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Abstract. In this paper we compute the inverse of a nonsingular, centroskewsymmetric Toeplitz-plus-Hankel
Bezoutian B of (even) order n and find a representation of B−1 as a sum of a Toeplitz and a Hankel matrix. Two
possibilities are discussed. In the first one, the problem is reduced to the inversion of two skewsymmetric Toeplitz
Bezoutians of order n. In the second one, the problem is tackled via the inversion of two Hankel Bezoutians of half
the order n

2
. The inversion of Toeplitz or Hankel Bezoutians was the subject of a previous paper. Both approaches

lead to fast O(n2) inversion algorithms.
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1. Introduction. The present paper is devoted to the inversion of special types of struc-
tured matrices, so-called Toeplitz-plus-Hankel Bezoutians (shortly, T +H-Bezoutians). We
assume that the matrix entries are taken from a field F with characteristic not equal to 2.
In a previous paper [2], we investigated centrosymmetric T + H-Bezoutians. The focus of
this paper are centroskewsymmetric (briefly, centroskew) T +H-Bezoutians. Recall that an
n × n matrix A is called centroymmetric or centroskew, if JnAJn = A or JnAJn = −A,
respectively, where Jn denotes the flip matrix of order n,

(1.1) Jn :=

 0 1
. .

.

1 0

 .

Before we start to explain the content of the paper in more detail, let us give a very short
historical account on Bezoutians. Bezoutians were introduced in connection with elimination
theory (see [18]). Their importance for the inversion of Hankel and Toeplitz matrices was
discovered by Lander [14] much later in 1974. In particular, he observed that the inverse of a
nonsingular Hankel (Toeplitz) matrix is a Hankel (Toeplitz) Bezoutian and vice versa.

The inversion of Toeplitz and Hankel matrices has been the subject of a large amount
of literature. The starting point were the papers of Trench [17] and Gohberg/Semencul [5].
Later, in [8], it was discovered that the inverse of a nonsingular matrix which is the sum of
a Toeplitz and a Hankel matrix possess a generalized Bezoutian structure. These especially
structured matrices B = [bij ]

n−1
i,j=0 were called Toeplitz-plus-Hankel Bezoutians and are char-

acterized by the property that there exists eight polynomials ui(t),vi(t) (i = 1, 2, 3, 4) with
coefficients in F and of degree at most n+ 1 such that, in polynomial language,

n−1∑
i,j=0

bijs
itj =

4∑
i=1

ui(t)vi(s)

(t− s)(1− ts)
.

Again, there is a large number of papers dealing with the inversion of T + H matrices (see
e.g. [15],[4], [9], [10], [16], [13], and the references therein).
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The converse problem - the inversion of Bezoutians - has been devoted little attention up
to now (see [7], [6]). A general approach to the inversion problem for Hankel and Toeplitz
Bezoutians was given in [3]. As far as we know, the only paper dedicated to the inversion
of T + H-Bezoutians is our paper [2]. In this paper, using results of [13] and [1], T + H-
Bezoutians which are centrosymmetric were considered. Fast inversions algorithms as well
as matrix representations of their inverses as T +H matrices were presented.

In the present paper we discuss two possibilities how to compute the inverse of a cen-
troskew T + H-Bezoutian B and how to represent the inverse as a T + H matrix. Both
possibilities are based on a splitting property, which was discovered in Section 8 of [11] (see
also [13]), and holds for both centrosymmetric and centroskew T + H-Bezoutians. If B is
a nonsingular, centroskew T + H-Bezoutian, necessarily of even size n = 2ℓ, then B can
be represented in the form B = B+− + B−+, where B±∓ have additional symmetries and,
more importantly, a particular and simpler Bezoutian structure. These matrices are called
split-Bezoutians.

In our first approach it is proved that both splitting parts of B are directly related to non-
singular skewsymmetric Toeplitz Bezoutians. It remains to use the results of [3] to compute
the inverses of these Toeplitz Bezoutians and to represent them as Toeplitz matrices. From
there the representation of B−1 as a T +H-matrix is obtained.

