Eigenvalue conditions for induced subgraphs

J. Harant
Ilmenau University of Technology, Department of Mathematics, Germany
e-mail: jochen.harant@tu-ilmenau.de

J. Niebling

Ilmenau University of Technology, Department of Mathematics, Germany
e-mail: julia.niebling@tu-ilmenau.de
S. Richter

Chemnitz University of Technology, Department of Mathematics, Germany
e-mail: sebastian.richter@mathematik.tu-chemnitz.de

Abstract

Necessary conditions for an undirected graph G to contain a graph H as induced subgraph involving the smallest ordinary or the largest normalized Laplacian eigenvalue of G are presented.

Keywords: induced subgraph, eigenvalue

1 Introduction

We consider two fixed finite, undirected, and simple graphs: Let $G=(V, E)$ be a graph without isolated vertices, where $V=\{1, \ldots, n\}$ and E (with $|E|=m$) denote the vertex set and the edge set of G, respectively. Let $\delta \geq 1$ denote the minimum degree of G. Furthermore, let $d_{H}=\frac{2 e}{h}$ be the average degree of a graph $H=(V(H), E(H))$, where $|V(H)|=h$ and $|E(H)|=e$.

The eigenvalues $\lambda_{1} \leq \ldots \leq \lambda_{n}$ of the adjacency matrix A of G are the ordinary eigenvalues (or shortly the eigenvalues) of G. Note that $-r \leq \lambda \leq \lambda_{n}=r$ for all eigenvalues λ of an r-regular graph G, and if G is connected, then $\lambda_{1}=-\lambda_{n}$ if and only if G is bipartite [4, 7].

Let D be the degree matrix of G, that is an $(n \times n)$ diagonal matrix, where the degree d_{i} of vertex $i \in V$ is the i-th entry at the main diagonal. Moreover, let $0=\eta_{1} \leq \ldots \leq \eta_{n}$ be the eigenvalues of the Laplacian $L=D-A$ of $G[1,13]$. If G is r-regular, then η is an eigenvalue of the Laplacian if and only if $r-\eta$ is an eigenvalue of A.

For G without isolated vertices, the normalized Laplacian is the $(n \times n)$ matrix $\mathcal{L}=\left(l_{i j}\right)$ with $l_{i j}=1$ if $i=j, l_{i j}=-\frac{1}{\sqrt{d_{i} d_{j}}}$ if $i j \in E$, and $l_{i j}=0$ otherwise. The eigenvalues $0=\sigma_{1} \leq \ldots \leq \sigma_{n}$ of \mathcal{L} are the normalized Laplacian eigenvalues of $G[5,6,13]$. It is known that $1<\sigma_{n} \leq 2$ and that G is bipartite if and only if $\sigma_{n}=2[10,12,13]$. For an r-regular
graph G, σ is a normalized Laplacian eigenvalue if and only if $r(1-\sigma)$ is an eigenvalue of A.
For further notation and terminology we refer to [8].
In the present paper, we are interested in necessary conditions in terms of eigenvalues for the fact that G contains a copy of H as an induced subgraph. If all eigenvalues of G and all eigenvalues $\phi_{1} \leq \ldots \leq \phi_{h}$ of the adjacency matrix A_{H} of H are taken into consideration, then Theorem 1 is a typical result of this kind.

Theorem 1 (Cauchy's inequalities, Interlacing theorem [4, 7]).
If H is an induced subgraph of G with eigenvalues $\phi_{1} \leq \ldots \leq \phi_{h}$,
then $\lambda_{i} \leq \phi_{i} \leq \lambda_{n-h+i}$ for $i=1, \ldots, h$.
In general, it is difficult to determine the spectra of large graphs G and H, however, the largest and the smallest eigenvalues of the matrices A, L, and \mathcal{L} of a graph are well investigated ($[1,4,5,6]$). Hence, we focus on simpler necessary conditions for H being an induced subgraph of G just involving smallest or largest eigenvalues. The inequalities (1) obtained from Theorem 1 are possible results of this type.

$$
\begin{equation*}
\lambda_{1} \leq \phi_{1} \quad \text { and } \quad \lambda_{n} \geq \phi_{h} . \tag{1}
\end{equation*}
$$

If the largest Laplacian eigenvalue η_{n} of G and the degrees of the vertices of H in G are taken into account, then the assertion of Theorem 2 holds.

Theorem 2 (B. Bollobás, V. Nikiforov [3]).
If H is an induced subgraph of G, then $\left(\sum_{i \in V(H)} d_{i}-2 e\right) n \leq \eta_{n} h(n-h)$.
In general, it is not easy to determine the value $\sum_{i \in V(H)} d_{i}$ exactly. If the degrees of G do not differ too much, then the inequality $\sum_{i \in V(H)} d_{i} \geq \delta h$ is reasonable and it follows

Corollary 3.

