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Abstract. This paper is devoted to the study of the (discrete) Anderson
Hamiltonian on the Bethe lattice, which is an infinite tree with constant vertex
degree. The Hamiltonian we study corresponds to the sum of the graph Laplacian
and a diagonal operator with non-negative bounded, i.i.d. random coefficients on
its diagonal. We study in particular the asymptotic behavior of the integrated
density of states near the bottom of the spectrum. More precisely, under a natural
condition on the random variables, we prove the conjectured double-exponential
Lifschitz tail with exponent 1/2. We study the Laplace transform of the density
of states. It is related to the solution of the parabolic Anderson problem on
the tree. These estimates are linked to the asymptotic behavior of the ground
state energy of the Anderson Hamiltonian restricted to trees of finite length.
The proofs make use of Tauberian theorems, a discrete Feynman–Kac formula, a
discrete IMS localization formula, the spectral theory of the free Laplacian on
finite rooted trees, an uncertainty principle for low-energy states, an epsilon-net
argument and the standard concentration inequalities.
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1. Introduction

In this paper we are interested in a tight-binding, one-body Hamiltonian of a
disordered alloy. This Hamiltonian is known as the Anderson model, and it was
introduced in its most simple form by the American physicist Phillip W. Anderson
in 1958 [And58]. Given the extensive mathematical and physical literature on
the subject, see e. g. [Abr10, and references therein]. We defer the discussion and
review of the literature until after the rigorous statement of our results.

The underlying physical space of our model is assumed to be a Bethe lattice, this
is, an infinite regular graph with no loops and constant coordination number k
(see fig. 1). The Anderson model in this setting was introduced very early by
Abou-Chacra, Thouless and Anderson in [ATA73]. A number of physical and
numerical (e. g. [KH85; MF91; MD94; BAF04; AF05; MG09]) as well as rigorous
mathematical works (e. g. [KS83; Aiz94; AK92; Kle96; Kle98; ASW06; AW11b;
AW11a; War13]) in this setting have been since published.

Figure 1. The Bethe lattice with coordination number k = 3.

The study of transport properties of disordered models leads to the spectral theory
of random Schrödinger operators. The prototypical example of these operators
is the Anderson Hamiltonian. An important quantity of study is the integrated
density of states, which is a function we denote by N . The numerical value N (E)
counts the available energy levels below the energy E per unit volume. Under
very general assumptions, the support of this function coincides with the spectrum
of the Hamiltonian in consideration. The study of its asymptotic behavior when
we approach the bottom of the spectrum E0 has attracted a lot of attention
since Lifshitz’ remark [Lif65]. The physicist noted that in presence of disorder
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this asymptotic behavior is drastically different from the one of the free operator.
Indeed, as soon as the disorder is non-trivial, this function exhibits a very fast decay
at the bottom of the spectrum E0. This behavior has also drawn the attention
of many mathematicians, as it can be used as one of the main ingredients of the
rigorous proofs of the ocurrence of Anderson localization. In the setting of our
paper, it was conjectured, see [KH85; BST10; BS11], that the integrated density of
states exhibits a double exponential decay with exponent 1/2, i. e. that for some
suitable ε > 0

(1.1) exp
(
−eε

−1(E−E0)−1/2)
6 N (E) 6 exp

(
−eε(E−E0)−1/2)

as E ↘ E0.

In the literature (e.g. [War13, eq. 5]) one also finds this written in the somewhat
weaker form

lim
E↘E0

log log|logN (E)|
log(E − E0)

= −1

2
.

The purpose of this paper is to prove this conjecture. To do so, we study the
Laplace transform t 7→ Ñ (t) of the measure dN ( · ) and we establish asymptotic
bounds for large t. We will see that for a suitable ε > 0

(1.2) e
−t
(
E0+ ε−1

(log t)2

)
6 Ñ (t) 6 e

−t
(
E0+ ε

(log t)2

)
as t→ +∞.

These bounds are of independent interest, as they are related to the long-time
behavior of the so called parabolic Anderson problem in the annealed regime. This
long-time behavior is in turn related to the location of the ground state energy
of suitable finite-dimensional approximations of the Anderson Hamiltonian. We
discuss this circle of ideas, which is well known in the literature, after stating
rigorously our results.

Most of the novelty lies in the proof of the bounds on the ground state energy EL
GS

of the Hamiltonian restricted to finite symmetric rooted trees T L of length L (see
fig. 2, where L =∞). In absence of disorder, it behaves as

(1.3) E0 + CL−2.

up to smaller terms. In presence of disorder, one expects heuristically that the
ground state of the disordered Hamiltonian restricted to T L lives in some smaller
subtree of length r = C ′ logL on which the random potential is essentially zero.
Hence, with good probability we should have

(1.4) EL
GS = E0 + C ′′(logL)−2,

which is the order of the ground state energy of the free operator restricted to
this subtree. The length scale logL appears naturally as one balances out the
probability that the random potential is small in a subtree, which is exponential in
the number of random variables (we find about kr of them in a subtree of length r),
and the number of trees of length r (there are about kL−r 6 kL). Note also that
because of symmetry reasons, one might expect the ground state to localize to a ball.



4 FRANCISCO HOECKER-ESCUTI AND CHRISTOPH SCHUMACHER

It turns out that symmetric rooted trees provide a tractable, good approximation
for the balls of the Bethe lattice (which are also finite trees).

Let us finish this short summary by emphasizing that the usual rigorous argument
does not work in our setting, the culprit being (i) the exponential growth of the
trees and (ii) the spectral gap of the free Laplacian restricted to trees, which is of
order L−3 and thus too small, compared with (1.3) and (1.4). As a consequence of
(i) we are not able to use Dirichlet–Neumann bracketing and (ii) renders impossible
the approximation of the ground state of the perturbed operator by the ground
state of the free one. We discuss later the new ideas required to overcome these
two problems.

Let us now introduce some notation and the rigorous statements of our results.

1.1. Main results. To fix the ideas, let Γ be an infinite graph and denote by `2(Γ)
the space of square summable functions defined on the vertices of Γ. Let ∆Γ be
the associated (negative definite) Laplacian operator, i. e.

∆Γ : `2(Γ)→ `2(Γ)

(∆Γf)(v) :=
∑
w∼v

(
f(w)− f(v)

)
.

Here the index w ∼ v runs over all neighboring nodes w ∈ Γ of the node v ∈ Γ.
Let us define a random potential on this graph, i. e. a diagonal operator

V Γ
ω : `2(Γ)→ `2(Γ)

(V Γ
ω ϕ)(v) :=ωvϕ(v), v ∈ Γ, ϕ ∈ `2(Γ),

where ω := {ωv}v∈Γ is a sequence of non-trivial, bounded, non-negative, independent
and identically distributed random variables. We will also assume that

ess inf ω0 = 0.

This is no additional restriction given that we can always shift the energy through
a translation. We are interested in the random operator

(1.5) HΓ
ω := −∆Γ + λV Γ

ω ,

where λ denotes a (strictly) positive coupling constant. We will call this Hamiltonian
the Anderson model on Γ. Choose some 0 ∈ Γ and let us define its associated
integrated density of states as

(1.6) N Γ(E) := E[〈δ0,1(−∞,E](H
Γ
ω )δ0〉],

which is a function of the energy E ∈ R defined on R. Here, and in the rest of the
paper, 1S denotes the indicator function of the set S, the operator 1(−∞,E](H

Γ
ω ) is

the spectral projector on (−∞, E], defined by functional calculus and δv ∈ `2(Γ)
denotes Kronecker’s delta. The function N Γ(E) is positive, increasing and take
values in [0, 1]. It is the cumulative distribution of the density of states measure,
which we denote by dN .
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If one assumes that HΓ
ω is ergodic [PF92; CL90], then (1.6) is independent of the

choice of 0 ∈ Γ and we know that there exists some set Σ ⊂ R such that

Σ := σ(HΓ
ω ) = σ(−∆Γ) + λ suppω0 = supp dN Γ,(1.7)

for almost every ω. This is the case if Γ is the graph Zd or the Bethe lattice B
defined below. We will denote by E0 the bottom of the almost sure spectrum, i. e.

E0 := inf Σ = inf σ(−∆Γ).

It is well known that the asymptotic behavior of the integrated density of states
close to the bottom of the spectrum E0 is very different in the presence of disorder
(see remark 1.2 below or [KM06] for a survey). In this work, we study this behavior
on a graph known as the Bethe lattice, which we define as an infinite connected
graph, with no closed loops and degree constant and equal to k + 1. If k = 1, we
obtain with this definition the graph Z. From now on we fix k > 2 for the rest of
this paper and we denote this graph by B. Whenever we omit the index Γ it will
be assumed that Γ = B.

This paper is devoted to the proof of the following theorem.

Theorem 1.1. Let k > 2 and Hω be the Anderson model on the Bethe lattice of
degree k + 1. Then, if

(1.8) ν := lim sup
κ↘0

√
κ log

∣∣logP(Vω(v) 6 κ)
∣∣ < 1.

then inequalities (1.1) hold and thus

(1.9) lim
E→E0

log log|logN(E − E0)|
log(E − E0)

= −1

2
.

Remark 1.2. • The fact that the integrated density of states decays faster in
presence of disorder has been known to hold rigorously since the works of
Nakao [Nak77] and Pastur [Pas77] on Rd. Analogous results have also been
obtained in the discrete setting Γ = Zd. In this case, if λ = 0 in (1.5), then

lim
E↘E0

logN Zd(E)

log(E − E0)
=
d

2
, (Van Hove singularity)

while as soon as λ 6= 0, (and with a restriction analogous to (1.8))

lim
E↘E0

log|logN Zd(E)|
log(E − E0)

= −d
2

. (Lifshitz tails)

• In absence of disorder, the density of states of the free Laplacian on the
Bethe lattice can be calculated explicitly (see [Kes59; McK81]),

dN0(E) :=d〈δ0,1(−∞,E](−∆B)δ0〉(1.10)

=1I(E)
k + 1

2π

√
4k − (E − k − 1)2

(k + 1)2 − (E − k − 1)2
dE,
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with I := σ(−∆B) = supp dN0 = [(
√
k − 1)2, (

√
k + 1)2]. In particular, we

see that for any k > 2

lim
E↘E0

logN0(E)

log(E − E0)
=

3

2
.

• The double exponential decay of the integrated density of states in (1.9)
stems from concentration inequalities, which are exponential in the volume
of shells of the Bethe lattice, and the fact that the volume of these shells
grows exponentially with their radius.
• Condition (1.8) tells us that the distribution of the random variables should

not decay too fast when we approach 0. It is satisfied, for example, by
uniform or Bernoulli random variables. We provide in the text a slightly
weaker version for which we can prove (1.9) but not (1.1). If this last
condition is not satisfied, it is indeed possible to show that the lower bound
fails (see lemma 2.3). Similar results are known to hold true in the Euclidean
settings (see [KM06]).

To establish our main result, we will study the Laplace transform of dN . The
study of the integrated density of states through the Laplace transform of its
derivative goes back at least to Pastur [Pas71]. This last work together with
the celebrated result of Donsker and Varadhan [DV75] on the asymptotics of the
Wiener sausage were used to give a rigorous proof of the Lifshitz tails for the
continuous Anderson model with Poisson impurities, see [Pas77; Nak77]. The same
ideas work in the discrete setting [BK01]. The spectral theorem shows that the
Laplace transform of the density of states measure dN is the continuous solution
u : [0,+∞)× B → [0,+∞) of a heat equation associated to Hω evaluated at one
point. Thus, the proof of our main theorem will be a consequence of our next
result, which is related to the following Cauchy problem:

(1.11)


∂

∂t
u(t, v) = ∆Bu(t, v)− Vωu(t, v), for (t, v) ∈ (0,∞)× B
u(0, v) = δ0(v) for v ∈ B.

The solution t 7→ u(t, · ) is the solution to the heat equation with random coefficients
and localised initial datum δ0. Again, 0 ∈ Γ is here any point of the lattice and the
results are independent of this choice.

Theorem 1.3 (Annealed regime). Assume (1.8). There exists some ε > 0 and
t∗ > 0 such that for all t > t∗,

(1.12) exp
(
−t
(
E0 +

ε−1

(log t)2

))
6 E

[
u(t, 0)

]
6 exp

(
−t
(
E0 +

ε

(log t)2

))
Remark 1.4. Obviously exp(−t(E0 + |O((log t)−2)|)) = exp(−|O(t(log t)−2)|) but
the quantity E0 + |O((log t)−2)| can be regarded as an energy in the spectrum Σ
close to the bottom E0.
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0

Figure 2. The infinite rooted tree.

The long term behavior (1.12) at the node 0 ∈ Γ of the solution to the heat
equation (1.11) is well approximated by finite volume versions of the same problem
(using e. g. Feynman–Kac formula). More precisely, we will look at the solution to
the Cauchy problem on a ball of radius L � t with Dirichlet boundary conditions,
i. e. we require that the solution is zero outside this ball. The solution of the finite
dimensional problem is then bounded above by a term of the form e−tEGS(Hω |BL),
where EGS(Hω|BL) denotes the smallest eigenvalue of Hω restricted to the ball
BL. A crucial ingredient of our proof consists in replacing the balls BL by finite
symmetric roooted trees T L.

Let us introduce some more notation. We let T be a rooted tree with branching
number k, this is, an infinite connected graph which has no closed loops and such
that the degree is constant and equal to k+1 on every site, except at one particular
site 0, which is called the root of the tree (see fig. 2). Note that we can embed this
infinite graph into the Bethe lattice B. In this note we consider finite versions of
this tree, namely, for any natural number L > 0 we denote by T L the subtree of T
of finite depth L, consisting on all those sites at a distance L− 1 or smaller from
the root 0:

T L := {v ∈ T : dT (0, v) 6 L− 1}.
Here dΓ( · , · ) denotes the graph distance associated to the graph Γ. By introducing
the notation (which we use later) |v| = dT (0, v) + 1 for the “level” of the node v,
we can also write T L = {v ∈ T : |v| 6 L}.

These finite symmetric rooted trees look like the balls BL ⊂ B, centered at 0,
after removing entirely one of the branches attached to the center of the ball . Note
that T L is a finite connected graph which has no closed loops and such that the
degree is constant at each site except at the root and at the leaves {|v| = L}. We
also picture these finite subtrees as subsets of the infinite Bethe lattice B. Let now

HL
ω := Hω|T L

be the Hamiltonian Hω restricted to the subtree T L of length L with Dirichlet (also
called simple) boundary conditions. We denote by EL

GS the ground state energy of
HL
ω , i. e.

EL
GS := inf

‖ϕ‖2=1

〈
HL
ωϕ, ϕ

〉
.
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We can now state our last result.

Theorem 1.5. Asssume (1.8). There exists some ε > 0 and L∗ > 1 such that for
all L > L∗ we have

E0 + ε(logL)−2 6 EL
GS 6 E0 + ε−1(logL)−2

with probability at least
1− exp(−eεL).

To finish the presentation of our results, let us note that an immediate corollary
of theorem 1.5 is that

(1.13) lim
L→∞

log(EL
GS − E0)

log logL
= −2 a.s.

In fact, the Borel–Cantelli lemma implies this, since
∞∑

L=L∗

P
( log(EL

GS − E0)

log logL
> −2− log ε

log logL

)
6

∞∑
L=L∗

exp(−eεL) <∞,

so that lim supL→∞
log(ELGS−E0)

log logL
6 2 a.s., and analogously for the other direction. For

comparison, in absence of disorder we obtain (see section 3):

(1.14) EL
0 := EGS(−∆B|T L) = E0 +

√
kπ2

(L+ 1)2
+O(L−4)

which implies

lim
L→∞

log(EL
0 − E0)

logL
= −2 a.s.

1.2. Discussion. The results we presented concern an operator which appears
naturally in the study of the macroscopic properties of crystals, alloys, glasses, and
other materials. If one looks at the Schrödinger equation

(1.15)

{
idϕ
dt

= HΓ
ωϕ, i2 = −1

ϕ(0) = ϕ0 ∈ `2(Γ), ‖ϕ0‖2
2 = 1

,

then the Anderson model HΓ
ω defined by (1.5) describes the Hamiltonian governing

the behavior of a quantum particle having an initial state ϕ0 in a disordered
medium. Its integrated density of states measures the “number of energy levels
per unit volume” and is a concept of fundamental importance in condensed matter
physics, as it encodes various thermodynamical quantities of the material, spectral
features of the operator and properties of the underlying geometry.

The Anderson model has been the subject of hundreds of physical and mathe-
matical papers. One of the most studied mathematical features of this model is
the phenomenon known as Anderson localization, i. e. that the spectrum of the
random operator exhibits pure point spectrum with probability 1, for any strenght
of disorder, whereas the free operator has only absolutely continuous spectrum.
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We invite the interested reader to consult the monographs [CL90], [PF92], [Sto01],
[His08], [Kir07].

One of the hallmarks of Anderson localization is the so-called Lifshitz tails
behavior, i. e. the exponential decay of the integrated density of states at the bottom
of the spectrum. It is well known that such a decay, together with additional
assumptions on the regularity of the random variables, provides one of the main
ingredients to start the multi-scale analysis, see e. g. [GK13], or to satisfy the
fractional moment criterion ([AM93]). These strategies have been succesfully
applied to prove the existence of localization in a neighborhood of the spectral
edges, for example when the graph is Zd (the model introduced originally by P. W.
Anderson in [And58]) or its continuous version on Rd.