The second approach is analogous to the method of inversion which we used in our paper
[2] for the inverting centrosymmetric T +H-Bezoutains. Starting again with the splitting we
use now a result of [13] to transform B+− and B−+ into nonsingular Hankel Bezoutians of
half the order ℓ = n

2 . Then we take advantage of formulas and algorithms established in [3]
in order to compute the inverses of these Hankel Bezoutians, which are Hankel matrices H1

and H2 the parameters of which are given by the solutions of corresponding Bezout equations
(as described in [3]). At this point the formula for the inverse of the T +H-Bezoutian B is
of the form

B−1 = W−T

[
0 H2

H1 0

]
W−1 ,

where W is a certain explicit transformation (involving triangular matrices). It remains to
discover the Toeplitz-plus-Hankel structure behind this representation, i.e., we want to find a
Toeplitz matrix T and a Hankel matrix H such that

B−1 = T +H .

This goal can be achieved utilizing finite versions of results given in [1].
The paper is structured as follows. After some preliminaries in Section 2 we recall in

Sections 3 and 4 some basic facts on (centroskew) Toeplitz-plus-Hankel matrices respective
Toeplitz and Hankel Bezoutians. Section 5 is dedicated to the splitting of centroskew T +H-
Bezoutians. Moreover, an algorithm is discussed to decide whether a centroskew matrix B is
a nonsingular T + H-Bezoutian. In Sections 6 and 7 the two possibilities for the inversion
of centroskew T +H-Bezoutians are deduced. At the end of both sections a corresponding
fast algorithm is presented. Fast means here that the complexity of the algorithms is O(n2),
where n is the order of B. In Section 8 we discuss the connections, the advantages, and
disadvantages of both approaches.

2. Preliminaries. In what follows we consider vectors or matrices the entries of which
are taken from a field F with a characteristic not equal to 2. By Fn we denote the linear space
of all vectors of length n, by Fm×n the linear space of all m×n matrices, and In denotes the
identity matrix in Fn×n.
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It will often be convenient to use polynomial language. Let Fn[t] denote the linear space
of all polynomials in t of degree less than n with coefficients in F. To each x = (xj)

n−1
j=0 ∈ Fn

we associate the polynomial

(2.1) x(t) :=

n−1∑
j=0

xjt
j ∈ Fn[t].

Occasionally, when using a different indexing, x = (xj)
n−1
j=−n+1 ∈ F2n−1, we associate the

polynomial

(2.2) x(t) := tn−1
n−1∑

j=−n+1

xjt
j ∈ F2n−1[t].

Moreover, we associate to a matrix A = [ aij ]
n−1
i,j=0 the bivariate polynomial

(2.3) A(t, s) :=
n−1∑
i,j=0

aij t
isj

and call it the generating polynomial of A.
Given a vector x ∈ Fn we denote

xJ := Jnx ,

where Jn was introduced in (1.1), which in polynomial language means xJ(t) = x(t−1)tn−1 .
With this abbreviation a vector x ∈ Fn (or its corresponding polynomial) is said to be sym-
metric if x = xJ and skewsymmetric if x = −xJ . The matrices

(2.4) P± := 1
2 (In ± Jn)

are the projections from Fn onto the subspaces Fn
± consisting of all symmetric, respective

skewsymmetric vectors, i.e.,

(2.5) Fn
± :=

{
x ∈ Fn : xJ = ±x

}
.

The various spaces Fn
± for n even or odd are related to each other. This can be easily expressed

in polynomial language as follows,

F2ℓ
+ [t] =

{
(t+ 1)x(t) : x(t) ∈ F2ℓ−1

+ [t]
}
,

F2ℓ
− [t] =

{
(t− 1)x(t) : x(t) ∈ F2ℓ−1

+ [t]
}
,(2.6)

F2ℓ+1
− [t] =

{
(t2 − 1)x(t) : x(t) ∈ F2ℓ−1

+ [t]
}
.

Recall that a matrix A of order n is called centroskew if A = −JnAJn. Since (det Jn)2 =
1 the order n of a nonsingular, centroskew matrix is even, n = 2ℓ.

It is easy to see that a matrix A is centroskew if and only if

(2.7) P−AP− = P+AP+ = 0.

In particular, a centroskew matrix A maps Fn
± to Fn

∓, i.e., AP± = P∓AP±.
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Let us recall the definition of Toeplitz and Hankel matrices. An n × n Toeplitz matrix
generated by the vector a = (ai)

n−1
i=−n+1 ∈ F2n−1 is the matrix

Tn(a) = [ ai−j ]
n−1
i,j=0 .

