
Note that for b ≤ m/2 we could also have ck(ϕ̃) = 0 for some k, i.e., the definition of d̂k

via (2.5) can not be applied. As an example, if we set b := m/2, σ := 1 then cM/2(ϕ̃) = 0.
Consequently, we restrict our considerations to the case b > m/2.
If m/b /∈ N we proceed as follows. For some Rk ∈ N we have∑

r∈Z\{0}

c2
k+rσM (ϕ̃) = m2

σ2M2b2

∑
r∈Z\{0}

sinc4b (mπ
b

[
k
σM + r

])

≤ m2

σ2M2b2

 ∑
0<|r|≤Rk

sinc4b (mπ
b

[
k
σM + r

])
+
∑
|r|>Rk

1(
mπ
b

)4b (k
σM + r

)4b

 ,

where ∑
|r|>Rk

1(
k
σM + r

)4b <

∫ ∞
Rk

dr(
k
σM + r

)4b +
∫ ∞
Rk

dr(
k
σM − r

)4b

= 1
4b− 1

(
1(

k
σM +Rk

)4b−1 −
1(

k
σM −Rk

)4b−1

)
.

In summary we have ∑
r∈Z\{0}

c2
k+rσM (ϕ̃) < s

(
k
σM

)
,

10

where we set

s
(
k
σM

)
:= m2

σ2M2b2

 ∑
0<|r|≤Rk

sinc4b (mπ
b

[
k
σM + r

])
+
(
k
σM +Rk

)1−4b −
(
k
σM −Rk

)1−4b(
mπ
b

)4b (4b− 1)


for some Rk ∈ N. In order to get a precise estimate we suggest to proceed as follows.

i) Rk := 1.

ii) Compute s
(
k
σM

)
:= m2

σ2M2b2
∑

0<|r|≤Rk
sinc4b (mπ

b

[
k
σM + r

])
.

iii) Set r
(
k
σM

)
:= m2

σ2M2b2

(
k
σM +Rk

)1−4b
−
(
k
σM −Rk

)1−4b

(mπb)4b(4b−1)
.

iv) While r
(
k
σM

)
≥ s

(
k
σM

)
:

a) Rk := Rk + 1.
b) s

(
k
σM

)
:= s

(
k
σM

)
+ m2

σ2M2b2 sinc4b (mπ
b

[
k
σM ±Rk

])
.

c) r
(
k
σM

)
:= m2

σ2M2b2

(
k
σM +Rk

)1−4b
−
(
k
σM −Rk

)1−4b

(mπb)4b(4b−1)
.

v) s
(
k
σM

)
:= s

(
k
σM

)
+ r

(
k
σM

)
.

Note that the estimation can be tuned to an even higher accuracy by substituting the condition
r
(
k
σM

)
≥ s

(
k
σM

)
by r

(
k
σM

)
≥ γ · s

(
k
σM

)
, where γ ∈ (0, 1).

In order to estimate ∑
r∈Z\{0}

c2
k+rσM (ϕ̃)∑

r∈Z
c2
k+rσM (ϕ̃)

we use (3.3) in the case b = m. Otherwise we exploit that a function of the form f(y) = y
c2+y

is monotonically increasing and obtain∑
r∈Z\{0}

c2
k+rσM (ϕ̃)∑

r∈Z
c2
k+rσM (ϕ̃) <

s
(
k
σM

)
c2
k(ϕ̃) + s

(
k
σM

) . (3.8)

Example 3.2. We consider the case m = 4. For different shape parameters b ∈ 1/2N, we
plot the above derived estimates of the terms∑

r∈Z\{0}
c2
k+rσM (ϕ̃)∑

r∈Z
c2
k+rσM (ϕ̃) =

∑
r∈Z\{0}

sinc4b (mπ
b [x+ r]

)
∑
r∈Z

sinc4b (mπ
b [x+ r]

) , (3.9)

where we set |x| ≤ 1/2, in Figure 3.3. Since we only expect small differences between the two
deconvolution approaches as well as for overview purposes we only plot the error terms for
one of the two variants.
It seems not reasonable to use a shape parameter b > m. Depending on the given coefficients

f̂k and the chosen oversampling factor, a shape parameter b ∈ {5/2, 3, 7/2, 4} is supposed to be
optimal.

11

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10-20

10-15

10-10

10-5

100

b = 2.5
b = 3
b = 3.5
b = 4
b = 4.5
b = 5

Figure 3.3: Estimated error terms (3.9) for m = 4 and different shape parameters b. We plot
the results with respect to x := |k|

σM ∈ [0, 1/2].

Example 3.3. We consider again the two sets of Fourier coefficients as given in (3.4) as well
as (3.5). We estimate the quadratic error

‖f − f̃‖22
as described above, for m ∈ {4, 8} with different shape parameters b ∈ 1/2N and oversampling
factors σ. We plot the results in Figures 3.4 and 3.5, respectively. For the slow decreasing
factors (3.4), a shape parameter b < m is optimal in most cases. In contrast, for the very fast
decreasing coefficients (3.5) the minimal error is in most cases obtained by setting b = m. As
expected, we only see small differences between the two deconvolution schemes.

b
2.5 3 3.5 4 4.5 5 5.5 6

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

< = 1.00
< = 1.25
< = 1.50
< = 2.00

b
4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

10-25

10-20

10-15

10-10

10-5

< = 1.00
< = 1.25
< = 1.50
< = 2.00

Figure 3.4: Estimate of ‖f− f̃‖22 for the modified B-spline window, where we choose the set of
Fourier coefficients f̂k given by (3.4). We plot the error with respect to the shape
parameter b, where we set m = 4 (left) and m = 8 (right), for different oversam-
pling factors σ. We compare the error terms for the two different approaches to
set d̂k (variant 1 (o): define d̂k by (2.5), variant 2 (*): set d̂k as given in (2.6)).

3.3 Bessel window
In the following we consider a window function which is constructed based on the Kaiser-
Bessel NFFT window, which was introduced in [20, Appendix]. In order to get a window
function ϕ with compact support we interchange the roles of time and frequency domain.