If H is an induced subgraph of G, then $\eta_{n} h \leq\left(d_{H}+\eta_{n}-\delta\right) n$.
Note that Corollary 3 only makes sense if $\delta>d_{H}$.
If G is r-regular, then $\delta=r, \eta_{n}=r-\lambda_{1}$, and $\sum_{i \in V(H)} d_{i}=r h$, hence, Theorem 2, Corollary 3, and the following Corollary 4, proved by W.H. Haemers already in [9], coincide in this case.

Corollary 4 (W.H. Haemers [9]).
If H is an induced subgraph of the r-regular graph G, then $\left(r-\lambda_{1}\right) h \leq\left(d_{H}-\lambda_{1}\right) n$.
The identity matrix is the $(n \times n)$ square matrix with ones on the main diagonal and zeros elsewhere. It is denoted simply by I if the size is immaterial or can be trivially determined by the context. In the sequel, \underline{x} denotes a vector, where $\underline{1}=(1,1, \ldots, 1)^{T}$ and $\underline{0}=(0,0, \ldots, 0)^{T}$, and we write $\underline{x} \geq \underline{0}$ if $x_{i} \geq 0$ for each entry x_{i} of \underline{x}.

Our first result is Theorem 5 concerning the case that G is regular and involving the smallest eigenvalue λ_{1} of G.

Theorem 5.

Let G be r-regular. If H is an induced subgraph of G, then $\left(A_{H}-\lambda_{1} I\right) \underline{x}=\underline{1}$ is solvable, and, for any solution \underline{x} of this equation,

$$
\frac{r-\lambda_{1}}{n} \leq \min \left\{\underline{z}^{T}\left(A_{H}-\lambda_{1} I\right) \underline{z} \mid \underline{z} \in R^{|V(H)|}, \underline{1}^{T} \underline{z}=1\right\}=\frac{1}{\underline{1}^{T} \underline{x}}
$$

Moreover, if $\lambda_{1}<\phi_{1}$, then $A_{H}-\lambda_{1} I$ is regular and $\underline{1}^{T} \underline{x}$ equals the sum of all entries of $\left(A_{H}-\lambda_{1} I\right)^{-1}$.
If $\underline{z}=\left(\frac{1}{h}, \ldots, \frac{1}{h}\right)^{T} \in R^{h}$, then $\underline{1}^{T} \underline{z}=1$ and $\underline{z}^{T}\left(A_{H}-\lambda_{1} I\right) \underline{z}=\frac{2 e-\lambda_{1} h}{h^{2}}$. Thus, Theorem 5 is an extension of Corollary 4. If in Theorem 5, additionally, H is assumed to be ρ-regular, then $\underline{x}=\left(\frac{1}{\rho-\lambda_{1}}, \ldots, \frac{1}{\rho-\lambda_{1}}\right)^{T}$ is a solution of $\left(A_{H}-\lambda_{1} I\right) \underline{x}=\underline{1}$, thus, $\frac{1}{\underline{1}^{T} \underline{x}}=\frac{\left(\rho-\lambda_{1}\right)}{h}=\frac{\left(d_{H}-\lambda_{1}\right)}{h}$, hence, Corollary 4 and Theorem 5 coincide in this case.

Now consider the following example, where the assertion of Theorem 5 is stronger than that one of Corollary 4 and inequalities (1) only lead to trivial statements. We ask for a necessary condition that the r-regular graph G contains $k \geq 1$ disjoint and independent copies of the path P_{3} on 3 vertices, that is, H consists of k components each of them isomorphic to P_{3}. The eigenvalues of P_{3} are $-\sqrt{2}, 0, \sqrt{2}([4])$, hence, with Theorem 1 we may assume $\lambda_{1} \leq-\sqrt{2}<-\frac{4}{3}$. With $h=3 k$ and $d_{H}=\frac{4}{3}$, Corollary 4 leads to $k \leq \frac{4-3 \lambda_{1}}{9\left(r-\lambda_{1}\right)} n$.
If we consider the system $\left(A_{H}-\lambda_{1} I\right) \underline{x}=\underline{1}$, then, by Theorem 5 , it is solvable and it follows $\underline{1}^{T} \underline{x}=k \underline{1}^{T} \underline{y}$, where \underline{y} is a solution of $\left(A_{P_{3}}-\lambda_{1} I\right) \underline{y}=\underline{1}$. It is easy to see that $\underline{1}^{T} \underline{y}=\frac{4+3 \lambda_{1}}{2-\lambda_{1}^{2}}$, thus, again by Theorem $5, k \leq \frac{2-\lambda_{1}^{2}}{\left(4+3 \lambda_{1}\right)\left(r-\lambda_{1}\right)} n$, which is stronger than $k \leq \frac{4-3 \lambda_{1}}{9\left(r-\lambda_{1}\right)} n$.
If, additionally, G is assumed to be bipartite, then $\lambda_{1}=-r$ and $\lambda_{n}=r$. The inequalities (1) just imply $\sqrt{2} \leq r$ in this case.