We will use (2.2) in order to assign its (polynomial) symbol, in slight deviation from standard
notation. An n× n Hankel matrix generated by s = (si)

2n−2
i=0 ∈ F2n−1 is the matrix

Hn(s) = [ si+j ]
n−1
i,j=0 ,

where (2.1) is used to denote its symbol.
For Toeplitz matrices we have

(2.8) Tn(a)
T = JnTn(a)Jn = Tn(a

J ).

In particular, a Toeplitz matrix is skewsymmetric if and only if it is centroskew, or, equiva-
lently, if its symbol is a skewsymmetric vector.

3. Centroskew Toeplitz-plus-Hankel matrices. Toeplitz-plus-Hankel matrices (shortly,
T + H matrices) are matrices which are a sum of a Toeplitz and a Hankel matrix. Since
Tn(b)Jn is a Hankel matrix it is possible to represent any T + H matrix by means of two
Toeplitz matrices,

(3.1) Rn = Tn(a) + Tn(b)Jn (a,b ∈ F2n−1).

Related to this representation there is another one, using the projections (2.4) and the symbols
c = a+ b and d = a− b,

(3.2) Rn = Tn(c)P+ + Tn(d)P− .

Restricting our attention to centroskew T +H matrices we have the the following result
regarding the underlying symbols (compare [13]).

PROPOSITION 3.1. The T + H matrix Rn is centroskew if and only if the symbols
a,b as well as c,d of the Toeplitz matrices in (3.1) respective in (3.2) can be chosen as
skewsymmetric vectors. This choice is unique.

Proof. Let Rn be given by (3.1). Using (2.8), the centroskewsymmetry of Rn is equiva-
lent to

Tn(a+ aJ) + Tn(b+ bJ)Jn = 0 ,

which implies

a+ aJ = eα,β := (α, β, α, β, . . . , β, α)T ∈ F2n−1
+

for some α, β ∈ F and

b+ bJ = fα,β :=

{
−eα,β if n is odd
−eβ,α if n is even.

If we define â = a− 1
2eα,β and b̂ = b− 1

2 fα,β , then â, b̂ ∈ F2n−1
− and

Tn(a) + Tn(b)Jn = Tn(â) + Tn(b̂)Jn.
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Hence we can choose skewsymmetric vectors as symbols, and it is also easy to see that these
choices are unique. Obviously, the same is true for the symbols c and d of the representation
(3.2).

From now on we will assume that the symbols a,b (c,d) of a centroskew T +H matrix
Rn are chosen as skewsymmetric vectors. Moreover, in this case we can also write

Rn = P−Tn(c)P+ + P+Tn(d)P−

instead of (3.2) (see (2.7)).
PROPOSITION 3.2. The centroskew T +H matrix Rn is nonsingular if and only if

R−
n := Tn(a)− Tn(b)Jn = Tn(c)P− + Tn(d)P+

is nonsingular.
Proof. Using (2.8) for both Tn(a) and Tn(b) it is immediately clear that the transpose

RT
n is equal to −Tn(a) + Tn(b)Jn. The following two facts are also known from [13],

Corollary 3.7, but we present a simpler proof here.
THEOREM 3.3. The centroskew T+H matrix Rn = Tn(c)P++Tn(d)P− is nonsingular

if and only if Tn(c) and Tn(d) are both nonsingular.
Proof. Since the vector c and d are skewsymmetric, the Toeplitz matrices Tn(c) and

Tn(d) are skewsymmetric and centroskew. Now, using (2.7), it is easy to see that

(3.3)
[

Rn 0
0 R−

n

]
=

[
P+ P−
P− P+

] [
0 Tn(d)

Tn(c) 0

] [
P+ P−
P− P+

]
,

where [
P+ P−
P− P+

] [
P+ P−
P− P+

]
=

[
In 0
0 In

]
.

The following theorem gives some information about the inverse of a centroskew T +H
matrix.

THEOREM 3.4. Let the centroskew T + H matrix Rn = Tn(c)P+ + Tn(d)P− be
nonsingular. Then its inverse is given by

(3.4) R−1
n = Tn(c)

−1P− + Tn(d)
−1P+.

Proof. We can use (3.3) and pass to the inverse,[
R−1

n 0
0 (R−

n )
−1

]
=

[
P+ P−
P− P+

] [
0 Tn(c)

−1

Tn(d)
−1 0

] [
P+ P−
P− P+

]
.

