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Abstract

Necessary conditions for an undirected graph G to contain a graph H as induced
subgraph involving the smallest ordinary or the largest normalized Laplacian eigenvalue
of G are presented.
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1 Introduction

We consider two fixed finite, undirected, and simple graphs: Let G = (V, E) be a graph with-
out isolated vertices, where V = {1,...,n} and E (with |E| = m) denote the vertex set and
the edge set of GG, respectively. Let § > 1 denote the minimum degree of G. Furthermore,
Tet(dh;‘ = 2¢ be the average degree of a graph H = (V(H), E(H)), where |V(H)| = h and
E(H)| =e.

The eigenvalues \; < ... < A\, of the adjacency matrix A of G are the ordinary eigenvalues (or
shortly the eigenvalues) of G. Note that —r < XA < \,, = r for all eigenvalues A of an r-regular
graph G, and if G is connected, then \; = —\,, if and only if G is bipartite [4, 7].

Let D be the degree matriz of G, that is an (n x n) diagonal matrix, where the degree d; of
vertex ¢ € V is the i-th entry at the main diagonal. Moreover, let 0 = n; < ... < n, be the
eigenvalues of the Laplacian L =D — A of G [1, 13|. If G is r-regular, then 7 is an eigenvalue
of the Laplacian if and only if r» — 7 is an eigenvalue of A.

For G without isolated vertices, the normalized Laplacian is the (n x n) matrix £ = (I;;)
with l;; = 1if 7 = 7, l;; = —ﬁ if ij € E, and [;; = 0 otherwise. The eigenvalues

id;
0=o01 <..<oy,of L are the normalized Laplacian eigenvalues of G |5, 6, 13|. It is known
that 1 < 0, < 2 and that G is bipartite if and only if o, = 2 [10, 12, 13]. For an r-regular



graph G, o is a normalized Laplacian eigenvalue if and only if (1 — o) is an eigenvalue of A.
For further notation and terminology we refer to [8].

In the present paper, we are interested in necessary conditions in terms of eigenvalues for the
fact that G contains a copy of H as an induced subgraph. If all eigenvalues of G and all
eigenvalues ¢1 < ... < ¢y, of the adjacency matrix Ay of H are taken into consideration, then
Theorem 1 is a typical result of this kind.

Theorem 1 (Cauchy’s inequalities, Interlacing theorem [4, 7]).
If H is an induced subgraph of G with eigenvalues ¢1 < ... < ¢y,
then A\j < ¢y < Ap—pyi fori=1,... h.

In general, it is difficult to determine the spectra of large graphs G and H, however, the
largest and the smallest eigenvalues of the matrices A, L, and £ of a graph are well investigated
([1, 4, 5, 6]). Hence, we focus on simpler necessary conditions for H being an induced subgraph
of G just involving smallest or largest eigenvalues. The inequalities (1) obtained from Theorem
1 are possible results of this type.

M1 and Ay > dp. (1)

If the largest Laplacian eigenvalue 7,, of G and the degrees of the vertices of H in G are taken
into account, then the assertion of Theorem 2 holds.

Theorem 2 (B. Bollobas, V. Nikiforov [3]).
If H is an induced subgraph of G, then (>, d; —2e)n < n,h(n — h).
i€V (H)

In general, it is not easy to determine the value > d; exactly. If the degrees of G do not
ieV(H)
differ too much, then the inequality >, d; > dh is reasonable and it follows
i€V (H)

Corollary 3.
If H is an induced subgraph of G, then n,h < (dg + nn — 0)n.

Note that Corollary 3 only makes sense if § > dp.

If G is r-regular, then d =r, 9, =7 — A1, and > d; = rh, hence, Theorem 2, Corollary 3,
i€V (H)
and the following Corollary 4, proved by W.H. Haemers already in [9], coincide in this case.

Corollary 4 (W.H. Haemers [9]).
If H is an induced subgraph of the r-reqular graph G, then (r — A)h < (dg — \1)n.