Next we consider again the case that G is not necessarily regular and try to establish a result similar to Theorem 5. Therefore, let $M(G, H)$ be the set of non-empty induced subgraphs H^{*} of H such that $B \underline{y}=\underline{1}$ has a solution $\underline{y}=\left(y_{1}, \ldots, y_{t}\right)^{T}$ with $y_{s}>0$ for $s=1, \ldots, t=\left|V\left(H^{*}\right)\right|$, where $A_{H^{*}}$ denotes the adjacency matrix of H^{*} and $B=A_{H^{*}}+\left(\sigma_{n}-1\right) \delta I$. In this case \underline{y} is called a positive solution of $B \underline{y}=\underline{1}$.
With $H^{*}=K_{1}$ and $y_{1}=\frac{1^{-}}{\left(\sigma_{n}-1\right) \delta}>0\left(\right.$ note that $\left.\sigma_{n}>1\right)$, it follows $K_{1} \in M(G, H) \neq \emptyset$.
If $H^{*} \in M(G, H)$ and y_{1} and y_{2} are positive solutions of $B \underline{y}=\underline{1}$, then, since B is symmetric, $\underline{1}^{T} \underline{y}_{1}=\underline{y}_{2}^{T} B \underline{y_{1}}=\underline{y}_{2}^{T} \underline{1}=\underline{1}^{\bar{T}} \underline{y_{2}}$, hence, the value $\underline{1}^{T} \underline{y}$ is independent on the choice of the positive solution \underline{y}. We define $\bar{g}\left(G, H^{*}\right)=\underline{1}^{T} \underline{y}$, where \underline{y} is an arbitrary positive solution of $B \underline{y}=1$.
If the induced subgraph H^{*} of H is ρ-regular, then it is easy to see that
$\left(A_{H^{*}}+\left(\sigma_{n}-1\right) \delta I\right) \underline{y}=\underline{1}$ has a positive solution $\underline{y}=\left(\frac{1}{\rho+\left(\sigma_{n}-1\right) \delta}, \ldots, \frac{1}{\rho+\left(\sigma_{n}-1\right) \delta}\right)^{T}$, hence, $H^{*} \in M(G, H)$.
If H_{1}^{*} and H_{2}^{*} are independent induced subgraphs of H and $H_{1}^{*}, H_{2}^{*} \in M(G, H)$, then the disjoint union $H_{1}^{*} \cup H_{2}^{*}$ of H_{1}^{*} and H_{2}^{*} also belongs to $M(G, H)$ and $g\left(G, H_{1}^{*} \cup H_{2}^{*}\right)=g\left(G, H_{1}^{*}\right)+g\left(G, H_{2}^{*}\right)$.

Eventually, let $f(G, H)=\min _{H^{*} \in M(G, H)} \frac{1}{g\left(G, H^{*}\right)}$.
Our second result is Theorem 6 involving the largest normalized Laplacian eigenvalue σ_{n} of G.

Theorem 6.

If H is an induced subgraph of G, then

$$
\frac{\sigma_{n} \delta^{2}}{2 m} \leq \min \left\{\underline{z}^{T}\left(A_{H}+\left(\sigma_{n}-1\right) \delta I\right) \underline{z} \mid \underline{z} \in R^{|V(H)|}, \underline{1}^{T} \underline{z}=1, \underline{z} \geq \underline{0}\right\}=f(G, H)
$$

If G is r-regular, then the assertion of Theorem 6 is weaker than that one of Theorem 5 because $\lambda_{1}=r\left(1-\sigma_{n}\right), \frac{2 m}{\sigma_{n} \delta^{2}}=\frac{n}{r-\lambda_{1}}$, and $\min \left\{\underline{z}^{T}\left(A_{H}-\lambda_{1} I\right) \underline{z} \mid \underline{z} \in R^{|V(H)|}, \underline{1}^{T} \underline{z}=1\right\}$ $\leq \min \left\{\underline{z}^{T}\left(A_{H}-\lambda_{1} I\right) \underline{z} \mid \underline{z} \in R^{|V(H)|}, \underline{1}^{T} \underline{z}=1, \underline{z} \geq \underline{0}\right\}$ in this case.

In general, it is not easy to calculate $\min \left\{\underline{z}^{T}\left(A_{H}+\left(\sigma_{n}-1\right) \delta I\right) \underline{z} \mid \underline{1}^{T} \underline{z}=1, \underline{z} \geq \underline{0}\right\}$, however, in special cases it can be done efficiently.
Therefore, we consider an example, where the graph G is non-regular (i.e. Corollary 4 and Theorem 5 are not applicable), $f(G, H)$ can be determined easily, and the necessary condition of Theorem 6 for the graph H to be an induced subgraph of G is stronger than that one of Theorem 2.
For positive integers p and q, where p is even, let $G=C_{p} \square P_{3}$ be the cartesian product ${ }^{1}$ of the cycle C_{p} and the path P_{3} on 3 vertices (for $p=20, G$ is shown in the figure) and let H consist of q copies of $K_{1,4}$.

