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Abstract

Necessary conditions for an undirected graph G to contain a graph H as induced
subgraph involving the smallest ordinary or the largest normalized Laplacian eigenvalue
of G are presented.
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1 Introduction

We consider two fixed finite, undirected, and simple graphs: Let G = (V,E) be a graph with-
out isolated vertices, where V = {1, ..., n} and E (with |E| = m) denote the vertex set and
the edge set of G, respectively. Let δ ≥ 1 denote the minimum degree of G. Furthermore,
let dH = 2e

h be the average degree of a graph H = (V (H), E(H)), where |V (H)| = h and
|E(H)| = e.

The eigenvalues λ1 ≤ ... ≤ λn of the adjacency matrix A of G are the ordinary eigenvalues (or
shortly the eigenvalues) of G. Note that −r ≤ λ ≤ λn = r for all eigenvalues λ of an r-regular
graph G, and if G is connected, then λ1 = −λn if and only if G is bipartite [4, 7].

Let D be the degree matrix of G, that is an (n × n) diagonal matrix, where the degree di of
vertex i ∈ V is the i-th entry at the main diagonal. Moreover, let 0 = η1 ≤ ... ≤ ηn be the
eigenvalues of the Laplacian L = D−A of G [1, 13]. If G is r-regular, then η is an eigenvalue
of the Laplacian if and only if r − η is an eigenvalue of A.

For G without isolated vertices, the normalized Laplacian is the (n × n) matrix L = (lij)
with lij = 1 if i = j, lij = − 1√

didj
if ij ∈ E, and lij = 0 otherwise. The eigenvalues

0 = σ1 ≤ ... ≤ σn of L are the normalized Laplacian eigenvalues of G [5, 6, 13]. It is known
that 1 < σn ≤ 2 and that G is bipartite if and only if σn = 2 [10, 12, 13]. For an r-regular
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graph G, σ is a normalized Laplacian eigenvalue if and only if r(1− σ) is an eigenvalue of A.

For further notation and terminology we refer to [8].

In the present paper, we are interested in necessary conditions in terms of eigenvalues for the
fact that G contains a copy of H as an induced subgraph. If all eigenvalues of G and all
eigenvalues φ1 ≤ ... ≤ φh of the adjacency matrix AH of H are taken into consideration, then
Theorem 1 is a typical result of this kind.

Theorem 1 (Cauchy’s inequalities, Interlacing theorem [4, 7]).
If H is an induced subgraph of G with eigenvalues φ1 ≤ ... ≤ φh,
then λi ≤ φi ≤ λn−h+i for i = 1, ..., h.

In general, it is difficult to determine the spectra of large graphs G and H, however, the
largest and the smallest eigenvalues of the matrices A, L, and L of a graph are well investigated
([1, 4, 5, 6]). Hence, we focus on simpler necessary conditions for H being an induced subgraph
of G just involving smallest or largest eigenvalues. The inequalities (1) obtained from Theorem
1 are possible results of this type.

λ1 ≤ φ1 and λn ≥ φh. (1)

If the largest Laplacian eigenvalue ηn of G and the degrees of the vertices of H in G are taken
into account, then the assertion of Theorem 2 holds.

Theorem 2 (B. Bollobás, V. Nikiforov [3]).
If H is an induced subgraph of G, then (

∑
i∈V (H)

di − 2e)n ≤ ηnh(n− h).

In general, it is not easy to determine the value
∑

i∈V (H)

di exactly. If the degrees of G do not

differ too much, then the inequality
∑

i∈V (H)

di ≥ δh is reasonable and it follows

Corollary 3.
If H is an induced subgraph of G, then ηnh ≤ (dH + ηn − δ)n.

Note that Corollary 3 only makes sense if δ > dH .
If G is r-regular, then δ = r, ηn = r − λ1, and

∑
i∈V (H)

di = rh, hence, Theorem 2, Corollary 3,

and the following Corollary 4, proved by W.H. Haemers already in [9], coincide in this case.

Corollary 4 (W.H. Haemers [9]).
If H is an induced subgraph of the r-regular graph G, then (r − λ1)h ≤ (dH − λ1)n.

The identity matrix is the (n × n) square matrix with ones on the main diagonal and zeros
elsewhere. It is denoted simply by I if the size is immaterial or can be trivially determined by
the context. In the sequel, x denotes a vector, where 1 = (1, 1, ..., 1)T and 0 = (0, 0, ..., 0)T ,
and we write x ≥ 0 if xi ≥ 0 for each entry xi of x.