The Bethe lattice is of interest in statistical mechanics because of its symmetry
properties and the absence of loops. It allows to obtain closed solutions for some
models, e. g. in percolation theory and the non-rigorous scaling theory of Anderson
localization. In our setting, the resolvent of the operator Hω on the Bethe lattice
admits a recursive representation (see e. g. [Ros12]), but in this work we make
no use of these formulae. It was for these reasons that the model was studied
in [ATA73] and it enjoys some renewed interest in the physical community (see
e. g. [BST10; BS11]). Because of its exponential growth, it is also of interest in
connection with the configuration space of many-body problems [Alt+97].

Perhaps one of the most striking features of the operator defined on the infinite
tree B is the absence of pure point spectrum at weak disorder [Kle96; AW11b;
AW11a]. For a survey on recent progress on the spectral properties of the Anderson
model on the Bethe lattice see [War13]. At weak disorder, thus, this model exhibits
no Anderson localization, even near the spectral edges where Lifshitz tails take
place. For the Anderson model on the Bethe lattice, the existence of a Lifshitz tail
does not imply localization. We remind the reader that in the Euclidean case, the
absence of localization at higher energies and therefore the existence of a spectral
transition is still an open problem.

The parabolic problem (1.11) is the heat equation associated with the Anderson
Hamiltonian and is well studied under the name of Parabolic Anderson model. It
describes a random particle flow in the tree B through a random field of soft sinks,
which can also be seen as traps or obstacles via the Feynman–Kac formula. There
is an additional interpretation in terms of a branching process in a field of random
branching rates. We refer the reader to [GK05; KW] for a survey. In this context,
one is usually interested in the behavior of the total mass ‖u(t, · )‖1 of the solution
for large t > 0, which is also the behavior of the solution to the heat equation with
initial datum u( · , 0) ≡ 1 at one point. Because of the exponential growth of the
graph, we were not able to study this quantity. However, theorem 1.3 is a first step
in this direction.

A related question of interest is whether there is intermittency in this setting.
Following the heuristics described in [KW], intermittency can be understood as a
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consequence of Anderson localization. On the other hand, Lifshitz tails have been
proven as a by-product of the proof of intermittency in the parabolic Anderson
model in [BK01]. Given that we may have absolutely continuous spectrum in spite
of the existence of Lifshitz tails, the answer to this question is an interesting subject
for further studies.

This discussion would not be complete without citing some previous results. The
Lifschitz tails behavior for a percolation model on the Bethe lattice was studied in
[Rei09], see also [MS11]. In [Sni89] similar bounds to ours are obtained for N and
for Ñ in the hyperbolic space, which is the continuous analog of the Bethe lattice.
In our setting, Lifshitz tails were studied in [BS11; Ros12], where in particular a
rigorous lower bound

lim inf
E→E0

log log|logN(E − E0)|
log(E − E0)

> −1

2
.

is established. A proof of any type of decay other than the trivial one has resisted
several attempts to be rigorously proven. We will try to explain now why.

The first problem concerns the finite-dimensional approximation of the infinite
dimensional operator. In the standard setting of the Anderson model Γ = Zd, if we
let

ΛL := {v ∈ Zd : ‖v‖∞ 6 L},
then the thermodynamic limit of the normalized eigenvalue counting function

lim
L→∞

#(σ(Hω|ΛL) ∩ [0, E])

#ΛL

= lim
L→∞

tr 1[0,E](Hω|ΛL)

#ΛL

(1.16)

converges almost surely for every E where N is continuous. In this setting as
well as in the continuous version on Rd, the limit defined in (1.16) is independent
of the boundary conditions. That this limit coincides with the averaged spectral
function N at these points is known as the Pastur–Shubin formula. There is a
wealth of results in this direction in different settings. It holds in particular on any
amenable graph Γ (like Zd) if we choose the sequence ΛL as a Føllner sequence.

The limit (1.16) may have different limits depending on the choice of boundary
conditions when the graph is not amenable [AW06]. In particular, the usual
Dirichlet–Neumann bracketing is of no hope. A similar phenomenon occurs on the
hyperbolic space [Sni89; Sni90]. This leaves us with the problem of finding the
right finite volume approximations. In [SS14] it is proven that the Pastur–Shubin
formula holds in great generality. This setting includes the Cayley graph of a
free group. The finite volume approximations are the analogous of the periodic
boundary conditions in the Euclidean case. Unfortunately, the rate of convergence
of the approximations to the averaged spectral function (1.6) is unknown. An
approach of a different vein was explored in [Gei14]. Here one looks at this problem
on random regular graphs. It is indeed known, since the pioneering works of McKay
[McK81] and Kesten [Kes59], that the density of eigenvalues of the free Laplacian
of random regular graphs converges to the measure given by (1.10). This approach
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introduces another source of randomness and seems difficult to study. We avoid
these difficulties alltogether by approximating the integrated density of states only
at low energies.

In this work we consider Dirichlet restrictions of the operator to finite trees T L.
We show that these are good approximations as long as we look at the bottom
of the spectrum. The problem then reduces, as usual, to that of finding good
upper bounds on the ground state energy EGS(Hω|T L) with good probability. In
the standard Anderson model, one usually uses Temple’s, [Sim85], or Thirring’s
inequality, [KM83], or perturbation theory, [Sto99]. Unfortunately, they are all
based on the premise that the ground state of the perturbed operator, modulo
some small error, should look like the one of the free operator. This reduces the
problem to study only the effect of the random potential on the ground state of
the free operator. The error term in these methods is related to the spectral gap of
the free operator, i. e. the distance between the first and the second eigenvalue. In
the Euclidean setting both the first and the second eigenvalue of the free operator
with Dirichlet boundary conditions are of the same order, whereas in our setting
we have (1.14) but the scond eigenvalue of −∆B|T L behaves as

EGS(−∆B|T L) +O(L−3).

See section 3 for these calculations.

1.3. Strategy of proof. In order to make the reading of this paper easier, we
provide here a road map for the proofs and a table of notations in page 16. This
will also allow us to comment on some results and acknowledge some sources. To
simplify the (not necessarily rigorous) exposition, we assume k = 2 and ε > 0 a
small constant which may change from line to line. We also write A . B,B & A
if there exists a constant c such that A < cB; A � B if A . B and A & B. As
usual, to prove theorem 1.1 we prove lower and upper bounds separately.

1.3.1. Lower bound. We first prove lower bounds on the integrated density of states,
which is usually easier. This is done in section 2. Note that a rigorous proof of the
lower bound was already obtained in [BS11] and [Ros12]. Our method is not very
different from the one in [Ros12], but we do identify the sharper condition (1.8).
Another novelty is that we also obtain a precise lower bound for the ground state
energy on finite rooted trees. Indeed, as will be clear, to obtain the lower bound of
the Lifshitz tails it is enough to prove that for large L

(1.17) EL
GS 6 E0 + εL−2

holds at least with probability

(1.18) e−eε
−1L

.

This is usually proven by finding a suitable test function. In [Ros12] the test
function corresponds to the ground state of the free Laplacian and the probability
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(1.18) corresponds simply to the probability that all the random variables on the
tree are small.

Our proposition 2.1 corresponds to the upper bound in theorem 1.5. It is proven
by localizing the test function to a subtree of length logL (see fig. 3 in page 18).
This is crucial to prove that the almost sure behavior of EL

GS is of order (logL)−2

for large L. We show then that this upper bound implies the lower bound in (1.2)
(corollary 2.5) and a Tauberian theorem (lemma 2.6 and proposition 2.7) gives the
lower bound in (1.1).

1.3.2. Upper bound. In section 3, we introduce some elements and tools we will need
in the course of the proof. Because these calculations make no use of randomness,
we decided to isolate them in their own section.

We first study the spectral theory of the free Laplacian on finite trees, calculating
explicitly all the eigenvalues and an orthonormal basis of eigenfunctions (lemmas 3.1
to 3.3 and 3.5). The eigenfunctions have their support confined to disjoint subtrees.
This property is crucial when we study the action of the random potential in
section 4.

We then prove an analog of the Ismagilov–Morgan–Sigal (IMS) localization
formula on trees (proposition 3.6). The proof is of interest on its own as it can be
adapted to very general discrete settings. In this work, we have decided to prove it
only for functions in `2(Z) (lemma 3.7) and then carry it over to the tree by means
of the spectral theory of the free Laplacian.

We finally prove in this section an uncertainty relation for truncated eigenfunc-
tions on the tree. Explaining the details here would make this road map too long,
but see below to see how this truncation is used. We also prove first this property
for functions in `2(Z) and then use the spectral theory to prove it on `2(T L).

In section 4 we prove the upper bound in (1.1). It proceeds roughly as follows.
The first step is a Tauberian theorem. It is an elementary consequence of an upper
bound on the integrated density of states for energies close to E0 using the large
time decay of the Laplace transform Ñ (t) of its derivative (proposition 4.2). We
include it for the sake of completeness. It says the following: if for some c > 0

(1.19) Ñ (t) 6 exp(−t(E0 + c(log t)−2)) for t� 1

then
N (E) 6 exp(−eε(E−E0)−1/2

) for E − E0 � 1.

We then do a reduction to a finite scale (proposition 4.3). We show that we can
restrict the operator to a ball, as long as the ball grows linearly with the time t:

Ñ (t) = E〈δ0, e
−tHωδ0〉 6 E〈δ0, e

−tHω |BLδ0〉+ e−ζt with t = ζL and ζ � 1.

The approximations Hω|BL considered in this step correspond to the Hamilton-
ian Hω restricted to balls of radius L with simple (also called Dirichlet) boundary
conditions. A proof using the Feynman–Kac formula is contained in [Ros12] (follow-
ing [BK01]). We provide a somewhat elementary proof of this fact, which appears
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to be new in this context. The idea is to compare the series expansion of both
e−tHω and e−tHω |B

L
and expand the matrix products of the terms 〈δ0, (−tHω)nδ0〉

as products of paths from δ0 to δ0 of length at most n/2. This is a discrete version
of the Feynman–Kac formula. Because the coefficients of both Hω and its approxi-
mation coincide in a large ball, the error we make is easily estimated by the tail of
the exponential series.

The next step consists in simply replacing the operator by its ground state energy
(lemma 4.4). Using a spectral decomposition of δ0 in terms of the eigenfunctions
of Hω leads to an upper bound of the form

(1.20) 〈δ0, e
−tHω |BLδ0〉 6 e−tEGS(Hω |BL).

It is easy to see (lemmas 4.5 and 4.6) that every ball is embedded in a finite
symmetric rooted tree and that we can replace the ball by a tree T L because

e−tEGS(Hω |BL) 6 e−tEGS(HL
ω ) where HL

ω = Hω|T L.
This is crucial in our argument, as we are able to use the spectral theory on the
tree as a makeshift “Fourier transform” in the probability estimates we describe
below. Using the two last inequalities and taking the expectation in (1.20) we see
that (lemma 4.7) for any E > 0

E〈δ0, e
−tHω |BLδ0〉 6 e−tE + e−tE0P[EL

GS 6 E].

As the (1.19) and the proven lower bound (1.17) suggest, one should take E =
E0 +C(logL)−2 in the last inequality. Note that EGS(−∆|T L) = E0 +CL−2 is not
even of the same order. We perform then a reduction to an even smaller scale.
By using the IMS localization formula we go from the scale L to r = ε−1 logL
(proposition 4.9). By doing this, we trade energy for probability: the number of
subtrees of length logL is about kL−logL � kL = keεr and thus

P[EL
GS 6 E0 + C(logL)−2] 6 keεrP[Er

GS 6 E0 + Cr−2].

It is clear now that we need to prove a bound of the form

(1.21) P[EL
GS 6 E0 + CL−2] 6 ee−ε

′L
, L� 1

to obtain (1.19). Proving this bound occupies the last section of this paper.
To prove (1.21) we proceed as follows. The idea is that functions with low kinetic

energy average the random potential and this pushes their energy away from the
bottom of the spectrum. First we show that (up to an error) we can assume
that the (random) ground state ϕL of HL

ω is a linear combination of low energy
eigenfunctions. Using our “unique continuation principle”, we can furthermore
replace these eigenfunctions by truncated versions. The rest of the proof is a careful
analysis of the action of the random potential on functions of this type.

Let us be more precise. Every eigenfunction of ∆|T L is supported in some subtree
of T Lv of length L−|v| rooted at v ∈ T L (see section 3). We index the eigenfunctions
Ψv,m by their anchor v ∈ T L and their mode (or frequency) m = 1, . . . L− |v|. It
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is not hard to see (lemma 3.3) that the eigenfunctions Ψv,m close to the bottom E0

satisfy

〈∆TΨv,m,Ψv,m〉 ≈ E0 +
( Cm

L− |v|+ 1

)2

We deduce then that the eigenfunctions Ψv,m having small energy, i. e. those for
which ( Cm

L− |v|+ 1

)2

6 βL−2

satisfy both that their modes are bounded by β (uniformly in L), i. e.

(1.22) m 6 β

and that the distance of their anchors to the root of T L is bounded linearly in L,
i. e.

(1.23) |v| 6 CAL, 0 < CA < 1.

The susbscript A here stands for “anchor”. The reader may imagine that the
ground state is (up to an error) “bandlimited in Fourier space”.

After this projection in “Fourier space”, we introduce a truncation in physical
space. This is necessary because low energy functions are not “flat” in the usual
sense. The reader will convince herself by looking at the ground state of ∆T L , which
is radially symmetric and thus exponentially decaying from the root. Nevertheless,
these functions distribute evenly their `2-mass in the transversal direction. We can
thus throw away some of the mass close to the anchor and control precisely the
error by doing so(with our “unique continuation principle”). Let us call ϕL the
(random) ground state of HL

ω we obtain after applying the spectral projection and
the truncation.

Most of the averaging now takes place away from the anchor in the radial
direction. Let us look at the potential energy of ϕL. If we center the random
variables

〈VωϕL, ϕL〉 = 〈(Vω − (Eω0))ϕL, ϕL〉+ (Eω0)‖ϕL‖2

then the first term in the sum is close to zero with good probability. The second
term of the sum is of order 1, which implies that we are far from the bottom of the
spectrum.

We proceed now to explain the probability estimates. To show that the potential
energy is concentrated around its mean we may use Hoeffding’s inequality, which
tells us that for fixed ϕ ∈ `2(T L) we have

(1.24) |〈(Vω − (Eω0))ϕ, ϕ〉| . κ.

with probability at least

1− exp(−O(κ2/Var[〈(Vω − (Eω0))ϕ, ϕ〉])).
Cauchy–Schwarz then tells us that

Var[〈(Vω − (Eω0))ϕ, ϕ〉] . ‖ϕ‖2
4.
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We cannot apply directly this inequality with ϕL because it depends on the
realization ω. To get rid of this problem, we exploit first the spectral theory of the
free Laplacian. Because some spectral projectors have disjoint support, we are able
to reduce the metric entropy in the second step, which is a classical ε-net argument.
The problem is now reduced to estimate the probability that inequality (1.24) holds
for every ϕ chosen from a fixed ε-net. The last part of the calculation is thus a
uniform estimation of the `4-norm of functions both restricted in “Fourier” space
and truncated in physical space, which decay exponentially fast in kεL.

This finishes our presentation of the proofs and the introduction.



16 FRANCISCO HOECKER-ESCUTI AND CHRISTOPH SCHUMACHER

Table of Notation

Γ , A graph. When it is missing from the notation we assume that Γ = B
−∆Γ , Graph Laplacian of the graph Γ

B , Bethe lattice of degree k (infinite graph)

BL , Ball of radius L of the Bethe lattice B
T L , Rooted tree of length L (every node has k children but the leaves)

E0 , Bottom of the spectrum, E0 := inf σ(−∆B) = (
√
k−1)2 a.s.

= inf σ(Hω)

EGS(H) , Ground state energy of H, i. e. EGS(H) := inf‖ϕ‖2=1〈ϕ,Hϕ〉
N , Integrated density of states of Hω on B
N L , Expected integrated density of states of Hω on BL
dN , Density of states measure

Ñ , Laplace transform of the density of states measure dN
H|Γ , Restriction of the operator H with simple b.c.

P , Probability

E , Expectation

δi , Kronecker’s delta, i. e. δi(j) = 1 for i = j and zero elsewhere

dΓ( · , · ) , Graph distance associated to Γ

BLv , Ball of the Bethe lattice of radius L centered at v

T Lv , Finite symmetric rooted tree of length L with root v

T L∗ , Augmented finite tree, i. e. T L∗ := T L ] {∗} and d(∗, 0) = 1

|v| , Distance to ∗ ∈ T L∗ , i. e. |v| = d(∗, v) = d(0, v) + 1.

HL
ω , Anderson Hamiltonian restricted to T L with simple b.c.

1S , Indicator function of the set S

u ∼ v , u and v are neighbors, i. e. d(u, v) = 1

AΓ , Adjacency matrix of the graph Γ

∇,∇∗ , Forward gradient on Z and its adjoint

ηa , Partition of unity on Z
ηa,r , r-scaled, radially symmetric partition of unity on T
CIMS , The constant in the error of the IMS formula

E
(L)
β , An energy defined as E

(L)
β := 2

√
k cos

( (β+1)π
L+1

)
, see lemma 3.3.

Π
(L)
E , Π

(L)
E := 1(−∞,E](k + 1 + ∆L

B|T L) = 1[E,+∞)(A
L
B|T L)

q(L)
E , q(L)

E := 1− Π
(L)
E

B(L) , unitball of `2(T L)

B
(L)
v , unitball of `2(T Lv )

ωv , One of the non-trivial, bounded, i.i.d. random variables having 0 in
their support

p.t.o.
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Table of Notation (continued)

ω̄ , Expectation of the random variable ωv
ω̃v , Centered random variable ω̃v := ωv − ω̄
ω+ , Sup-norm of the random variables ω+ := ‖ω0‖∞
ω̃+ , Sup-norm of the centered random variables ω̃+ := ‖ω0 − ω̄‖∞

2. Lifschitz tails: The lower bound

In this section we prove the upper bound in theorem 1.5, the lower bound in
theorem 1.3 and the lower bound in theorem 1.1.