We have $n=3 p, m=5 p, \delta=3$, and, since G is bipartite, $\sigma_{n}=2$. The Laplacian eigenvalues of C_{p} and of P_{3} are $2-2 \cos \left(\frac{2 \pi j}{p}\right)$ for $j=0, \ldots, p-1$ and $0,1,3$, respectively ([4]). Moreover, if η^{\prime} and $\eta^{\prime \prime}$ are Laplacian eigenvalues of G^{\prime} and $G^{\prime \prime}$, respectively, then $\eta^{\prime}+\eta^{\prime \prime}$ is a Laplacian eigenvalue of $G^{\prime} \square G^{\prime \prime}([4])$. Because p is even, it follows $\eta_{n}=2-2 \cos (\pi)+3=7$.
It is easy to see that $\sum_{i \in V(H)} d_{i}-2 e=10 q$ and, using $h=5 q$, Theorem 2 implies $q \leq \frac{3}{7} p$ in this case.
If H^{*} is an induced subgraph of $K_{1,4}$, then $H^{*}=K_{1, s}$ or $H^{*}=\bar{K}_{s}$ (the edgeless graph on s vertices) for suitable $s \in\{1,2,3,4\}$.
Let $H^{*}=K_{1, s}$ and consider the system $\left(A_{H^{*}}+\left(\sigma_{n}-1\right) \delta I\right) \underline{y}=\left(A_{H^{*}}+3 I\right) \underline{y}=\underline{1}$. It is easy to see that $K_{1,4}, K_{1,3} \notin M(G, H), K_{1,2}, K_{1,1} \in M(G, H), g\left(G, K_{1,2}\right)=\frac{5}{7}$, and $g\left(G, K_{1,1}\right)=\frac{1}{2}$.
If $H^{*}=\bar{K}_{s}$, then $H^{*} \in M(G, H)$ and $\left(A_{H^{*}}+3 I\right) \underline{y}=\underline{1}$ lead to $g\left(G, H^{*}\right)=\frac{s}{3}$, hence, $f(G, H)=\frac{3}{4 q}$. By Theorem 6, it follows $q \leq \frac{5}{12} p<\frac{3}{7} p$.

If H^{*} with $\left|V\left(H^{*}\right)\right| \geq 1$ is an arbitrary induced subgraph of H and $\underline{z}=\left(z_{1}, \ldots, z_{h}\right)^{T}$ with $z_{i}=\frac{1}{\left|V\left(H^{*}\right)\right|}$ if $i \in V\left(H^{*}\right)$ and $z_{i}=0$ otherwise, then $\underline{1}^{T} \underline{z}=1$ and $\underline{z}^{T}\left(A_{H}+\left(\sigma_{n}-1\right) \delta I\right) \underline{z}=$ $\frac{d_{H^{*}+\left(\sigma_{n}-1\right) \delta}\left|V\left(H^{*}\right)\right|}{}$, where $d_{H^{*}}$ denotes the average degree of H^{*}. Thus, Corollary 7 is a consequence of Theorem 6.

[^0] arbitrary induced subgraph of H with $\left|V\left(H^{*}\right)\right| \geq 1$.

Obviously, Corollary 7 is an extension of Corollary 4 if G is regular.
We conclude with an example, where Corollary 3 is weaker than Corollary 7 for not necessarily regular G. Therefore, let $V(H)$ be an independent set of G, i.e. $d_{H}=0$. By Corollary 3 and Corollary 7, it follows that $h \leq \frac{\eta_{n}-\delta}{\eta_{n}} n$ and $h \leq \frac{2\left(\sigma_{n}-1\right)}{\sigma_{n} \delta} m$ if G contains h independent vertices, respectively. In [11], it is shown that there are infinitely many graphs G such that $\frac{2\left(\sigma_{n}-1\right)}{\sigma_{n} \delta} m<\frac{\eta_{n}-\delta}{\eta_{n}} n$.

2 Proofs

In [11], the following Lemma 8 is proved. For completeness we give a proof here.
Lemma 8. If x_{1}, \ldots, x_{n} are real numbers, then

$$
\begin{equation*}
\sigma_{n}\left(\sum_{i=1}^{n} d_{i} x_{i}\right)^{2}-2\left(\sigma_{n}-1\right) m \sum_{i=1}^{n} d_{i} x_{i}^{2} \leq 4 m \sum_{i j \in E} x_{i} x_{j} . \tag{2}
\end{equation*}
$$

Proof of Lemma 8.