Our first result is Theorem 5 concerning the case that G is regular and involving the smallest
eigenvalue λ1 of G.
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Theorem 5.
Let G be r-regular. If H is an induced subgraph of G, then (AH − λ1I)x = 1 is solvable, and,
for any solution x of this equation,

r − λ1
n

≤ min{zT (AH − λ1I)z | z ∈ R|V (H)|, 1T z = 1} = 1

1Tx
.

Moreover, if λ1 < φ1, then AH − λ1I is regular and 1Tx equals the sum of all entries of
(AH − λ1I)−1.

If z = ( 1h , ...,
1
h)
T ∈ Rh, then 1T z = 1 and zT (AH − λ1I)z = 2e−λ1h

h2
. Thus, Theorem 5 is an

extension of Corollary 4. If in Theorem 5, additionally, H is assumed to be ρ -regular, then
x = ( 1

ρ−λ1 , ...,
1

ρ−λ1 )
T is a solution of (AH − λ1I)x = 1, thus, 1

1T x
= (ρ−λ1)

h = (dH−λ1)
h , hence,

Corollary 4 and Theorem 5 coincide in this case.

Now consider the following example, where the assertion of Theorem 5 is stronger than that
one of Corollary 4 and inequalities (1) only lead to trivial statements. We ask for a neces-
sary condition that the r-regular graph G contains k ≥ 1 disjoint and independent copies
of the path P3 on 3 vertices, that is, H consists of k components each of them isomorphic
to P3. The eigenvalues of P3 are −

√
2, 0,
√
2 ([4]), hence, with Theorem 1 we may assume

λ1 ≤ −
√
2 < −4

3 . With h = 3k and dH = 4
3 , Corollary 4 leads to k ≤ 4−3λ1

9(r−λ1)n.
If we consider the system (AH − λ1I)x = 1, then, by Theorem 5, it is solvable and it follows
1Tx = k1T y, where y is a solution of (AP3 − λ1I)y = 1. It is easy to see that 1T y = 4+3λ1

2−λ21
,

thus, again by Theorem 5, k ≤ 2−λ21
(4+3λ1)(r−λ1)n, which is stronger than k ≤ 4−3λ1

9(r−λ1)n.
If, additionally, G is assumed to be bipartite, then λ1 = −r and λn = r. The inequalities (1)
just imply

√
2 ≤ r in this case.

Next we consider again the case that G is not necessarily regular and try to establish a result
similar to Theorem 5. Therefore, let M(G,H) be the set of non-empty induced subgraphs H∗

of H such that By = 1 has a solution y = (y1, ..., yt)
T with ys > 0 for s = 1, ..., t = |V (H∗)|,

where AH∗ denotes the adjacency matrix of H∗ and B = AH∗ + (σn − 1)δI. In this case y is
called a positive solution of By = 1.
With H∗ = K1 and y1 = 1

(σn−1)δ > 0 (note that σn > 1), it follows K1 ∈M(G,H) 6= ∅ .
If H∗ ∈M(G,H) and y1 and y2 are positive solutions of By = 1, then, since B is symmetric,
1T y1 = y2

TBy1 = y2
T 1 = 1T y2, hence, the value 1T y is independent on the choice of the

positive solution y. We define g(G,H∗) = 1T y, where y is an arbitrary positive solution of
By = 1.
If the induced subgraph H∗ of H is ρ-regular, then it is easy to see that
(AH∗ + (σn − 1)δI)y = 1 has a positive solution y = ( 1

ρ+(σn−1)δ , ...,
1

ρ+(σn−1)δ )
T , hence,

H∗ ∈M(G,H).
If H∗1 and H∗2 are independent induced subgraphs of H and H∗1 , H

∗
2 ∈ M(G,H), then the

disjoint union H∗1 ∪H∗2 of H∗1 and H∗2 also belongs to M(G,H) and
g(G,H∗1 ∪H∗2 ) = g(G,H∗1 ) + g(G,H∗2 ).

Eventually, let f(G,H) = min
H∗∈M(G,H)

1
g(G,H∗) .

Our second result is Theorem 6 involving the largest normalized Laplacian eigenvalue σn of
G.
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Theorem 6.
If H is an induced subgraph of G, then

σnδ
2

2m
≤ min{zT (AH + (σn − 1)δI)z | z ∈ R|V (H)|, 1T z = 1, z ≥ 0} = f(G,H).