2.1. Locating the ground state on a finite rooted tree: The upper bound.
Denote by E0 the infimum of the spectrum of the free Laplacian ∆ on the infinite
rooted tree with k children at each node, i. e. E0 := (

√
k − 1)2. As we will see in

section 3.1, the ground state energy of the free Laplacian restricted to the finite
tree T L of length L (with the root on level 1) reads

EGS(−∆|T L) = E0 + 2
√
k
(
1− cos(

π

L+ 1
)
)
> E0.

The distance between these two values is thus of the order of L−2 as L→∞. By
adding a nonnegative random potential Vω, we increase the ground state energy by
at least inf Vω(T L). Our first proposition gives a probabilistic upper bound on the
random ground state energy of the random operator HL

ω := −∆L + Vω on T L.

Proposition 2.1. Assume that the single-site potentials Vω(v), v ∈ T , satisfy

(2.1) ν := lim sup
κ↘0

√
κ log

∣∣logP(Vω(v) 6 κ)
∣∣ < 1.

Fix C1 > 1 + π2
√
k(log k)2/(1 − ν)2 and ε ∈ (0, 1). Then there is a scale L0 =

L0(k, ν, C1, ε) such that, for all L > L0, we have

P
(
inf σ(HL

ω ) 6 E0 + C1(logL)−2
)
> 1− exp

(
−kεL

)
.

Remark 2.2.
• Condition (2.1) restricts the tail behaviour of the distribution function of

the single site potentials at 0. This guarantees enough probability for small
single site potentials. The result shows that the ground state is shifted
from the scale L−2 not further than (logL)−2 with probability exponentially
close to 1 as L→∞. Without condition (2.1) the distribution of the single
site potentials could have topological support bounded away from 0, which
would shift the spectrum by a positive distance almost surely.
• The upper bound on the ground state provides a lower bound on the

integrated density of states, see proposition 2.7. The classical assumption
for a lower bound on the IDS on Zd is that the cumulative distribution
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bγ logLc

L− 1

{ v } = SL−γ logL

Figure 3. Support of test function ϕv := ψ
bγ logLc
v,1 in the tree based

at v ∈ SL−γ logL.

function of the single site potentials vanishes not faster than a polynomial
at 0:

(2.2) ∃C2, ν > 0: ∀κ > 0: P(ω 6 κ) > (C2κ)ν .

This is e. g. satisfied for the uniform distribution on an interval [0, a], a > 0,
and all nondegenerate Bernoulli laws. Condition (2.2) implies ν = 0 and
thus (2.1).

Proof of proposition 2.1. Let γ := π 4
√
k/
√
C1 − 1 and note that

0 6 γ < (1− ν)/ log k.

We denote by
SL−γ logL := {v ∈ T L : |v| = dL− γ logLe}

the sphere of T L at level dL− γ logLe and by T Lv the subtree of T L rooted at v.
Define the function ϕv ∈ `2(T L) by

ϕv(w) := 1T Lv (w)

√
2

(L− |v|+ 2)k|w|−|v|+1
sin
(
π
|w| − |v|+ 1

L+ |v|+ 2

)
, (w ∈ T L).

The support of the function is then T Lv , see fig. 3. In section 3 we will see that ϕv
is the normalized ground state of the free laplacian restricted to T Lv , trivially
embedded in T L. We also see that the corresponding eigenvalue is

k + 1− 2
√
k cos

( π

bγ logLc+ 1

)
= (
√
k − 1)2 + 2

√
k
(

1− cos
( π

bγ logLc+ 1

))
.

We will use the states ϕv, v ∈ SL−γ logL, as test functions to probe for the ground
state energy of HL

ω . In the quadratic form 〈−∆ϕv, ϕv〉, we sum only over the support
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of ϕv. Hence, 〈−∆ϕv, ϕv〉 is the eigenvalue of ϕv on T Lv . Since 1− cos(x) 6 x2/2
for all x ∈ R, we see that

〈−∆ϕv, ϕv〉 6 E0 +
π2
√
k

(bγ logLc+ 1)2
6 E0 +

π2
√
k

γ2(logL)2
.

We ask the potential to be small on at least one of the subtrees T Lv , v ∈ SL−γ logL.
To this end, let κ := (logL)−2 and

Ω′L := {ω : ∃v ∈ SL−γ logL : max
w∈T Lv

Vω(w) 6 κ}.

For all ω ∈ Ω′L, we have

inf σ(HL
ω ) 6 inf

v∈SL−γ logL

(
〈−∆ϕv, ϕv〉+ 〈Vωϕv, ϕv〉

)
6 E0 +

π2
√
k

γ2(logL)2
+ κ 6 E0 + C1(logL)−2.

For the probabilities, this implies

P(Ω′L) 6 P
(
inf σ(HL

ω ) 6 E0 + C1(logL)−2
)
.

We have to estimate P(Ω′L) from below. Choose δ ∈ (0, 1− ν − γ log k). From
ν < 1 and (2.1), we get an L′0 > 0 such that, for all L > L′0 and all w ∈ T L,

|logP(Vω(w) 6 κ)| 6 exp(κ−1/2(ν + δ)) = Lν+δ.

We use this to build a lower bound of P(Ω′L) in several steps. Note that for each

v ∈ SL−γ logL, the subtree T Lv rooted at v has #T Lv =
∑bγ logLc

i=0 ki 6 kbγ logLc+1 6
kLγ log k nodes. Therefore, we have∣∣logP

(
max
w∈T Lv

Vω(w) 6 κ
)∣∣ =

∑
w∈T Lv

∣∣logP(Vω(w) 6 κ)
∣∣ 6 kLγ log k+ν+δ.

Now we use #SL−γ logL = kdL−γ logLe−1 > kL−γ logL−1 to find that the probability to
find at least one v ∈ SL−γ logL where the potential is uniformly bounded by κ > 0,
satisfies

P(Ω′L) = 1−
∏

v∈SL−γ logL

(
1− P(max

w∈T Lv
Vω(w) 6 κ)

)
= 1−

∏
v∈SL−γ logL

(
1− exp(−|logP(max

w∈T Lv
Vω(w) 6 κ)|)

)
> 1−

(
1− exp

(
−kLγ log k+ν+δ

))#SL−γ logL

> 1−
(

1− exp
(
−kLγ log k+ν+δ

))kL−γ logL−1

.

From log(1− p) = −∑∞j=1 p
j/j 6 −p, we see

(1− p)x = exp(x log(1− p)) 6 exp(−px)
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for all p ∈ [0, 1] and x > 0. This yields

P(Ω′L) > 1− exp
(
− exp

(
−kLγ log k+ν+δ

)
kL−γ logL−1

)
= 1− exp

(
− exp

(
L log k − kLγ log k+ν+δ+1 − (γ logL+ 1) log k

))
.

The important fact here is γ log k+ ν+ δ < 1. Thus, for all ε ∈ (0, 1), the exponent
satisfies

L log k − kLγ log k+ν+δ − (γ logL+ 1) log k > εL log k

as soon as L is large enough, say L > L0 > L′0. The proposition readily follows. �

We address briefly the question of the optimality of condition (2.1). Let us first
note that to prove the lower bound for the Lifshitz tails with exponent 1/2 it is
enough to prove that for every η(0, 2) we have

inf σ(HL
ω ) 6 E0 + (logL)−η, L� 1

with good probability (compare this to the consequence of proposition 2.1). This
leads us to consider the slightly weaker condition

∀η ∈ (0, 2) : lim sup
κ↘0

κ1/η log
∣∣logP(Vω(v) 6 κ)

∣∣ = 0,

which is implied by condition (2.1). The following lemma shows that we can not
expect to do better than this.

Lemma 2.3. Suppose that for some η > 0

(2.3) lim sup
κ↘0

κ1/η log
∣∣logP(Vω(v) 6 κ)

∣∣ > 0.

Then, if η′ > η and ζ > 0, there is a sequence Lj →∞ for which

P
(
inf σ(HLj

ω ) > E0 + (logLj)
−η′) > 1− exp

(
−ζLj

)
.

Proof. We start with the simple bound

inf σ(HL
ω ) > E0 + min

v∈T L
Vω(v).

Then, it is enough to prove that for η′ > η and ζ > 0, there is a sequence Lj →∞
satisfying

(2.4) P
(

min
v∈T Lj

Vω(v) > (logLj)
−η′) > 1− exp

(
−ζLj

)
.

Condition (2.3) implies for any η′′ > 0 such that η < η′′ < η′ there exists some
sequence κj → 0 satisfying∣∣logP(Vω(v) 6 κj)

∣∣ > exp(κ
−1/η′′

j ).
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We can always assume that the κj are small enough by removing some elements

of the sequence. Letting Lj = dexp(κ
−1/η′

j )e this implies that for any ζ > 0 there
exists some L∗ such that for all Lj > L∗∣∣logP(Vω(v) 6 (logLj)

−η′)
∣∣ > exp((logLj)

η′/η′′) > ζLj.

Using the independence of the random variables and the fact that | log(1− p)| 6 2p
for 0 < p� 1, we see that for any ζ > 0 there is some sequence Lj → +∞ so that

logP
(

min
v∈T Lj

Vω(v) > (logLj)
−η′) =

∑
v∈T Lj

log
(
1− P

(
Vω(v) 6 (logLj)

−η′))
= |T Lj | log

(
1− P

(
Vω(0) 6 (logLj)

−η′))
> −2kLj+1P

(
Vω(0) 6 (logLj)

−η′)
> −2ke(log k)Lj−ζLj(2.5)

In particular, using that (2.5) is small and exp(−x) = 1− x+O(x2), we see that
for any ζ > 0 there exists some sequence Lj → ∞ satisfying (2.4). This finishes
the proof. �

If we assume condition (2.3) with η < 2, this last result and the methods we
introduce later in section 4 can be used to prove that there exists some sequence
E ′j ↘ 0 for which

lim sup
j→∞

log log|logN (E ′j)|
log(E ′j − E0)

< −1

2
.

It is thus impossible to obtain the lower bound in proposition 2.7 under this
assumption.

2.2. The lower bound on N (E). The upper bound on the ground state in
proposition 2.1 implicates a lower bound on the integrated density of states N ,
formulated in proposition 2.7. The strategy of proof is the same as in [Ros12,
section 2.1]. Nonetheless, proposition 2.7 improves the prerequisites under which
the lower bound holds, cf. remark 2.2.

The following lemma is taken from [Ros12, section 2.1.1] and adapted for trees T L
instead of balls of the Bethe lattice.

Lemma 2.4. For all L ∈ N, t > 0 and E ′ > E0, it holds true that

Ñ (t) > e−tE
′P(inf σ(HL

ω ) 6 E ′)/#T L.

Due to the change of notation and for the convenience of the reader, we repeat
and detail the proof.
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Proof. Let L ∈ N and E ∈ R. ΠE := 1(−∞,E](Hω) is the spectral projection of Hω.
According to (1.6), the integrated density of states is given by

N (E) = E[〈δ0,ΠEδ0〉] = (#T L)−1
∑
v∈T L

E[〈δv,ΠEδv〉] = (#T L)−1E[tr(1T LHω1T L)].

For the Laplace transform of N , the spectral theorem gives

Ñ (t) =

∫
e−λtdN (λ) = (#T L)−1E[tr(1T L exp(−tHω)1T L)]

for t > 0. [Sim05, Theorem 8.9] states

(2.6) tr(1T L exp(−tHω)1T L) > tr(exp(−tHL
ω )),

where HL
ω := 1T LHω1T L . This is easily seen with help of spectral measures. Due

to the convexity of λ 7→ e−tλ, for each v ∈ T L, the Jensen inequality gives

〈δv, exp(−tHω)δv〉 =

∫
exp(−tλ) dµδv(λ) > exp

(
−t
∫
λ dµδv(λ)

)
= exp(−t〈δv, Hωδv〉) = exp(−t〈δv,1T LHω1T Lδv〉)
= 〈δv, exp(−tHL

ω )δv〉,
where µδv is the spectral measure of Hω with respect to δv. Summing over v ∈ T L,
we obtain (2.6). The Laplace transform is thus bounded by

Ñ (t) > (#T L)−1E[tr(exp(−tHL
ω ))] > (#T L)−1E[exp(−t inf σ(HL

ω ))].

The Markov inequality reduces the last expectation to a probability

P(inf σ(HL
ω ) 6 E ′) 6 etE

′E[exp(−t inf σ(HL
ω ))]

and finishes the proof. �

Corollary 2.5. Let C1 be the constant in proposition 2.1. For t > 0 large enough,
then

Ñ (t) >
1

2
e
−t(E0+

C1
2(logL)2

)

Proof. We choose L = ζt and E ′ = E0 + C1(logL)−2. Note that

#T L =
∑
i

= 0L−1ki 6 kL = eζt log k.

This, lemma 2.4 and proposition 2.1 gives

Ñ (t) >
1

2
e−t(E0+C1(log ζt)−2)−tζ log k

>
1

2
e−t(E0+C1(2 log t)−2).

�
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As known from Tauberian theorems, the behavior of Ñ (t) as t → ∞ and the
behaviour of N (E) as E ↘ E0 are related. The following is taken almost verbatim
from [Ros12, (2.27)].

Lemma 2.6. For all t > 0 and E > E0, it holds true that

N (E) > etE0Ñ (t)− e−t(E−E0).

For completeness, we give the short proof.

Proof. Integration by parts, with vanishing boundary terms since N (E0) = 0, gives

Ñ (t) =

∫ ∞
E0

e−tλdN (λ) =

∫ ∞
E0

te−tλN (λ) dλ

6 N (E)

∫ E

E0

te−tλ dλ+

∫ ∞
E

te−tλ dλ 6 e−tE0N (E) + e−tE.

This is equivalent to the claim. �

Together with proposition 2.1, lemmas 2.4 and 2.6 are all that is needed to prove
the lower bound of the Lifshitz tails. More precisely, we obtain the following.

Proposition 2.7. Assume (2.1) and fix C1 as in proposition 2.1. Then there exists
λ > E0 such that, for all E ∈ (E0, λ), it holds true that

N (E) > k
−2−2 exp

(√
2C1/(E−E0)

)
/16.

In particular,

lim inf
E↘E0

log log|logN (E)|
log(E − E0)

> −1

2
.

Proof. Lemmas 2.4 and 2.6 concatenate to

N (E) > (#T L)−1e−t(E
′−E0)P(inf σ(HL

ω ) 6 E ′)− e−t(E−E0)

=
(
(#T L)−1et(E−E

′)P(inf σ(HL
ω ) 6 E ′)− 1

)
e−t(E−E0),

which is true for all t > 0 and E,E ′ > E0. We choose E ′ := (E0 + E)/2. This
ensures E − E ′ > 0 and will enable us to choose t large enough to make the lower
bound positive.

But first we have to deal with the probability. In order to apply proposition 2.1,
we let L :=

⌈
exp
(√

2C1/(E − E0)
)⌉

. That way, E ′ > E0 + C1/(logL)2 and,
provided E − E0 is small enough so that L is large enough,

P
(
inf σ(HL

ω ) 6 E ′
)
> P

(
inf σ(HL

ω ) 6 E0 + C1(logL)−2
)
> 1− exp(−kL/2) > 1/2.

Up to now we know, for all t > 0 and L large enough,

N (E) >
(
(2#T L)−1et(E−E0)/2 − 1

)
e−t(E−E0).
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It is time to choose t := 2 log(4#T L)/(E − E0), that is, (2#T L)−1et(E−E0)/2 = 2
and

N (E) > exp
(
−2 log(4#T L)

)
=

(#T L)−2

16
>
k−2L

16
>

1

16
k−2−2 exp

(√
2C1/(E−E0)

)
.

It is now easy to read the exponent of E − E0 from the limit inferior of this lower
bound on the Lifshitz tail behaviour , i. e., −1/2. This finishes the proof. �

3. Deterministic preparations

We develop the spectral theory of finite rooted trees. The spectrum was already
calculated in [RR07], but we need the eigenfunctions, too. The radially symmetric
generalized eigenfunctions for the (infinite) Bethe lattice were calculated in [Bro91].

Recall that we denote by T L the (nodes of the) rooted tree of length L with k
children at each node except the leaves, by 0 the root of the tree and by |v| =
d(0, v)+1 the “level” of the node v. For indexing reasons, we introduce the notation
T L∗ := T L ] {∗} for the (nodes of the) rooted tree of length L augmented by a
vertex ∗ with |∗| = 0, such that ∗ is a parent of the root. Any function in `2(T L)
is understood as an element of `2(T L∗ ), too, with the value 0 on ∗.

3.1. The spectrum of the adjacency matrix on a finite rooted tree.

Lemma 3.1. For each m ∈ {1, . . . , L}, the radially symmetric function defined by

T L 3 v 7→ ψLm(v) =

√
2

(L+ 1)k|v|−1
sin
( mπ

L+ 1
|v|
)

is a normalized eigenfunction of the adjacency matrix A(L) of the rooted tree T L
with eigenvalue

λLm := 2
√
k cos

( mπ

L+ 1

)
.