It is easy to see that σ is an eigenvalue of \mathcal{L} if and only if $\mu=1-\sigma$ fulfills $\operatorname{det}(A-\mu D)=0$ $[10,12,14]$. Let $\mu_{i}=1-\sigma_{n-i+1}$ for $i=1, \ldots, n$.
Note that D is positive definite since $\delta \geq 1$. Define $\underline{x}^{T} D \underline{y}$ as the inner product for vectors $\underline{x}, \underline{y} \in R^{n}$ and let \underline{x} and \underline{y} be called D-orthogonal if $\underline{x}^{T} D \underline{y}=0$. If $\underline{x}^{T} D \underline{x}=1$ then \underline{x} is called D-normal. A set of D-normal vectors being pairwise D-orthogonal is a D-orthonormal set.
We consider the generalized eigenvalue problem $A \underline{x}=\mu D \underline{x}$ for $\mu \in R$ and $\underline{x} \in R^{n}$ with $\underline{x} \neq \underline{0}$. If the pair (μ, \underline{x}) is a solution of this equation, then \underline{x} is a D-eigenvector of G and μ is the corresponding D-eigenvalue of G.
We use the well known fact (e.g. see [14]) that there is a D-orthonormal basis of R^{n} consisting of D-eigenvectors of G. Next we will show the following assertion.

If $\left\{\underline{u_{1}}, \ldots, \underline{u_{n}}\right\}$ is a D-orthonormal basis of R^{n} such that $\underline{u_{i}}$ is a D-eigenvector with corresponding \bar{D}-eigenvalue μ_{i} for $i=1, \ldots, n$, then, for any vector $\underline{x} \in R^{n}$,

$$
\begin{equation*}
\left(\mu_{2}-\mu_{1}\right)\left(\underline{x}^{T} D \underline{u_{2}}\right)^{2}+\ldots+\left(\mu_{n}-\mu_{1}\right)\left(\underline{x}^{T} D \underline{u_{n}}\right)^{2}+\mu_{1} \underline{x}^{T} D \underline{x}=\underline{x}^{T} A \underline{x} . \tag{3}
\end{equation*}
$$

To see this, let \underline{x} be given. There are real numbers a_{1}, \ldots, a_{n} such that $\underline{x}=a_{1} u_{1}+\ldots+a_{n} u_{n}$. Then $\underline{x}^{T} A \underline{x}=\mu_{1} a_{1}^{2}+\ldots+\mu_{n} a_{n}^{2}, \underline{x}^{T} D \underline{x}=a_{1}^{2}+\ldots+a_{n}^{2}$, and $\underline{x}^{T} D \underline{u_{i}}=a_{i}$ for $i=1, \ldots, n$. The desired equality (3) is equivalent to $\left(\mu_{2}-\mu_{1}\right) a_{2}^{2}+\ldots+\left(\mu_{n}-\mu_{1}\right) a_{n}^{2}+\mu_{1}\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)=\mu_{1} a_{1}^{2}+\ldots+\mu_{n} a_{n}^{2}$.

As a consequence,

$$
\begin{equation*}
\left(\mu_{n}-\mu_{1}\right)\left(\underline{x}^{T} D \underline{u_{n}}\right)^{2}+\mu_{1} \underline{x}^{T} D \underline{x} \leq \underline{x}^{T} A \underline{x} . \tag{4}
\end{equation*}
$$

The vector $\frac{1}{\sqrt{2 m}} 1$ is a D-normal D-eigenvector of G with corresponding D-eigenvalue $\mu_{n}=1$, thus, inequality (4) and $\sigma_{n}=1-\mu_{1}$ imply Lemma 8.

Proof of Theorem 5.

Inequality (2) and $\lambda_{1}=r\left(1-\sigma_{n}\right)$, if G is r-regular, imply
If G is r-regular and x_{1}, \ldots, x_{n} are real numbers then

$$
\begin{equation*}
\left(r-\lambda_{1}\right)\left(\sum_{i=1}^{n} x_{i}\right)^{2}+\lambda_{1} n \sum_{i=1}^{n} x_{i}^{2} \leq 2 n \sum_{i j \in E} x_{i} x_{j} . \tag{5}
\end{equation*}
$$

Let U be an induced subgraph of G isomorphic to H and $\phi: V(H) \rightarrow V(U)$ be a graph isomorphism from H to U.

For real numbers z_{1}, \ldots, z_{h} with $\sum_{q=1}^{h} z_{q}=1$, let x_{1}, \ldots, x_{n} be defined as follows:
If $i \in V(U)$, then there is a suitable $q \in\{1, \ldots, h\}$ such that $i=\phi\left(v_{q}\right)$. Set $x_{i}=z_{q}$ in this case. If $i \in V \backslash V(U)$, then let $x_{i}=0$.

