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Abstract. The spectrum of random ergodic Schrödinger-type op-
erators is almost surely a deterministic subset of the real line. As
soon as the disorder is switched on via a global coupling constant,
the spectrum expands. We estimate how much the spectrum ex-
pands at its bottom in a discrete setting.
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1. Introduction

Due to the self-averaging property of ergodic Schrödinger operators
the resulting spectrum is almost surely a fixed subset of the real line.
If a random operator is a perturbation of a periodic operator, it is of
interest to know how the spectrum expands once we switch on the dis-
order via a global coupling constant. Apart from the genuine interest to
identify the location of the spectrum, this is also of central importance
when identifying energy regions where the spectrum is localised. Oth-
erwise it may happen that one proves a Wegner estimate, a Lifschits
tail bound or a similar statement related to localisation, and then later
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discovers that the considered energy regime belongs to the resolvent
set.

In this paper we consider an ε-small random perturbation of a dis-
crete translation-invariant operator and we study how the bottom of
its spectrum behaves. By symmetry, similar estimates apply to the lo-
cation of the maximum of the spectrum, in a weak disorder regime. To
fix the ideas, let us introduce a prototypical example. Let H = `2(Zd)
and ∆Zd : H → H the (negative definite) discrete Laplacian on Zd, i.e.

(∆Zdu) (n) :=
∑

|n−m|∞=1

(u(m)− u(n)) .

We define the operator H0 : H → H by

H0 := −∆Zd +W,

where W is the operator multiplication by a real-valued function, which
we also write W and which we assume periodic with respect to the
subgroup γ := NZd.

Let � := [0, N − 1]d ⊂ Zd and V � ∈ `∞(Zd) be a non-trivial, com-
pactly supported single-site potential satisfying

supp(V �) ⊂ �.

Let (ωk)k∈γ be a sequence of non-trivial, bounded, independent, iden-
tically distributed random variables. For the sake of the introduction,
assume that {−1, 1} ∈ suppω0 ⊂ [−1, 1]. From now on we denote by
Vω : `2(Zd)→ `2(Zd) the diagonal operator defined, for f ∈ `2(Zd), as

(Vωf)(x) =
∑
k∈NZd

ωkV
�(x− k)f(x).

To motivate our results, let us consider the following discrete, alloy-
type random Schrödinger operator defined by

Hω,ε := H0 + εVω.(1)

Under the stated assumptions, this operator is ergodic, and thus there
exists a set Σε ⊂ R such that

σ(Hω,ε) = Σε

with probability 1 (see e.g. [18]). From now on we refer to Σε as the
almost-sure spectrum of Hω,ε. The best known example of this kind of
operators is the celebrated Anderson model, where H0 is the discrete
Laplacian on Zd (i.e. W ≡ 0), V � = δ0 and N = 1. In this case, it is
not hard to see ([18]) that the bottom of the spectrum of the perturbed
operator Eε := inf (Σε) moves away from the bottom of the spectrum
of the free operator E0 := inf (Σ0) as

Eε = E0 − ε.



EXPANSION OF THE ALMOST SURE SPECTRUM 3

If one considers instead, for example, the dipole model, i.e. V � =
δ0 − δe1 , it is proven in [4] that

Eε 6 E0 − Cε2.
In this note we study this question for a very general, wide class of
operators (see assumptions in section 2). More precisely, we prove
some upper bounds of the quantity Eε − E0, which in turns gives us
information on the location of the spectrum of the perturbed operator.
We also discuss some partial results on the lower bound.

In order to state the result in this setting, we need to consider
the operator H0 with NZd-periodic boundary conditions. Because
of the translation invariance, the subspace of NZd-periodic functions
in `∞(Zd) is invariant under the action of H0. This subspace is Nd-
dimensional, so that the action of the operator corresponds to a matrix
we denote by

(2) H�0 : `2(�)→ `2(�).

We now state the result.

Theorem 1.1. Let Hω,ε be the alloy-type random Schrödinger opera-
tor defined by (1) and Eε the bottom of its corresponding almost-sure
spectrum. To the NZd-periodic operator H0 we associate a Hermitian
matrix H�0 ∈ CN

d×Nd
, defined as in (2), and we let ψ1 ∈ `2(�) be the

positive ground state of H�0 . Define

A1 := −
〈
ψ1, V

�ψ1

〉
`2(�)

.

There exists A2 6 0 such that for ε > 0 small enough

Eε 6 E0 + εA1 + ε2A2.

Furthermore, if A1 = 0 then |A2| is non-zero and larger than the spec-
tral gap of H�0 , i.e. the difference between its two smallest eigenvalues.

We provide an explicit formula for the constant A2 in the next section
as it requires the introduction of many additional notations.

We have an analogous estimate for (fibers of) periodic operators,
see Theorems 5.1 and 5.8. In fact, the estimate for periodic operators
is one step in the proof of Theorem 1.1. In the context of periodic
operators we have a related, complementary lower bound, see Lemmas
5.7 and 5.9.

We would like to make some remarks on the relevance of this result.
First, the location of the bottom of the spectrum with respect to the
coupling constant has been the subject of several papers : with periodic
potentials in dimension one [21] and in arbitrary dimension [12], [6],
as well as with random positive potentials [13] and under some generic
assumptions on W [15]. Understanding the spectrum provides valuable
information on the solutions of partial differential equations. In par-
ticular, if one considers the Schrödinger equation for the Hamiltonian
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Hω,ε, the spectral type of the Anderson model characterizes the trans-
port properties of the underlying disordered medium. For this model,
the spectrum is expected to exhibit a transition from localized states
at the bottom of the spectrum (pure point spectrum with exponen-
tially localized eigenfunctions) to extended states (absolutely continu-
ous spectrum) in the bulk of the spectrum. This Anderson transition
is still a conjecture in the setting of this article. The existence of lo-
calized states at the bottom of the spectrum has been studied in many
papers. We invite the reader to consult the monographs [5], [18], [20],
[9] and their extensive bibliography. The perturbative regime ε � 1
has attracted much attention [1], [22], [14], [15], [7], [4], [10], [8], [2],
[3]. In this regime one can prove very precise estimates of the interval
of localization, namely that states with energies in

Iη(ε) := (−∞,−C0ε
η] ∩ Σε = (−∞,−C0ε

η] ∩ [Eε,+∞)

are localized. In [7] it was proved that in dimension d = 3 one may
take η to be as large as 2. This result is meaningful, as for the An-
derson model Eε = −C1ε. If we now consider different potentials, we
may have a quadratic expansion of the bottom of the spectrum Eε,
and understanding where the bottom of the spectrum lies appears to
be crucial, so that the interval of localization is non-trivial. Some of
the issues addressed in this note were already explored in [15] where
it is assumed that the single-site potential has a non-zero mean and
the Floquet eigenvalues of the underlying periodic potential W are as-
sumed to be non-degenerated, as well as in [4] for the dipole potential.
These are special cases of our models. The general operator we study
corresponds roughly to tridiagonal block matrices of the form
(3)

. . . . . . . . .

B∗ A B 0
. . .

0 B∗ A B 0
. . . 0 B∗ A B

. . . . . . . . .


+



. . . . . . . . .

0 ωn−1V
� 0

. . .
. . . 0 ωnV

� 0
. . .

. . . 0 ωn+1V
� 0

. . . . . . . . .


,

where A and V � are Hermitian and {ωn} i.i.d. random variables. We
introduce in section 2 the general framework in which our results are
obtained.

To finish the introduction, let us briefly address the question of the
optimality of the lower bound (or at least its exponent). As far as the
authors know, there is no result in the literature in this direction in
a discrete setting (apart from the Anderson model, where the bottom
of the spectrum is known explicitly). One may naively expect, from
perturbation theory, that the behavior should be linear or quadratic.
The question turns out to be more subtle as the behavior may depend
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on the speed at which the Floquet eigenvalues associated to the bottom
of the spectrum approach their minimum, as the following example
shows.