The identity matriz is the (n X n) square matrix with ones on the main diagonal and zeros
elsewhere. It is denoted simply by I if the size is immaterial or can be trivially determined by
the context. In the sequel, z denotes a vector, where 1 = (1,1,...,1)” and 0 = (0,0, ...,0)T,
and we write z > 0 if x; > 0 for each entry z; of z.

Our first result is Theorem 5 concerning the case that GG is regular and involving the smallest
eigenvalue A1 of G.



Theorem 5.
Let G be r-regular. If H is an induced subgraph of G, then (Ag — M\ I)x =1 is solvable, and,
for any solution x of this equation,

< min{gT(AH —MDz | z€ RW(H)|, 17, = 1} = 1%
n =

T‘—)\l

18

Moreover, if \y < ¢1, then Ay — M1 is reqular and 172 equals the sum of all entries of
(AH — )\1[)_1.

If 2 = (%, e %)T € R" then 17z = 1 and 27 (Ay — M)z = 26;# Thus, Theorem 5 is an
extension of Corollary 4. If in Theorem 5, additionally, H is assumed to be p -regular, then

. . —\ di—A
T = (ﬁ, ey ﬁ)T is a solution of (Ag — A\ I)z = 1, thus, ﬁ = = D — 1), hence,

Corollary 4 and Theorem 5 coincide in this case.

Now consider the following example, where the assertion of Theorem 5 is stronger than that
one of Corollary 4 and inequalities (1) only lead to trivial statements. We ask for a neces-
sary condition that the r-regular graph G contains £ > 1 disjoint and independent copies
of the path P53 on 3 vertices, that is, H consists of k£ components each of them isomorphic
to P3. The eigenvalues of P3 are —v/2,0,v/2 ([4]), hence, with Theorem 1 we may assume
Al < —V2 < —5. With h =3k and dy = g, Corollary 4 leads to k < gr235n.

If we consider the system (Apg — A\ I)x = 1, then, by Theorem 5, it is solvable and it follows
172 = k17y, where vy is a solution of (Ap, — Mil)y = 1. It is easy to see that 1Ty = %,
thus, again by Theorem 5, k < m

If, additionally, G is assumed to be bipartite, then A\; = —r and A, = r. The inequalities (1)
just imply /2 < r in this case.

n, which is stronger than k < g‘é%‘ii)n.

Next we consider again the case that G is not necessarily regular and try to establish a result
similar to Theorem 5. Therefore, let M (G, H) be the set of non-empty induced subgraphs H*
of H such that By = 1 has a solution y = (y1,...,y:)7 with ys > 0 for s = 1,....t = |V (H")|,
where A+ denotes the adjacency matrix of H* and B = A+ + (6, — 1)d1. In this case y is
called a positive solution of By = 1. a
With H* = K and y1 = ;1355 > 0 (note that o, > 1), it follows K1 € M(G, H) #0 .

If H* € M(G, H) and y; and yo are positive solutions of By = 1, then, since B is symmetric,
1Ty1 =y By = o'l = 17

Y2 Y2, hence, the value ng is independent on the choice of the
positive solution y. We define g(G, H*) = 17y, where y is an arbitrary positive solution of
By =1. a B a

If the induced subgraph H* of H is p-regular, then it is easy to see that

(Ags + (op — 1)0I)y = 1 has a positive solution y = (p+(071z—1)5""’ p+(gi_1)5)T, hence,
H* e M(G,H).

If Hf and Hj are independent induced subgraphs of H and Hf,H; € M(G, H), then the
disjoint union H} U H3 of Hf and H3 also belongs to M (G, H) and

9(G,H{ U H3) = g(G, HY) + g(G, H).

Eventually, let f(G,H) = . I]I\l/[l(% )
*c ,

Our second result is Theorem 6 involving the largest normalized Laplacian eigenvalue o, of

G.