Proof. Let θ := mπ
L+1
∈ R. We check first the eigenvalue equation for v ∈ T L:

A(L)ψLm(v) =
∑

w∈T L,w∼v
ψLm(w)

=
√

2
(L+1)k|v|−2 sin((|v| − 1)θ) + k

√
2

(L+1)k|v|
sin(θ(|v|+ 1))

=
√

2
(L+1)k|v|−2 · 2 sin(|v|θ) cos(θ) = λLmψ

L
m(v).
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The third equation employs sin(α + β) = sin(α) cos(β) + cos(α) sin(β), α, β ∈ R.
We check now that they are normalized. This is seen via

‖ψLm‖2
2 =

∑
v∈T L
|ψLm(v)|2 =

L∑
`=1

2 sin2(θ`)

L+ 1
=

1

2(L+ 1)

L∑
`=1

(
2− e2iθ` − e−2iθ`

)
=

1

2(L+ 1)

(
2L− e2iθ − e2i(L+1)θ

1− e2iθ
− e−2iθ − e−2i(L+1)θ

1− e−2iθ

)
= 1,

where we used e±2i(L+1)θ = e±2πim = 1 in the last step. �

Since the radially symmetric functions on T L form a linear subspace of `2(T L) of
dimension L, lemma 3.1 lists all radially symmetric eigenfunctions of A(L). We now
construct the remaining non-radially symmetric eigenfunctions on T L. Recall that,
for each v ∈ T L, we denote by T Lv the subtree of T L rooted at v and of length
L− |v|+ 1.

Let v ∈ T L−1 ⊆ T L and u ∈ T Lv , u ∼ v. The node u is the root of a subtree T Lu
isomorphic to T L−|v|. According to lemma 3.1, we have L− |v| radially symmetric

eigenfunctions ψ
L−|v|
u,m , m ∈ {1, . . . , L− |v|}, of the adjacency matrix of T Lu , given

by

(3.1) ψL−|v|u,m (w) =

√
2

(L+ 1− |v|)k|w|−|v|−1
sin
( mπ

L+ 1− |v|(|w| − |v|)
)

for w ∈ T Lu . We trivially extend ψ
L−|v|
u,m to a function on T L by assigning 0

to the complement of T Lu . For a given v ∈ T L, we will agglutinate below the

functions ψ
L−|v|
u,m , u ∈ T Lv , u ∼ v, at v, see (3.2).

Note that T |v|+1
v = {v} ∪ {u ∈ T Lv : u ∼ v} is isomorphic to T 2 as a graph. The

matrix representation of A(2) with respect to a basis (δv; v ∈ T 2) with the root as
the first entry is 

0 1 1 . . . 1
1 0 0 . . . 0
1 0 0 . . . 0
...

...
...

. . .
...

1 0 0 . . . 0


with dimensions (k+1)×(k+1). The kernel of A(2) on T 2 has dimension k−1, so we
can find k − 1 normalized and orthogonal real eigenvectors ψ⊥v,j , j ∈ {1, . . . , k − 1},
of A(2) associated to the eigenvalue 0 on T |v|+1

v . These eigenvectors assign the

value 0 to v, since for any u ∈ T |v|+1
v , u 6= v, we have

ψ⊥v,j(v) = A(2)ψ⊥v,j(u) = 0 · ψ⊥v,j(u) = 0.
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We set

(3.2) ΨL
v,j,m :=

∑
u∈T Lv ,u∼v

ψ⊥v,j(u)ψL−|v|u,m .

To unify notation, we define ΨL
∗,1,m := ψLm and ψ⊥∗,1(v) := 1 for the root v of T L,

too, as well as

Jv :=

{
{1} for v = ∗ and

{1, . . . , k − 1} if v ∈ T L−1.

We call a triple (v, j,m) L-admissible if v ∈ T L−1
∗ , j ∈ Jv, m ∈ {1, . . . , L− |v|}.

Lemma 3.2. The vectors ΨL
v,j,m with (v, j,m) L-admissible are normalized eigen-

vectors of A(L) with eigenvalues λLv,j,m := λ
L−|v|
m = 2

√
k cos

(
mπ

L+1−|v|
)
, respectively,

and form an orthonormal basis of `2(T L).

Proof. Let (v, j,m) be a L-admissible. In the case v = ∗, lemma 3.1 tells us that
ΨL
v,j,m = ψLm is a normalized eigenfunction of A(L). From now on, we let v ∈ T L−1.

Note that

(3.3)
∑

u∈T Lv ,u∼v
ψ⊥v,j(u) = A(2)ψ⊥v,j(v) = 0 · ψ⊥v,j(v) = 0.

Since ΨL
v,j,m is pieced together from eigenfunctions on trees with the same eigenvalue,

the only node we need to check is v itself. We use (3.3) to see that

A(L)ΨL
v,j,m(v) =

∑
u∈T Lv ,w∼v

ψ⊥v,j(u)ψL−|v|u,m (u) = 0 = λLv,j,mΨL
v,j,m(v).

Thus, all ΨL
v,j,m are eigenfunctions of A(L).

Orthonormality is our next goal. For v ∈ T L−1, m ∈ {1, . . . , L − |v|}, m′ ∈
{1, . . . , L} and j ∈ {1, . . . , k − 1}, we have

〈ΨL
∗,1,m′ ,Ψ

L
v,j,m〉 =

∑
u∈T Lv ,u∼v

ψ⊥v,j(u)〈ψLm′ , ψL−|v|u,m 〉 = 0,

since 〈ψLm′ , ψ
L−|v|
u,m 〉 is constant in u and (3.3). For (v, j,m) and (v′, j′,m′) L-

admissible with v, v′ ∈ T L−1 we distinguish the following cases.
• If λLv,j,m 6= λLv′,m′,j′ , then 〈ΨL

v,j,m,Ψ
L
v′,m′,j′〉 = 0, since A(L) is symmetric.

• Let v 6= v′. If v ∈ T Lv′ or v′ ∈ T Lv , then the argument from above for v′ = ∗
applies. If v and v′ have disjoint subtrees, then the supports of ΨL

v,j,m

and ΨL
v′,m′,j′ are disjoint. Either way we reach 〈ΨL

v,j,m,Ψ
L
v′,m′,j′〉 = 0.
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• Assume v = v′, λLv,j,m = λLv′,m′,j′ . We thus have cos( mπ
L+1−|v|) = cos( m′π

L+1−|v|).

Since mπ
L−|v|+1

∈ (0, π) and cos |(0,π) is injective, we deduce m = m′. Conse-

quently,

〈ΨL
v,j,m,Ψ

L
v,j′,m〉 =

∑
u,u′∈T Lv ,u,u′∼v

ψ⊥v,j(u)ψ⊥v,j′(u
′)〈ψL−|v|u,m , ψ

L−|v|
u′,m 〉

=
∑

u∈T Lv ,u∼v
ψ⊥v,j(u)ψ⊥v,j′(u) = δj,j′ ,

since ψ⊥v,j and ψ⊥v,j′ are orthonormal and ψ⊥v,j(v) = 0.

We now know that the set of all ΨL
v,j,m with (v, j,m) L-admissible is orthonormal.

To identify this orthonormal set as a basis, we simply count all L-admissible
triples: ∑

v∈T L−1
∗

∑
j∈Jv

L−|v|∑
m=1

1 =
L∑

m=1

1 +
∑

v∈T L−1

k−1∑
j=1

L−|v|∑
m=1

1

= L+
L−1∑
`=1

k`−1(k − 1)(L− `) = L+ (k − 1)
(
L
L−1∑
`=1

k`−1 −
L−1∑
`=1

`k`−1
)

= L+ (k − 1)
(
L
kL−1 − 1

k − 1
− LkL−1(k − 1)− (kL − 1)

(k − 1)2

)
=
kL − 1

k − 1
.

This is exactly the dimension #T L =
∑L

`=1 k
`−1 = kL−1

k−1
of `2(T L). �

We study the behaviour of the principal eigenvalue λL∗,1,1 of A(L) as a function
of L and identify the states in its vicinity. This will be used in section 5, and it is
a crucial part of our argument.

Lemma 3.3. Let L ∈ N. For β ∈ R we define E
(L)
β := 2

√
k cos

( (β+1)π
L+1

)
. For

L-admissible (v, j,m) and β ∈ [0, L], we have

λLv,j,m ∈ [E
(L)
β , λL∗,1,1] ⇐⇒ |v| 6 (L+ 1)

(
1− m

β+1

)
=⇒ m ∈ {1, . . . , bβ + 1c}.

Remark 3.4. Note that E
(L)
0 = E

(L)
β |β=0 = λL∗,1,1.

Proof. Remember that 1− x2

2
6 cosx 6 1− x2

2
+ x4

24
for all x ∈ R. This reveals

− 1

24

((β + 1)π

L+ 1

)4

6 cos
( π

L+ 1

)
− cos

((β + 1)π

L+ 1

)
− π2β(β + 2)

2(L+ 1)2
6

1

24

( π

L+ 1

)4

.

For β 6 L, we use that cos |[0,π] is strictly decreasing to obtain

λLv,j,m > E
(L)
β ⇐⇒ m

L+ 1− |v| 6
β + 1

L+ 1
⇐⇒ m

β + 1
+
|v|

L+ 1
6 1

⇐⇒ |v| 6 (L+ 1)
(

1− m

β + 1

)
=⇒ m 6 bβ + 1c. �
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∗

v1

v2

v4 v5

v3

v6 v7

∗ v1 v2 v3 v4 v5 v6 v7

1 •

2 • •

3 • • • •

4 • • • • • • • •

· − · · /2

Figure 4. The action of the map ·̂ is indicated with the dotted arrows.

Next, we study the spectral projections

(3.4) Pv,j : `2T L → `2T L, Pv,jϕ :=

L−|v|∑
m=1

〈ΨL
v,j,m, ϕ〉ΨL

v,j,m

of A(L) for v ∈ T L−1
∗ and j ∈ Jv. We introduce the map

·̂ : `2(T L)→
⊕

v∈T L−1
∗

⊕
j∈Jv

`2({|v|+ 1, . . . , L}),

ψ̂v,j(z) := k−(z−|v|−1)/2
∑

u∈T Lv ,u∼v
ψ⊥v,j(u)

∑
w∈T Lu ,|w|=z

(Pv,jψ)(w)(3.5)

for z ∈ {|v|+ 1, . . . , L}. For a rough illustration see fig. 4. The map ·̂ has been
sketched in [AW06, Proposition A.2] and it is similar to an infinite dimensional
version in [AF00].

The action of ·̂ is best illustrated on radially symmetric eigenfunctions ψLm
of A(L). As we will see in lemma 3.5, they are mapped to functions supported on
{1, . . . , L}, and in the process, the exponential weights k(|v|−1)/2 are removed:

(ψ̂Lm)∗,1(z) =

√
2

L+ 1
sin
( mπ

L+ 1
z
)

for z ∈ {1, . . . , L} and m ∈ {1, . . . , L}. The result is an eigenfunction of the
adjacency matrix of Z restricted to {1, . . . , L}. Given a non-radially symmetric
eigenfunction ΨL

v,j,m of A(L), ·̂ reconstructs the underlying radially symmetric
eigenfunction, removes the exponential weight and presents the result as a function
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on the copy of {|v|+ 1, . . . , L} which is indexed by (v, j):

(3.6) (Ψ̂L
v,j,m)v,j(z) =

√
2

L+ 1− |v| sin
( mπ

L+ 1− |v|(z − |v|)
)

for z ∈ {|v|+ 1, . . . , L} and (v, j,m) L-admissible. This is again an eigenfunction
of the adjacency matrix of Z restricted to {|v|+ 1, . . . , L}.

We define the adjacency matrix on the image of ·̂ , which is the Hilbert sum of
the `2-spaces of segments of Z. The direct sum of the adjacency matrices of the
segments of Z is the natural choice. For ϕ ∈⊕v,j `

2({|v|+ 1, . . . , L}), it is given by

(Âϕ)v,j(z) := (AZϕv,j)(z) = ϕv,j(z − 1) + ϕv,j(z + 1)

for v ∈ T L−1, j ∈ Jv, z ∈ {|v|+1, . . . , L}, and with the boundary values ϕv,j(|v|) :=
ϕv,j(L+ 1) := 0.

Lemma 3.5. For all ψ ∈ `2(T L), we have the following.

(i) The map ·̂ conjugates A(L) and
√
kÂ: Â(L)ψ =

√
kÂψ̂.

(ii) The map ·̂ is unitary: ‖ψ‖2 = ‖ψ̂‖2. In particular, σ(A(L)) =
√
kσ(Â).

(iii) Let v ∈ T L−1
∗ and j ∈ Jv. The subspace Pv,j`

2(T L) contains ψ if and only if
supp(ψ) ⊆ T Lv \ {v} and

ψ(w)ψ⊥j,v(u
′) = ψ(w′)ψ⊥j,v(u)

for all u, u′ ∈ T Lv with u, u′ ∼ v and all w ∈ T Lu , w′ ∈ T Lu′ such that |w| = |w′|.
(iv) For all radially symmetric functions η : T L → C, i. e. η(w) = ηZ(|w|) for all

w ∈ T L and an ηZ : {1, . . . , L} → C, we have Pv,jη = ηPv,j and (η̂ψ)v,j =

ηZψ̂v,j for all v ∈ T L−1
∗ , j ∈ Jv. Here, ηZ denotes the multiplication with the

function ηZ|{|v|+1,...,L}.

Proof. Ad (i). We study the linear map ·̂ on the orthonormal basis ΨL
v,j,m. To

this end, let (v, j,m) be admissible, v′ ∈ T L−1
∗ , j′ ∈ Jv′ and z ∈ {|v′|+ 1, . . . , L}.

For v′ 6= v or j′ 6= j, we have Pv′,j′Ψ
L
v,j,m = 0 and ergo (Ψ̂L

v,j,m)v′,j′(z) = 0, too. So

from now on, we assume v′ = v and j′ = j. We then have Pv,jΨ
L
v,j,m = ΨL

v,j,m. For

u ∈ T Lv , u ∼ v and w ∈ T Lu , we find

ΨL
v,j,m(w) =

∑
u′∈T Lv ,u′∼v

ψ⊥v,j(u
′)ψL−|v|u′,m (w) = ψ⊥v,j(u)x|w|,|v|,m,L
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with x|w|,|v|,m,L :=
√

2
(L+1−|v|)k|w|−|v|−1 sin

(
mπ

L+1−|v|(|w| − |v|)
)
. We now see

(Ψ̂L
v,j,m)v,j(z) = k−(z−|v|−1)/2

∑
u∈T Lv ,u∼v

ψ⊥v,j(u)
∑

w∈T Lu ,|w|=z
ΨL
v,j,m(w)

= k−(z−|v|−1)/2
∑

u∈T Lv ,u∼v
ψ⊥v,j(u)ψ⊥v,j(u)

∑
w∈T Lu ,|w|=z

xz,|v|,m,L

= k−(z−|v|−1)/2kz−|v|−1xz,|v|,m,L

=

√
2

L+ 1− |v| sin
( mπ

L+ 1− |v|(z − |v|)
)

.

We now identify Ψ̂L
v,j,m as an eigenfunction of Â. Let ϕ := mπ

L+1−|v| and note that,

for z ∈ {|v|1, . . . , L}, by the angle sum and difference identities,

sin(ϕ(z − 1− |v|)) + sin(ϕ(z + 1− |v|))
= sin(ϕ(z − |v|)) cos(ϕ) + cos(ϕ(z − |v|)) sin(ϕ)

+ sin(ϕ(z − |v|)) cos(ϕ)− cos(ϕ(z − |v|)) sin(ϕ)

= 2 cos(ϕ) sin(ϕ(z − |v|)).

The boundary values sin(ϕ(|v|−|v|)) = 0 and sin(ϕ(L+1−|v|)) = 0 are satisfied, too.

Thus,
√
kÂΨ̂L

v,j,m = λLv,j,mΨ̂L
v,j,m = ̂λLv,j,mΨL

v,j,m = ̂A(L)ΨL
v,j,m for all L-admissible

(v, j,m).
Ad (ii). We have to check that the image of an orthonormal basis is again an

orthonormal basis. Let (v, j,m) be admissible. The fact that ‖Ψ̂L
v,j,m‖2

2 = 1 is
seen exactly as the normalisation part in lemma 3.1. Let (v′, j′,m′) be another

admissible triple. For (v, j) 6= (v′, j′), Ψ̂L
v,j,m and Ψ̂L

v,j,m have disjoint support and

are thus orthogonal. In case (v, j) = (v′, j′) and m 6= m′, Ψ̂L
v,j,m and Ψ̂L

v,j,m are

orthogonal, too, since the corresponding eigenvalues λLv,j,m 6= λLv′,j′,m′ with respect

to the symmetric operator
√
kÂ are not equal. Finally, ·̂ is surjective, since the

dimensions of its preimage and its image agree.
Ad (iii). Fix v ∈ T L−1

∗ and j ∈ Jv. We denote the linear subspace defined by
the condition in (iii) by Dv,j. By construction, ΨL

v,j,m ∈ Dv,j, so Pv,j`
2(T L) ⊆ Dv,j.

Furthermore, dim(Dv,j) = L− |v|, since the condition allows one degree of freedom
per sphere of T Lv \ {v}. On the other hand, dim(Pv,j`

2T Lv ) = L− |v|, because the
vectors ΨL

v,j,m, m ∈ {|v|+ 1, . . . , L}, are a basis of Pv,j`
2T Lv . The statement follows.

Ad (iv). Let ψ ∈ `2(T L) and η, ηZ be given as in the statement. Because of (iii),
ηPv,jψ ∈ Pv,j`2(T L). This and the fact that the spectral projectors are orthogonal
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implies that Pv,j and multiplication with ηZ commute:

Pv,j(ηψ) = Pv,j

(
η
∑
v′,j′

Pv′,j′ψ
)

=
∑
v′,j′

Pv,j(ηPv′,j′ψ) = ηPv,jψ.