Noting that Tn(c)
−1 and Tn(d)

−1 are centroskew, the proof is easy to complete by using
(2.7). The inverses Tn(c)

−1 and Tn(d)
−1 of the Toeplitz matrices are so-called Toeplitz

Bezoutians, which together with their Hankel counterparts are analyzed next.

4. Toeplitz and Hankel Bezoutians. For later use, we are going to introduce the no-
tions of Toeplitz Bezoutians (shortly, T -Bezoutians) and Hankel Bezoutians (shortly, H-
Bezoutians).

A matrix B ∈ Fn×n is called a T -Bezoutian if there exists vectors u,v ∈ Fn+1 such
that, in polynomial language,

B(t, s) =
u(t)vJ (s)− v(t)uJ(s)

1− ts
.
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In this case we write B = BezT (u,v). Analogously, a matrix B ∈ Fn×n is called an
H-Bezoutian if there exists vectors u,v ∈ Fn+1 such that

B(t, s) =
u(t)v(s)− v(t)u(s)

t− s
.

Then we write B = BezH(u,v). It is also possible to define T - and H-Bezoutians via
suitable displacement transformations. However, we will not make use of it.

H-Bezoutians are always symmetric, while T -Bezoutians B are always persymmetric,
i.e., JnBJn = BT . The two kinds of Bezoutians are related to each other by BezH(u,v) =
−BezT (u,v)Jn.

It is well known (see, e.g., [7]) that BezH(u,v) as well as BezT (u,v) are nonsingular
if and only if u(t) and v(t) are generalized coprime, which means that the polynomials u(t)
and v(t) are coprime in the usual sense and that degu(t) = n or degv(t) = n.

The following connection between Toeplitz matrices (Hankel matrices) and T -Bezoutians
(H-Bezoutians) is a classical result discovered by Lander in 1974 [14].

THEOREM 4.1. A nonsingular matrix is a T -Bezoutian (H-Bezoutian) if and only if its
inverse is a Toeplitz matrix (Hankel matrix).

Let us consider for a moment the Hankel case and discuss the question: Given the H-
Bezoutian B = BezH(u,v) with generalized coprime polynomials u(t),v(t), how can we
compute the symbol s of its inverse, a Hankel matrix Hn(s) = B−1? The answer was given
in [3].

THEOREM 4.2. Assume u(t),v(t) ∈ Fn+1[t] to be generalized coprime polynomials,
and let B = BezH(u,v). Then B is nonsingular, the Bezout equations

u(t)α(t) + v(t)β(t) = 1 ,(4.1)

uJ(t)γJ(t) + vJ (t)δJ(t) = 1(4.2)

have unique solutions α(t),β(t),γ(t), δ(t) ∈ Fn[t], and s = (si)
2n−2
i=0 ∈ F2n−1 given by

sJ (t) = −α(t)δ(t) + β(t)γ(t)

is the symbol of the inverse of B, B−1 = Hn(s) = [ si+j ]
n−1
i,j=0. For T -Bezoutians the

analogous result reads as follows [3].
THEOREM 4.3. Assume u(t),v(t) ∈ Fn+1[t] to be generalized coprime polynomials,

and let B = BezT (u,v). Then B is nonsingular, the Bezout equations (4.1) and (4.2) have
unique solutions α(t),β(t),γ(t), δ(t) ∈ Fn[t], and c = (ci)

n−1
i=−n+1 ∈ F2n−1 given by

c(t) = tn−1
n−1∑

i=−n+1

cit
i = α(t)δ(t)− β(t)γ(t).

is the symbol of the inverse of B, B−1 = Tn(c) = [ ci−j ]
n−1
i,j=0. For our purposes it is

important to specialize the previous result to the case of centroskew T -Bezoutians. As shown
in [12], Section 5, if the T -Bezoutian BezT (u,v) is nonsingular and centroskew, then u,v
are symmetric vectors, i.e., u,v ∈ Fn+1

+ (with n, of course, being even). Thus we have
α = γJ and β = δJ for the (unique) solutions of (4.1) and (4.2). This implies that

(4.3) c(t) = tn−1
n−1∑

i=−n+1

cit
i = α(t)βJ(t)− β(t)αJ(t).