Theorem 1.2. Let H0 := (−∆Z)2 defined on `2(Z) and V � the multi-
plication operator given by the following single-site potential:

V �(n) := −1

2
δ−1(n1) + δ0(n1)− 1

2
δ1(n1).

Pick some ξ > 1/4. Then for ε > 0 small enough we have

Eε := inf σ(H0 + εVω) 6 −1

6
ε1+2ξ.(4)

For this example (which is of the form (3)), the coefficient A1 cor-
responding to the linear term vanishes. The bound in Theorem 1.2 is
nevertheless better than quadratic thanks to the quartic behavior of
the Floquet eigenvalues in a neighbourhood of their minimum. We be-
lieve that in the situation of Theorem 1.1, the infimum of the spectrum
should expand linearly or quadratically, due to the quadratic behavior
of the Floquet eigenvalues at the bottom of the spectrum. Unfortu-
nately, apart from the trivial linear bound, we have no corresponding
lower bound, although some results in this article provide a first step
in this direction.

This work can be extended in several directions. It would be very in-
teresting to find the corresponding lower bounds, or at least conditions
under which the infimum of the spectrum does not expand linearly. A
related question concerns the expansion of the spectrum near a band
edge, where one can also prove Anderson localisation. Note that if
one studies the expansion of the spectrum from a band edge instead of
the bottom of the spectrum, the Floquet eigenvalues may vanish faster
than quadratically when approaching the edge, even for the operator
defined by (1). Rather than a pathological example, Theorem 1.2 pro-
vides a model for this situation. A last question of interest is the study
of overlapping single-site potentials. Under some non-degeneracy con-
dition (see Remark 4.5) the results stated here can be extended to this
situation, but a full understanding needs to consider periodic approx-
imations of every order, something we also believe necessary to prove
the corresponding lower bounds.

In a forthcoming project we consider the same questions for oper-
ators of Schrödinger type in the continuum setting, i.e. for operators
acting on (dense subspaces) of L2(Rd). Most of our findings are sim-
ilar. In the continuum, it is more natural to define the operators via
quadratic forms, and then formulate appropriate regularity conditions.
Also, certain additional compactness arguments are necessary, due to
the infinite dimensionality of the Hilbert space liperiodicity cell of the
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. On the other hand, in specific situations, better results are possi-
ble in the continuum setting, due to unique continuation principles for
solutions of partial differential equations.

2. General model

Let d > 1 be the space dimension, D = Zd be the physical space and
γ = NZd a sub-lattice of D. We denote by � its periodicity cell, i.e.
� := [0, N − 1]d ∩ Zd. Note that D =

⋃
k∈γ
{x ∈ D : x − k ∈ �}. We

also denote the reciprocal periodicity cell as �∗ := [0, 2π
N

)d. From now
on we assume the following hypotheses to hold.

(HA) Let H0 : `2(D)→ `2(D) be a bounded, non-negative symmetric
operator defined by the matrix

H0 := (H0(k, k′))k,k′∈D ,

satisfying the following properties:
• for all k, k′ ∈ D, we have H0(k, k′) = H0(k, k′);
• there exists k0 6= 0 such that H0(0, k0) 6= 0;
• the associated operator is γ-invariant, i.e. for every k ∈ γ

〈τku,H0τkv〉 = 〈u,H0v〉 ,

where u, v ∈ `2(D) and τk is the translation by k ∈ γ
operator; and
• the associated operator is of finite hopping range with hop-

ping range N , i.e. if |k − k′| > N then

H0(k, k′) = 0.

• Through a global energy shift we may assume, with no loss
of generality, that E0 := inf σ(H0) = 0.

Note that if an operator is of finite hopping range with hopping
range R, for some R > 0, then it also is of finite hopping range
with hopping range R′ for any R′ > R. On the other hand, any
γ-invariant operator is also nγ-invariant, n ∈ N. This means
that we can always assume that R = N , without loss of gener-
ality.

(HB) Let V � : � → R be a non-trivial Hermitian matrix (we call
it the single-cell potential, even when V � is not diagonal). For
any bounded sequence (ωk)k∈γ of real numbers, we define the
block diagonal operator

Vω : `2(D)→ `2(D)

Vω :=
∑
k∈γ

ωkτ−kV
�τk.
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For any real number q ∈ R, we denote also by q the constant sequence
indexed by γ, equal to q on every site. We thus have, for example,
that

(5) Vq := q
∑
k∈γ

τ−kV
�τk

and Vq is γ-invariant.
From now on, the values of ω will be drawn from a sequence of

bounded, non-trivial, independent and identically distributed random
variables with distribution measure µ. We will write Sµ := suppµ and
we assume that

{s−, s+} ∈ Sµ ⊂ [s−, s+],

where s− and s+ satisfy one of the following alternatives:

(HC) The random variables change sign, i.e. s− < 0 < s+.
(HC’) The random variables are positive, i.e. 0 6 s− < s+.

The methods in this paper may also be adapted to negative random
variables.

Remark 2.1. It looks tempting to renormalize the random variables by
adding and substracting some periodic potential, but in this case the
underlying non-random operator depends on ε. On the other hand,
it is indeed allowed to rescale the random variables by absorbing the
scaling factor in the single site potential V �.

Let us now define our object of study. For each ε > 0, we let

Hω,ε := H0 + εVω

which is a self-adjoint, ergodic operator. We denote its almost-sure
spectrum by Σε and by

(6) Eε := inf Σε

the bottom of the spectrum. We also write Hq,ε := H0 + εVq the
corresponding operator with Vω replaced by the periodic potential Vq
(defined as in (5)) and Eq,ε := inf σ(Hq,ε). In the following we will
study the bottom of the spectrum Eε of the random operator for small
ε.

We define a finite dimensional matrix associated to the above objects.
Define the (|�| × |�|)-matrix H�0 (θ) by its coefficients(

H�0 (θ)
)

(k, k′) :=
∑
m∈γ

eiθ·mH0(k, k′ −m)(7)

=
∑
|m|6N
m∈NZd

eiθ·mH0(k, k′ −m),
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where k, k′ ∈ �. Note that the second line is a consequence of the finite
hopping range and the sum in (7) is thus finite. Now define the matrix
H�q,ε(θ) by

H�q,ε(θ) := H�0 (θ) + εqV �.

Remark 2.2. The matrixH�q,ε represents the action ofHq,ε on the fiber of
θ-quasiperiodic functions in the Floquet–Bloch direct integral decom-
position. More precisely, let (abusing notation) ϕ ∈ `2(�) ⊂ `2(Zd).
Then, regarding Hq,ε as an operator `∞(Zd)→ `∞(Zd),

(8) H�ε,q(θ)ϕ = χ�Hε,q

∑
m∈γ

eiθ·mτmϕ ∈ `2(�), (abusing notation)

where χ� is the indicator function of � ⊂ Zd.

3. Main results

Recall that, by the continuity of the Floquet–Bloch eigenvalues ([16],
[19]), there exists some θ such that

E0 := inf σ(H0) = inf σ(H�0 (θ)) = 0.

We denote by Θ ⊂ �∗ the compact set of θ for which the last equality
holds. From now on we fix some θ ∈ Θ, so the quantities below will
depend on θ. Let V0 be the eigenspace of H0(θ) associated to the
eigenvalue E0 = 0, p its multiplicity and choose an orthonormal basis
ψj, j = 1, . . . , p spanning V0 and diagonalizing the Hermitian matrix
A ∈ Cp×p, given by the coefficients

Aij :=
〈
ψi, V

�ψj
〉
.

We take the eigenvalues of matrix A in the ascending order counting
multiplicities so that P1 := A11 =

〈
ψ1, V

�ψ1

〉
is the minimal eigenvalue

and Pp := App =
〈
ψp, V

�ψp
〉

is the maximal eigenvalue of A.
Our result for sign-changing random variables read as follows.