We use this in

η̂ψv,j(z) = k−(z−|v|−1)/2
∑

u∈T Lv ,u∼v
ψ⊥v,j(u)

∑
w∈T Lu ,|w|=z

(Pv,j(ηψ))(w)

= ηZ(z)k−(z−|v|−1)/2
∑

u∈T Lv ,u∼v
ψ⊥v,j(u)

∑
w∈T Lu ,|w|=z

(Pv,jψ)(w) = ηZ(z)ψ̂v,j(z).

�

3.2. The IMS localization formula. In this subsection we provide a proof of
the following proposition. It will be needed in section 4 (proposition 4.9).

Proposition 3.6 (IMS localization formula). There is a constant CIMS > 0 such
that for each r > 2, we have a partition of unity {ηa,r}a>0 ⊆ `2(T L), consisting
of radially symmetric functions normalized to

∑
a>0 η

2
a,r = 1, such that for all

ψ ∈ `2(T L) we have〈
A(L)ψ, ψ

〉
>
∑
a>0

〈
A(L)(ηa,rψ), ηa,rψ

〉
− CIMS

r2
‖ψ‖2

2.

Furthermore, the support of ηa,r is a union of disjoint trees of length at most 2r.

The proof of proposition proposition 3.6 is made in two steps. We first prove this
formula for the discrete, one-dimensional Laplacian. Then, we carry this formula
onto the tree by means of the spectral theory of the rooted tree.

3.2.1. The IMS localization formula on Z. In this subsection we consider the
discrete Laplacian

∆Z := τ−1 − 2 + τ

on `2(Z), where τ is the translation operator, i.e. given by (τf)(x) = f(x+ 1) for
f : Z→ C and x ∈ Z. Note that on `2(Z) we have τ−1 = τ ∗. We will also employ
the discrete gradient

∇ := τ − 1.

Lemma 3.7. Let f ∈ `2(Z). For any partition of unity {ηa}, normalized so that∑
a η

2
a = 1, we have〈

−∆Zf, f
〉
6
∑

a

〈
−∆Z(ηaf), ηaf

〉
+
∥∥∥∑

a
(∇ηa)2

∥∥∥
∞
‖f‖2

2.

Remark 3.8. (1) In the proof, we actually show the operator equality

−∆Z −
∑

a
ηa(−∆Z)ηa = −1

2

∑
a

(
(∇ηa)2 τ + (∇∗ηa)2 τ ∗

)
.

Thus, the reverse inequality holds, too.
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(2) On Zd, the Laplacian decomposes: ∆Zd =
∑d

j=1 ∆Zj . Thus, we immediately
get the d-dimensional IMS formula

−∆Zd −
∑

a
ηa(−∆Zd)ηa = −1

2

∑
a

∑d

j=1

(
(∇jηa)

2 τj + (∇∗jηa)2 τ ∗j
)
,

where (τjf)(z) = f(z + ej)− f(z), and ∇j = τj − 1 is a discrete partial derivative.
(3) Actually, the above formula holds on the Cayley graph of any finitely gener-

ated group, as long as the generator does not contain an idempotent element. This
is proven basically with the exact same proof as given below for Z, except that
one has to read the notation higher dimensional. To be more precise, let S be the
generator corresponding to the Cayley graph. Since the group acts on itself, we get
for each s ∈ S a translation τsf(z) := f(zs). We treat

τ := (τs)s∈S , ∇ := (∇s)s∈S

as columns and ∇∗ as row and use matrix multiplication when interpreting

−∇∗∇ =
∑
s∈S
∇∗s∇s = ∆.

We also have to write sums whenever appropriate.
(4) The formulation of lemma 3.7 with the quadratic form instead of the operators

has the advantage, that it is easily restricted to subgraphs, e. g., G = {1, . . . , L}.
All we have to do is to note that `2(G) is embedded trivially into `2(Z). The
corresponding operator to the restricted quadratic form is the restriction with
simple boundary conditions.

(5) Thanks to the simple boundary conditions, the adjacency operator AZ :=
τ−1 + τ = ∆Z + 2 is only a shift of the Laplacian ∆Z. Lemma 3.7 transfers to AZ:〈

AZf, f
〉

=
〈
∆Zf, f

〉
+ 2‖f‖2

2

>
∑

a

〈
∆Zηaf, ηaf

〉
−
∥∥∥∑

a
(∇ηa)2

∥∥∥
∞
‖f‖2

2 + 2‖f‖2
2

>
∑

a

〈
AZηaf, ηaf

〉
−
∥∥∥∑

a
(∇ηa)2

∥∥∥
∞
‖f‖2

2,

since
∑

a η
2
a = 1.

(6) Another noteworthy generalization of lemma 3.7 is the following. Note
that any multiplication operator commutes with the multiplication of ηa. Thus,
lemma 3.7 holds for Schrödinger operators, i. e., −∆+V with a potential V : Z→ R
acting via multiplication.

Proof of lemma 3.7. We follow the proof of [Sim83, Lemma 3.1], the analogous
statement on Rd. With the above definitions,

∆Z = −∇∗∇.

For f, g ∈ `2(Z), it is easy to check that

∇(fg) = (∇f) τg + f (∇g) and ∇∗(fg) = (∇∗f) τ ∗g + f (∇∗g).



THE ANDERSON MODEL ON THE BETHE LATTICE: LIFSHITZ TAILS 33

Using this and −∇∗τ = ∇ as well as −τ ∗∇ = ∇∗, we immediately calculate

∆Z(fg) = −∇∗∇(fg) = −∇∗
(
∇f τg + f ∇g

)
= ∆Zf g −∇f ∇∗τg −∇∗f τ ∗∇g + f ∆Zg

= ∆Zf g +∇f ∇g +∇∗f ∇∗g + f ∆Zg.

Consequently,
[f,−∆Z] = (∆Zf) + (∇f)∇+ (∇∗f)∇∗.

To compute [f, [f,−∆Z]], consider, for g ∈ `2(Z),

[f,−∆Z](fg) = (∆Zf)fg +∇f ∇(fg) +∇∗f ∇∗(fg)

= f(∆Zf)g +∇f (∇f τg + f ∇g) +∇∗f (∇∗f τ ∗g + f ∇∗g)

= f
(
∆Zf + (∇f)∇+ (∇∗f)∇∗

)
g + (∇f)2 τg + (∇∗f)2 τ ∗g

= f [f,−∆Z]g + (∇f)2 τg + (∇∗f)2 τ ∗g.

Thus,
[f, [f,−∆Z]] = −(∇f)2 τ − (∇∗f)2 τ ∗.

On the other hand, expanding the commutators yields

[f, [f,−∆Z]] = [f, f(−∆Z) + ∆Zf ] = −f 2∆Z + 2f∆Zf −∆Zf
2.

We combine the last two formuae for f := ηa, sum over a and use
∑

a η
2
a = 1 to

derive
−∆Z −

∑
a
ηa(−∆Z)ηa = −1

2

∑
a

(
(∇ηa)2 τ + (∇∗ηa)2 τ ∗

)
.

For f ∈ `2(Z), we see

1
2

∣∣∣〈−1
2

∑
a

(
(∇ηa)2 τ + (∇∗ηa)2 τ ∗

)
f, f
〉∣∣∣

6 1
2

(∥∥∥∑
a
(∇ηa)2

∥∥∥
∞

+
∥∥∥∑

a
(∇∗ηa)2

∥∥∥
∞

)
‖f‖2

2 =
∥∥∥∑

a
(∇ηa)2

∥∥∥
∞
‖f‖2

2.

Thus, ∣∣∣〈−∆Zf, f〉 −
∑

a
〈−∆Z(ηaf), ηaf〉

∣∣∣ 6 ∥∥∥∑
a
(∇ηa)2

∥∥∥
∞
‖f‖2

2.

The triangle inequality finishes the proof. �

3.2.2. The IMS localisation formula on the tree. The discrete IMS formula is also
valid on trees, in a very general setting. Indeed, points 3 and 4 of Remark 3.8 hint
at the following way of proving the IMS localization formula on a tree of bounded
degree. First note that the Cayley graph of the free group with s generators is a
tree of degree 2s. Then we can embed the bounded degree tree into the Cayley
graph of a free group, and restrict to the subgraph again. It is enough for our
purposes to consider a radially symmetric partition of unity, so that instead we
will use in this section the spectral theory of the rooted trees to extend the IMS
formula on Z to trees.
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Proof of proposition 3.6. Step I. Fix ηR ∈ C1(R, [0, 1]) with support supp(ηR) ⊆
[−1, 1] such that, for any x ∈ R,∑

a∈Z

(
ηR(x− a)

)2
= 1.

We define a partition of unity on Z as follows. For r > 2, let

ηZ,r,a : Z→ R, ηZ,r,a(x) := ηR
(
2r−1x− a

)
.

This gives a partition on Z satisfying # supp ηZ,r,a 6 r. Furthermore, by the mean
value theorem and supp ηR ⊆ [−1, 1], we get

|∇ηZ,r,a(x)| =
∣∣ηR(2r−1(x+ 1)− a

)
− ηR

(
2r−1x− a

)∣∣
6 2r−1 sup

ξ∈[0,1]

∣∣η′R(2r−1(x+ ξ)− a
)∣∣

6 2r−1 sup|η′R(R)| · 1[2r−1x−1,2r−1(x+1)+1](a).

There are at most two values of a ∈ Z where the gradient is nonzero, since r > 2
and 2r−1(x+ 1) + 1− (2r−1x− 1) = 2 + 2r−1. We can thus bound the following
sum by∑

a∈Z
(∇ηZ,r,a(x))2 6 4 sup|η′R(R)|2r−2

∑
a∈Z

1[2r−1x−1,2r−1(x+1)+1](a) 6 C3r
−2

with C3 := 8 sup|η̃′(R)|2.
Step II. We now define the partition on the tree. Let

ηr,a : T → [0, 1], ηr,a(v) := ηZ,r,a(|v|).
With this definition we have ∑

a∈N
ηr,a = 1

on T . The support of each ηr,a is a disjoint union of rooted trees of length at
most r, see fig. 5. For ψ ∈ `2(T L), we employ remark 3.8 and learn

〈A(L)ψ, ψ〉 =
〈
Â(L)ψ, ψ̂

〉
=
√
k
〈
Âψ̂, ψ̂

〉
=
√
k
∑

v,j

〈
(Âψ̂)v,j, ψ̂v,j

〉
=
√
k
∑

v,j

〈
AZψ̂v,j, ψ̂v,j

〉
>
√
k
∑

v,j

(∑
a

〈
AZ(ηZ,r,aψ̂v,j), ηZ,r,aψ̂v,j

〉
− C3r

−2‖ψ̂v,j‖2
2

)
=
∑

a

√
k
∑

v,j

〈
AZ(̂ηr,aψ)v,j, η̂r,aψv,j

〉
− CIMSr−2‖ψ̂‖2

2

=
∑

a

〈 ̂A(L)(ηr,aψ), η̂r,aψ
〉
− CIMSr−2‖ψ̂‖2

2

=
∑

a

〈
A(L)(ηr,aψ), ηr,aψ

〉
− CIMSr−2‖ψ̂‖2

2,

where CIMS := C3

√
k. �
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s

sx
7→

η R
(2
r−

1
x
−
a
)

Figure 5. Shells of a tree split in trees

3.3. An uncertainty principle.

3.3.1. On a finite segment of Z. Let us first prove a one-dimensional version of
proposition 3.10. Afterwards, we transfer the result to the tree with lemma 3.5.
To this end, let L ∈ N and v ∈ T L−1

∗ . Consider a function ϕ ∈ `2({|v| +
1, . . . , L}), which can be written in the orthonormal basis of eigenfunctions of
−∆Z|{|v|+ 1, . . . , L} as

ϕ(z) =
∑

16m6L−|v|
αm

√
2

L+ 1− |v| sin
(mπ(z − |v|)
L− |v|+ 1

)
.

Given β > 0, we define the spectral projector P̂
|v|,L
β on `2({|v|+ 1, . . . , L}) via

P̂
|v|,L
β ϕ(z) =

∑
16m6β+1

αm

√
2

L+ 1− |v| sin
(mπ(z − |v|)
L− |v|+ 1

)
,

z ∈ {|v|+ 1, . . . , L}.
Lemma 3.9. Let L ∈ N, β > 0, 0 < δ < 1 and v ∈ T L∗ be fixed, such that
|v|+ 1 + dδLe 6 L. Define, for ϕ ∈ `2(|v|+ 1, . . . , L}), the truncation

T ′|v|,δϕ := 1{|v|+1+dδLe,...,L}ϕ.

Then, for |v| 6
(
1− 1

β+1

)
(L+ 1), we have

‖P̂ |v|,Lβ ϕ− T ′|v|,δP̂ |v|,Lβ ϕ‖2 6
√

2πδ3/2(β + 1)3‖P̂ |v|,Lβ ϕ‖2.
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Proof. We calculate, using Cauchy–Schwarz,

‖(1{|v|+1,...,L} − T ′δ)P̂ (L)
β ϕ‖2

2 =
2

L+ 1− |v|

|v|+dδLe−1∑
z=|v|+1

∣∣∣β+1∑
m=1

αm sin
(mπ(z − |v|)
L+ 1− |v|

)∣∣∣2

6
2

L+ 1− |v|

dδLe−1∑
z=1

β+1∑
m=1

|αm|2
β+1∑
m=1

(
sin
( mπz

L+ 1− |v|
))2

.

Now using ‖P̂ (L)
β ϕ‖2

2 =
∑β+1

m=1|αm|2, and sin(t) 6 |t|, valid for all t ∈ R, the last
line is smaller than

2‖P̂ (L)
β ϕ‖2

2

L+ 1− |v|

dδLe−1∑
z=1

β+1∑
m=1

( mπz

L+ 1− |v|
)2

=
2π2‖P̂ (L)

β ϕ‖2
2

(L+ 1− |v|)3

dδLe−1∑
z=1

z2

β+1∑
m=1

m2

6
2π2(δL)3(β + 1)3

(L+ 1− |v|)3
‖P̂ (L)

β ϕ‖2
2.

Now note that |v| 6
(
1− 1

β+1

)
(L+ 1) implies

L

L+ 1− |v| 6
β + 1

L+ 1
L 6 β + 1.

This bound and taking the square root yields the result. �

3.3.2. On a finite rooted tree. For any β > 0, we recall the definition of

(3.7) E
(L)
β := 2

√
k cos

(β + 1

L+ 1
π
)

from lemma 3.3. We want to study the neighbourhood [E
(L)
β , E

(L)
0 ] of the principal

eigenvalue E
(L)
0 of the adjacency matrix on the rooted tree T L. We define the

spectral projector of A(L) on the energy interval [E
(L)
β ,∞) as

Π
(L)

E
(L)
β

: `2(T L)→ `2(T L), Π
(L)

E
(L)
β

ϕ :=
∑

v,j,m : λLv,j,m>E
(L)
β

〈ϕ,ΨL
v,j,m〉ΨL

v,j,m.

We also define the space truncations

T|v|,δ : `2(T L)→ `2(T L), T|v|,δϕ := ϕ1{x∈T L:|x|>|v|+1+δL}

and a truncated version of Π
(L)

E
(L)
β

Π̃
(L)

E
(L)
β

: `2(T L)→ `2(T L), Π̃
(L)

E
(L)
β

ϕ :=
∑

v,j,m : λLv,j,m>E
(L)
β

〈ϕ,ΨL
v,j,m〉T|v|,δΨL

v,j,m.

Note that we can also write

(3.8) Π̃
(L)

E
(L)
β

ϕ =
∑
v,j

T|v|,δPv,jΠ
(L)

E
(L)
β

ϕ.
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∗

L δL

v

Figure 6. Illustration of (3.8). The subtree T Lv is indicated with
solid edges. Nodes in the support of functions truncated with T|v|,δ
in T Lv are filled black.

Proposition 3.10. Let L ∈ N, β > 0 and 0 < δ < 1. Then, for any ϕ ∈ `2(T L),

‖Π(L)

E
(L)
β

ϕ− Π̃
(L)

E
(L)
β

ϕ‖2 6
√

2πδ3/2(β + 1)3‖Π(L)

E
(L)
β

ϕ‖2.

Proof. We will show equivalently that

∀ϕ ∈ Π
(L)

E
(L)
β

`2(T L) : ‖Π(L)

E
(L)
β

ϕ− Π̃
(L)

E
(L)
β

ϕ‖2 6
√

2δ3/2(β + 1)2‖ϕ‖2.

Indeed, it follows from (3.8) that if Π
(L)

E
(L)
β

ϕ = 0 then Π̃
(L)

E
(L)
β

ϕ = 0. We assume thus

from now on that ϕ = Π
(L)

E
(L)
β

ϕ. For such ϕ, we see, by (3.8),(
Π

(L)

E
(L)
β

ϕ− Π̃
(L)

E
(L)
β

)
ϕ =

∑
v,j

(1T L − T|v|,δ)Pv,jϕ.

By lemma 3.5, we know that Pv,δ commutes with the radially symmetric truncation.
Thus, by the orthogonality of the projections Pv,j,∥∥(Π(L)

E
(L)
β

ϕ− Π̃
(L)

E
(L)
β

)
ϕ
∥∥2

2
=
∥∥∥∑
v,j

Pv,j(1T L − T|v|,δ)ϕ
∥∥∥2

2
=
∑
v,j

∥∥Pv,j(1T L − T|v|,δ)ϕ∥∥2

2
.