Remark that c ∈ F2n−1
− is a skewsymmetric vector and that Tn(c) = B−1 is a skewsymmetric

and centroskew matrix.
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5. Splitting of centroskew T + H-Bezoutians. To define Toeplitz-plus-Hankel Be-
zoutians (T +H-Bezoutians) let us consider the following transformation

∇T+H : Fn×n → F(n+2)×(n+2)

defined by

∇T+H(B) = [bi−1,j + bi−1,j−2 − bi,j−1 − bi−2,j−1]
n+1
i,j=0 ,

where B = [bij ]
n−1
i,j=0 stipulating bij = 0 whenever i or j is not in the set {0, . . . , n − 1}.

Equivalently, in polynomial language,

(∇T+H(B)) (t, s) = (t− s)(1− ts)B(t, s) .

A matrix B ∈ Fn×n is called a T +H-Bezoutian if

rank∇T+H(B) ≤ 4 .

This condition is equivalent to the existence of eight vectors ui,vi (i = 1, 2, 3, 4) in Fn+2

such that

(t− s)(1− ts)B(t, s) =

4∑
i=1

ui(t)vi(s) .

For the T +H case we know from [8] the following important fact.
THEOREM 5.1. A nonsingular matrix is a T +H-Bezoutian if and only if its inverse is

a T +H matrix.
The focus of this paper are centroskew T + H-Bezoutians B, i.e., those which satisfy

JnBJn = −B. As we will see in Theorem 5.3 below, nonsingular, centroskew T + H-
Bezoutians admit a certain splitting. Let us start with the following trivial facts concerning
splitting properties of an arbitrary centroskew matrix A (see [13], Section 5).

LEMMA 5.2. Let A be a centroskew matrix of order n. Then A allows the splitting

A = A+− +A−+ ,

where A+− := AP− = P+A is a matrix the columns of which are symmetric vectors and
the rows are skewsymmetric, A−+ := AP+ = P−A is a matrix the columns of which are
skewsymmetric vectors and the rows are symmetric. Furthermore,

rankA = rankA+− + rankA−+.

In the case of a centroskew T +H-Bezoutian B, the result below will tell us that the splitting
parts B+− and B−+ can be represented as a product of three matrices. The middle factor is
a so-called split-Bezoutian of (+)type. This is a T +H-Bezoutian involving two symmetric
vectors u+,v+ the generating polynomial of which is given by

(Bezsp(u+,v+)) (t, s) =
u+(t)v+(s)− v+(t)u+(s)

(t− s)(1− ts)
.

The matrix Bezsp(u+,v+) is centrosymmetric and all rows and columns are symmetric vec-
tors. Moreover, introduce the following n× (n− 1) matrices

(5.1) M±
n−1 :=



±1 0 · · · 0

1 ±1
. . .

...

0 1
. . . 0

...
. . . . . . ±1

0 · · · 0 1


.
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THEOREM 5.3. [13] Let n be even. Then B ∈ Fn×n is a nonsingular, centroskew
T +H-Bezoutian if and only if it can be represented in the form

(5.2) B = M+
n−1Bezsp(f+,g+)(M

−
n−1)

T +M−
n−1Bezsp(y+, z+)(M

+
n−1)

T

with f+,g+,y+, z+ ∈ Fn+1
+ such that {f+(t),g+(t)} and {y+(t), z+(t)} are pairs of co-

prime polynomials.
Note that the terms in the sum (5.2) are equal to the splitting parts B+− and B−+. The

split-Bezoutians occuring therein are matrices of order n − 1. In polynomial language this
formula reads as

B(t, s) = (t+ 1)
f+(t)g+(s)− g+(t)f+(s)

(t− s)(1− ts)
(s− 1)

+ (t− 1)
y+(t)z+(s)− z+(t)y+(s)

(t− s)(1− ts)
(s+ 1).(5.3)

To see this notice that M±
n−1 is the matrix of the operator of multiplication by t ± 1 in the

corresponding polynomial spaces (with respect to the canonical bases).
REMARK 5.4. Different pairs of linearly independent vectors (u+,v+) and (û+, v̂+)

produce the same split-Bezoutian of (+)type,

Bezsp(u+,v+) = Bezsp(û+, v̂+) ,

if and only if there is Φ ∈ F2×2 with detΦ = 1 such that

[ û+, v̂+ ] = [u+,v+ ] Φ.