If G is r-regular, then the assertion of Theorem 6 is weaker than that one of Theorem 5 be-
cause λ1 = r(1− σn), 2m

σnδ2
= n

r−λ1 , and min{zT (AH − λ1I)z | z ∈ R|V (H)|, 1T z = 1}
≤ min{zT (AH − λ1I)z | z ∈ R|V (H)|, 1T z = 1, z ≥ 0} in this case.

In general, it is not easy to calculate min{zT (AH + (σn − 1)δI)z | 1T z = 1, z ≥ 0}, however,
in special cases it can be done efficiently.
Therefore, we consider an example, where the graph G is non-regular (i.e. Corollary 4 and
Theorem 5 are not applicable), f(G,H) can be determined easily, and the necessary condition
of Theorem 6 for the graph H to be an induced subgraph of G is stronger than that one of
Theorem 2.
For positive integers p and q, where p is even, let G = Cp�P3 be the cartesian product1 of
the cycle Cp and the path P3 on 3 vertices (for p = 20, G is shown in the figure) and let H
consist of q copies of K1,4.

We have n = 3p, m = 5p, δ = 3, and, since G is bipartite, σn = 2. The Laplacian eigenvalues
of Cp and of P3 are 2− 2 cos(2πjp ) for j = 0, ..., p− 1 and 0, 1, 3, respectively ([4]). Moreover,
if η′ and η′′ are Laplacian eigenvalues of G′ and G′′, respectively, then η′ + η′′ is a Laplacian
eigenvalue of G′�G′′ ([4]). Because p is even, it follows ηn = 2− 2 cos(π) + 3 = 7.
It is easy to see that

∑
i∈V (H)

di− 2e = 10q and, using h = 5q, Theorem 2 implies q ≤ 3
7p in this

case.
If H∗ is an induced subgraph of K1,4, then H∗ = K1,s or H∗ = Ks (the edgeless graph on s
vertices) for suitable s ∈ {1, 2, 3, 4}.
Let H∗ = K1,s and consider the system (AH∗ +(σn− 1)δI)y = (AH∗ +3I)y = 1. It is easy to
see that K1,4,K1,3 /∈M(G,H), K1,2,K1,1 ∈M(G,H), g(G,K1,2) =

5
7 , and g(G,K1,1) =

1
2 .

If H∗ = Ks, then H∗ ∈ M(G,H) and (AH∗ + 3I)y = 1 lead to g(G,H∗) = s
3 , hence,

f(G,H) = 3
4q . By Theorem 6, it follows q ≤ 5

12p <
3
7p.

If H∗ with |V (H∗)| ≥ 1 is an arbitrary induced subgraph of H and z = (z1, ..., zh)
T with

zi =
1

|V (H∗)| if i ∈ V (H∗) and zi = 0 otherwise, then 1T z = 1 and zT (AH + (σn − 1)δI)z =
dH∗+(σn−1)δ
|V (H∗)| , where dH∗ denotes the average degree of H∗. Thus, Corollary 7 is a consequence

of Theorem 6.
1Given graphs G1 and G2 with vertex set V1 and V2, respectively, their cartesian product G1�G2 is the

graph with vertex set V1 × V2, where (v1, v2)(w1, w2) ∈ E(G1�G2) when either v1 = w1 and v2w2 ∈ E(G2) or
v2 = w2 and v1w1 ∈ E(G1).
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Corollary 7. If H is an induced subgraph of G, then σnδ2

2m ≤ dH∗+(σn−1)δ
|V (H∗)| , where H∗ is an

arbitrary induced subgraph of H with |V (H∗)| ≥ 1.

Obviously, Corollary 7 is an extension of Corollary 4 if G is regular.
We conclude with an example, where Corollary 3 is weaker than Corollary 7 for not necessarily
regular G. Therefore, let V (H) be an independent set of G, i.e. dH = 0. By Corollary 3
and Corollary 7, it follows that h ≤ ηn−δ

ηn
n and h ≤ 2(σn−1)

σnδ
m if G contains h independent

vertices, respectively. In [11], it is shown that there are infinitely many graphs G such that
2(σn−1)
σnδ

m < ηn−δ
ηn

n.

2 Proofs

In [11], the following Lemma 8 is proved. For completeness we give a proof here.

Lemma 8. If x1, ..., xn are real numbers, then

σn(
n∑
i=1

dixi)
2 − 2(σn − 1)m

n∑
i=1

dix
2
i ≤ 4m

∑
ij∈E

xixj . (2)

Proof of Lemma 8.