1
g(G,H")"



Theorem 6.
If H is an induced subgraph of G, then

0,02

2m

If G is r-regular, then the assertion of Theorem 6 is weaker than that one of Theorem 5 be-

cause \; = r(1 — oy,), % = ﬁ, and min{z? (Ag — M)z | z € RVEI 1T, = 1}

<min{z"(Ag — Mz |z € RVUEDI 1T, =1 2> 0} in this case.

< min{z" (Ay + (0, —1)00)z | z€ RV 172 = 1,2 > 0} = f(G, H).

In general, it is not easy to calculate min{z” (Ay + (o, — 1)61)z | 1Tz =
in special cases it can be done efficiently.

Therefore, we consider an example, where the graph G is non-regular (i.e. Corollary 4 and
Theorem 5 are not applicable), f(G, H) can be determined easily, and the necessary condition
of Theorem 6 for the graph H to be an induced subgraph of G is stronger than that one of
Theorem 2.

1,z > 0}, however,

For positive integers p and g, where p is even, let G = C,[JP3 be the cartesian product! of
the cycle Cp and the path P3 on 3 vertices (for p = 20, G is shown in the figure) and let H
consist of ¢ copies of K 4.

We have n = 3p, m = 5p, § = 3, and, since G is bipartite, o, = 2. The Laplacian eigenvalues
of Cp and of P3 are 2 — QCOS(QZj) for j=0,...,p— 1 and 0, 1, 3, respectively ([4]). Moreover,
if ' and 1’ are Laplacian eigenvalues of G’ and G”, respectively, then n’ + 7" is a Laplacian
eigenvalue of G'O0G"” (|4]). Because p is even, it follows n, =2 — 2cos(n) +3 =T.

It is easy to see that > d; —2e = 10q and, using h = 5¢, Theorem 2 implies ¢ < %p in this
i€V (H)

case.

If H* is an induced subgraph of K 4, then H* = K 5 or H* = K (the edgeless graph on s
vertices) for suitable s € {1,2,3,4}.

Let H* = K15 and consider the system (Ag« + (0, —1)d1)y = (AH* +31)y = 1. It is easy to
see that K174,K173 ¢ M(G,H), K1727K171 S M(G, H), (G K1 2) and g(G ) %
If H* = K, then H* € M(G,H) and (Ag- + 3I)y = 1 lead to g(G H*) = 2, hence,
f(G,H) = %. By Theorem 6, it follows ¢ < %p < %p.

If H* with |V (H*)| > 1 is an arbitrary induced subgraph of H and z = (z1,...,24)7 with
zi = W}f)l if i € V(H*) and 2; = 0 otherwise, then 172 = 1 and 27 (Ay + (0, — 1)01)z =

%ﬁﬁ)—‘l)é, where dp« denotes the average degree of H*. Thus, Corollary 7 is a consequence

of Theorem 6.
LGiven graphs G1 and G2 with vertex set Vi and Va, respectively, their cartesian product G10G2 is the

graph with vertex set Vi x Va, where (vi,v2)(w1,w2) € E(G10G2) when either v1 = w1 and vows € E(G2) or
v2 = w2 and viw1 € E(G1).




Corollary 7. If H is an induced subgraph of G, then UZ”T‘EL < dHTJ((Z,Zil) , where H* is an
arbitrary induced subgraph of H with |V (H*)| > 1.

Obviously, Corollary 7 is an extension of Corollary 4 if G is regular.

We conclude with an example, where Corollary 3 is weaker than Corollary 7 for not necessarily
regular G. Therefore, let V(H) be an independent set of G, i.e. dg = 0. By Corollary 3
and Corollary 7, it follows that h < =9y and h < %m if G contains h independent
vertices, respectively. In [11], it is shown that there are innﬁnitely many graphs G such that

2(on—1) Mn—0
b m < T n.

2 Proofs

In [11], the following Lemma 8 is proved. For completeness we give a proof here.

Lemma 8. If x1,...,x, are real numbers, then

Zdl‘l —2(o —lmde <4mZx1x] (2)

ijelR

Proof of Lemma 8.