Theorem 3.1. Assume (HA), (HB) and (HC). Fix θ ∈ Θ and define

(9) A1 := inf
q∈Sµ

inf
ψ∈V0

‖ψ‖`2(�)=1

q
〈
ψ, V �ψ

〉
= min(s+P1, s−Pp) 6 0,

and

(10) A2 := −max(s2
−, s

2
+) sup

ψ∈V0
‖ψ‖`2(�)=1

sup
ϕ∈V⊥

0
‖ϕ‖`2(�)=1

∣∣〈ψ, V �ϕ〉∣∣2
〈H�0 (θ)ϕ, ϕ〉

6 0.

For any ε > 0 small enough the following holds: if A1 6= 0,

Eε 6 εA1,
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whereas if A1 = 0, then

Eε 6 ε2A2 +O(ε3).

Finally, if A1 = A2 = 0, then

Eε 6 0.

Our result for positive random variables read as follows.

Theorem 3.2. Assume (HA), (HB) and (HC’). Fix θ ∈ Θ. Let us
define the subspace V01 ⊂ V0 as

V01 := span
{i:Pi=P1}

〈ψi〉,

i.e. the eigenspace of A associated to its minimal eigenvalue P1. Define

(11) A′1 := inf
q∈Sµ

inf
ψ∈V01

‖ψ‖`2(�)=1

q
〈
ψ, V �ψ

〉
= min(s+P1, s−P1) ∈ R,

and

(12) A′2 := −s2
+ sup

ψ∈V01
‖ψ‖`2(�)=1

sup
ϕ∈V⊥

0
‖ϕ‖`2(�)=1

∣∣〈ψ, V �ϕ〉∣∣2
〈H�0 (θ)ϕ, ϕ〉

6 0.

For any ε > 0 small enough the following holds: if P1 6= 0,

Eε 6 εA′1,

whereas if P1 = 0, then

Eε 6 ε2A′2 +O(ε3).

Finally, if P1 = A′2 = 0, then

Eε 6 0.

In the following section we will reduce the problem of studying Eε
to that of understand

4. Periodic comparison operators

Define

�n :=
⋃
m∈γ
|m|6nN

�+m

and χn := χ�n , i.e.

χn(x) =

{
1 for x ∈ �n
0 otherwise.

Note that �0 = � and that �n is just the collection of (2n+1)d disjoint
translates of �. Let us start by stating the following lemma.
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Lemma 4.1. Let u be a θ-quasi-γ-periodic function, i.e. such that for
all n ∈ Zd and k ∈ γ we have

u(n+ k) = e−iθ·ku(n).

Define,

un := χnu, n = 0, 1, 2, . . . .

Then

lim
n→∞

〈un, Hq,εun〉`2(D)

‖un‖2
`2(D)

=

〈
u0, H

�
q,ε(θ)u0

〉
`2(�)

‖u0‖2
`2(�)

.

The proof of this lemma is found in the appendix.
Let us now define

Ωn
per := {ω ∈ Ω : ω is periodic w.r.t. nγ}.

We now state the first comparison theorem.

Theorem 4.2. Assume (HA), (HB) and either (HC) or (HC’). Let
ε > 0, n ∈ N and let ω ∈ Ωn

per be a nγ-periodic sequence of real numbers
satisfying ω ∈ (Sµ)γ, i.e. ωk ∈ Sµ for all k ∈ γ. Then, we have

σ(Hω,ε) ⊂ Σε.

We immediately deduce the following upper bound on the minimum
of the spectrum.

Corollary 4.3. Assume (HA), (HB) and either (HC) or (HC’). Let
ε > 0, then

Eε 6 inf
q∈Sµ

Eq,ε.

Proof of Theorem 4.2. For the calculation below, we need a Weyl se-
quence of compactly supported functions. This can indeed be done,
since we only deal with bounded operators. Fix ω ∈ Ωn

per and E ∈
σ(Hω,ε). By Floquet–Bloch theory, there exists some θ and some nor-
malized state f ∈ `2(�) for which

E =
〈
H�q,ε(θ)f, f

〉
.

We extend f as a θ-quasi-γ-periodic function, i.e. for any x ∈ Zd let
k ∈ γ such that x− k ∈ � and let

f(x) := eiθ·kf(x− k).

Using Lemma 4.1, extract a sub-sequence {fn} from the sequence of

functions

{
χnf

‖χnf‖2

}
, such that

|〈(Hω,ε − E)fn, fn〉| 6 1/n

and satisfying, for a sequence ln ∈ N,

supp fn ⊂ Λln ,
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where Λln is a cube centered at zero and sidelength ln. For x ∈ γ we
define

Ω(x, n) := {ω′ ∈ Ω : ∀k ∈ (x+ Λln) ∩ γ : |ε(ω′k − ωk)| 6 1/n} .

Now, since ω ∈ (Sµ)γ,

P [Ω(x, n)] > 0,

and for x, y ∈ γ satisfying |x− y| > ln, the events Ω(x, n) and Ω(y, n)
are independent (and identically distributed). Using Borel–Cantelli
lemma, we see that the event

Ω′ :=
⋂
n∈N

⋃
x∈γ

Ω(x, n)

has probability one.
From the definition of Ω(x, n), we have that given ω′ ∈ Ω′ and n ∈ N,

there exists a x(n, ω′) such that ω′ ∈ Ω(x, n). We write from now on
τx(n,ω′)fn for the translated function fn(· − x(n, ω′)). Let ω′ ∈ Ω′ and
n ∈ N, and calculate〈

(Hω′,ε − E)τx(n,ω′)fn, τx(n,ω′)fn
〉

=
〈
(H0 − E)τx(n,ω′)fn, τx(n,ω′)fn

〉
+ ε
〈
Vω′τx(n,ω′)fn, τx(n,ω′)fn

〉
= 〈(H0 − E)fn, fn〉+ ε

〈
Vωτx(n,ω′)fn, τx(n,ω′)fn

〉
+ ε
〈
Vω′−ωτx(n,ω′)fn, τx(n,ω′)fn

〉
= 〈(Hω,ε − E)fn, fn〉+ ε

〈
Vω′−ωτx(n,ω′)fn, τx(n,ω′)fn

〉
Note that |εVω′−ω(x)| 6 ‖V �‖∞/n if x ∈ supp fn(· − x(n, ω′)), so that∣∣〈(Hω′,ε − E)τx(n,ω′)fn, τx(n,ω′)fn

〉
− 〈(Hω,ε − E)fn, fn〉

∣∣ 6 1

n
‖V �‖∞.

In particular, we see that τx(n,ω′)fn is a Weyl sequence. �

Remark 4.4. This is an adaptation of a well known argument of Kirsch
and Martinelli [11] in the continuous setting, with Sµ connected and
V � a multiplication operator.

Remark 4.5. When the random potential is diagonal (as in the intro-
duction), the proof above can be adapted to overlapping, but compactly
supported single-site potentials V � ∈ `∞(D) as long as∑

n∈γ

V �(· − n) 6≡ 0.

Note that if this condition does not hold then Hq = H0 for all q. One
way around this problem would be to consider periodic (non-constant)
sequences of coupling constants ωn such that the resulting periodic
potential is not zero.
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We prove the following converse to Theorem 4.2. We define

Ωper := {ω ∈ Ω : ∃n ∈ N such that ω is periodic w.r.t. nγ} =
⋃
n∈N

Ωn
per.

Lemma 4.6. Denote by Σε the almost sure spectrum of Hω,ε. Then:

Σε ⊂
⋃

ω∈Ωper

σ(Hω,ε).

Proof. Let n ∈ N and set

ω
(n)
k = ωk for f ∈ �N
ω

(n)
k = ωj if j − k ∈ Nγ.