12

b
2.5 3 3.5 4 4.5 5 5.5 6

10-20

10-15

10-10

10-5

< = 1.00
< = 1.25
< = 1.50
< = 2.00

b
4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

10-35

10-30

10-25

10-20

10-15

10-10

< = 1.00
< = 1.25
< = 1.50
< = 2.00

Figure 3.5: Estimate of ‖f− f̃‖22 for the modified B-spline window, where we choose the set of
Fourier coefficients f̂k given by (3.5). We plot the error with respect to the shape
parameter b, where we set m = 4 (left) and m = 8 (right), for different oversam-
pling factors σ. We compare the error terms for the two different approaches to
set d̂k (variant 1 (o): define d̂k by (2.5), variant 2 (*): set d̂k as given in (2.6)).

We refer to the resulting function as the Bessel (I0) window function, which is also found
under the name Kaiser-Bessel function in the literature [14, 8, 12].
For some shape parameter b > 0 we define the Bessel window function by

ϕ(x) := 1
2

{
I0

(
b
√
m2 − σ2M2x2

)
: |x| ≤ m

σM ,

0 : else,

where I0 denotes the modified zero-order Bessel function. The corresponding Fourier coeffi-
cients are of the form

ck(ϕ̃) = 1
σM


sinh

(
m
√
b2 − 4π2k2/(σ2M2)

)
√
b2 − 4π2k2/(σ2M2)

: |k| ≤ σMb
2π ,

m sinc
(
m
√

4π2k2/(σ2M2)− b2
)

: else.

In the univariate case, the error sums
∑

r∈Z\{0} c
2
k+rσM (ϕ̃) can be estimated as follows. For

Rk >
|k|
σM + b

2π we have

∑
r∈Z\{0}

c2
k+rσM (ϕ̃) =

∑
1<|r|≤Rk

c2
k+rσM (ϕ̃) + m2

σ2M2

∞∑
r=Rk+1

sinc2
(
m
√

4π2(|k|/σM ± r)2 − b2
)

≤
∑

1<|r|≤Rk

c2
k+rσM (ϕ̃) + 1

σ2M2

∞∑
r=Rk+1

1
4π2(|k|/σM ± r)2 − b2

<
∑

1<|r|≤Rk

c2
k+rσM (ϕ̃) + 1

σ2M2

∫ ∞
Rk

dr
4π2(|k|/σM ± r)2 − b2 ,

13

where integrals can be computed by∫ ∞
Rk

dr
4π2(|k|/σM ± r)2 − b2 = 1

2π

(∫ ∞
2π(|k|/σM+Rk)

+
∫ 2π(|k|/σM−Rk)

−∞

)
dr

r2 − b2

=
ln
∣∣∣2π(|k|/σM−Rk)−b

2π(|k|/σM−Rk)+b

∣∣∣+ ln
∣∣∣2π(|k|/σM+Rk)+b

2π(|k|/σM+Rk)−b

∣∣∣
4πb .

In order to get a precise estimate we suggest to proceed as follows, cf. Section 3.2.

i) Rk :=
⌈
|k|
σM + b

2π

⌉
.

ii) Set s
(
k
σM

)
:=

∑
1<|r|≤Rk

c2
k+rσM (ϕ̃).

iii) Set r
(
k
σM

)
:= 1

4πbσ2M2

(
ln
∣∣∣2π(|k|/σM−Rk)−b

2π(|k|/σM−Rk)+b

∣∣∣+ ln
∣∣∣2π(|k|/σM+Rk)+b

2π(|k|/σM+Rk)−b

∣∣∣).
iv) While r

(
k
σM

)
≥ s

(
k
σM

)
:

a) Rk := Rk + 1.
b) s

(
k
σM

)
:= s

(
k
σM

)
+ c2

k±RkσM (ϕ̃).

c) r
(
k
σM

)
:= 1

4πbσ2M2

(
ln
∣∣∣2π(|k|/σM−Rk)−b

2π(|k|/σM−Rk)+b

∣∣∣+ ln
∣∣∣2π(|k|/σM+Rk)+b

2π(|k|/σM+Rk)−b

∣∣∣).
v) s

(
k
σM

)
:= s

(
k
σM

)
+ r

(
k
σM

)
.

If we define the coefficients d̂k via (2.5), s(k/σM) gives an upper bound for the corresponding
error terms. In the case that we use the optimized coefficients (2.6), we can again apply (3.8).

Example 3.4. We consider the univariate case and investigate the behavior of the error in
the L2-norm with respect to b. By default, the shape parameter b is set to [20, Appendix]

b0 := 2π(1− 1/2σ).

If we choose σ ∈ {1, 5/4} we obtain the following standard values for b.

b0 ≈

{
3.14 : σ = 1 ,
3.77 : σ = 5/4 .

In this example we consider again the two different sets of Fourier coefficients given in (3.4)
and (3.5), respectively. For the slowly decreasing coefficients (3.4) the estimated errors are
plotted in the Figure 3.6. For σ = 1 we can see a small difference in the errors obtained
for the two different approaches to set d̂k. The optimal values for b nearly coincide with the
suggested default values b0.
The results for the coefficients (3.5) are plotted in Figure 3.7. The predicted errors for

the two variants to set d̂k are nearly the same. On the other hand, the optimal values for b
considerably differ from b0.

14

b
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

10-10

10-8

10-6

10-4

10-2

100

 < = 1.00
 < = 1.25

b
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 < = 1.00
 < = 1.25

Figure 3.6: Estimate of ‖f − f̃‖22 for the Bessel window, where we choose the set of Fourier
coefficients f̂k as given by (3.4). We plot the error with respect to the shape
parameter b, where we set m = 3 (left) and m = 6 (right), for σ ∈ {1, 5/4}. We
compare the obtained errors for the two variants to set the coefficients d̂k (variant
1 (o): define d̂k by (2.5), variant 2 (*): set d̂k as given in (2.6)).

b
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

 < = 1.00
 < = 1.25

b
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

10-26

10-24

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

 < = 1.00
 < = 1.25

Figure 3.7: Estimate of ‖f − f̃‖22 for the Bessel window, where we choose the set of Fourier
coefficients f̂k as given by (3.5). We plot the error with respect to the shape
parameter b, where we set m = 3 (left) and m = 6 (right), for σ ∈ {1, 5/4}. We
compare the obtained errors for the two variants to set the coefficients d̂k (variant
1 (o): define d̂k by (2.5), variant 2 (*): set d̂k as given in (2.6)).