With $\underline{z}=\left(z_{1}, \ldots, z_{h}\right)^{T}$, we obtain
$\sum_{i \in V} x_{i}=\sum_{q=1}^{h} z_{q}=1, \sum_{i \in V} x_{i}^{2}=\sum_{q=1}^{h} z_{q}^{2}$, and
$2 \sum_{i j \in E} x_{i} x_{j}=2 \sum_{v_{q} v_{q^{\prime}} \in E(H)} z_{q} z_{q^{\prime}}=\underline{z}^{T} A_{H} \underline{z}$.
Inequality (5) implies $\left(r-\lambda_{1}\right)+\lambda_{1}\left(\sum_{q=1}^{h} z_{q}^{2}\right) n \leq \underline{z}^{T} A_{H} \underline{z} n$, hence, with
$B=\left(A_{H}-\lambda_{1} I\right), 1 \leq \frac{n}{\left(r-\lambda_{1}\right)} \min \underline{z}^{T} B \underline{z}=\frac{n}{\left(r-\lambda_{1}\right)} M I N$, where the minimum is taken over all vectors $\underline{z}=\left(z_{1}, \ldots, z_{h}\right)^{T}$ with $\sum_{q=1}^{h} z_{q}=1$.
Note that this minimum exists, because $\lambda_{1} \leq \phi_{1}$ follows from Theorem 1, hence, all eigenvalues $\phi_{1}-\lambda_{1}, \phi_{2}-\lambda_{1}, \ldots, \phi_{h}-\lambda_{1}$ of B are non-negative. It follows that B is positive semidefinite.

To investigate this value $M I N$, we consider the Lagrange function $L(\underline{z}, \kappa)=\underline{z}^{T} B \underline{z}-2 \kappa\left(\sum_{q=1}^{h} z_{q}-1\right)$ with Lagrange multiplier 2κ and the necessary optimality conditions $L_{z_{q}}=0$ for $q=1, \ldots, h$ (for more details to Lagrange Theory to see [2]).

We obtain that the equations $B \underline{z}=\kappa \underline{1}$ and $\underline{1}^{T} \underline{z}=1$ are simultaneously solvable.
Next we will show that κ is unique. If $B \underline{z_{1}}=\kappa_{1} \underline{1}, \underline{1}^{T} \underline{z}_{1}=1, B \underline{z_{2}}=\kappa_{2} \underline{1}$, and $\underline{1}^{T} \underline{z}_{2}=1$, then $\kappa_{1}=\kappa_{1} \underline{1}^{T} \underline{z}_{2}={\underline{z_{1}}}^{T} B \underline{z_{2}}=\kappa_{2} \underline{z}^{T} \underline{1}=\kappa_{2}$.

With $1 \leq \frac{n}{\left(r-\lambda_{1}\right)}$ MIN, it follows $M I N=\underline{z}^{T} B \underline{z}=\kappa>0$.

If $\underline{x}=\frac{1}{\kappa} \underline{z}$, then $B \underline{x}=\underline{1}$ and $\underline{1}^{T} \underline{x}=\frac{1}{\kappa}$.
If $\lambda_{1}<\phi_{1}$, then B is regular and $1=\underline{1}^{T} \underline{z}=\kappa \underline{1}^{T} B^{-1} \underline{1}$, hence, $\underline{1}^{T} \underline{x}=\underline{1}^{T} B^{-1} \underline{1}$.

Proof of Theorem 6.

The proof of Theorem 6 is similar to that one of Theorem 5 .
Let $x_{i} \geq 0$ for $i=1, \ldots, n$ and, since $\sigma_{n}>1$, inequality (2) implies
$\sigma_{n}\left(\sum_{i=1}^{n} d_{i} x_{i}\right)^{2}-\frac{2\left(\sigma_{n}-1\right) m}{\delta} \sum_{i=1}^{n}\left(d_{i} x_{i}\right)^{2} \leq \frac{4 m}{\delta^{2}} \sum_{i j \in E}\left(d_{i} x_{i}\right)\left(d_{j} x_{j}\right)$.
Substituting $w_{i}=d_{i} x_{i}$ for $i=1, \ldots, n$, it follows

$$
\begin{equation*}
\sigma_{n} \delta^{2}-2\left(\sigma_{n}-1\right) m \delta \sum_{i=1}^{n} w_{i}^{2} \leq 4 m \sum_{i j \in E} w_{i} w_{j} \tag{6}
\end{equation*}
$$