Let C0(Zd) be the set of compactly supported functions in `2(Zd).
Choose any ϕ ∈ C0(Zd). Then

lim
n→∞

‖Hω,εϕ−Hω(n),εϕ‖ = 0,

i.e. we have strong convergence Hω(n) → Hω. Since the operators Hω

are bounded, the set C0 is an operator core for Hω. This implies that
we have strong convergence on the whole `2(Zd).

By the resolvent equation, for any E ∈ R�Σ,

(Hω,ε − E)−1 − (Hω(n),ε − E)−1

=(Hω,ε − E)−1(Vω − Vω(n))(Hω(n),ε − E)−1

=(Hω(n),ε − E)−1(Vω − Vω(n))(Hω,ε − E)−1,

which converges strongly to 0. We know that if E ∈ R�Σ, then
(Hω,ε − E)−1ϕ ∈ `2(D) for any ϕ ∈ `2(D) and that, using Theorem
4.2, the inclusion σ(Hω,ε(n)) ⊂ Σ holds for any ω in the support of the
product measure

⊗
D

µ. To conclude, we apply Theorem VIII.24 in [19]

which tells us that

σ(Hω,ε) ⊂
⋃
n∈N

σ(Hω(n)).

This finishes the proof. �

In particular we obtain the following corollary.

Corollary 4.7. Let

Ωper := {ω ∈ Ω : ∃N ∈ N such that ω is periodic w.r.t. Nγ}

and denote by Σε the almost sure spectrum of Hω,ε. Then:

inf Σε = inf
⋃

ω∈Ωper

σ(Hω,ε).
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5. Perturbation calculation

For the readers convenience we recall the definition of the constants
A1 and A2, the notation and the statement of the theorems before the
proofs. By the continuity of the Floquet–Bloch eigenvalues there exists
some θ such that

E0 := inf σ(H0) = inf σ(H�0 (θ)) = 0.

We denote by Θ ⊂ �∗ the compact set of θ for which the last equality
holds. From now on we fix some θ ∈ Θ, so the quantities below will
depend on θ. Let V0 be the eigenspace of H0(θ) associated to the
eigenvalue E0 = 0, p its multiplicity and choose an orthonormal basis
ψj, j = 1, . . . , p spanning V0 and diagonalizing the Hermitian matrix
A ∈ Cp×p, given by the coefficients

Aij :=
〈
ψi, V

�ψj
〉
.

We take the eigenvalues of the matrix A in the ascending order counting
multiplicities so that P1 := A11 =

〈
ψ1, V

�ψ1

〉
is the minimal eigenvalue

and Pp := App =
〈
ψp, V

�ψp
〉

is the maximal eigenvalue of A.

5.1. Sign-changing random variables. In this subsection we as-
sume (HC) to hold. We will only treat this case in detail as the calcu-
lation for positive random variables is very similar. Recall from (HC)
that s− < 0 < s+. We define the following quantities :

(13) A1 := inf
q∈Sµ

inf
ψ∈V0

‖ψ‖`2(�)=1

q
〈
ψ, V �ψ

〉
= min(s+P1, s−Pp) 6 0,

and

(14) A2 := −max(s2
−, s

2
+) sup

ψ∈V0
‖ψ‖`2(�)=1

sup
ϕ∈V⊥

0
‖ϕ‖`2(�)=1

∣∣〈ψ, V �ϕ〉∣∣2
〈H�0 (θ)ϕ, ϕ〉

6 0.

We will prove the following theorem, which is only a restatement of
Theorem 3.1.

Theorem 5.1. Assume (HA), (HB) and (HC). Fix θ ∈ Θ. Then, if
A1 6= 0,

Eε 6 εA1,

whereas if A1 = 0, then

Eε 6 ε2A2 +O(ε3).

Finally, if A1 = A2 = 0, then

Eε 6 0.

Remark 5.2.
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• We remind that we have fixed θ to simplify notations, but A1

and A2 depend on θ. The best bound for the behavior of the
bottom of the spectrum is obtained by looking at each θ ∈ Θ
and taking the minimum.
• We see that our bound on the bottom of the spectrum behaves

linearly, quadratically or it doesn’t move with ε. In the contin-
uous analogous setting, if the unique continuation principle is
not violated, then the analogous result does not allow the third
case A1 = A2 = 0. This yields only a linear or quadratic bound.
• The definition of the quantities A1, A2 may seem complicated at

first sight, but these choices are optimal, in the sense of Lemma
5.7 below, which is a converse of Lemma 5.6 in the regime ε� 1.

Before proving the theorem, let us provide a much simpler, non-
optimal upper bound for A2 as well as a condition ensuring that |A1|+
|A2| 6= 0.

5.2. A simple non-degeneracy condition. Theorem 5.1 tells us
that if A2 6= 0, then the expansion of the bottom of the spectrum
is at least quadratically, but if A1 = A2 = 0 we can only say that the
spectrum starts at zero. When V � is diagonal this only happens if the
support of the single-cell potential and the eigenfunctions ψ1, . . . , ψp
are disjoint (the ψi were defined at the beginning of section 5). In a
continuous setting this can only happen if the potential violates the
unique continuation principle. For a discussion on the validity of the
unique continuation principle see for instance [23].

Let us discuss the condition in our general setting. First let us remark
that if A1 = 0, then the matrix A ∈ Cp×p vanishes identically, i.e.

(15) A1 = 0 =⇒ sup
ψ∈V0

‖ψ‖`2(�)=1

∣∣〈ψ, V �ψ〉∣∣ = 0.

Thus, A1 = 0 implies

(∀ψ ∈ V0) V �ψ ∈ V⊥0
because of (15). The operator H�0 is invertible on V⊥0 and thus there
exists thus some ϕ ∈ V⊥0 such that

(16) H�0 (θ)ϕ = V �ψ∗.

Hence, we have that 〈
V �ϕ, ψ∗

〉
=
〈
H�0 (θ)ϕ, ϕ

〉
.

Now, assume there exists some ψ∗ ∈ V0 such that

(17) V �ψ∗ 6= 0.

Then ϕ in (16) does not vanish and

A2 6 −max(s2
−, s

2
+)

∣∣〈V �ϕ, ψ∗〉∣∣2
〈H�0 (θ)ϕ, ϕ〉

= −max(s2
−, s

2
+)
〈
H�0 (θ)ϕ, ϕ

〉
< 0,
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because ϕ 6∈ kerH�0 (θ).

Remark 5.3. Formally, we have

A2 6 −max(s2
−, s

2
+)
〈
ψ∗, V �H�0 (θ)−1V �ψ∗

〉
when A1 = 0.

In the converse direction, A1 = 0 together with A2 = 0 implies that

(∀ψ ∈ V0)(∀ϕ ∈ `2(�))
〈
V �ψ, ϕ

〉
= 0,

i.e. that
(∀ψ ∈ V0) V �ψ = 0.

We summarize the above discussion as follows.

Lemma 5.4. Under the assumptions of Theorem 5.1 we have that

A1 = 0 and A2 = 0 if and only if (∀ψ∗ ∈ V0) V �ψ∗ = 0.

5.3. Proof of Theorem 5.1. We subdivide the proof of Theorem 5.1
into two lemmas.

Lemma 5.5. Assume (HA), (HB) and either (HC) or (HC’). Let u ∈
`2(�) and Eε as in (6). Then,

Eε 6 inf
q∈Sµ

inf
u∈`2(�)

〈
H�ε,q(θ)u, u

〉
‖u‖`2(�)

for any θ ∈ �∗

Proof. By Corollary 4.3 it is enough to consider the periodic realiza-
tions of the potential. By the Courant–Weyl–Fischer min–max princi-
ple,

(18) Eε 6 Eq,ε = minσ(Hε,q) = inf
a∈`2(Zd)
‖a‖2=1

〈Hε,qa, a〉 .

Finally, by Lemma 4.1,

(19) inf
a∈`2(Zd)
‖a‖=1

〈Hε,qa, a〉 6 inf
u∈`2(�)

〈
H�ε,q(θ)u, u

〉
‖u‖`2(�)

.