It is easy to see that σ is an eigenvalue of L if and only if µ = 1− σ fulfills det(A− µD) = 0
[10, 12, 14]. Let µi = 1− σn−i+1 for i = 1, ..., n.
Note that D is positive definite since δ ≥ 1. Define xTDy as the inner product for vectors
x, y ∈ Rn and let x and y be called D-orthogonal if xTDy = 0. If xTDx = 1 then x is called
D-normal. A set of D-normal vectors being pairwise D-orthogonal is a D-orthonormal set.
We consider the generalized eigenvalue problem Ax = µDx for µ ∈ R and x ∈ Rn with x 6= 0.
If the pair (µ, x) is a solution of this equation, then x is a D-eigenvector of G and µ is the
corresponding D-eigenvalue of G.
We use the well known fact (e.g. see [14]) that there is a D-orthonormal basis of Rn consisting
of D-eigenvectors of G. Next we will show the following assertion.

If {u1, ..., un} is a D-orthonormal basis of Rn such that ui is a D-eigenvector with correspond-
ing D-eigenvalue µi for i = 1, ..., n, then, for any vector x ∈ Rn,

(µ2 − µ1)(xTDu2)2 + ...+ (µn − µ1)(xTDun)2 + µ1x
TDx = xTAx. (3)

To see this, let x be given. There are real numbers a1, ..., an such that x = a1u1 + ...+ anun.
Then xTAx = µ1a

2
1 + ...+ µna

2
n, xTDx = a21 + ...+ a2n, and xTDui = ai for i = 1, ..., n. The

desired equality (3) is equivalent to
(µ2 − µ1)a22 + ...+ (µn − µ1)a2n + µ1(a

2
1 + ...+ a2n) = µ1a

2
1 + ...+ µna

2
n.

As a consequence,
(µn − µ1)(xTDun)2 + µ1x

TDx ≤ xTAx. (4)
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The vector 1√
2m

1 is a D-normal D-eigenvector of G with corresponding D-eigenvalue
µn = 1, thus, inequality (4) and σn = 1− µ1 imply Lemma 8. �.

Proof of Theorem 5.

Inequality (2) and λ1 = r(1− σn), if G is r-regular, imply

If G is r-regular and x1, ..., xn are real numbers then

(r − λ1)(
n∑
i=1

xi)
2 + λ1n

n∑
i=1

x2i ≤ 2n
∑
ij∈E

xixj . (5)

Let U be an induced subgraph of G isomorphic to H and φ : V (H) → V (U) be a graph
isomorphism from H to U .

For real numbers z1, ..., zh with
h∑
q=1

zq = 1, let x1, ..., xn be defined as follows:

If i ∈ V (U), then there is a suitable q ∈ {1, ..., h} such that i = φ(vq). Set xi = zq in this
case. If i ∈ V \ V (U), then let xi = 0.

With z = (z1, ..., zh)
T , we obtain∑

i∈V
xi =

h∑
q=1

zq = 1,
∑
i∈V

x2i =
h∑
q=1

z2q , and

2
∑
ij∈E

xixj = 2
∑

vqvq′∈E(H)

zqzq′ = zTAHz.

Inequality (5) implies (r − λ1) + λ1(
h∑
q=1

z2q )n ≤ zTAHzn, hence, with

B = (AH − λ1I), 1 ≤ n
(r−λ1) min zTBz = n

(r−λ1)MIN , where the minimum is taken over all

vectors z = (z1, ..., zh)
T with

h∑
q=1

zq = 1.

Note that this minimum exists, because λ1 ≤ φ1 follows from Theorem 1, hence, all
eigenvalues φ1 − λ1, φ2 − λ1, ..., φh − λ1 of B are non-negative. It follows that B is positive
semidefinite.

To investigate this value MIN , we consider the Lagrange function

L(z, κ) = zTBz − 2κ(
h∑
q=1

zq − 1) with Lagrange multiplier 2κ and the necessary optimality

conditions Lzq = 0 for q = 1, ..., h (for more details to Lagrange Theory to see [2]).

We obtain that the equations Bz = κ1 and 1T z = 1 are simultaneously solvable.

Next we will show that κ is unique. If Bz1 = κ11, 1T z1 = 1, Bz2 = κ21, and 1T z2 = 1, then
κ1 = κ11

T z2 = z1
TBz2 = κ2z1

T 1 = κ2.

With 1 ≤ n
(r−λ1)MIN , it follows MIN = zTBz = κ > 0.
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If x = 1
κz, then Bx = 1 and 1Tx = 1

κ .