for arbitrary $w_{i} \geq 0$ for $i=1, \ldots, n$ with $\sum_{i=1}^{n} w_{i}=1$.
Again, let U be an induced subgraph of G isomorphic to H and $\phi: V(H) \rightarrow V(U)$ be a graph isomorphism from H to U, and, for real numbers $z_{1}, \ldots, z_{h} \geq 0$ with $\sum_{q=1}^{h} z_{q}=1$, let w_{1}, \ldots, w_{n} be defined as follows:
If $i \in V(U)$, then there is a suitable $q \in\{1, \ldots, h\}$ such that $i=\phi\left(v_{q}\right)$. Set $w_{i}=z_{q}$ in this case. If $i \in V \backslash V(U)$, then let $w_{i}=0$.
Inequality (6) implies $\frac{\sigma_{n} \delta^{2}}{2 m} \leq \min \left(\underline{z}^{T} A_{H} \underline{z}+\left(\sigma_{n}-1\right) \delta \underline{z}^{T} \underline{z}\right)=M I N$, where the minimum is taken over $\mathcal{S}_{h}=\left\{\underline{z}=\left(z_{1}, \ldots, z_{h}\right)^{T} \mid z_{q} \geq 0\right.$ for $\left.q=1, \ldots, h, \quad \sum_{q=1}^{h} z_{q}=1\right\}$.
Note that this minimum exists because $\underline{z}^{T} A_{H} \underline{z}+\left(\sigma_{n}-1\right) \delta \underline{z}^{T} \underline{z}$ is a continuous function and \mathcal{S}_{h} is a compact set.

Let $\underline{z}=\left(z_{1}, \ldots, z_{h}\right)^{T} \in \mathcal{S}_{h}$ with $\underline{z}^{T} A_{H} \underline{z}+\left(\sigma_{n}-1\right) \delta \underline{z}^{T} \underline{z}=M I N$. Furthermore, let H^{\prime} be the induced subgraph of H with vertex set $V\left(H^{\prime}\right)=\left\{q \in V(H) \mid z_{q}>0\right\} \neq \emptyset$.

If $t=\left|V\left(H^{\prime}\right)\right|=1$, then $H^{\prime}=K_{1} \in M(G, H)$ with $V\left(H^{\prime}\right)=\{q\}, z_{q}=1$, and $M I N=\left(\sigma_{n}-1\right) \delta>0$. Hence, $\underline{y}=\left(\frac{1}{\left(\sigma_{n}-1\right) \delta}\right)$ is a positive solution of
$\left(A_{H^{\prime}}+\left(\sigma_{n}-1\right) \delta I\right) \underline{y}=\underline{1}$ and it follows $g\left(G, H^{\prime}\right)=\underline{1}^{T} \underline{y}=\frac{1}{\left(\sigma_{n}-1\right) \delta}=\frac{1}{M I N}$ and $1 \leq \frac{2 m}{\sigma_{n} \delta^{2} g\left(G, H^{\prime}\right)}$.
If $t \geq 2$, then $0<z_{q}<1$ for all $q \in V\left(H^{\prime}\right)$.
Thus, $M I N=\min \left(\underline{u}^{T} A_{H^{\prime}} \underline{u}+\left(\sigma_{n}-1\right) \delta \underline{u}^{T} \underline{u}\right)$, where the minimum is taken over the relative interior $\operatorname{rint}\left(\mathcal{S}_{t}\right)=\left\{\underline{u}=\left(u_{1}, \ldots, u_{t}\right)^{T} \mid u_{s}>0\right.$ for $\left.s=1, \ldots, t, \sum_{s=1}^{t} u_{s}=1\right\}$ of \mathcal{S}_{t},
consequently, this minimum is a local minimum at the hyperplane
$\mathcal{H}_{t}=\left\{\underline{u}=\left(u_{1}, \ldots, u_{t}\right)^{T} \mid \sum_{s=1}^{t} u_{s}=1\right\}$.
To investigate this value MIN, we consider the Lagrange function $L(\underline{u}, \kappa)=\underline{u}^{T} A_{H^{\prime}} \underline{u}+\left(\sigma_{n}-1\right) \delta \underline{u}^{T} \underline{u}-2 \kappa\left(\sum_{s=1}^{t} u_{s}-1\right)$ with Lagrange multiplier 2κ and the nec-
essary optimality conditions $L_{u_{s}}=0$ for $s=1, \ldots, t$.
With $B=A_{H^{\prime}}+\left(\sigma_{n}-1\right) \delta I$, we obtain that the system $B \underline{u}=\kappa \underline{1}, \underline{1}^{T} \underline{u}=1$ has a positive solution \underline{u}.

Next we will show that κ is unique. If $B \underline{u_{1}}=\kappa_{1} \underline{1}, \underline{1}^{T} \underline{u_{1}}=1, B \underline{u_{2}}=\kappa_{2} \underline{1}$, and $\underline{1}^{T} \underline{u_{2}}=1$, then $\kappa_{1}=\kappa_{1} \underline{1}^{T} \underline{u_{2}}=\underline{u}_{1}^{T} B \underline{u_{2}}=\kappa_{2} \underline{u}_{1}^{T} \underline{1}=\kappa_{2}$.