It is easy to see that o is an eigenvalue of £ if and only if p =1 — o fulfills det(A — uD) =0
[10, 12, 14]. Let gy =1 —op_jp1 fori=1,...,n

Note that D is positive definite since § > 1. Define QTDQ as the inner product for vectors
z,y € R" and let z and y be called D-orthogonal if z7 Dy = 0. If 27 Dz = 1 then z is called
D-normal. A set of D-normal vectors being pairwise D-orthogonal is a D-orthonormal set.
We consider the generalized eigenvalue problem Az = puDz for p € R and x € R™ with x # 0.
If the pair (u,z) is a solution of this equation, then z is a D-eigenvector of G and p is the
corresponding D-eigenvalue of G.

We use the well known fact (e.g. see [14]) that there is a D-orthonormal basis of R" consisting
of D-eigenvectors of G. Next we will show the following assertion.

If {ui, ..., un} is a D-orthonormal basis of R"™ such that u; is a D-eigenvector with correspond-
ing D-eigenvalue p; fori=1,...,n, then, for any vector x € R",

(2 — p1) (" Dug)® + ... 4 (ttn — p1) (2" Duy)® + puz" Dz = 2" Az. (3)

To see this, let x be given. There are real numbers a1, ..., a, such that z = ajui + ... + ayu,.
Then zT Az = ,ula% + ...+ una%, "Dz = a% + ...+ a%, and QTD% =a; fori=1,...,n. The
desired equality (3) is equivalent to

(p2 = p1)a3 + ..+ (o — p)ai + pa(ad + ... 4+ al) = pad + ... + pnaj,.

As a consequence,
(b — 1) (2" Duy)* + " Dz < 2" Az (4)



The vector ﬁl is a D-normal D-eigenvector of G with corresponding D-eigenvalue
fn = 1, thus, inequality (4) and o,, = 1 — p1 imply Lemma 8. 0.

Proof of Theorem 5.
Inequality (2) and Ay = (1 — 0,), if G is r-regular, imply

If G is r-reqular and x1, ..., xy, are real numbers then

(r— )\1)(2 z;)? + Alnz:r? < 2n Z TiTj. (5)
i=1

i=1 ijeE

Let U be an induced subgraph of G isomorphic to H and ¢ : V(H) — V(U) be a graph
isomorphism from H to U.

h
For real numbers z1, ..., 2z, with ) 2z, =1, let 1, ..., 2, be defined as follows:
q=1
If i € V(U), then there is a suitable ¢ € {1,...,h} such that i = ¢(vy). Set z; = z; in this
case. If i € V'\ V(U), then let z; = 0.

With z = (21, ..., 25)", we obtain

h h
2 2
dowi= ) zg =1, & =) z, and
eV q=1 eV q=1
2 Z :Bi.l‘j =2 Z zqzq/ = gTAHg.
IS Vg EE(H)

h
Inequality (5) implies (r — A1) + A (D] zg)n < 2T Ay zn, hence, with
q=1
B=(Ag—MI),1< ﬁ min z' Bz = ﬁMIN, where the minimum is taken over all

h
vectors z = (21, ..., zp)7 with Y 2z, = 1.
q=1
Note that this minimum exists, because A1 < ¢; follows from Theorem 1, hence, all
eigenvalues ¢1 — A1, 02 — A1, ..., ¢p — A1 of B are non-negative. It follows that B is positive

semidefinite.

To investigate this value M IN, we consider the Lagrange function
h
L(z,k) = 2I' Bz — 2k(3_ 2z, — 1) with Lagrange multiplier 2x and the necessary optimality
q=1
conditions L., = 0 for ¢ =1, ..., h (for more details to Lagrange Theory to see [2]).

We obtain that the equations Bz = k1 and 172 =1 are simultaneously solvable.

Next we will show that x is unique. If Bz = x11, lTﬁ =1, Bz = k2l, and lTQ =1, then
K1 = ﬁllTQ = QTBQ = ﬁgﬂTl = Ko.