This proves the lemma.

�

We state now the second lemma.

Lemma 5.6. Let A1, A2 as in (9), (10), assume (HA)-(HC) and fix
θ ∈ Θ. Then, for ε > 0 small enough, if A1 6= 0,

inf
q∈Sµ

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
6 εA1,

whereas if A1 = 0, then

inf
q∈Sµ

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
6 ε2A2 +O(ε3)
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Finally, if A1 = A2 = 0, then

inf
q∈Sµ

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
6 0.

Proof. It is enough to show that for some q ∈ Sµ, there is some nor-
malized state u ∈ `2(�) satisfying〈

H�ε,q(θ)u, u
〉
6 εA1 or ε2A2 +O(ε3) or 0 resp..

Let ψ ∈ V0 and ϕ ∈ V⊥0 , to be chosen later, and u = ψ + εqϕ. We
assume furthermore ‖ψ‖ = 1. We expand

‖u‖2 = ‖ψ‖2 + ε2q2‖ϕ‖2

and thus

(20) 1/‖u‖2 = 1− ε2q2‖ϕ‖2 +O(ε4‖ϕ‖4).

We calculate the kinetic energy of this state, i.e.
(21)〈
H�0 (θ)u, u

〉
=
〈
H�0 (θ)ψ, ψ

〉
+2εqRe

〈
H�0 (θ)ψ, ϕ

〉
+ ε2q2

〈
H�0 (θ)ϕ, ϕ

〉
.

Because ψ ∈ V0 and E0 = 0, we see that (21) becomes〈
H�0 (θ)u, u

〉
= ε2q2

〈
H�0 (θ)ϕ, ϕ

〉
.

We expand the potential energy as

εq
〈
V �u, u

〉
= εq

〈
V �ψ, ψ

〉
+ 2ε2q2 Re

〈
V �ϕ, ψ

〉
+ ε3q3

〈
V �ϕ, ϕ

〉
.

Thus,〈
H�ε,q(θ)u, u

〉
=εq

〈
V �ψ, ψ

〉
+ ε2q2

(〈
H�0 (θ)ϕ, ϕ

〉
+ 2 Re

〈
ψ, V �ϕ

〉 )
+ ε3q3

〈
V �ϕ, ϕ

〉
.(22)

Case A1 6= 0. Note that in this case P1Pp 6= 0. From now on we
assume that s+P1 6 s−Pp. If this is not the case, we can always
replace V � 7→ −V � and ωn 7→ −ωn to get an equivalent model. In this
case, we take ψ = ψ1, ϕ = 0 and q = s+. Then, (22) becomes〈

H�ε,q(θ)u, u
〉

= εq
〈
V �ψ1, ψ1

〉
= εs+P1,

which proves the result in this case, as u is normalized.

Case A1 = 0 and A2 6= 0. First let us remark that if A1 = 0 then the
matrix A ∈ Cp×p vanishes identically, i.e.

(23) A1 = 0 =⇒ sup
ψ∈V0

‖ψ‖`2(�)=1

∣∣〈ψ, V �ψ〉∣∣ = 0.

In this case we have that, for any ψ ∈ V0 and ϕ ∈ V⊥0 , the expansion
(22) becomes
(24)〈
H�ε,q(θ)u, u

〉
= ε2q2

(〈
H�0 (θ)ϕ, ϕ

〉
+ 2 Re

〈
ψ, V �ϕ

〉 )
+ε3q3

〈
V �ϕ, ϕ

〉
.
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Note that, for ψ ∈ V0 and ϕ ∈ V⊥0 such that

‖ψ‖2 = ‖ϕ‖2 = 1

the map

(ϕ, ψ) 7→
∣∣〈ψ, V �ϕ〉∣∣2
〈H�0 (θ)ϕ, ϕ〉

is continuous. Given that the spaces involved are finite-dimensional
and their respective unit balls thus compact, we know that there exists
a couple (ψ∗, ϕ∗) maximizing this quantity, i.e.∣∣〈ψ∗, V �ϕ∗〉∣∣2

〈H�0 (θ)ϕ∗, ϕ∗〉
= sup

ψ∈V0
‖ψ‖`2(�)=1

sup
ϕ∈V⊥

0
‖ϕ‖`2(�)=1

∣∣〈ψ, V �ϕ〉∣∣2
〈H�0 (θ)ϕ, ϕ〉

.

Let ψ = ψ∗ and ϕ = λϕ∗ in the definition of u, where

λ = −
〈
ψ∗, V �ϕ∗

〉
〈H�0 (θ)ϕ∗, ϕ∗〉

∈ C.

Replacing, we see that〈
H�0 (θ)ϕ, ϕ

〉
+ 2Re

〈
ψ, V �ϕ

〉
=|λ|2

〈
H�0 (θ)ϕ∗, ϕ∗

〉
+ 2Reλ

〈
ψ∗, V �ϕ∗

〉
=

∣∣〈ψ∗, V �ϕ∗〉∣∣2
〈H�0 (θ)ϕ∗, ϕ∗〉

− 2

∣∣〈ψ∗, V �ϕ∗〉∣∣2
〈H�0 (θ)ϕ∗, ϕ∗〉

=−
∣∣〈ψ∗, V �ϕ∗〉∣∣2
〈H�0 (θ)ϕ∗, ϕ∗〉

.

Using this in (24) and letting q2 = max(s2
−, s

2
+), we obtain〈

H�ε,q(θ)u, u
〉

= −ε2 max(s2
−, s

2
+)

∣∣〈ψ∗, V �ϕ∗〉∣∣2
〈H�0 (θ)ϕ∗, ϕ∗〉

+O(ε3q3‖ϕ∗‖2)

= ε2A2 +O(ε3q3‖ϕ‖2).

Normalizing u by multiplying by (20) gives the result.

Case A1 = 0 and A2 = 0. Choose ϕ = 0 and any normalized ψ ∈ V0.
The development using u in this case gives〈

H�ε,q(θ)u, u
〉

= ε3q3
〈
V �ϕ, ϕ

〉
= 0

and this yields the desired result.

�

We prove the following converse lemma.

Lemma 5.7. Let A1, A2 as in (9), (10), assume (HA), (HB) and
(HC), and fix θ ∈ Θ. Then, if A1 6= 0,

inf
q∈Sµ

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
> εA1 +O(ε3/2),
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whereas if A1 = 0, then

inf
q∈Sµ

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
> ε2A2 +O(ε3)

Finally, if A1 = A2 = 0, then

inf
q∈Sµ

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
> 0.

Proof. Fix ε > 0 and let q ∈ Sµ be the value which minimizes the map

q 7→ inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
,

i.e. q ∈ {s−, s+}. We lower bound this quantity by minimizing over a
larger set by writing

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
> inf

ψ∈V0
‖ψ‖`2(�)61

inf
ϕ∈V⊥

0
‖ϕ‖`2(�)61

〈
H�ε,q(θ)(ψ + ϕ), (ψ + ϕ)

〉
.

By continuity and compactness, there exists some pair (ψ∗, ϕ∗) in V0×
V⊥0 realizing the infimum on the right hand side. We see that

(25)
〈
H�0 (θ)(ψ∗ + ϕ∗), (ψ∗ + ϕ∗)

〉
=
〈
H�0 (θ)ϕ∗, ϕ∗

〉
> g‖ϕ∗‖2

`2(�),

where the constant g is the spectral gap H�0 , which is also its (positive)
second eigenvalue. We study the different cases.

Case A1 6= 0. From Lemma 5.6, we know already that

(26) |A1|+ |A2| 6= 0 =⇒
〈
H�ε,q(θ)(ψ

∗ + ϕ∗), (ψ∗ + ϕ∗)
〉
< 0.