If λ1 < φ1, then B is regular and 1 = 1T z = κ1TB−11, hence, 1Tx = 1TB−11. �

Proof of Theorem 6.

The proof of Theorem 6 is similar to that one of Theorem 5.

Let xi ≥ 0 for i = 1, ..., n and, since σn > 1, inequality (2) implies

σn(
n∑
i=1

dixi)
2 − 2(σn−1)m

δ

n∑
i=1

(dixi)
2 ≤ 4m

δ2
∑
ij∈E

(dixi)(djxj).

Substituting wi = dixi for i = 1, ..., n, it follows

σnδ
2 − 2(σn − 1)mδ

n∑
i=1

w2
i ≤ 4m

∑
ij∈E

wiwj (6)

for arbitrary wi ≥ 0 for i = 1, ..., n with
n∑
i=1

wi = 1.

Again, let U be an induced subgraph of G isomorphic to H and φ : V (H)→ V (U) be a graph

isomorphism from H to U , and, for real numbers z1, ..., zh ≥ 0 with
h∑
q=1

zq = 1, let w1, ..., wn

be defined as follows:
If i ∈ V (U), then there is a suitable q ∈ {1, ..., h} such that i = φ(vq). Set wi = zq in this
case. If i ∈ V \ V (U), then let wi = 0.
Inequality (6) implies σnδ2

2m ≤ min(zTAHz + (σn − 1)δzT z) = MIN , where the minimum is

taken over Sh = {z = (z1, ..., zh)
T | zq ≥ 0 for q = 1, ..., h,

h∑
q=1

zq = 1}.

Note that this minimum exists because zTAHz + (σn − 1)δzT z is a continuous function and
Sh is a compact set.

Let z = (z1, ..., zh)
T ∈ Sh with zTAHz + (σn − 1)δzT z = MIN . Furthermore, let H ′ be the

induced subgraph of H with vertex set V (H ′) = {q ∈ V (H) | zq > 0} 6= ∅.

If t = |V (H ′)| = 1, then H ′ = K1 ∈M(G,H) with V (H ′) = {q}, zq = 1, and
MIN = (σn − 1)δ > 0. Hence, y = ( 1

(σn−1)δ ) is a positive solution of
(AH′ +(σn− 1)δI)y = 1 and it follows g(G,H ′) = 1T y = 1

(σn−1)δ = 1
MIN and 1 ≤ 2m

σnδ2g(G,H′)
.

If t ≥ 2, then 0 < zq < 1 for all q ∈ V (H ′).
Thus, MIN = min(uTAH′u + (σn − 1)δuTu), where the minimum is taken over the relative

interior rint(St) = {u = (u1, ..., ut)
T | us > 0 for s = 1, ..., t,

t∑
s=1

us = 1} of St,

consequently, this minimum is a local minimum at the hyperplane

Ht = {u = (u1, ..., ut)
T |

t∑
s=1

us = 1}.

To investigate this value MIN , we consider the Lagrange function

L(u, κ) = uTAH′u+ (σn − 1)δuTu− 2κ(
t∑

s=1
us − 1) with Lagrange multiplier 2κ and the nec-

7



essary optimality conditions Lus = 0 for s = 1, ..., t.

With B = AH′ + (σn − 1)δI, we obtain that the system Bu = κ1, 1Tu = 1 has a positive
solution u.

Next we will show that κ is unique. If Bu1 = κ11, 1Tu1 = 1, Bu2 = κ21, and 1Tu2 = 1, then
κ1 = κ11

Tu2 = u1
TBu2 = κ2u1

T 1 = κ2.

With 1 ≤ 2m
σnδ2

MIN , it follows MIN = uTBu = κ > 0.

If y = 1
κu, then By = 1 has a positive solution y, consequently, H ′ ∈ M(G,H). Moreover,

g(G,H ′) = 1T y = 1
κ = 1

MIN and we obtain 1 ≤ 2m
σnδ2g(G,H′)

.

To see that f(G,H) = 1
g(G,H′) , assume there is H ′′ ∈M(G,H) with

g(G,H ′′) > g(G,H ′). Then there exists u ∈ rint(St) with t = |V (H ′′)| such that uTAH′′u +
(σn − 1)δuTu < MIN .
Let xi = ui if i ∈ V (H ′′) and xi = 0 for i ∈ V (H) \ V (H ′′).
It follows x = (x1, ..., xh)

T ∈ S|V (H)| and xTAHx + (σn − 1)δxTx < MIN , contradicting the
definition of MIN . �
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