With 1 < 255 MIN, it follows MIN = z"Bz = > 0.



If x = %g, then Bx =1 and 17z = %
If A1 < ¢1, then B is regular and 1 = 172 = k1TB711, hence, 172z =17B711. ]
Proof of Theorem 6.

The proof of Theorem 6 is similar to that one of Theorem 5.

Let x; > 0 for i = 1,...,n and, since o,, > 1, inequality (2) implies
n

on() diai)? 2o 10m SN (dg)? < A0S (dyay) (dyr).

i=1 ijE€E
Substituting w; = d;x; for i = 1,...,n, it follows
n
062 — 2(0p, — I)m(SZwi2 < 4m Z wiw;j (6)
i=1 ijEE
n
for arbitrary w; > 0 fori=1,...,n with Y w; = 1.
i=1
Again, let U be an induced subgraph of G isomorphic to H and ¢ : V(H) — V(U) be a graph
h
isomorphism from H to U, and, for real numbers z1, ..., 2z, > 0 with ) z, = 1, let wy, ..., wy,
q=1

be defined as follows:
If i € V(U), then there is a suitable ¢ € {1, ..., h} such that i = ¢(vy). Set w; = z, in this
case. If i € V'\ V(U), then let w; = 0.

Inequality (6) implies ‘72"722 <min(z"Agz + (0, — 1)6272) = MIN , where the minimum is

h
taken over S, = {z = (21, ...,2n)T | 2, >0for g=1,....h, > 2z,=1}L
q=1

Note that this minimum exists because 27 Agyz + (op — 1)5§Tg is a continuous function and
Sp, is a compact set.

Let z = (21,...,2)" € S, with 2T Agz + (6, — 1)6272 = MIN. Furthermore, let H' be the
induced subgraph of H with vertex set V(H') = {q € V(H) | z, > 0} # 0.

Ift=|V(H')| =1, then H = K; € M(G, H) with V(H') = {q}, zy = 1, and
MIN = (0, —1)d > 0. Hence, y = (m) is a positive solution of

(A + (0, — 1)61)y = 1 and it follows g(G, H') = 1Ty = (Unil)é = 3 and 1 < n27m

If t > 2, then 0 < z, < 1 for all ¢ € V(H’).
Thus, MIN = min(u” Agpu + (0, — 1)6u’w), where the minimum is taken over the relative
t
interior rint(Sy) = {u = (u1,...,ur)T | us >0for s =1,....t, > us=1}of S,
s=1

consequently, this minimum is a local minimum at the hyperplane

t
Hy=A{u=(ur,...,u)” | Y us =1}
s=1

To investigate this value MIN, we consider the Lagrange function
¢
L(u, k) = ul Agru+ (0, — 1)6uTu — 26( > us — 1) with Lagrange multiplier 2+ and the nec-

s=1



essary optimality conditions L, =0 for s =1, ...,t.

With B = Ay + (0, — 1)61, we obtain that the system Bu = w1, 17u = 1 has a positive
solution w.

Next we will show that x is unique. If Bu; = 11, lTﬂ =1, Bug = kol, and lT% =1, then
K1 = /{QT@ = ETB@ = I{QﬂTl = K9g.

With 1 < 2% MIN, it follows MIN = u"Bu =k > 0.
Ify = %g, then By = 1 has a positive solution y, consequently, H" € M (G, H). Moreover,
9(G,H") =1Ty =1 = L and we obtain 1 < %.

To see that f(G,H) = m, assume there is H” € M (G, H) with

g(G,H") > g(G, H'). Then there exists u € rint(S;) with t = |V/(H")| such that u” Agru +
(o, — 1)ouTu < MIN.

Let 2 = u; if i € V(H") and x; =0 for i € V(H) \ V(H").

It follows = (x1,...,x)T € Sjv ()| and 2T Agx + (0, — 1)0z"z < MIN, contradicting the
definition of MIN. 0
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