Using (25) and (26) we get that

‖ϕ∗‖2
`2(�) 6 −g−1εq

〈
V �(ψ∗ + ϕ∗), (ψ∗ + ϕ∗)

〉
6 4g−1‖V �‖∞εq.

We deduce then that

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
> εq

〈
V �ψ∗, ψ∗

〉
+ 2εqRe

〈
V �ϕ∗, ψ∗

〉
+ εq

〈
V �ϕ∗, ϕ∗

〉
> εA1 − 4g−1/2ε3/2q3/2‖V �‖3/2

∞ − 4g−1ε2q2‖V �‖2
∞.

Case A1 = 0 and A2 6= 0. In this case〈
H�ε,q(θ)(ψ

∗ + ϕ∗), (ψ∗ + ϕ∗)
〉

=
〈
H�0 (θ)ϕ∗, ϕ∗

〉
+ 2εqRe

〈
V �ϕ∗, ψ∗

〉
+ εq

〈
V �ϕ∗, ϕ∗

〉
.

Using (26) we see that ϕ∗ 6= 0. Furthermore, (25) and (26) together
imply that

‖ϕ∗‖2
`2(�) 6εqg

−1‖V �‖∞(2‖ϕ∗‖`2(�) + ‖ϕ∗‖2
`2(�))

63εqg−1‖V �‖∞‖ϕ∗‖`2(�).
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Note that ‖ϕ∗‖`2(�) is on both sides of the inequality. Simplifying,

(27) ‖ϕ∗‖`2(�) 6 3εqg−1‖V �‖∞.
Expanding as ε → 0, employing (27) and then simply multiplying by
one, we write

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
>
〈
H�0 (θ)ϕ∗, ϕ∗

〉
+ 2 Re εq

〈
V �ψ∗, ϕ∗

〉
+ εq

〈
V �ϕ∗, ϕ∗

〉
= |λ|2

〈
H�0 (θ)ϕ∗, ϕ∗

〉
|λ|2

+ 2 Reλεq

〈
V �ψ∗, ϕ∗

〉
λ

+O(ε3)

We choose λ as

λ = −
〈
H�0 (θ)ϕ∗, ϕ∗

〉
〈V �ψ∗, ϕ∗〉

.

It is well defined for small ε. Indeed, using (25) and (26) we see that

−2εqRe
〈
V �ϕ∗, ψ∗

〉
>
〈
H�0 (θ)ϕ∗, ϕ∗

〉
+ εq

〈
V �ϕ∗, ϕ∗

〉
> c‖ϕ∗‖2

`2(�) − εq‖V �‖∞‖ϕ∗‖2
`2(�)

and we know that ϕ∗ 6= 0. We see that λ 6= 0 for ε small enough.
Using our choice of λ gives

c‖ϕ∗‖2
`2(�) − εq‖V �‖∞‖ϕ∗‖2

`2(�)

= (|λ|2 − 2 Reλεq)

∣∣〈V �ψ∗, ϕ∗〉∣∣2
〈H�0 (θ)ϕ∗, ϕ∗〉

+O(ε3)

> −ε2A2 +O(ε3),

where we have used that |λ|2 − 2 Reλεq > |λ|2 − 2|λ|εq > −ε2q2.

Case A1 = 0 and A2 = 0. In this case

0 > inf
‖u‖`2(�)

〈
H�ε,q(θ)u, u

〉
=
〈
H�0 (θ)ϕ∗, ϕ∗

〉
+ εq

〈
V �ϕ∗, ϕ∗

〉
(28)

> c‖ϕ∗‖2 −O(ε)‖ϕ∗‖2,(29)

where the first inequality comes from Lemma 5.6. It is now clear that
ψ∗ = 0 and this finishes the proof.

�

5.4. Positive random variables. We study in this subsection the
case involving positive random variables. We remind the reader the
definition of the constants involved, for which we use the functions ψi,
the matrix A, its eigenvalues Pi and the linear space V0, which can be
found at the beginning of this section. We define the subspace V01 ⊂ V0

as
V01 := span

{i:Pi=P1}
〈ψi〉,

i.e. the eigenspace of A associated to its minimal eigenvalue P1.
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We recall the following quantities :

(30) A′1 := inf
q∈Sµ

inf
ψ∈V01

‖ψ‖`2(�)=1

q
〈
ψ, V �ψ

〉
= min(s+P1, s−P1) ∈ R,

and

(31) A′2 := −s2
+ sup

ψ∈V01
‖ψ‖`2(�)=1

sup
ϕ∈V⊥

0
‖ϕ‖`2(�)=1

∣∣〈ψ, V �ϕ〉∣∣2
〈H�0 (θ)ϕ, ϕ〉

6 0.

We also restate Theorem 3.2 for the reader’s convenience.

Theorem 5.8. Assume (HA), (HB) and (HC’). Fix θ ∈ Θ. Then, for
ε > 0 small enough, if P1 6= 0,

Eε 6 εA′1,

whereas if P1 = 0, then

Eε 6 ε2A′2 +O(ε3).

Finally, if P1 = A′2 = 0, then

Eε 6 0.

Sketch of proof. The proof of this theorem is very similar to the proof
of Theorem 5.1. Indeed, Lemma 5.5 is also valid in this setting. We
proceed then as in Lemma 5.6 up to equation (22). If A′1 6= 0 we let

u = ψ1, ϕ = 0, q =

{
s+ if P1 < 0
s− if P1 > 0

in (22). If A′1 = 0 but A′2 6= 0, then we find ψ∗ ∈ V01 and ϕ ∈ V0

realizing the supremum in the definition of A′2 and then we proceed as
in Lemma 5.6. Finally, if A′1 = A′2 = 0 we take u = ψ1 in (22).

�

We prove the following converse lemma.

Lemma 5.9. Let A′1, A′2 as in (11), (12), assume (HA), (HB) and
(HC’), and fix θ ∈ Θ. Then, if A′1 6= 0,

inf
q∈Sµ

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
> εA′1 +O(ε3/2),

whereas if P1 = 0, then

inf
q∈Sµ

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
> ε2A′2 +O(ε3)

Finally, if P1 = A′2 = 0, then

inf
q∈Sµ

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
> 0.
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Proof. We adapt here the proof of Lemma 5.7.
Fix ε > 0 and let q ∈ Sµ be the value which minimizes the map

q 7→ inf
‖u‖`2(�)=1

〈
(H�ε,q(θ)− εA′1)u, u

〉
,

i.e. q ∈ {s−, s+}. We lower bound this quantity by minimizing over a
larger set by writing

inf
‖u‖`2(�)=1

〈
(H�ε,q(θ)− εA′1)u, u

〉
> inf

ψ∈V0
‖ψ‖`2(�)61

inf
ϕ∈V⊥

0
‖ϕ‖`2(�)61

〈
(H�ε,q(θ)− εA′1)(ψ + ϕ), (ψ + ϕ)

〉
.

By continuity and compactness, there exists some pair (ψ∗, ϕ∗) in V0×
V⊥0 realizing the infimum on the right hand side. We see that

(32)
〈
H�0 (θ)(ψ∗ + ϕ∗), (ψ∗ + ϕ∗)

〉
=
〈
H�0 (θ)ϕ∗, ϕ∗

〉
> g‖ϕ∗‖2

`2(�),

where the constant g is the spectral gap of H�0 , which is also its (posi-
tive) second eigenvalue.

We study the different cases.

Case A′1 6= 0. We know already that

(33)
〈
(H�ε,q(θ)− εA′1)(ψ∗ + ϕ∗), (ψ∗ + ϕ∗)

〉
6 0.

Using (32), (33) and |A′1| 6 q‖V �‖ we get

‖ϕ∗‖2
`2(�) 6 −g−1ε

〈
(qV � − A′1)(ψ∗ + ϕ∗), (ψ∗ + ϕ∗)

〉
6 4g−1‖V �‖∞εq.