3.4 Gaussian window function

For some shape parameter b > 0 we define the Gaussian window function in the univariate
case by [5, 20, 9]

ϕ(x) = 1√
πb

e−σ2M2x2/b.

The Fourier coefficients of the periodic version ϕ̃ are given by

ck(ϕ̃) = 1
σM

e−bπ2k2/(σ2M2).

15

The Fourier coefficients of the truncated version ϕ̃t := ϕ̃ · χ̃[−m/σM,m/σM] ca be expressed by

ck(ϕ̃t) = ϕ̂t(k) = 1√
πb

∫ m/σM

−m/σM
e−σ2M2x2/b2e2πikxdx

= e−bπ2k2/(σ2M2)
√
πb

∫ m/σM

−m/σM
e−[σMx/

√
b−iπk

√
b(σM)]2

dx

= e−bπ2k2/(σ2M2)

2σM

[
erf
(
m√
b

+ iπk
√
b

σM

)
+ erf

(
m√
b
− iπk

√
b

σM

)]
= e−bπ2k2/(σ2M2)

σM
Re
[
erf
(
m√
b

+ iπk
√
b

σM

)]
,

where we denote by erf the well known error function.

Example 3.5. For the univariate case we consider the following three possibilities to set d̂k
and give some comparisons for the Gaussian window function.

∫
T
|f(x)− f̃(x)|2dx =

∑
k∈IM

∣∣∣f̂k∣∣∣2 ·


(
1− c2

k(ϕ̃t)
c2
k(ϕ̃)

)2
+

∑
r∈Z\{0}

c2
k+rσM (ϕ̃t)
c2
k(ϕ̃) : d̂k = 1

ck(ϕ̃) ,∑
r∈Z\{0}

c2
k+rσM (ϕ̃t)
c2
k(ϕ̃t) : d̂k via (2.5),∑

r∈Z\{0}
c2
k+rσM (ϕ̃t)∑

r∈Z
c2
k+rσM (ϕ̃t) : d̂k via (2.6).

Commonly, the NFFT deconvolution step is done by using the Fourier coefficients of the
non truncated Gaussian. Since the convolution in spatial domain is done with a truncated
Gaussian, it seems reasonable to use the Fourier coefficients of the truncated function, see
Section 2. In order to compare the two approaches, we here also consider the variant to set
d̂k := c−1

k (ϕ̃).
The Fourier coefficients of the Gaussian window function tend to zero exponentially fast

with growing argument so that the sums∑
r∈Z\{0}

c2
k+rσM (ϕ̃t)

are short an can be evaluated directly. In the following we evaluate the above error terms for
different f̂k as well as for different shape parameters b. We will see that the optimal value
for the shape parameter depends on both, the given coefficients f̂k and the parameters used
within the NFFT (m, σ, definition of d̂k).
In many applications, the shape parameter b is chosen as follows

b0 := 2σ
2σ − 1

m

π
,

see [23, 4, 9]. For example, if we choose m ∈ {3, 6} combined with σ ∈ {1, 5/4} we obtain the
values listed in Table 3.1.
In the following we consider again the two different sets of Fourier coefficients as defined in

(3.4) and (3.5), respectively. We evaluated the quadratic error ‖f − f̃‖22 via the sums stated
above parameter sets. For fixed m and σ, the results are plotted in the following figures.

16

σ = 1 σ = 5/4

m = 3 b0 ≈ 1.91 b0 ≈ 1.59
m = 6 b0 ≈ 3.82 b0 ≈ 3.18

Table 3.1: Value of b0 for different combinations of m and σ.

In most cases, the optimal shape parameter differs from the standard values, which are
given in Table 3.1. Which value for b is optimal, obviously depends on the given Fourier
coefficients f̂k as well as on the chosen oversampling factor σ.
In general, better results are obtained by using the Fourier coefficients of the truncated

Gauss window. For the coefficients (3.4) we obtain slightly better results by using the opti-
mized factors (2.6) if σ = 1. In the case that the very rapidly decreasing coefficients (3.5)
are given, the two variants (2.5) and (2.6) again produce almost the same errors, already for
σ = 1.

b
0.5 1 1.5 2 2.5 3 3.5 4 4.5

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 < = 1.00
 < = 1.25

b
0.5 1 1.5 2 2.5 3 3.5 4 4.5

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

 < = 1.00
 < = 1.25

Figure 3.8: Estimate of ‖f − f̃‖22 for the Gaussian window, where we choose the set of Fourier
coefficients f̂k as given by (3.4). We plot the error with respect to the shape
parameter b, where we set m = 3 (left) and m = 6 (right), for σ ∈ {1, 5/4}.
We compare the obtained errors for the three variants to set the coefficients d̂k
(variant 1 (x): d̂k := c−1

k (ϕ̃), variant 2 (o): d̂k via (2.5), variant 3 (*): d̂k via
(2.6)).

3.5 Comparison

In the current section we investigated the error of the NFFT in the L2-norm. Some concrete
examples for the univariate case showed that, especially in the case that the given Fourier
coefficients do not decrease very rapidly and σ ≈ 1, the accuracy can be somewhat improved
by using the optimized coefficients (2.6) within the NFFT (Algorithm 2.1).
Furthermore, in many cases the optimal values for the shape parameter b differ from the

corresponding default values, which are widely used. Obviously, the optimal shape parameter
depends on both, the given Fourier coefficients as well as on the NFFT parameters m and σ.
We also introduced the modified B-spline window, which allows us to choose the order of

the B-spline independently from the support parameter m.