We study this norms via the unitary ·̂ , see (3.5) and lemma 3.5. For each v, j, we
have∥∥Pv,j(1T L − T|v|,δ)ϕ∥∥2

=
∥∥(Pv,j(1T L − T|v|,δ)ϕ)∧

∥∥
2

=
∥∥((1T L − T|v|,δ)ϕ)∧v,j∥∥2

=
∥∥(1{|v|+1,...,L} − T ′|v|,δ

)
ϕ̂v,j
∥∥

2
.
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We learn from lemma 3.3 that the coefficients (αv,j,m)v,j,m of

ϕ = Π
(L)

E
(L)
β

ϕ =
∑
v,j,m

αv,j,mΨL
v,j,m

vanish as soon as |v| > (L + 1)(1 − m
β+1

) or m > β + 1. Therefore, we have

ϕ̂v,j = P̂
|v|,L
β ϕ̂v,j, and we can thus invoke lemma 3.9 to conclude∥∥(Π(L)

E
(L)
β

ϕ− Π̃
(L)

E
(L)
β

)
ϕ
∥∥2

2
6 2π2δ3(β + 1)6

∑
v,j

‖ϕ̂v,j‖2
2 = 2π2δ3(β + 1)6‖ϕ‖2

2.

Since ϕ = Π
(L)

E
(L)
β

ϕ, this is what we set out to prove. �

4. Lifschitz tails: The upper bound

This section is devoted to the proof of the following theorem.

Theorem 4.1. Let E0 := (
√
k − 1)2. Then,

(4.1) lim sup
E→E0

log log|logN (E)|
log(E − E0)

6 −1

2
.

This theorem provides the converse to proposition 2.7. Note that no condition
on the random variables is needed for the upper bound.

4.1. Bound by a probability. We remind that N (E) denotes the integrated
density of states given by (1.6), dN = dN /dE its derivative and Ñ (t) is the
Laplace transform of dN . We start by proving the following Tauberian theorem,
which links the long time behavior of Ñ to the low energy asymptotic of N .

Proposition 4.2. Let Ñ (t) be the Laplace transform of the density of states
measure dN . Suppose that for some η > 0,

(4.2) lim sup
t→∞

et(E0+(log t)−η)Ñ (t) 6 1

with E0 := (
√
k − 1)2. Then,

(4.3) lim sup
E→E0

log log|logN (E)|
log(E − E0)

6 −1

η
.

Proof. Assume that inequality (4.2) holds. Then, there exists some t∗ such that
for all t > t∗,

(4.4) Ñ (t) 6 2e−t(E0+(log t)−η).
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Clearly, for E > E0,

N (E) =

∫ E

E0

dN (λ)

6 etE
∫ E

E0

e−tλdN (λ)

6 etE
∫ ∞
E0

e−tλdN (λ) = etEÑ (t),

and by (4.4), for large t,

N (E) 6 2et(E−E0)−t(log t)−η

Now we choose t as follows

t = t(E) := exp
(

(2E − 2E0)−1/η
)
.

We see that, for small E − E0,

N (E) 6 2 exp
(
−(E − E0) exp

(
(2E − 2E0)−1/η

))
6 exp

(
−1

2
(E − E0) exp

(
(2E − 2E0)−1/η

))
.

and for E − E0 small enough

log|logN (E)| 6 − log(2) + log(E − E0) + (2E − 2E0)−1/η 6 (E − E0)−1/η.

Now taking another logarithm, dividing by log(E − E0) and taking the lim sup
proves the theorem. �

The rest of this section will be devoted to prove that, as a consequence of
theorem 4.10, condition (4.2) holds for any η > 2. This proves theorem 4.1.

Our next proposition compares Ñ to a finite dimensional analog Ñ L. For any
Γ ⊂ B, we denote by Hω|Γ the operator Hω with simple (sometimes called Dirichlet)
boundary conditions, i.e. the operator defined by

Hω|Γ := 1ΓHω1Γ,

or equivalently, writing Hω(v, w), v, w ∈ B, for the matrix coefficients, it cand be
defined by

(4.5) (Hω|Γ)(v, w) :=

{
Hω(v, w) if v, w ∈ Γ

0 elsewhere.

Remember that BL denotes the ball of radius L of the Bethe lattice. Let us define
the averaged spectral density N L of Hω|BL by

N L(E) := E〈δ0,1(−∞,E](Hω|BL)δ0〉.
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In particular, its Laplace transform can be written

Ñ L(t) = E
[
〈δ0, e

−tHω |BLδ0〉
]
.

Note also that, using functional calculus, we have

Ñ (t) = E
[
〈δ0, e

−tHωδ0〉
]
.

In the following proposition we compare these two quantities. We define ω+ :=
‖ω0‖∞ for further use.

Proposition 4.3. Let Ñ L be the Laplace transform of dN L. Pick some positive
constant ζ > e2‖Hω‖ = e2((

√
k + 1)2 + ω+) and let L = dζte. Then, for any t > 1

the following holds:

|Ñ (t)− Ñ L(t)| 6 4e−ζt.

Here, ‖Hω‖ = sup Σ.

Proof. Assume ζ > e2‖Hω‖ and t > 1. First let us note that Hω is a bounded

operator and (we actually have ‖Hω‖ = (k + 1 + 2
√
k) + ‖Vω‖∞). This allows us

to expand the exponential as a sum like

〈δ0, e
−tHωδ0〉 =

L∑
n=0

(−t)n
n!
〈δ0, H

n
ωδ0〉+

∑
n>L

(−t)n
n!
〈δ0, H

n
ωδ0〉,

which is also valid if we replace Hω by Hω|BL. It is easy to see that the two first
terms of this sum are 1 and −tHω(0, 0) = −t(Hω|BL)(0, 0) respectively. Expanding
the matrix product, we see that, for 2 6 n 6 L

〈δ0, H
n
ωδ0〉 =

∑
x1,...,xn−1∈B

Hω(0, x1)Hω(x2, x3) · · ·Hω(xn−2, xn−1)Hω(xn−1, 0).

Now, using that Hω(v, w) = 0 for v, w ∈ BL satisfying d(v, w) > 1, the last sum
reduces to

(4.6)
∑

(p0,...,pn):0 0

Hω(p0, p1)Hω(p2, p3) · · ·Hω(pn−2, pn−1)Hω(pn−1, pn),

where we have written (p0, . . . , pn) : 0 0 to denote a path (p0, . . . , pn) ∈ (B)n+1

(which may include loops) starting at 0 and ending at 0. In particular, if (p0, . . . , pn) :
0 0,

(4.7) d(p0, pi) 6
∑

06j6n−1

d(pj, pj+1) 6 n 6 L for any 0 6 i 6 n,

i.e. the paths in the sum (4.6) are entirely contained in BL. Using (4.5), we see
that for 2 6 n 6 L

(4.8) 〈δ0, H
n
ωδ0〉 =

∑
(p0,...,pn):0 0

∏
16i6n

(Hω|BL)(pi−1, pi) = 〈δ0, (Hω|BL)nδ0〉.
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We conclude that the first L + 1 terms of the expansions of 〈δ0, e
−tHωδ0〉 and

〈δ0, e
−tHω |BLδ0〉 coincide, and∣∣〈δ0, e
−tHωδ0〉 − 〈δ0, e

−tHω |BLδ0〉
∣∣ =

∑
n>L

tn

n!
〈δ0, H

n
ωδ0〉+

∑
n>L

tn

n!
〈δ0, (Hω|BL)nδ0〉.

Let us estimate this error. We do it for for the first term, the second one is similar.
By a simple calculation, we see that∑

n>L

tn

n!
‖Hω‖n =

∑
n>1

tL+n

(L+ n)!
‖Hω‖L+n

6
∑
n>1

tL+n

(L+ n)(L+n)e−(L+n)
‖Hω‖L+n

6
∑
n>1

(
et‖Hω‖
L

)L+n

,

where we have used n! > nne−n and (L + n)−1 6 L−1. In particular, if L = dζte,
we see that (

et‖Hω‖
L

)L+n

6 (e‖Hω‖/ζ)dζte+n,

and as ζ > e2‖Hω‖ and t > 1, we can bound the the error as

(4.9)
∑
n>L

tn

n!
‖Hω‖n 6

∑
n>1

e−(dζte+n) 6 2e−ζt.

Noting that ‖Hω|BL‖ 6 ‖Hω‖, a similar calculation leads to

(4.10)
∑
n>L

tn

n!
〈δ0, (Hω|BL)nδ0〉 6 2e−ζt.

This ends the proof. �

We will now study the large time behavior of Ñ L.

Lemma 4.4. Let Γ ⊂ B be finite and Hω|Γ the restriction of Hω with simple
boundary conditions. Then

E
[
〈δ0, e

−tHω |Γδ0〉
]
6 E

[
e−tEGS(Hω |Γ)

]
.

Proof. Fix a realization ω and let {λi;ψi}i∈Γ = {λi(ω);ψi(ω)}i∈Γ be a complete set
of (eigenvalues, eigenfunctions) of Hω|Γ. Then, writing

δ0 =
∑

αi(ω)ψi(ω)

we see that, as EGS(Hω|Γ) = mini∈Γ λi(ω) and
∑|αi|2 = 1,

〈δ0, e
−tHω |Γδ0〉 =

∑
i∈Γ

|αi(ω)|2e−tλi(ω) 6
∑
i∈Γ

|αi(ω)|2e−tEGS(Hω |Γ) = e−tEGS(Hω |Γ).
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Taking the expectation in this inequality yields the desired result. �

The following two lemmata link the behavior of the ground state energy of the
Hamiltonian on a ball to the one on a finite rooted tree. This is needed in order to
use the spectral theory developed in section 3.

Lemma 4.5. Let L > 1 and BLv a ball of radius L centered at v ∈ B, i.e.

BLv := {w ∈ B : dB(w, v) 6 L}.
Then, for every v ∈ B with |v| = L+ 2 there exists a rooted tree T 3L ⊂ B, of length
3L, which contains BLv .

Proof. Label the k branches of the Bethe lattice by the nodes x ∈ T L satisfying
|x| = 1 and assume that d(0, v) = L + 1. Then, there exists a unique minimal
path [0, v] = (0, v1, v2, . . . , v) of length L+ 1. Because d(v1, v) = L, we know that
v1 ∈ BL. In particular the whole ball is contained in the branch of the Bethe lattice
v1. Now choose k − 1 other branches to form the infinite rooted tree T . The result
is now clear because by definition T L := {v ∈ T : |v| 6 L} and for any x ∈ BLv we
have |x| 6 2L+ 1 6 3L. �

Conversely, it is easy to see that T L ⊂ BL, for all L > 1. This leads to the
following lemma.

Lemma 4.6. For any L > 1 and |v| = L+ 2,

EGS(Hω|BLv ) 6 EGS(Hω|T 3L
v ) 6 EGS(Hω|B3L

v )

Here T L and T 3L are the trees satisfying T L ⊂ BL ⊂ T 3L.

Proof. Let v ∈ B with |v| = L+ 2 and T 3L be the rooted tree containing BLv . Then

EGS(Hω|BLv ) = inf
ϕ∈`2(BLv )
‖ϕ‖2=1

〈Hωϕ, ϕ〉

6 inf
ϕ∈`2(T 3L)
‖ϕ‖2=1

〈Hωϕ, ϕ〉 = EGS(Hω|T 3L) 6 EGS(Hω|T 3L).

This means that
E
[
e−tEGS(Hω |BLv )

]
6 E

[
e−tEGS(Hω |T 3L)

]
�

Using translation invariance, we can translate the point where we calculate the
integrated densities of states N and N L. proposition 4.3 tells us then that it is
enough to study, for some v ∈ B with |v| = L+ 2,

Ñ L(t) = E
[
〈δv, e−tHω |B

L
v δv〉

]
.

We remind that BLv is the ball centered at v.
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From now on we write HL
ω := Hω|T L. The next lemma is a simple bound on the

expectation by a probability.

Lemma 4.7. For any ε > 0, L > 1 and t > 1, we have

E
[
e−tEGS(HL

ω )
]
6 e−t(E0+ε(log t)−2) + e−tE0P

(
EGS(H

L
ω ) < E0 + ε(log t)−2)

)
.(4.11)

Proof. We have indeed for all E > E0

E
[
e−tEGS(HL

ω )
]

= E
[
(1{EGS(HL

ω )>E} + 1{EGS(HL
ω )<E})e

−tEGS(HL
ω )
]

6 e−tE + e−tE0P(EGS(H
L
ω ) < E). �

We summarize the results of this section in the following proposition.

Proposition 4.8. Assume ε > 0 and ζ > e2‖Hω‖2(
√
k + 1)2ω+. If

(4.12) lim sup
L→∞

eεζLP
(
EGS(H

L
ω ) < E0 + 4ε(logL)−2

)
6 1

then

(4.13) lim sup
t→∞

et(E0+ε(log t)−2)Ñ (t) 6 1.

Proof. Let t > 1 and L = dζte. Then,

exp(t(E0 + ε(log t)−2)Ñ (t)

6 exp(t(E0 + ε(log t)−2)(Ñ L(t) + 4e−ζt) by proposition 4.3

6 exp(t(E0 + ε(log t)−2)(Ee−tEGS(H3L
ω ) + 4e−ζt) using lemmas 4.4 to 4.6

6 e−ε(log t)−2

+ et(E0−ζ+ε(log t)−2)) + eεt(log t)−2P
[
EGS(H

3L
ω ) < E0 + 2ε(log t)−2

]
,

using lemma 4.7. For the first two terms in this sum we have

lim
t→∞

e−ε(log t)−2

+ et(E0−ζ+(log t)−2)) = 0.

For the third term, noting that eεt(log t)−2
6 eεL/ζ and that for large L = dζte we

have

2ε(log t)−2 6 2ε(logL/ζ)−2 6 4ε(log 3L)−2

yields the result. �

It is not hard to see that (4.13) implies (4.2) for every η > 2, so that theorem 4.1
is a consequence of condition (4.12).
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4.2. Reduction to a smaller scale. In the following lemma we trade energy for
probability. The IMS localization formula (proposition 3.6) furnishes a crucial
ingredient of the proof.

Proposition 4.9. For every ε > 0 there exists L∗ > 1 so that for any L > L∗ and
r = ε−1/2 logL,
(4.14)

P
(
EGS(H

L
ω ) 6 E0 +

4ε

(logL)2

)
6 e

√
εrke

√
εrP
(
EGS(H

2r
ω ) 6 E0 +

4 + CIMS
r2

)
.

Proof. Assume both

(4.15) ε−1/2 log(L) = r

and

(4.16) EGS(H
L
ω ) 6 E0 +

4ε

(logL)2
6 E0 +

4

r2
.

Let {η2
a,r} be the family of spherically symmetric functions on T L given by propo-

sition 3.6. They satisfy ∑
a

η2
a,r(v) = 1 on T L

and

Sa,r := supp ηa,r ⊂ {mr − r < |v| < mr + r} ⊂ T L.
If ϕLGS is the normalized the ground state of HL

ω , then the IMS formula and∑‖ϕLGSηl,m‖2
2 = 1 yields

〈ϕLGS, HL
ωϕ

L
GS〉 >

∑
a

EGS(H
L
ω |Sa,r)‖ϕLGSηa,r‖2

2 −
CIMS
r2
‖ϕLGS‖2

2

> min
a
EGS(H

L
ω |Sa,r)−

CIMS
r2
‖ϕLGS‖2

2.

From (4.16) we deduce then

min
a
EGS(H

L
ω |Sa,r) 6 E0 +

4 + CIMS
r2

and thus

P
(
EGS(H

L
ω ) 6 E0 +

4ε

(logL)2

)
6
∑
a

P
(
EGS(H

L
ω |Sa,r) 6 E0 +

4 + CIMS
r2

)
.

Note that, using again proposition 3.6, the support Sa,r is a disjoint union of finite
subtrees of length at most 2r. We write this as

Sa,r ⊂
⊎

|v|=l(a,r)
T 2r
v ,
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for some l(a, r) and where ] denotes disjoint union, and thus

EGS(H
L
ω |Sa,r) 6 min

|v|=l(a,r)
EGS(H

L
ω |T 2r

v ).

The right hand side of this equation is the minimum of a collection of independent,
identically distributed random variables. We deduce that

P
(
EGS(H

L
ω |Sa,r) 6 E0 +

1 + CIMS
r2

)
6 #{v : |v| = l(a, r)}P

(
EGS(H

L
ω |T 2r) 6 E0 +

4 + CIMS
r2

)
6 kLP

(
EGS(H

2r
ω ) 6 E0 +

4 + CIMS
r2

)
.

To end the proof, note from (4.15) that

L = e
√
εr.

and plugging this into

(4.17) P
(
EGS(H

L
ω ) 6 E0 +

4ε

(logL)2

)
6 LkLP

(
EGS(H

2r
ω ) 6 E0 +

4 + CIMS
r2

)
yields the result.

�

We state the main probability estimate, which we will prove in the next section.

Theorem 4.10. For every β′ > 0 there exists some εβ′ > 0 and L∗ > 1 so that for
any L > L∗,

P
(
EGS(H

L
ω ) 6 E0 + β′L−2

)
6 exp(− exp(εβ′L)).(4.18)

We first state and prove the following important corollary.

Corollary 4.11. For any ε > 0 small enough and any ζ > 0 there exists some
L∗ > 1 such that for all L > L∗

P
(
EGS(H

L
ω ) 6 E0 +

4ε

(logL)2

)
6 e−ζL.

In particular, condition (4.12) of proposition 4.8 holds.