Note that

q
〈
V �ψ∗, ψ∗

〉
> q inf

ψ∈V0
‖ψ‖`2(�)61

〈
V �ψ, ψ

〉
= q inf

ψ∈V00
‖ψ‖`2(�)61

〈
V �ψ, ψ

〉
> E ′1.

It implies

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
> εq

〈
V �ψ∗, ψ∗

〉
+ 2εqRe

〈
V �ϕ∗, ψ∗

〉
+ εq

〈
V �ϕ∗, ϕ∗

〉
> εA′1 − 4g−1/2ε3/2q3/2‖V �‖3/2

∞ − 4g−1ε2q2‖V �‖2
∞.

Case A′1 = 0 and A′2 6= 0. We know that

(34)
〈
H�ε,q(θ)(ψ

∗ + ϕ∗), (ψ∗ + ϕ∗)
〉
< 0.

We will decompose further ψ∗ = ψ∗01 + ψ∗0⊥ ∈ V0, with ψ∗01 ∈ V01 and
ψ∗0⊥ ∈ V⊥01. We have

(35)
〈
V �u, u

〉
> 2 Re

〈
V �ψ∗01, ϕ

∗〉+O
(
‖ϕ∗‖2)



22 D. BORISOV, F. HOECKER-ESCUTI, AND I. VESELIĆ

Indeed, using the definition of u, we see that,〈
V �u, u

〉
=
〈
V �ψ∗01, ψ

∗
01

〉
+ 2 Re

〈
V �ψ∗01, ψ

∗
0⊥
〉

+
〈
V �ψ∗0⊥, ψ

∗
0⊥
〉

+ 2 Re
〈
V �ψ∗01, ϕ

∗〉+ 2 Re
〈
V �ψ∗0⊥, ϕ

∗〉+
〈
V �ϕ∗, ϕ∗

〉
=
〈
V �ψ∗0⊥, ψ

∗
0⊥
〉

+ 2 Re
〈
V �ψ∗01, ϕ

∗〉(36)

+ 2 Re
〈
V �ψ∗0⊥, ϕ

∗〉+
〈
V �ϕ∗, ϕ∗

〉
.

Let us also note that

A1 = 0 =⇒ P1 > 0,

and, in particular 〈
V �ψ∗0⊥, ψ

∗
0⊥
〉
> 0.

Hence if
〈
V �ψ∗0⊥, ϕ

∗〉 = 0, we immediately get (35) from (36).

Assume that
〈
V �ψ∗0⊥, ϕ

∗〉 6= 0. For each µ ∈ C,

(36) = |µ|2
〈
V �ψ∗0⊥, ψ

∗
0⊥
〉

|µ|2
+ 2 Reµ

〈
V �ψ∗0⊥, ϕ

∗〉
µ

+ 2 Re
〈
V �ψ∗01, ϕ

∗〉+O
(
‖ϕ∗‖2).

We choose µ as

µ := −
〈
V �ψ∗0⊥, ψ

∗
0⊥
〉

〈V �ψ∗0⊥, ϕ∗〉
.

We obtain

(36) =(|µ|2 − 2 Reµ)

∣∣〈V �ψ∗0⊥, ϕ∗〉∣∣2
〈V �ψ∗0⊥, ψ∗0⊥〉

+ 2 Re
〈
V �ψ∗01, ϕ

∗〉+O
(
‖ϕ∗‖2)

>− 1

2

∣∣〈V �ψ∗0⊥, ϕ∗〉∣∣2
〈V �ψ∗0⊥, ψ∗0⊥〉

+ 2 Re
〈
V �ψ∗01, ϕ

∗〉+O
(
‖ϕ∗‖2)

=2 Re
〈
V �ψ∗01, ϕ

∗〉+O
(
‖ϕ∗‖2),

which is also (35).
Using this result, we obtain〈
H�ε,q(θ)(ψ

∗ + ϕ∗), (ψ∗ + ϕ∗)
〉

>
〈
H�0 (θ)ϕ∗, ϕ∗

〉
+ 2εqRe

〈
V �ψ∗01, ϕ

∗〉+O
(
εq ‖ϕ∗‖2)

Equality (36) and inequalities (32) and (34) together imply that

‖ϕ∗‖2
`2(�) 6εqg

−1‖V �‖∞(2‖ϕ∗‖`2(�) + ‖ϕ∗‖2
`2(�))

63εqg−1‖V �‖∞‖ϕ∗‖`2(�).

Note that ‖ϕ∗‖`2(�) is involved in both sides of the inequality. Simpli-
fying,

(37) ‖ϕ∗‖`2(�) 6 3εqg−1‖V �‖∞.
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Using (37) and then simply multiplying by 1 = |λ|2/|λ|2 = λ/λ, we get

inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
> |λ|2

〈
H�0 (θ)ϕ∗, ϕ∗

〉
|λ|2

+ 2 Reλεq

〈
V �ψ∗01, ϕ

∗〉
λ

+O(ε3)

In view of this inequality and (34), we see that
〈
V �ψ∗01, ϕ

∗〉 6= 0 for
small ε. We choose λ as

λ = −
〈
H�0 (θ)ϕ∗, ϕ∗

〉
〈V �ψ∗01, ϕ

∗〉
.

It is well defined for small ε. Using our choice of λ, it gives

= (|λ|2 − 2 Reλεq)

∣∣〈V �ψ∗01, ϕ
∗〉∣∣2

〈H�0 (θ)ϕ∗, ϕ∗〉
+O(ε3)

> −ε2A′2 +O(ε3),

where we have used that |λ|2 − 2 Reλεq > |λ|2 − 2|λ|εq > −ε2q2.

Case A1 = 0 and A2 = 0. In this case, re-using (35) and employing
A′2 = 0,

0 > inf
‖u‖`2(�)=1

〈
H�ε,q(θ)u, u

〉
=
〈
H�0 (θ)ϕ∗, ϕ∗

〉
+ 2εqRe

〈
V �ψ∗01, ϕ

∗〉+ εqO
(
‖ϕ∗‖2)

=
〈
H�0 (θ)ϕ∗, ϕ∗

〉
+ εqO

(
‖ϕ∗‖2)
> c‖ϕ∗‖2 − |O(ε)| ‖ϕ∗‖2,

where the first inequality comes from Lemma 5.6. It is now clear that
ψ∗ = 0 and this finishes the proof.

�

5.5. Application to the generalized Anderson model.

Proof of Theorem 1.1. It is enough to verify that the assumptions of
Theorem 5.1 are satisfied. Let CW := inf σ(−∆Zd + W ). It is clear
that the operator H0 := −∆Zd +W −CW satisfies hypothesis (HA). In
this case the set Θ consists of the single point θ = 0 (see Theorem 5.10
below).

Let us check property (17) for the operator

H0(0) := −∆� +W� + CW ,

where ∆� is the Laplacian on � with periodic boundary conditions
and W� is the restriction of W to �. To check the property we use
Perron–Frobenius theorem [17]. For m > |�|, we verify that

〈δx, (∆� −W� + ‖W‖∞ + 2d+ 1)m δy〉 > 〈δx, (∆� + 2d+ 1)m δy〉 > 1.
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This implies that the largest eigenvalue of the matrix ∆� − W� +
‖W‖∞ + 2d + 1 is simple and its corresponding eigenfunction ψ1 is
positive (i.e. (∀n ∈ �)ψ1(n) > 0). Because of this strict positivity,
condition (17) is satisfied as soon as V � 6≡ 0. The subspace V0 is thus
one-dimensional and contains only ψ1. The theorem is now proven, by
simply stating the consequences of Theorem 5.1.

�

We know recall Theorem 2.4 in [12], with our notations. It implies
that 0 is the unique θ ∈ �∗ realizing the minimum of the spectrum.