With $1 \leq \frac{2 m}{\sigma_{n} \delta^{2}} M I N$, it follows $M I N=\underline{u}^{T} B \underline{u}=\kappa>0$.
If $\underline{y}=\frac{1}{\kappa} \underline{u}$, then $B \underline{y}=\underline{1}$ has a positive solution \underline{y}, consequently, $H^{\prime} \in M(G, H)$. Moreover, $g\left(\bar{G}, H^{\prime}\right)=\underline{1}^{T} \underline{y}=\frac{\overline{1}}{\kappa}=\frac{1}{M I N}$ and we obtain $1 \leq \frac{2 m}{\sigma_{n} \delta^{2} g\left(G, H^{\prime}\right)}$.

To see that $f(G, H)=\frac{1}{g\left(G, H^{\prime}\right)}$, assume there is $H^{\prime \prime} \in M(G, H)$ with $g\left(G, H^{\prime \prime}\right)>g\left(G, H^{\prime}\right)$. Then there exists $\underline{u} \in \operatorname{rint}\left(\mathcal{S}_{t}\right)$ with $t=\left|V\left(H^{\prime \prime}\right)\right|$ such that $\underline{u}^{T} A_{H^{\prime \prime}} \underline{u}+$ $\left(\sigma_{n}-1\right) \delta \underline{u}^{T} \underline{u}<M I N$.
Let $x_{i}=u_{i}$ if $i \in V\left(H^{\prime \prime}\right)$ and $x_{i}=0$ for $i \in V(H) \backslash V\left(H^{\prime \prime}\right)$.
It follows $\underline{x}=\left(x_{1}, \ldots, x_{h}\right)^{T} \in \mathcal{S}_{|V(H)|}$ and $\underline{x}^{T} A_{H} \underline{x}+\left(\sigma_{n}-1\right) \delta \underline{x}^{T} \underline{x}<M I N$, contradicting the definition of MIN.

Acknowledgement. The authors would like to express their gratitude to Horst Sachs, Ilmenau University of Technology, for his valuable advice.

References

[1] W.N. Anderson Jr., T.D. Morley, Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18(1985)141-145.
[2] D. P. Bertsekas, Nonlinear Programming: Second Edition, Athena Scientific, Belmont, Massachusetts, ISBN 1-886529-00-0, page 278, Proposition 3.1.1
[3] B. Bollobás, V. Nikiforov, Graphs and hermitian matrices: eigenvalue interlacing, Discrete Mathematics 289(2004)119-127.
[4] A. E. Brouwer, W. H. Haemers, Spectra of graphs, 2011 Springer.
[5] S. Butler, Interlacing for weighted graphs using the normalized Laplacian, Electronic Journal of Linear Algebra 16(2007)90-98.
[6] F.R.K. Chung, Laplacian of graphs and Cheeger's inequalities, in: Combinatorics, Paul Erdös is Eighty, Vol. 2, János Bolyai Math. Soc., Budapest (1996)157-172.
[7] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs: Theory and Applications, Johann Abrosius Barth Verlag, Heidelberg-Leipzig, 1995, third revised and enlarged edition.
[8] R. Diestel, Graph Theory, Springer, Graduate Texts in Mathematics 173 (2000).
[9] W.H. Haemers, Interlacing Eigenvalues and Graphs, Linear Algebra and its Applications 227-228(1995)593-616.
[10] F.J. Hall, The Adjacency Matrix, Standard Laplacian, and Normalized Laplacian, and Some Eigenvalue Interlacing Results, Department of Mathematics and Statistics Georgia State University Atlanta, GA 30303, http://www2.cs.cas.cz/semincm/lectures/2010-04-13-Hall.pdf
[11] J. Harant, S. Richter, A new eigenvalue bound for independent sets, submitted to Discrete Mathematics, http://www.tu-chemnitz.de/mathematik/preprint/2014/PREPRINT_08.pdf.
[12] V.S. Shigehalli, V.M. Shettar, Spectral techniques using normalized adjacency matrices for graph matching, Int. Journal of Computational Science and Mathematics vol.2, no. 4(2011)371-378.
[13] Xiao-Dong Zhang, The Laplacian eigenvalues of graphs: a survey, arXiv:1111.2897v1 [math.CO] 12Nov2011
[14] R. Zurmühl, Matrizen, Springer 1950, page 152-158.

[^0]: ${ }^{1}$ Given graphs G_{1} and G_{2} with vertex set V_{1} and V_{2}, respectively, their cartesian product $G_{1} \square G_{2}$ is the graph with vertex set $V_{1} \times V_{2}$, where $\left(v_{1}, v_{2}\right)\left(w_{1}, w_{2}\right) \in E\left(G_{1} \square G_{2}\right)$ when either $v_{1}=w_{1}$ and $v_{2} w_{2} \in E\left(G_{2}\right)$ or $v_{2}=w_{2}$ and $v_{1} w_{1} \in E\left(G_{1}\right)$.