REMARK 5.5. Given a centroskew matrix B of even order n, one can ask how to decide
whether B is a nonsingular T+H-Bezoutian and how to determine the vectors f+,g+,y+, z+
occurring in (5.2). This can be done by the following procedure:

1. Compute B+− := P+B and B−+ := P−B.

2. Verify whether rank∇T+H(B+−) = rank∇T+H(B−+) = 2.
(If this is not fulfilled, stop: B is singular or B is not a T +H-Bezoutian.)

3. Determine bases {u±,v±} in the image of ∇T+H(B±∓).
(Due to the properties of B±∓, we have u±,v± ∈ Fn+2

± .)

4. Compute

f+(t) = u+(t)/(t+ 1), g′
+(t) = v+(t)/(t+ 1)

and

y+(t) = u−(t)/(t− 1), z′+(t) = v−(t)/(t− 1).

(Recall (2.6) and note that f+,g′
+,y+, z

′
+ ∈ Fn+1

+ .)

5. Determine whether {f+(t),g′
+(t)} and {y+(t), z

′
+(t)} are pairs of coprime polyno-

mials.
(If this is not fulfilled, stop: B is singular.)
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6. Compute the unique vectors f ′+,g+,y
′
+, z+ ∈ Fn+1

+ such that

∇T+H(B+−)(t, s) = (t+ 1)
(
f+(t)g+(s)− g′

+(t)f
′
+(s)

)
(s− 1)

and

∇T+H(B−+)(t, s) = (t− 1)
(
y+(t)z+(s)− z′+(t)y

′
+(s)

)
(s+ 1).

Note: In fact, there exists λ, µ ∈ F \ {0} such that

f+(t) = λf ′+(t), g+(t) = λ−1g′
+(t), y+(t) = µy′

+(t), z+(t) = µ−1z′+(t).

Therefore,

∇T+H(B+−)(t, s) = (t+ 1) (f+(t)g+(s)− g+(t)f+(s)) (s− 1)

and

∇T+H(B−+)(t, s) = (t− 1) (y+(t)z+(s)− z+(t)y+(s)) (s+ 1).

Hence, to compute λ it suffices to compare a nonzero entry of ∇T+H(B+−) with
the corresponding entry in the polynomial

(t+ 1)
(
f+(t)g

′
+(s)− g′

+(t)f+(s)
)
(s− 1).

The same applies to µ.
7. Now, B = B+− +B−+ is a nonsingular T +H-Bezoutian with

B+− = M+
n−1Bezsp(f+,g+)(M

−
n−1)

T ,

B−+ = M−
n−1Bezsp(y+, z+)(M

+
n−1)

T ,

where the two pairs {f+(t),g+(t)} and {y+(t), z+(t)} are unique up to transfor-
mations discussed in Remark 5.4.

6. Inversion of T + H-Bezoutians via skewsymmetric T -Bezoutians. In this section
we present our first approach to invert centroskew T +H-Bezoutians. It is done via reduction
to certain T -Bezoutians, which can be inverted using the result of Section 4. The following
key result is based on the representation obtained in Theorem 5.3.

THEOREM 6.1. Let B ∈ Fn×n be a centroskew T +H-Bezoutian given in the form (5.2)
with symmetric f+,g+,y+, z+ ∈ Fn+1

+ . Then

(6.1) B = 2BezT (f+,g+)P− − 2BezT (y+, z+)P+ .

Proof. Recall that (5.2) reads in polynomial language as (5.3). Obviously, the generating
polynomial of 2BezT (f+,g+)P− is equal to

(f+(t)g+(s)− g+(t)f+(s))

(
1

1− ts
+

1

t− s

)
.

Since

1

1− ts
+

1

t− s
=

(1 + t)(1− s)

(1− ts)(t− s)
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we obtain

2BezT (f+,g+)P− = M+
n−1Bezsp(f+,g+)(M

−
n−1)

T .

Analogously, using

1

1− ts
− 1

t− s
= − (1− t)(1 + s)

(1− ts)(t− s)
,

it follows that

−2BezT (y+, z+)P+ = M−
n−1Bezsp(y+, z+)(M

+
n−1)

T .

This concludes the proof.
It follows from the definition of T -Bezoutians that for symmetric vectors f+,g+,y+, z+

B1 := BezT (f+,g+) and B2 := BezT (y+, z+)

are centroskew and skewsymmetric, i.e., BT
i = JnBiJn = −Bi.