17

b
0.5 1 1.5 2 2.5 3 3.5 4 4.5

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

 < = 1.00
 < = 1.25

b
0.5 1 1.5 2 2.5 3 3.5 4 4.5

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

 < = 1.00
 < = 1.25

Figure 3.9: Estimate of ‖f − f̃‖22 for the Gaussian window, where we choose the set of Fourier
coefficients f̂k as given by (3.5). We plot the error with respect to the shape
parameter b, where we set m = 3 (left) and m = 6 (right), for σ ∈ {1, 5/4}.
We compare the obtained errors for the three variants to set the coefficients d̂k
(variant 1 (x): d̂k := c−1

k (ϕ̃), variant 2 (o): d̂k via (2.5), variant 3 (*): d̂k via
(2.6)).

For a comparison of all introduced window functions, we consider again the two sets of
Fourier coefficients (3.4) and (3.5). As described in the previous paragraphs, we estimate the
quadratic error (2.8), where d = 1, for m ∈ {2, . . . , 8} and σ ∈ {1, 5/4}. We plot the results
in Figure 3.10 (first row). For each m we inserted different values for the shape parameter
b and picked out the result for which the obtained error was minimal. The corresponding
optimal values for the shape parameter bopt are also plotted in Figure 3.10 (second row). For
comparison, we also plot the corresponding default values b0 of the shape parameter. For the
(modified) B-spline window the default value is b0 = m (standard B-spline window).
In the case of the very slowly decreasing coefficients (3.4), the Bessel window always yields

the smallest error. For the coefficients (3.5) the standard B-spline window performs better if
m is very small. For even faster decreasing Fourier coefficients we expect a better performance
of the B-spline window.

4 Verification of the theoretical estimates
We used a simple implementation of the univariate NFFT with the introduced window func-
tions in MATLAB in order to verify the theoretical estimates.
We revisit the examples presented in Section 3 and compare the theoretical error estimates

with experimental measurements. We compute the sums

f̃(xj) ≈ f(xj) =
∑
k∈IM

f̂ke−2πikxj , j = 1, . . . , N,

where we consider the two sets of Fourier coefficients (3.4) and (3.5), for N = 500 randomly
chosen nodes xj ∈ T, j = 1, . . . , N . Instead of the quadratic error ‖f̃ − f‖22 we compute

∆f2 := 1
N

N∑
j=1

[
f(xj)− f̃(xj)

]2
. (4.1)

18

m
2 3 4 5 6 7 8

10-25

10-20

10-15

10-10

10-5

B-Spline, < = 1.00
Gaussian, < = 1.00
Bessel, < = 1.00
B-Spline, < = 1.25
Gaussian, < = 1.25
Bessel, < = 1.25

m
2 3 4 5 6 7 8

10-35

10-30

10-25

10-20

10-15

10-10

10-5

B-Spline, < = 1.00
Gaussian, < = 1.00
Bessel, < = 1.00
B-Spline, < = 1.25
Gaussian, < = 1.25
Bessel, < = 1.25

m
2 3 4 5 6 7 8

b o
p
t

0

1

2

3

4

5

6

7

8

B-Spline, < = 1.00
Gaussian, < = 1.00
Bessel, < = 1.00
B-Spline, < = 1.25
Gaussian, < = 1.25
Bessel, < = 1.25

m
2 3 4 5 6 7 8

b o
p
t

0

1

2

3

4

5

6

7

8
B-Spline, < = 1.00
Gaussian, < = 1.00
Bessel, < = 1.00
B-Spline, < = 1.25
Gaussian, < = 1.25
Bessel, < = 1.25

m
2 3 4 5 6 7 8

b 0

0

1

2

3

4

5

6

7

8

B-Spline, < = 1.00
Gaussian, < = 1.00
Bessel, < = 1.00
B-Spline, < = 1.25
Gaussian, < = 1.25
Bessel, < = 1.25

Figure 3.10: First row: Estimated quadratic errors (2.8) for the sets of Fourier coefficients
(3.4) and (3.5) (from left to right) with respect to m. We used different window
functions and oversampling factors (see legend).
Second row: Corresponding optimal values for the shape parameter b.
Bottom: Default values for the shape parameter b0.

19

Since we have seen in the last section that the optimized deconvolution scheme (2.6) does
not serve clear benefits compared to the standard approach (2.5), we only run our algorithm
applying the standard deconvolution (symbolized by o). For the Gaussian window function we
also plot the results which are obtained by using the Fourier coefficients of the non truncated
function, i.e., we set d̂k := c−1

k (ϕ̃) (denoted by x) instead of d̂k := c−1
k (ϕ̃t). Note that

the plots concerning the theoretical estimates still also contain the results for the optimized
deconvolution (*).
We can see that the theoretical estimates match quite well with the measured errors (4.1).

Of course, the measured errors are in some cases somewhat smaller than the predicted errors,
which is due to the fact that the computation of the predicted errors is based on computing
upper bounds of the involved error terms, see Section 3.

m
2 3 4 5 6 7 8

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

< = 1.0
< = 1.25

m
2 3 4 5 6 7 8

"
f

2

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

< = 1.00
< = 1.25

Figure 4.1: Estimated quadratic errors ‖f − f̃‖22 (left) and the measured errors ∆f2 (right)
for the standard B-spline window. We used the set of Fourier coefficients (3.4)
and plot the results for different oversampling factors σ with respect to m.

m
2 3 4 5 6 7 8

10-30

10-25

10-20

10-15

10-10

10-5

< = 1.0
< = 1.25

m
2 3 4 5 6 7 8

"
f

2

10-30

10-25

10-20

10-15

10-10

10-5

< = 1.00
< = 1.25

Figure 4.2: Estimated quadratic errors ‖f − f̃‖22 (left) and the measured errors ∆f2 (right)
for the standard B-spline window. We used the set of Fourier coefficients (3.5)
and plot the results for different oversampling factors σ with respect to m.