Theorem 5.10. Let H0 = −4Zd +W with W a periodic potential with
respect to γ = NZd, and E0(θ) be the smallest eigenvalue of H0(θ).
Then

(a−/a+)2

(
2d−

d∑
i=1

cos(θi)

)
6 E0(θ)− E0(0) 6

(
2d−

d∑
i=1

cos(θi)

)
.

Here, a± = ±max±ψ1 and ψ1 is the positive ground state of H0(0).

6. Appendix

6.1. An interesting example: Proof of Theorem 1.2. Let H0 :=
∆2
Z defined on `2(Z). This operator has hopping range N = 3 (see

(HA)) and thus � = {0, 1, 2}. We define V � as the multiplication
operator given by the following single-site potential:

V � : `2(�)→ R

V �(n) := −1

2
δ−1(n1) + δ0(n1)− 1

2
δ1(n1).

With these definitions, we see that, for θ ∈ [−π/3, π/3)d,

H�0 (θ) =

 6 −4 + e−3iθ 1− 4e−3iθ

−4 + e3iθ 6 −4 + e−3iθ

1− 4e−3iθ −4 + e3iθ 6

 ,

after (7). This matrix has a simple ground state

ψ0(θ) := (e−iθ, 1, eiθ)/
√

3

with eigenvalues E0(θ) = (2 − 2 cos(θ))2. Let now f̃n(θ) = χnψ̃0(θ) ∈
`2(Zd) where ψ̃0(θ) is the θ-quasi-γ-periodic extension of ψ0(θ). Finally,
for ξ > 1/4, let

un := fn(0) + εξfn(εξ).

Let us calculate the kinetic energy. We see that

(38) 〈H0un, un〉
= 〈H0fn(0), fn(0)〉+ 2εξ Re〈H0fn(0), fn(εξ)〉+ ε2ξ〈H0fn(εξ), fn(εξ)〉.
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Let δ > 0 and pick n so large so that∣∣∣∣∣〈fn(0), H0fn(0)〉`2(D)

‖fn(0)‖2
`2(D)

−

〈
ψ0(0), H�0 (θ)ψ0(0)

〉
`2(�)

‖ψ0(0)‖2
`2(�)

∣∣∣∣∣ 6 δ,

∣∣∣∣∣
〈
fn(εξ), H0fn(εξ)

〉
`2(D)

‖fn(εξ)‖2
`2(D)

−

〈
ψ0(εξ), H�0 (θ)ψ0(εξ)

〉
`2(�)

‖ψ0(εξ)‖2
`2(�)

∣∣∣∣∣ 6 δ,

and ∣∣∣∣∣‖H0fn(0)‖2
`2(D)

‖fn(0)‖2
`2(D)

∣∣∣∣∣ =

∣∣∣∣∣〈fn(0), H2
0fn(0)〉`2(D)

‖fn‖2
`2(D)

∣∣∣∣∣ 6 δ.

Then, from (38) we see that

〈H0un, un〉
6 δ‖fn(0)‖2 + 2εξδ‖fn(εξ)‖+ ε2ξ

〈
ψ0(εξ), H�0 (θ)ψ0(εξ)

〉
`2(�)
‖fn(θ)‖2

6 3δ + ε2ξE0(εξ)‖fn(θ)‖2.

Letting n→∞ and δ → 0 we see that

〈H0un, un〉 6 ε2ξE0(εξ) 6 Cε6ξ.

Now let us calculate the potential energy.

ε〈Vqun, un〉
= ε〈Vqfn(0), fn(0)〉+ 2ε1+ξ Re〈Vqfn(0), fn(εξ)〉+ ε1+2ξ〈Vqfn(εξ), fn(εξ)〉

= 2ε1+ξ Re〈Vqfn(0), fn(εξ)〉.
Now we can calculate explicitly

〈Vqfn(εξ), fn(εξ)〉 =
1

6

(
−e−iεξ + 2− eiεξ

)
= −1

3
εξ +O(ε2ξ).

This shows that, for small ε,

〈Hε,qun, un〉 6 Cξ6ξ − 1

3
ε1+2ξ +O(ε1+2ξ) 6 −1

6
ε1+2ξ,

where we have used that 6ξ > 1 + 2ξ.

6.2. Proof of Lemma 4.1. As the Vq is block-diagonal, it is enough
to do the calculation for the free operator H0. Let us first calculate
some norms. Because of the quasi-periodicity, we easily see that

‖un‖2
`2(D) = (2n+ 1)d ‖u0‖2

`2(�) .(39)

and

‖un − un−1‖2
`2(D) 6 Cnd−1 ‖u0‖2

`2(�) .

So we have that

〈H0un, un〉 = 〈H0un, un−1〉+O(nd−1)‖u0‖2
`2(�).(40)



26 D. BORISOV, F. HOECKER-ESCUTI, AND I. VESELIĆ

For any k ∈ �n−1 and k′ ∈ Zd��n, we have that |k − k′| > N and
thus, because of the finite hopping range (assumption (HB)),

〈H0un, un−1〉 = 〈H0u, un−1〉 .
Now, we develop〈
H0u, un−1

〉
=
∑
k∈Zd

∑
k′∈Zd

H0(k, k′)u(k′)un−1(k)

(41)

=
∑
m∈γ

|m|6(n−1)N

∑
m′∈γ

∑
k∈�+m

∑
k′∈�+m′

H0(k, k′)u(k′)un−1(k)

=
∑
m∈γ

|m|6(n−1)N

∑
m′∈γ

∑
k∈�

∑
k′∈�

H0(k +m, k′ +m′)u(k′ +m′)un−1(k +m)

Using the translation invariance (assumption (HB)), the last quantity
is equal to

(42)

∑
m∈γ

|m|6(n−1)N

∑
m′∈γ

∑
k∈�

∑
k′∈�

H0(k, k′ +m′ −m)u(k′ +m′ −m)un−1(k)

=
∑
m∈γ

|m|6(n−1)N

∑
m′∈γ

∑
k∈�

∑
k′∈�

eiθ·(m−m
′)H0(k, k′ −m′ +m)u0(k′)u0(k)

=
∑
m∈γ

|m|6(n−1)N

∑
m′′∈γ

∑
k∈�

∑
k′∈�

eiθ·m
′′
H0(k, k′ −m′′)u0(k′)u0(k)

= (2n− 3)d 〈H0(θ)u0, u0〉 .
We see from this calculation and (40) thus that∣∣〈H0un, un〉 − (2n− 3)d 〈H0(θ)u0, u0〉

∣∣ 6 Cnd−1‖u0‖2
`2(�).

As (2n− 3)/(2n− 1)→ 1, dividing by ‖un‖2
`2(D), using (39) and taking

the limit proves the lemma.

�
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thesis, Université Paris 13, June 2013.

[11] W. Kirsch and F. Martinelli. On the spectrum of Schrödinger operators with
a random potential. Commun. Math. Phys., 85:329–350, 1982.

[12] W. Kirsch and B. Simon. Comparison theorems for the gap of Schrödinger
operators. J. Funct. Anal., 75:396–410, 1987.

[13] W. Kirsch, P. Stollmann, and G. Stolz. Localization for random perturbations
of periodic Schrödinger operators. Random Oper. Stoch. Equ., 6(3):241–268,
1998.

[14] F. Klopp. Weak disorder localization and Lifshitz tails. Commun. Math. Phys.,
232(1):125–155, 2002.

[15] F. Klopp. Weak disorder localization and Lifshitz tails: continuous Hamiltoni-
ans. In Annales Henri Poincare, volume 3, pages 711–737. Springer, 2002.

[16] H. Krueger. Periodic and limit-periodic discrete Schrödinger operators.
arXiv:1108.1584, 2011.

[17] C. D. Meyer. Matrix analysis and applied linear algebra. Society for Industrial
and Applied Mathematics, 2000.

[18] L. Pastur and A. Figotin. Spectra of random and almost-periodic operators,
volume 297. 1992.



28 D. BORISOV, F. HOECKER-ESCUTI, AND I. VESELIĆ
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