Proof. Let β′ > 4(4 + CIMS) and r = ε−1/2 log(L) large enough. Then, using the
bound given by theorem 4.10, which we assume to hold, we get that

(4.19) P
(
EGS(H

2r
ω ) 6 E0 +

4 + CIMS
r2

)
6 exp(− exp(εβ′r))

for some εβ′ > 0, independent of r.
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Let 0 < ε < ε2β′ . We estimate, using proposition 4.9 and (4.19),

P
(
EGS(H

L
ω ) 6 E0 +

4ε

(logL)2

)
6 e

√
εr exp(log(k)e

√
εr) exp(− exp(εβ′r))

6 exp
(√

εr + log(k)e
√
εr − eεβ′r

)
6 exp

(
−eεβ′r/2

)
= exp(−Lεβ′/

√
ε/2),

for r large enough. This finishes the proof. �

5. Main probability estimate

We remind the reader that

−∆B := k + 1− AB
where AB is the adjacency matrix of the infinite Bethe lattice B with symmetric
spectrum σ(AB) = [−2

√
k, 2
√
k]. Thus, the Anderson Hamiltonian Hω defined by

(1.5) satisfies

Hω = k + 1− AB + Vω.

We introduce the restriction of AB to the finite rooted tree T L, which we denote
by A(L). Note that it is also the adjacency matrix of T L. Any question about the
ground state energy EGS(H

L
ω ) can be restated in terms of the principal eigenvalue

Λ
(L)
ω of the operator A

(L)
ω = A(L) − V (L)

ω , which we define as

Λ(L)
ω := sup

‖ϕ‖2=1

〈ϕ,A(L)
ω ϕ〉 = k + 1− EGS(H

L
ω ).

We have indeed for L ∈ N and β > 0 the equivalence

EGS(H
L
ω ) 6 E0 + βL−2 ⇐⇒ Λ(L)

ω > 2
√
k − βL−2.

If we take β <
√
kπ2 this inequality almost surely does not hold (trivial and

obviously not very useful for our purposes). Then, we restate theorem 4.10 as
follows.

Theorem 5.1. For every β > 0 there exists some εβ > 0, L∗ > 1 so that for any
L > L∗,

Λ(L)
ω < 2

√
k − βL−2

with probability at least

1− ee
−εβL

.

This section will be devoted to the proof of theorem 5.1. Note that it furnishes
the lower bound of theorem 1.5.
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5.1. Cutoffs in energy and space. We claim first that, in order to attain an
energy E0 + O(L−2) close to the bottom of the spectrum of HL

ω (i.e. the top of

the spectrum of A
(L)
ω ), a state must have both low kinetic energy and its potential

energy close to the bottom of the spectrum. This will force the potential energy to
deviate considerably from its mean, see proposition 5.4, which happens only with
double exponentially small probability, see proposition 5.5.

To exploit the low energy of the states considered, we cut off all energies above
a threshold. We implement this with the spectral projectors

Π
(L)
E : `2(T L)→ `2(T L)

Π
(L)
E ϕ = 1[E,+∞)(A

(L))ϕ =
∑

λLv,j,m>E

〈ΨL
v,j,m, ϕ〉ΨL

v,j,m,

where E ∈ R and the sum is taken over L-admissible indices (v, j,m) with eigenvalue
bounded below by E, see lemma 3.2.

Recall that at the beginning of section 3 we introduced a vertex ∗ and the
notation T L∗ . We used them to index the eigenvalues and eigenfunctions on the
tree, see lemma 3.2.

Definition 5.2. For every v ∈ T L−1
∗ , define the orthogonal spectral projectors

(5.1) Pv :=
∑
j∈Jv

Pv,j

using the notation from (3.4).

Remark 5.3. Here are some properties of these projectors. Let v ∈ T L−1
∗ . Then

• If χv = 1T Lv is the characteristic function of the subtree T Lv , then for any

w ∈ T L−1
v ,

Pw = Pwχv = χvPw.

In particular Pv = Pvχv = χvPv.
• If we denote by suppϕ the support of ϕ ∈ `2(T L), then for any w ∈
T L−1
∗ \ T L−1

v

supp
(
Pvϕ

)
∩ supp

(
Pwϕ

)
= ∅.

Given δ ∈ (0, 1), the truncated spectral projector Π̃
(L)

E
(L)
β

, see (3.8), can be written

with this notation as

(5.2) Π̃
(L)
E =

∑
v∈T L−1

∗

T|v|,δPvΠ
(L)
E .

We note, for further use, that for any v ∈ T L−1
∗ ,

(5.3) Π̃
(L)
E Pv = T|v|,δPvΠ

(L)
E .
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This is easily seen using the commutativity and orthogonality of the spectral
projectors. Using lemma 3.3, we also note that if |v| > (1− 1

β+1
)(L+ 1) then

(5.4) PvΠ
(L)
E = 0.

We finally introduce a notation for the centered potential:

(5.5) V
(L)

ω := V (L)
ω − ω̄1T L ,

where ω̄ is the expected value of the potential. We remind that the quantity

E
(L)
β := 2

√
k cos

( (β+1)π
L+1

)
was introduced in lemma 3.3. Let us now state the

proposition.

Proposition 5.4. Let β′ > 0. For every β � β′ large enough, there exists some
δ = δβ > 0 and L∗ > 1, so that for any L > L∗, then, the following inequality holds:

P
(
Λ(L)
ω > 2

√
k − β′L−2

)
6 P

(
sup
‖ϕ‖261

∣∣〈Ṽ (L)
ω ϕ, ϕ〉

∣∣ > ω̄

16

)
,

where we have introduced the notation

Ṽ (L)
ω := (Π̃

(L)

E
(L)
β

)∗V
(L)

ω Π̃
(L)

E
(L)
β

,

with Π̃
(L)
E defined as in (5.2).

The key estimate is then given by the following proposition.

Proposition 5.5. For any β > 0 large enough, let δ = δβ > 0 given by proposi-
tion 5.4. Then, for L large enough,

P
(

sup
‖ϕ‖261

∣∣〈Ṽ (L)
ω ϕ, ϕ〉

∣∣ > ω̄

16

)
6 exp

(
−Ck,ω̃+,ω̄,βk

δβL
)
.

Let us first prove proposition 5.4. We thereby reduce theorem 5.1 to proposi-
tion 5.5. The proof of proposition 5.5 is at the very end of this section. It hinges
upon a series of lemmata and propositions which occupy the rest of this paper.

Proof of proposition 5.4. Fix a realisation ω of the random potential with the
property

Λ(L)
ω > 2

√
k − β′L−2.

Then, there exists a ϕ ∈ `2(T L) with ‖ϕ‖2 = 1 such that

〈A(L)
ω ϕ, ϕ〉 > 2

√
k − β′L−2,

or, equivalently,

〈(2
√
k − A(L))ϕ, ϕ〉+ 〈V (L)

ω ϕ, ϕ〉 6 β′L−2,
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using ‖ϕ‖2 = 1. Note that the principal eigenvalue of A(L) is smaller than 2
√
k.

Thus, both 2
√
k − A(L) and V

(L)
ω are non-negative operators. This implies that we

have both

(5.6) 〈(2
√
k − A(L))ϕ, ϕ〉 6 β′L−2

and

(5.7) 〈V (L)
ω ϕ, ϕ〉 6 β′L−2.

We now proceed as follows. In a first step, we introduce the energy cutoff Π
(L)

E
(L)
β

into (5.7). Here, (5.6) tells us how to choose β in order to keep the truncated
version of (5.7) powerful enough. In a second step, we bring the spatial cutoff

in Π̃
(L)

E
(L)
β

into play. This time, we have to choose δ > 0 small enough, depending

on β.
For the first step, let us write

(5.8) q(L)

E
(L)
β

:= 1`2(T L) − Π
(L)

E
(L)
β

and ω+ := ‖Vω‖∞. Then, we find that

〈V (L)
ω ϕ, ϕ〉 = 〈V (L)

ω Π
(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉+ 2<〈V (L)
ω Π

(L)

E
(L)
β

ϕ,q(L)

E
(L)
β

ϕ〉+

+ 〈V (L)
ω q(L)

E
(L)
β

ϕ,q(L)

E
(L)
β

ϕ〉

> 〈V (L)
ω Π

(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉 − 2ω+‖Π(L)

E
(L)
β

ϕ‖2‖q(L)

E
(L)
β

ϕ‖2.

This, (5.7) and ‖Π(L)

E
(L)
β

ϕ‖2 6 1 imply that

〈V (L)
ω Π

(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉 6 β′L−2 + 2ω+‖q(L)

E
(L)
β

ϕ‖2.

We use now def. (5.5) in order to center the random variables so that their mean is
zero. This gives,

(5.9) 〈V (L)

ω Π
(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉 6 β′L−2 + 2ω+‖q(L)

E
(L)
β

ϕ‖2 − ω̄‖Π(L)

E
(L)
β

ϕ‖2
2.

Using the non-negativity of the operator 2
√
k − A(L), we see that〈

(2
√
k − A(L))q(L)

E ϕ,q(L)
E ϕ

〉
=

∑
λLv,j,m>E

(2
√
k − λLv,j,m)|〈ΨL

v,j,m, ϕ〉|2

6
∑

λLv,j,m>−∞
(2
√
k − λLv,j,m)|〈ΨL

v,j,m, ϕ〉|2

= 〈(2
√
k − A(L))ϕ, ϕ〉.
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We use this with (5.6) to deduce that〈
(2
√
k − A(L))q(L)

E
(L)
β

ϕ,q(L)

E
(L)
β

ϕ
〉
6 β′L−2

and thus, using the definitions (5.8) and (3.7), this implies that(
2
√
k − E(L)

β

)∥∥q(L)

E
(L)
β

ϕ
∥∥2
6 β′L−2.

Hence, using cos(x) > 1− x2/2,

2
√
k

(β + 1)2π2

(L+ 1)2

∥∥q(L)

E
(L)
β

ϕ
∥∥2
6 β′L−2,

and thus ∥∥q(L)

E
(L)
β

ϕ
∥∥ 6 L+ 1

L(β + 1)π

√
β′

2
√
k
6

2

(β + 1)π

√
β′

2
√
k

.

From now on we assume we have chosen β so large that

1

(β + 1)π

√
2β′√
k
< min{1/

√
2, ω̄/(8ω+)}.

This choice implies

1/2 6 ‖Π(L)

E
(L)
β

ϕ‖2
2 6 1 and 2ω+‖Π(L)

E
(L)
β

ϕ‖2‖q(L)

E
(L)
β

ϕ‖2 6 ω̄/4.

We deduce from (5.9) that, for L2 > 8β′/ω̄,

〈V (L)

ω Π
(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉 6 − ω̄
8

.

For the second step, let us now replace Π
(L)

E
(L)
β

by Π̃
(L)

E
(L)
β

. We denote ω̃+ := ‖Vω− ω̄‖∞.

Choose 0 < δ < 1 satisfying
√

2πδ3/2(β + 1)3 6 ω̄/(32ω̃+).

Then, proposition 3.10 tells us that

2ω̃+‖Π(L)

E
(L)
β

ϕ− Π̃
(L)

E
(L)
β

ϕ‖2 6
ω̄

16
‖Π(L)

E
(L)
β

ϕ‖2 6
ω̄

16
.

Using this and ‖Π̃(L)

E
(L)
β

ϕ‖2 6 1, we deduce

〈V (L)

ω Π̃
(L)

E
(L)
β

ϕ, Π̃
(L)

E
(L)
β

ϕ〉 = 〈V (L)

ω Π
(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉+ 〈V (L)

ω (Π̃
(L)

E
(L)
β

− Π
(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉+

+ 〈V (L)

ω Π̃
(L)

E
(L)
β

ϕ, (Π̃
(L)

E
(L)
β

− Π
(L)

E
(L)
β

ϕ〉

6 − ω̄
8

+ 2ω̃+‖Π(L)

E
(L)
β

ϕ− Π̃
(L)

E
(L)
β

ϕ‖2 6 −
ω̄

16
.
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We have thereby proven that, for L large enough,{
ω : Λ(L)

ω > 2
√
k − β′L−2

}
⊆
{
ω : sup

‖ϕ‖261

∣∣〈V (L)

ω Π̃
(L)

E
(L)
β

ϕ, Π̃
(L)

E
(L)
β

ϕ〉
∣∣ > ω̄

16

}
.

This proves proposition 5.4. �

The spatial truncation we introduced into Ṽ
(L)
ω is adapted to the energy decom-

position of the argument. More specifically, eigenfunctions with different anchors
are treated differently. We therefore split the probability into different components
depending on the anchors, see lemma 5.7.

We now prove a simple lemma.

Lemma 5.6. Let L > 1 and ϕ ∈ `2(T L). Then:∑
v∈T L−1

∗

‖χvϕ‖2
2 6 (L+ 1)‖ϕ‖2

2.

Proof. We have v ∈ T L∗ and w ∈ T Lv if and only if v lies in the shortest path from ∗
to w, which we write v ∈ [∗, w]. Thus,∑

v∈T L−1
∗

‖χvϕ‖2
2 6

∑
v∈T L∗

‖χvϕ‖2
2 =

∑
v∈T L∗

∑
w∈T L∗

|ϕ(w)|2 =
∑
w∈T L∗

∑
v∈[∗,w]

|ϕ(w)|2.

Now it suffices to remark that the maximum length of any shortest path from ∗ to
any point of the tree is smaller or equal to L+ 1. �

We introduce the following quantity. For any given L > 1, v ∈ T L, and w ∈ T Lv ,
define

(5.10) Ξ(L, v, w) :=
1

2
(L+ 1)−1k−(|w|−|v|)/2.

We also adopt the convention 0/0 = 0.

Lemma 5.7. Let L > 1, κ > 0, B(L) the unit ball of `2(T L) and E ,F ⊆ B(L).
Then the following inequality holds true

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω ϕ, ψ〉| > κ

)
6

∑
v∈T L−1

∗

∑
w∈T L−1

v

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

> κΞ(L, v, w)
)

.
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Proof. First let us remark that for any ϕ ∈ `2(T L) we have ϕ =
∑

v∈T L−1
∗

Pvϕ and
thus, using remark 5.3, we see that

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω ϕ, ψ〉| 6 sup

ϕ∈E,ψ∈F

∣∣∣〈Ṽ (L)
ω

∑
v∈T L−1

∗

Pvϕ,
∑

w∈T L−1
v

Pwψ
〉∣∣∣

6 2 sup
ϕ∈E,ψ∈F

∑
v∈T L−1

∗

∑
w∈T L−1

v

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|.(5.11)

The proof now proceeds as follows. In order to prove the inequality P(A) 6∑
j P(Bj), we will show that

⋂
j B

c
j ⊆ Ac. To do so, fix ω with the following

property: for all ϕ ∈ E , ψ ∈ F , v ∈ T L−1
∗ , w ∈ T L−1

v ,

(5.12) |〈Ṽ (L)
ω Pvϕ, Pwψ〉| 6 κΞ(L, v, w)‖Pvϕ‖2‖Pwψ‖2.

Then, for any ϕ ∈ E , ψ ∈ F , we can use assumption (5.12) to bound

2
∑

v∈T L−1
∗

∑
w∈T L−1

v

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|

6 κ(L+ 1)−1
∑

v∈T L−1
∗

‖Pvϕ‖2

∑
w∈T L−1

v

k−(|w|−|v|)/2‖Pwψ‖2

6 κ(L+ 1)−1
( ∑
v∈T L−1

∗

‖Pvϕ‖2
2

)1/2( ∑
v∈T L−1

∗

B2
v

)1/2

,(5.13)

where we have used Cauchy–Schwarz in the last line and furthermore defined

Bv :=
∑

w∈T L−1
v

k−(|w|−|v|)/2‖Pwψ‖2.

Using Cauchy–Schwarz and Pw = Pwχv (remark 5.3) in this last quantity, we see
that ∑

v∈T L−1
∗

B2
v 6

∑
v∈T L−1

∗

∑
w∈T L−1

v

k−(|w|−|v|)
∑

w∈T L−1
v

‖Pwχvψ‖2
2.

We can use polar coordinates to estimate the first sum over w. Indeed, note that,
for n > |v|, the number of elements of the sphere {w ∈ T L−1

v : |w| = n} is bounded

by kn−|v|. Thus,
∑

w∈T L−1
v

k−(|w|−|v|) 6
∑L

n=|v| 1 6 L + 1. With the orthogonality
of the Pw and lemma 5.6, we see that∑

v∈T L−1
∗

B2
v 6 (L+ 1)

∑
v∈T L−1

∗

‖χvψ‖2
2 6 (L+ 1)2‖ψ‖2

2.

We insert this bound into (5.13), apply
∑

v∈T L−1
∗
‖Pvϕ‖2

2 = ‖ϕ‖2
2 once more, and

plug the result into (5.11), to see that assuming (5.12) for all ϕ ∈ E , ψ ∈ F , v ∈
T L−1
∗ , w ∈ T L−1

v leads to

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω ϕ, ψ〉| 6 κ.
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This finishes the proof. �

5.2. The epsilon-net argument. The next problem we deal with is the fact that
the ground state of Hω is random. This is reflected in proposition 5.4 as follows.
The supremum is inside the probability, so that ϕ and ψ are adapted to ω. In order
to remove the supremum, we approximate the ball with a finite ε-net and show,
with a union bound, that it suffices to consider only the elements of the net. The
following two lemmas implement a classical ε-net argument.

Lemma 5.8. Let v ∈ T L−1
∗ and B

(L)
v be the unit ball of ImPv = Pv

(
`2(T L)

)
.

Then there exists a finite set Mv ⊆ B
(L)
v so that for any ϕ ∈ B(L)

v there exists some
ϕ̃ ∈Mv so that

‖ϕ− ϕ̃‖2 6 1/8

and furthermore
#Mv 6 32k(L−|v|).