20

b
2.5 3 3.5 4 4.5 5 5.5 6

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

< = 1.00
< = 1.25
< = 1.50
< = 2.00

b
2.5 3 3.5 4 4.5 5 5.5 6

"
f

2

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

< = 1.00
< = 1.25
< = 1.50
< = 2.00

Figure 4.3: Estimated quadratic errors ‖f− f̃‖22 (left) and the measured errors ∆f2 (right) for
the modified B-spline window. We used the set of Fourier coefficients (3.4),
set m := 4 and plot the results for different oversampling factors σ with respect
to the shape parameter b.

b
2.5 3 3.5 4 4.5 5 5.5 6

10-20

10-15

10-10

10-5

< = 1.00
< = 1.25
< = 1.50
< = 2.00

b
2.5 3 3.5 4 4.5 5 5.5 6

"
f

2

10-20

10-15

10-10

10-5

< = 1.00
< = 1.25
< = 1.50
< = 2.00

Figure 4.4: Estimated quadratic errors ‖f− f̃‖22 (left) and the measured errors ∆f2 (right) for
the modified B-spline window. We used the set of Fourier coefficients (3.5),
set m := 4 and plot the results for different oversampling factors σ with respect
to the shape parameter b.

b
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

10-10

10-8

10-6

10-4

10-2

100

 < = 1.00
 < = 1.25

b
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

"
f

2

10-10

10-8

10-6

10-4

10-2

100

< = 1.00
< = 1.25

Figure 4.5: Estimated quadratic errors ‖f − f̃‖22 (left) and the measured errors ∆f2 (right)
for the Bessel window. We used the set of Fourier coefficients (3.4), set m := 3
and plot the results for different oversampling factors σ with respect to the shape
parameter b.

21

b
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 < = 1.00
 < = 1.25

b
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

"
f

2

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

< = 1.00
< = 1.25

Figure 4.6: Estimated quadratic errors ‖f − f̃‖22 (left) and the measured errors ∆f2 (right)
for the Bessel window. We used the set of Fourier coefficients (3.4), set m := 6
and plot the results for different oversampling factors σ with respect to the shape
parameter b.

b
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

 < = 1.00
 < = 1.25

b
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

"
f

2

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

< = 1.00
< = 1.25

Figure 4.7: Estimated quadratic errors ‖f − f̃‖22 (left) and the measured errors ∆f2 (right)
for the Bessel window. We used the set of Fourier coefficients (3.5), set m := 3
and plot the results for different oversampling factors σ with respect to the shape
parameter b.

b
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

10-26

10-24

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

 < = 1.00
 < = 1.25

b
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

"
f

2

10-26

10-24

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

< = 1.00
< = 1.25

Figure 4.8: Estimated quadratic errors ‖f − f̃‖22 (left) and the measured errors ∆f2 (right)
for the Bessel window. We used the set of Fourier coefficients (3.5), set m := 6
and plot the results for different oversampling factors σ with respect to the shape
parameter b.

22

b
0.5 1 1.5 2 2.5 3 3.5 4 4.5

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 < = 1.00
 < = 1.25

b
0.5 1 1.5 2 2.5 3 3.5 4 4.5

"
f

2

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

< = 1.00
< = 1.25

Figure 4.9: Estimated quadratic errors ‖f− f̃‖22 (left) and the measured errors ∆f2 (right) for
the Gaussian window. We used the set of Fourier coefficients (3.4), set m := 3
and plot the results for different oversampling factors σ with respect to the shape
parameter b. (d̂k := c−1

k (ϕ̃): x, d̂k := c−1
k (ϕ̃t): o)

b
0.5 1 1.5 2 2.5 3 3.5 4 4.5

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

 < = 1.00
 < = 1.25

b
0.5 1 1.5 2 2.5 3 3.5 4 4.5

"
f

2

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

< = 1.00
< = 1.25

Figure 4.10: Estimated quadratic errors ‖f − f̃‖22 (left) and the measured errors ∆f2 (right)
for the Gaussian window. We used the set of Fourier coefficients (3.4), set
m := 6 and plot the results for different oversampling factors σ with respect to
the shape parameter b. (d̂k := c−1

k (ϕ̃): x, d̂k := c−1
k (ϕ̃t): o)

b
0.5 1 1.5 2 2.5 3 3.5 4 4.5

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

 < = 1.00
 < = 1.25

b
0.5 1 1.5 2 2.5 3 3.5 4 4.5

"
f

2

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

< = 1.00
< = 1.25

Figure 4.11: Estimated quadratic errors ‖f − f̃‖22 (left) and the measured errors ∆f2 (right)
for the Gaussian window. We used the set of Fourier coefficients (3.5), set
m := 3 and plot the results for different oversampling factors σ with respect to
the shape parameter b. (d̂k := c−1

k (ϕ̃): x, d̂k := c−1
k (ϕ̃t): o)

23

b
0.5 1 1.5 2 2.5 3 3.5 4 4.5

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

 < = 1.00
 < = 1.25

b
0.5 1 1.5 2 2.5 3 3.5 4 4.5

"
f

2

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

< = 1.00
< = 1.25

Figure 4.12: Estimated quadratic errors ‖f − f̃‖22 (left) and the measured errors ∆f2 (right)
for the Gaussian window. We used the set of Fourier coefficients (3.5), set
m := 6 and plot the results for different oversampling factors σ with respect to
the shape parameter b. (d̂k := c−1

k (ϕ̃): x, d̂k := c−1
k (ϕ̃t): o)

5 Parameter tuning
Based on the very accurate error estimates we are able to construct a tuning algorithm for
the shape parameter b. In the following we denote by

∆f2
≈(window, b,m, σ)

{
≈ ‖f − f̃‖22 as described in Section 3 : b > 0,
= +∞ : b ≤ 0,

the predicted quadratic error, which can be computed for the different window functions as
described in Section 3.
For the (modified) B-spline window it seems that a shape parameter b ∈ 1/2N ∩ (m/2,m] is

always optimal. Thus, we suggest to tune the shape parameter as follows.