Proof. The existence of an ε-covering of the unit ball of a finite dimensional space
having a cardinality smaller than (4/ε)d, where d is the dimension of the space, is a
well-known fact, which can be established by scaling and volume counting, see for
example [Pis99, formula (4.22)]. It suffices now to remark from the definition (5.1)
that

dim ImPv 6 k(L− |v|)
to establish the result. �

Lemma 5.9. Let a scale L > 1, a constant κ > 0, B(L) the unit ball of `2(T L) and
sets E ,F ⊆ B(L) be given. Further, we fix, for each v ∈ T L−1

∗ , some set Mv given
by lemma 5.8. Then, the following inequality

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

> κΞ(L, v, w)
)

6
∑
i∈N

∑
ϕ̃∈Mv ,ψ̃∈Mw

P
(
|〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉| > 2iκΞ(L, v, w)‖Pvϕ̃‖2‖Pwψ̃‖2

)
holds for all v ∈ T L−1

∗ , w ∈ T L−1
v .

Proof. Fix v ∈ T L−1
∗ , w ∈ T L−1

v . Using the fact that P 2
v = Pv, we see that

〈Ṽ (L)
ω Pvϕ, Pwψ〉 =

〈
Ṽ (L)
ω Pv

Pvϕ

‖Pvϕ‖2

, Pw
Pwψ

‖Pwψ‖2

〉
‖Pvϕ‖2‖Pwψ‖2.

We deduce that

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

6 sup
ϕ∈B(L)

v ,ψ∈B(L)
w

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|.

We remind the reader that 0/0 = 0.
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Let Mv,Mw be the 1
8
-coverings of B

(L)
v , B

(L)
w given by lemma 5.8, respectively.

Suppose that κ′ > 0 and that

(5.14) |〈Ṽ (L)
ω Pvϕ̃, Pwψ̃〉| 6

κ′

2
‖Pvϕ̃‖2‖Pwψ̃‖2

for all ϕ̃ ∈Mv, ψ̃ ∈Mw. Assume furthermore that

(5.15) |〈Ṽ (L)
ω Pvϕ, Pwψ〉| 6 2κ′‖Pvϕ‖2‖Pwψ‖2

for every ϕ ∈ B(L)
v , ψ ∈ B(L)

w . Using the definition ofMv,Mw, we see that for any

ϕ ∈ B(L)
v , ψ ∈ B(L)

w , there exists some ϕ̃ ∈Mv, ψ̃ ∈Mw such that

|〈Ṽ (L)
ω Pvϕ, Pwψ〉| 6 |〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉|+ |〈Ṽ (L)
ω Pv

(
ϕ̃− ϕ), Pwψ̃〉|

+ |〈Ṽ (L)
ω Pvϕ, Pw

(
ψ̃ − ψ)〉|

6 κ′/2 + 2κ′‖Pv
(
ϕ̃− ϕ)‖2 + 2κ′‖Pw(ψ̃ − ψ)‖2

6 κ′/2 + κ′/4 + κ′/4 = κ′.

We deduce that if |〈Ṽ (L)
ω Pvϕ, Pwψ〉| > κ′ then we cannot have both (5.14) and (5.15).

We use this below with κ′, 2κ′, 4κ′, . . . . Thus,

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

> κ′
)
6 P

(
sup

ϕ∈B(L)
v ,ψ∈B(L)

w

|〈Ṽ (L)
ω Pvϕ, Pwψ〉| > κ′

)
6

∑
ϕ̃∈Mv ,ψ∈Mw

P
(
|〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉| > κ′‖Pvϕ̃‖2‖Pwψ̃‖2

)
+ P

(
sup

ϕ∈B(L)
v ,ψ∈B(L)

w

|〈Ṽ (L)
ω Pvϕ, Pwψ〉| > 2κ′

)
6

∞∑
i=1

∑
ϕ̃∈Mv ,ψ̃∈Mw

P
(
|〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉| > 2iκ′‖Pvϕ̃‖2‖Pwψ̃‖2

)
.

Now we choose κ′ := κΞ(L, v, w), and lemma 5.9 is proved. �

5.3. Concentration inequalities. With the lemmata we have up to now, we
can attack the probability in proposition 5.5, but we will accumulate sums over
v ∈ T L−1

∗ , w ∈ T L−1
v , i > 1, φ̃ ∈ Mv and ψ̃ ∈ Mw. The probabilities we sum

over in the end should be very small in order to get a meaningful upper bound.
We estimate these probabilities in proposition 5.10, which is the main probability
estimate.

We remind the reader that Ξ(L, v, w) was defined in (5.10) just before lemma 5.7,

and that Ṽ
(L)
ω = (Π

(L)

E
(L)
β

)∗V
(L)

ω Π
(L)

E
(L)
β

. We further recall that V
(L)

ω is the centered

potential, see (5.5), and that the random variables ωv are bounded almost surely,

so |V (L)

ω | 6 ω̃+ := ‖ω0 − ω̄‖∞ almost surely.
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Proposition 5.10. Let L ∈ N, β ∈ (0, L], v ∈ T L−1
∗ , w ∈ T L−1

v , δ ∈ (0, 1), and

ϕ̃ ∈Mv, ψ̃ ∈Mw. Then

|〈Ṽ (L)
ω Pvϕ̃, Pwψ̃〉| > κΞ(L, v, w)

∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥

2

∥∥PwΠ
(L)

E
(L)
β

ψ̃
∥∥

2

holds true with probability smaller than

2 exp
(
−Ck,ω̃+,βκ

2kδL
)
.

Here,
Ck,ω̃+,β := (64ω̃2

+k
6(β + 1)4)−1 > 0.

To prove proposition 5.10 we will need the following two lemmata, the proofs
of which are just below the proof of proposition 5.10. The first one is just an
application of a well-known subgaussian estimate.

Lemma 5.11. For all L > 1, κ > 0 and any ϕ, ψ ∈ `2(TL), we have

P
(
|〈V (L)

ω ϕ, ψ〉| > κ
)
6 2 exp

(
− κ2

2ω̃2
+‖ϕ‖2

4‖ψ‖2
4

)
.

After applying lemma 5.11, we will be interested in certain `4-norms. The
following estimate is taylored to our needs.

Lemma 5.12. For all L ∈ N, β ∈ (0, L], v ∈ T L−1
∗ , x ∈ T L−1

v satisfying |x| > |v|,
and ϕ ∈ `2(T L),∥∥χxPvΠ(L)

E
(L)
β

ϕ
∥∥4

4
6

8k6(β + 1)4

(L+ 1)2
k−2(|x|−|v|)∥∥PvΠ(L)

E
(L)
β

ϕ
∥∥4

2

holds true.

We now prove proposition 5.10.

Proof of proposition 5.10. First, recall (5.3). This allows us to write

PwṼ
(L)
ω Pv = Pw(Π̃

(L)

E
(L)
β

)∗V
(L)

ω Π̃
(L)

E
(L)
β

Pv

= Π
(L)

E
(L)
β

PwT|w|,δV
(L)

ω T|v|,δPvΠ
(L)

E
(L)
β

,

since the operators T|•|,δ, P•, and χ• are self-adjoint. Furthermore, note that
T|w|,δ = T 2

|w|,δ and recall from remark 5.3 that Pw = Pwχw. The diagonal operators

T|w|,δ, χw and V
(L)

ω commute, so

PwṼ
(L)
ω Pv = Π

(L)

E
(L)
β

PwT|w|,δV
(L)

ω χwT|w|,δT|v|,δPvΠ
(L)

E
(L)
β

.

Finally, compute T|w|,δT|v|,δ = T|w|,δ. This leads us to study the quantity

X(x, v, w) := 〈Ṽ (L)
ω Pvϕ̃, Pwψ̃〉

= 〈V (L)

ω χwT|w|,δPvΠ
(L)

E
(L)
β

ϕ̃, T|w|,δPwΠ
(L)

E
(L)
β

ψ̃〉,



56 FRANCISCO HOECKER-ESCUTI AND CHRISTOPH SCHUMACHER

which is a sum of independent, bounded random variables. Note that the number
of nodes in {x ∈ T L−1

w : |x| = |w| + dδLe} is smaller than or equal to kdδLe. Use
this and lemma 5.12 to calculate∥∥T|w|,δPwΠ

(L)

E
(L)
β

ψ̃
∥∥4

4
=

∑
x∈T L−1

w
|x|=|w|+dδLe

∥∥χxPwΠ
(L)

E
(L)
β

ψ̃
∥∥4

4
6 kdδLe max

x∈T L−1
w
|x|=l

∥∥χxPwΠ
(L)

E
(L)
β

ψ̃
∥∥4

4

6 8k6 (β + 1)4

(L+ 1)2
k−dδLe

∥∥PwΠ
(L)

E
(L)
β

ψ̃
∥∥4

2

and ∥∥χwT|w|,δPvΠ(L)

E
(L)
β

ϕ̃
∥∥4

4
=

∑
x∈T L−1

w
|x|=|w|+dδLe

∥∥χxPvΠ(L)

E
(L)
β

ϕ̃
∥∥4

4
6 kdδLe max

x∈T L−1
w
|x|=l

∥∥χxPvϕ̃∥∥4

4

6 8k6 (β + 1)4

(L+ 1)2
k−2|w|−dδLe+2|v|∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥4

2
.

With these estimations, lemma 5.11, tells us that, if κ′ > 0,

log
(
P
(
|X(x, v, w)| > κ′

)
/2
)
6 − κ′2

2ω̃2
+

∥∥χxPvΠ(L)

E
(L)
β

ϕ̃
∥∥2

4

∥∥χxPwΠ
(L)

E
(L)
β

ψ̃
∥∥2

4

6 − κ′2(L+ 1)2k|w|−|v|+dδLe

16ω̃2
+k

6(β + 1)4
∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥2

2

∥∥PwΠ
(L)

E
(L)
β

ψ̃
∥∥2

2

.

We plug in

κ′ = κΞ(L, v, w)
∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥

2

∥∥PwΠ
(L)

E
(L)
β

ψ̃
∥∥

2

and get

log
(1

2
P
(
|X(l, v, w)| > κΞ(L, v, w)

∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥

2

∥∥PwΠ
(L)

E
(L)
β

ψ̃
∥∥

2

))
6 − κ2kdδLe

64ω̃2
+k

6(β + 1)4
.

This finishes the proof. �

Proof of lemma 5.11. Fix ϕ, ψ ∈ `2(T L). The expression

〈V (L)

ω ϕ, ψ〉 =
∑
v∈T L

(ωv − ω̄)ϕ(v)ψ(v)

is a sum of #T L independent random variables, namely {(ωv − ω̄)ϕ(v)ψ(v)}v∈T L ,
all of them having mean zero. For every v ∈ T L, we have almost surely

|(ωv − ω̄)ϕ(v)ψ(v)| 6 ω̃+|ϕ(v)ψ(v)|.
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To bound the probability in question, we use Hoeffding’s inequality ([Hoe63]) and
Cauchy–Schwarz:

P
(
|〈(V (L)

ω − ω̄)ϕ, ψ〉| > κ
)
6 2 exp

( −2κ2∑
v∈T L(2ω̃+|ϕ(v)||ψ(v)|)2

)
6 2 exp

( −κ2

2ω̃2
+‖ϕ‖2

4‖ψ‖2
4

)
. �

Proof of lemma 5.12. Let ϕ ∈ `2(T L). To simplify notation, we assume ϕ ∈
PvΠ

(L)

E
(L)
β

`2(T L). For any L-admissible (v, j,m), let αv,j,m be defined by

ϕ =

bβ+1c∑
m=1

∑
j∈Jv

αv,j,mΨL
v,j,m,

and thus
∑

j,m|αv,j,m|2 = ‖ϕ‖2
2.

Using Cauchy–Schwarz,

‖χxϕ‖4
4 =

∑
w∈T Lx

∣∣∣bβ+1c∑
m=1

∑
j∈Jv

αv,j,mΨL
v,j,m(w)

∣∣∣4

6

(bβ+1c∑
m=1

∑
j∈Jv
|αv,j,m|2

)2 ∑
w∈T Lx

(bβ+1c∑
m=1

∑
j∈Jv

∣∣ΨL
v,j,m(w)

∣∣2)2

= ‖ϕ‖4
2

∑
w∈T Lx

(bβ+1c∑
m=1

∑
j∈Jv

∣∣∣ ∑
u∈T Lv ,u∼v

ψ⊥v,j(u)ψL−|v|u,m (w)
∣∣∣2)2

.

Again with Cauchy–Schwarz and then with the definition (3.1) of ψ
L−|v|
u,m we see∑

j∈Jv

∣∣∣ ∑
u∈T Lv ,u∼v

ψ⊥v,j(u)ψL−|v|u,m (w)
∣∣∣2 6∑

j∈Jv

∑
u∈T Lv ,u∼v

|ψ⊥v,j(u)|2
∑

u∈T Lv ,u∼v
|ψL−|v|u,m (w)|2

6
2k2

(L+ |v| − 1)k|w|−|v|−1
.

We use all this in the estimate above and derive

‖χxϕ‖4
4 6

4k4

(L+ |v| − 1)2
‖ϕ‖4

2

∑
w∈T Lx

(bβ+1c∑
m=1

k−(|w|−|v|−1)

)2

6
4k4bβ + 1c2

(L+ |v| − 1)2
‖ϕ‖4

2

∑
w∈T Lx

k−2(|w|−|v|−1)
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The remaining sum can be treated with radial coordinates:

∑
w∈T Lx

k−2(|w|−|v|−1) 6
L∑

l=|x|
kl−|x|k−2(l−|v|−1) = k−|x|−2|v|+2

L∑
l=|x|

k−l

6 k−|x|−2|v|+2 k−|x|

1− k−1
=

k3

k − 1
k−2(|x|−|v|).

Since k > 2, we can beautify k3/(k − 1) 6 2k2 and get

‖χxϕ‖4
4 6

8k6bβ + 1c2
(L+ |v| − 1)2

‖ϕ‖4
2k
−2(|x|−|v|).

Because of (5.4), we can assume |v| 6 (1 − 1
β+1

)(L + 1). This is equivalent to
1

L+1−|v| 6
β+1
L+1

, and the claim follows. �

We finally are in position to finish the proof of the key probability estimate.

Proof of proposition 5.5. We need to bound

p := P
(

sup
‖ϕ‖261

∣∣〈Ṽ (L)
ω ϕ, ϕ〉

∣∣ > ω̄

16

)
6 P

(
sup
‖ϕ‖261

∣∣〈Ṽ (L)
ω ϕ, ϕ〉

∣∣ > ω̄

32

)
from above. Let us define

E := F :=
{
ϕ ∈ Π

(L)

E
(L)
β

(
`2(T L)

)
: ‖ϕ‖2 6 1

}
.

By definition of Ṽ
(L)
ω , see proposition 5.4, and by (5.3), we have

sup
‖ϕ‖261

∣∣〈Ṽ (L)
ω ϕ, ϕ〉

∣∣ 6 sup
ϕ∈E

sup
ψ∈F

∣∣〈Ṽ (L)
ω ϕ, ψ〉

∣∣.
Using this, we can estimate with the help of lemma 5.7 and see

(5.16) p 6
∑

v∈T L−1
∗

∑
w∈T L−1

v

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

>
ω̄

32
Ξ(L, v, w)

)
.

The terms in the sum (5.16) can be bounded using lemma 5.9,

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

>
ω̄

32
Ξ(L, v, w)

)
6
∑
i∈N

∑
ϕ̃∈Mv ,ψ̃∈Mw

P
(
|〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉| > 2i
ω̄

32
Ξ(L, v, w)‖Pvϕ̃‖2‖Pwψ̃‖2

)
,(5.17)
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where, for v ∈ T L, Mv ⊆ `2(T Lv ) with #Mv 6 32kL, see lemma 5.8. Using

‖Pvϕ̃‖2 >
∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥

2
, valid for all ϕ̃ ∈ `2(T L), proposition 5.10 tells us that

P
(
|〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉| > 2i
ω̄

32
Ξ(L, v, w)‖Pvϕ̃‖2‖Pwψ̃‖2

)
6 P

(
|〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉| > 2i
ω̄

32
Ξ(L, v, w)

∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥

2

∥∥PwΠ
(L)

E
(L)
β

ψ̃
∥∥

2

)
6 2 exp

(
−Cκ,ω̃+,β22i ω̄

2

1024
kδL
)

.

Plugging back into (5.17) and using #Mv 6 32kL,

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

>
ω̄

16
Ξ(L, v, w)

)
6
∑
i∈N

∑
ϕ̃∈Mv ,ψ̃∈Mw

2 exp
(
−Cκ,ω̃+,β

ω̄2

1024
22ikδL

)
6 2 · 322kL

∑
i∈N

exp
(
−Cκ,ω̃+,β22i ω̄

2

1024
kδL
)

.

The remaining sum can be bounded with a geometric series, since for all x > log 2,
we have ∑

i∈N
exp(−x22i) 6

∞∑
i=1

(e−x)
i

=
e−x

1− e−x
6 2e−x.

Finally, put this back into (5.16), to get, for all L ∈ N large enough,

p 6
∑

v∈T L−1
∗

∑
w∈T L−1

v

4 · 322kL exp
(
−Cκ,ω̃+,β

ω̄2

1024
kδL
)

6 4k2L322kL exp
(
−Cκ,ω̃+,β

ω̄2

1024
kδL
)

.

Taking L large enough, we get

p 6 exp
(
−Cκ,ω̃+,β

ω̄2

2024
kδL
)

.

The end. �
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