Algorithm 5.1 (Shape parameter tuning for B-splines).
Input: Fourier coefficients f̂k, k ∈ IM , support parameter m, oversampling factor σ.

i) Set bopt := m and ∆f2
≈,opt := ∆f2

≈(B-spline, bopt,m, σ).

ii) Set bnext := m− 1/2 and ∆f2
≈,next := ∆f2

≈(B-spline, bnext,m, σ).

iii) While ∆f2
≈,next < ∆f2

≈,opt and bnext > m/2:
a) Set bopt := bnext and ∆f2

≈,opt := ∆f2
≈,next.

b) Set bnext := bopt − 1/2 and ∆f2
≈,next := ∆f2

≈(B-spline, bnext,m, σ).

Output: Optimal shape parameter bopt and predicted quadratic error ∆f2
≈,opt.

In order to tune the shape parameter b for the Bessel or the Gaussian window function we
suggest to use a simple search algorithm of the following form.

Algorithm 5.2 (Shape parameter tuning for Bessel and Gauss window).
Input: Fourier coefficients f̂k, k ∈ IM , support parameter m, oversampling factor σ, desired
window function (Bessel or Gauss), start value bstart, start step size dstart.

i) Set d := dstart.

24

ii) Set bopt := bstart and ∆f2
≈,opt := ∆f2

≈(window, bopt,m, σ).

iii) Set bleft := bopt − d and ∆f2
≈,left := ∆f2

≈(window, bleft,m, σ).

iv) Set bright := bopt + d and ∆f2
≈,right := ∆f2

≈(window, bright,m, σ).

v) Until max{∆f2
≈,left,∆f2

≈,opt,∆f2
≈,right} ≈ min{∆f2

≈,left,∆f2
≈,opt,∆f2

≈,right}

• If min{∆f2
≈,left,∆f2

≈,opt,∆f2
≈,right} = ∆f2

≈,opt:
a) Set d := γ · d for some γ ∈ (0, 1), i.e., choose a smaller step size.
Else:
a) bopt := arg min

bleft,bopt,bright

{∆f2
≈,left,∆f2

≈,opt,∆f2
≈,right}.

b) ∆f2
≈,opt := min{∆f2

≈,left,∆f2
≈,opt,∆f2

≈,right}.
• Set bleft := bopt − d and ∆f2

≈,left := ∆f2
≈(window, bleft,m, σ).

• Set bright := bopt + d and ∆f2
≈,right := ∆f2

≈(window, bright,m, σ).

Output: Optimal shape parameter bopt and predicted quadratic error ∆f2
≈,opt.

Example 5.1. We use Algorithm 5.2 in order to tune the optimal shape parameters for
different parameter settings. Thereby, we set bstart := b0, dstart := 1/2 · b0 and γ := 1/2.
Note, that we have not yet proven if the stated algorithm always converges to the global

minimum. However, in our examples the results coincide with the experimentally determined
optimal values of b, which we plotted in Figure 3.10, see Tables 5.1 and 5.2. For the obtained
approximation errors compare also to Figure 3.10.

σ = 1 σ = 5/4

m = 2 4.0743 5.0364
m = 3 3.1416 4.0350
m = 4 3.1539 3.8067
m = 5 3.1907 3.7294
m = 6 3.2398 3.7340
m = 7 3.2398 3.6705
m = 8 3.3379 3.6862

σ = 1 σ = 5/4

m = 2 5.5101 5.5776
m = 3 5.3751 5.6015
m = 4 5.2094 5.4597
m = 5 5.0437 5.3622
m = 6 4.8781 5.2462
m = 7 4.7063 5.1358
m = 8 4.5406 5.0216

Table 5.1: Tuned optimal shape parameters bopt for the Fourier coefficients (3.4) on the left
hand side and for the Fourier coefficients (3.5) on the right hand side.
Window function: Bessel. Compare to Figure 3.10 for the obtained errors.

Another task concerning the parameter tuning is to find out a parameter set for which
the computational time is as minimal as possible, assumed that a certain accuracy has to
be achieved. Of course, the optimal set of parameters regarding computation time may very
much depend on the processor which is used for the calculations.
Given a required accuracy we could apply a tuning algorithm of the form 5.1 or 5.2 in order

to determine for different values of the support parameter m a sufficiently large oversampling
factor σ and an appropriate shape parameter b, for which the accuracy is achieved, respec-
tively. The optimal parameter set can be determined by a comparison between measured

25

σ = 1 σ = 5/4

m = 2 0.7759 0.7626
m = 3 1.6114 1.2434
m = 4 2.4669 1.8900
m = 5 3.3323 2.5697
m = 6 3.7600 3.2453
m = 7 4.5956 3.8297
m = 8 4.9338 4.4762

σ = 1 σ = 5/4

m = 2 0.7709 0.7647
m = 3 1.1116 1.1004
m = 4 1.4672 1.4382
m = 5 1.8278 1.7822
m = 6 2.1934 2.1324
m = 7 2.5763 2.4878
m = 8 2.9692 2.8474

Table 5.2: Tuned optimal shape parameters bopt for the Fourier coefficients (3.4) on the left
hand side and for the Fourier coefficients (3.5) on the right hand side.
Window function: Gauss. Compare to Figure 3.10 for the obtained errors.

computation times on the used computer. A corresponding tuning could be roughly of the
following form.

Algorithm 5.3 (Accuracy tuning).
Input: Fourier coefficients f̂k, set of window functions, list of support parameters m1 ≤ · · · ≤
mn, set of oversampling factors 1 = σ1 ≤ · · · ≤ σmax, required accuracy ε > 0.

i) For each window function and for each support parameter mj , j = 1, . . . , n, set

σmin(mj) := min {σ ∈ {σ1, . . . , σmax} : ∆f≈(window, bopt,mj , σ) ≤ ε} ,

if this minimum exists. Thereby, use Algorithm 5.1 or rather Algorithm 5.2 in order to
tune the shape parameter b in each case.

ii) For all obtained possible sets of parameters find the optimal one regarding runtime by
running a simple test scenario.

Example 5.2. We consider the two sets of Fourier coefficients as given in (3.4) and (3.5). For
a given required accuracy ε we compare the tuned parameters for the Bessel and the B-spline
window, see Tables 5.3 and 5.4. Thereby, we computed for each m the required oversampling
factor by

σmin(m) := min
{
σ ∈

{
1 + s

16 , s = 1, . . . , 16
}

: ∆f≈(window, bopt,m, σ) ≤ ε
}
,

i.e., we set σmax := 2.
The results show that for the Bessel window a smaller oversampling factor is needed com-

pared to the B-spline window in order to obtain the given accuracy. Different combinations
of the parameters m and σ are possible. Which one is the optimal with respect to runtime
will depend on the used hardware.

The multivariate case
In the multivariate case the prediction of the error is somewhat more complicated. Since the
window function is constructed based on a tensor product approach (2.3) the computation of

26

Bessel B-spline
σmin bopt ∆f≈ σmin bopt ∆f≈

m = 4 1.5000 4.24 9.62e-08 – – –
m = 5 1.1875 3.59 4.82e-08 1.6250 4.5 7.88e-08
m = 6 1.1250 3.45 1.51e-08 1.4375 5.0 3.77e-08
m = 7 1.0625 3.30 2.63e-08 1.3125 5.5 3.39e-08
m = 8 1.0625 3.23 1.92e-08 1.1875 5.5 9.21e-08

Table 5.3: Computed parameter sets and predicted errors for the Fourier coefficients (3.4).
We set the required accuracy to ε := 10−7.

Bessel B-spline
σmin bopt ∆f≈ σmin bopt ∆f≈

m = 4 – – – – – –
m = 5 1.0625 5.14 8.35e-11 1.4375 5.0 7.99e-11
m = 6 1.0000 4.88 2.21e-12 1.1250 6.0 6.90e-11
m = 7 1.0000 4.71 5.28e-14 1.0000 6.5 2.05e-11
m = 8 1.0000 4.54 1.87e-15 1.0000 7.5 5.19e-13

Table 5.4: Computed parameter sets and predicted errors for the Fourier coefficients (3.5).
We set the required accuracy to ε := 10−10.

the error sums ∑
r∈Zd\{0}

c2
k+r�Mo

(ϕ̃t)
c2
k(ϕ̃t)

and

∑
r∈Zd\{0}

c2
k+r�Mo

(ϕ̃t)∑
r∈Zd

c2
k+r�Mo

(ϕ̃t)

is more or less straight forward. We have

∑
r∈Zd\{0}

c2
k+r�Mo

(ϕ̃t)
c2
k(ϕ̃t)

=
d∏
j=1

∑
rj∈Z

c2
kj+rjσjMj

(ϕ̃1d,t)
c2
kj

(ϕ̃1d,t)

− 1

and ∑
r∈Zd\{0}

c2
k+r�Mo

(ϕ̃t)∑
r∈Zd

c2
k+r�Mo

(ϕ̃t)
= 1−

d∏
j=1

∑
rj∈Z

c2
kj

(ϕ̃1d,t)
c2
kj+rjσjMj

(ϕ̃1d,t)

 ,

which may be further transformed in order to allow a numerically stable evaluation. As an
example, for d = 2 we have

∑
r∈Zd\{0}

c2
k+r�Mo

(ϕ̃t)
c2
k(ϕ̃t)

=
2∏
j=1

 ∑
rj∈Z\{0}

c2
kj+rjσjMj

(ϕ̃1d,t)
c2
kj

(ϕ̃1d,t)

− 2∑
j=1

∑
rj∈Z\{0}

c2
kj+rjσjMj

(ϕ̃1d,t)
c2
kj

(ϕ̃1d,t)
.

Obviously, the evaluations of the estimates (2.7) and (2.8) are easy and especially possible
in an efficient way, if the coefficients f̂k are also of a tensor product structure, i.e., we have

f̂k =
d∏
j=1

ĝkj .

27

In this case, all necessary computations can be separated with respect to the d dimensions and
an efficient tuning of the involved parameters can be realized quite similar to the univariate
case. As an example, coefficients of the form e−α‖k‖2 =

∏d
j=1 e−αk

2
j satisfy this condition.

However, in many cases the given Fourier coefficients are not of a tensor product structure
or rather not even given analytically. In this case an approximation or estimation of the form

f̂k ≈
d∏
j=1

ĝkj or f̂k ≤
d∏
j=1

ĝkj

might be necessary in order to enable an efficient prediction of the occurrent errors.
As an example, if the Fourier coefficients are given by f̂k := (1+‖k‖2)−1 an approximation

of the form
1
x
≈

n∑
j=1

rje−wjx (5.1)

over a sufficiently large interval [1, `) gives

1
1 + ‖k‖2 ≈

n∑
j=1

rje−wje−wj‖k‖
2 =:

n∑
j=1

r̃je−wj‖k‖
2
,

where the single summands are now of a tensor product structure. One possible tool for
computing an approximation of the form (5.1) is the Remez algorithm, see [10] for instance.

6 Summary
In this paper we revisited the error formulas for the well established NFFT algorithm. We
showed how we can achieve a very precise prediction of the approximation errors measured
in the L2-norm for different window functions. Thereby, we concentrated on the univariate
case, where a straight and efficient evaluation of the correspondent error sums is possible.
In our numerical examples we compared two different deconvolution approaches and mod-

ified the shape of the considered window functions. The results show that only minimal
improvements can be obtained by applying the L2-optimized deconvolution scheme. Addi-
tionally, the examples show that, especially in the case that the Fourier coefficients are subject
to a certain decrease, an appropriate modification of the window’s shape parameter can lead to
significantly smaller approximation errors. For the well established B-spline window function
we introduced a modified version, which also contains a shape parameter. In our examples
we could achieve considerable improvements compared to the classical B-spline window in a
setting where the Fourier coefficients decayed only moderately. However, a comparison be-
tween the different window functions showed that the Bessel window is in most cases the best
choice.
For the univariate case we suggest an easy parameter tuning. Given a required accuracy,

different combinations of the involved parameters are possible. Which set of parameters
is optimal with respect to the computation time may depend on the used hardware. A
corresponding tuning method could be based on the derived error estimates as well as on the
mentioned shape parameter tuning.
The prediction of the approximation errors in the multivariate case holds some more diffi-

culties. If the Fourier coefficients are of a tensor product structure, an efficient computation

28

of the error terms is more or less straight forward. But in many cases the Fourier coefficients
do not have this property or are even not given in an analytical form, which makes it even
hard to find an approximation or an estimation by a tensor product like expression. More
detailed investigations concerning the multivariate case should be subject to future research.
However, there are some multivariate applications where the underlying Fourier coefficients

are known. As one example we refer to the three dimensional periodic coulomb problem, where
the electrostatic potentials and energies of a set of charges in the three dimensional space are
of interest, see [6]. The well known P2NFFT algorithm [18] combines the adjoint NFFT
and the NFFT to evaluate the Coulomb potentials and forces very efficiently. The underlying
Fourier coefficients are of the form ∼ ‖k‖−2e−α‖k‖2 . In order to develop an efficient parameter
tuning, the Fourier coefficients could be approximated by a tensor product expression. We
aim to describe this approach in a subsequent work, where we want to apply the derived error
estimates in order to serve a comparison between different window functions as well as to
develop a more precise tuning of the involved parameters for this particular application

Acknowledgments

The author gratefully acknowledges support by the German Research Foundation (DFG),
project PO 711/12-1.

References

[1] G. Beylkin: On the fast Fourier transform of functions with singularities. Appl. Comput.
Harmon. Anal., 2:363 – 381, 1995.

[2] C.K. Chui: An Introduction to Wavelets. Academic Press, Boston, 1992.

[3] M. Deserno and C. Holm: How to mesh up Ewald sums. I. A theoretical and numerical
comparison of various particle mesh routines. J. Chem. Phys., 109:7678 – 7693, 1998.

[4] A.J.W. Duijndam and M.A. Schonewille: Nonuniform fast Fourier transform. Geo-
physics, 64:539 – 551, 1999.

[5] A. Dutt and V. Rokhlin: Fast Fourier transforms for nonequispaced data. SIAM J. Sci.
Stat. Comput., 14:1368 – 1393, 1993.

[6] P.P. Ewald: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys.,
369:253–287, 1921.

[7] J.A. Fessler and B.P. Sutton: Nonuniform fast Fourier transforms using min-max inter-
polation. IEEE Trans. Signal Process., 51:560 – 574, 2003.

[8] K. Fourmont: Non equispaced fast Fourier transforms with applications to tomography.
J. Fourier Anal. Appl., 9:431 – 450, 2003.

[9] L. Greengard and J.Y. Lee: Accelerating the nonuniform fast Fourier transform. SIAM
Rev., 46:443 – 454, 2004.

29

[10] W. Hackbusch: Entwicklungen nach Exponentialsummen. Techn. rep., Max Planck
Institute for Mathematics in the Sciences, 2005. http://www.mis.mpg.de/de/
publications/andere-reihen/tr/report-0405.html.

[11] R.W. Hockney and J.W. Eastwood: Computer simulation using particles. Taylor &
Francis, Inc., Bristol, PA, USA, 1988.

[12] J.I. Jackson, C.H. Meyer, D.G. Nishimura, and A. Macovski: Selection of a convolution
function for Fourier inversion using gridding. IEEE Trans. Med. Imag., 10:473 – 478,
1991.

[13] M. Jacob: Optimized least-square nonuniform Fast Fourier Transform. IEEE Trans.
Signal Process., 57:2165 – 2177, 2009.

[14] J.F. Kaiser: Digital filters. In F.F. Kuo and J.F. Kaiser (eds.): System analysis by digital
computer. Wiley, New York, 1966.

[15] J. Keiner, S. Kunis, and D. Potts: Using NFFT3 - a software library for various noneq-
uispaced fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19, 1 – 30,
2009.

[16] S. Kunis and S. Kunis: The nonequispaced FFT on graphics processing units. PAMM,
Proc. Appl. Math. Mech., 12, 2012.

[17] S. Kunis, D. Potts, and G. Steidl: Fast Gauss transform with complex parameters using
NFFTs. J. Numer. Math., 14:295 – 303, 2006.

[18] M. Pippig and D. Potts: Parallel three-dimensional nonequispaced fast Fourier transforms
and their application to particle simulation. SIAM J. Sci. Comput., 35:C411 – C437, 2013.

[19] G. Plonka and M. Tasche: On the computation of periodic spline wavelets. Appl. Comput.
Harmon. Anal., 2:1 – 14, 1995.

[20] D. Potts and G. Steidl: Fast summation at nonequispaced knots by NFFTs. SIAM J. Sci.
Comput., 24:2013 – 2037, 2003.

[21] D. Potts, G. Steidl, and M. Tasche: Fast Fourier transforms for nonequispaced data:
A tutorial. In J.J. Benedetto and P.J.S.G. Ferreira (eds.): Modern Sampling Theory:
Mathematics and Applications, pp. 247 – 270, Boston, MA, USA, 2001. Birkhäuser.

[22] I.J. Schoenberg: Cardinal interpolation and spline functions. J. Approx. Theory, 2(2):167
– 206, 1969.

[23] G. Steidl: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput.
Math., 9:337 – 353, 1998.

[24] T. Volkmer: OpenMP parallelization in the NFFT software library. Preprint TU Chem-
nitz, Preprint 7, 2012. http://www.tu-chemnitz.de/~potts/paper/openmpNFFT.pdf.

[25] A.F. Ware: Fast approximate Fourier transforms for irregularly spaced data. SIAM Rev.,
40:838 – 856, 1998.

[26] Z. Yang and M. Jacob: Mean square optimal NUFFT approximation for efficient non-
Cartesian MRI reconstruction. J. Mag. Reson., (242):126–135, 2014.

30

http://www.mis.mpg.de/de/publications/andere-reihen/tr/report-0405.html
http://www.mis.mpg.de/de/publications/andere-reihen/tr/report-0405.html
http://www.tu-chemnitz.de/~potts/paper/openmpNFFT.pdf

	Introduction
	NFFT
	Window functions and error estimates
	Cardinal B-Splines
	Modified B-spline window
	Bessel window
	Gaussian window function
	Comparison

	Verification of the theoretical estimates
	Parameter tuning
	Summary