PROPOSITION 6.2. Let B ∈ Fn×n be a nonsingular, centroskew T + H-Bezoutian
given by (5.2) or (6.1) with pairs {f+(t),g+(t)} and {y+(t), z+(t)} of symmetric coprime
polynomials in Fn+1

+ [t]. Then

B1 = BezT (f+,g+) and B2 = BezT (y+, z+)

are invertible, and

B−1 =
1

2
(B−1

1 P+ −B−1
2 P−).

Proof. Since the polynomials are symmetric, coprimeness implies generalized coprime-
ness, and hence the T -Bezoutians are invertible. We write (6.1) as

1
2B = B1P− −B2P+ ,

and take its tranpose,

1
2B

T = −P−B1 + P+B2 .

Both equations can be written, in analogy to (3.3), in the following form:

(6.2)
1

2

[
B 0
0 −BT

]
=

[
P+ P−
P− P+

] [
0 B1

−B2 0

] [
P+ P−
P− P+

]
.

Here one has to use that B1 and B2 are centroskew (see (2.7)). Notice that also this identity
implies the invertibility of B1 and B2. Now one can pass to the inverse of this equation and
obtain the desired expression for B−1 in terms of B−1

1 and B−1
2 .

The inverses of the above T -Bezoutians are Toeplitz matrices

Tn(c) = B−1
1 and Tn(d) = B−1

2 .

From Theorem 4.3 and the remarks made afterwards we know how to obtain the symbols c,d
of these (skewsymmetric) Toeplitz matrices (see also (4.1) and (4.3)). Indeed, c,d ∈ F2n−1

−
are given by

c(t) = α(t)βJ(t)− β(t)αJ(t),(6.3)

d(t) = γ(t)δJ (t)− δ(t)γJ (t),(6.4)
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where α,β,γ, δ ∈ Fn are the solutions of the Bezout equations

g+(t)α(t) + f+(t)β(t) = 1,(6.5)
z+(t)γ(t) + y+(t)δ(t) = 1.(6.6)

We can now summarize this as follows.
THEOREM 6.3. Let B ∈ Fn×n be a centroskew T +H-Bezoutian given by (5.2) or (6.1)

with pairs {g+(t), f+(t)} and {y+(t), z+(t)} of symmetric coprime polynomials in Fn+1
+ [t].

Then n is even, B is nonsingular and

(6.7) B−1 =
1

2
(Tn(c)P+ − Tn(d)P−),

where c,d ∈ F2n−1
− are given by (6.3) and (6.4).

Note that (6.7) reads as

B−1 =
1

4
[cj−k + cj+k+1−n]

n−1
j,k=0 −

1

4
[dj−k − dj+k+1−n]

n−1
j,k=0 ,

which is a (centroskew) sum of a Toeplitz and a Hankel matrix.
REMARK 6.4. Since c = (ci)

n−1
i=−n+1 and d = (di)

n−1
i=−n+1 are skewsymmetric vectors

it suffices to compute only their last n − 1 components (ci)
n−1
i=1 and (di)

n−1
i=1 . To that aim

introduce for a given vector x = (xi)
n−1
i=0 the following upper triangular Toeplitz matrix of

order n,

(6.8) Un(x) =



x0 x1 · · · · · · xn−1

x0 x1

...
. . . . . .

...
x0 x1

0 x0


.

Now, as is easy to see and has already been stated in Section 6 of [3], equations (6.3) and
(6.4) become

(6.9) (ci)
n−1
i=0 = Un(β)α− Un(α)β, (di)

n−1
i=0 = Un(δ)γ − Un(γ)δ,

where c0 = d0 = 0.

Let us now present the steps of a corresponding inversion algorithm.
ALGORITHM 6.1. We are given a centroskew T +H-Bezoutian B of even order n in the

form (5.2) with pairs {f+(t),g+(t)} and {y+(t), z+(t)} of symmetric coprime polynomials
in Fn+1

+ [t].
1. Solve the Bezout equations (6.5) and (6.6) by Euclid’s algorithm.
2. Determine the (skewsymmetric) symbols c and d by either

(i) computing their last components according to (6.9), or,
(ii) computing them from (6.3) and (6.4).

3. Compute the matrices

Ac := Tn(c)P+ and Ad := Tn(d)P− .

4. Then the inverse of B is given by

B−1 =
1

2
(Ac −Ad).
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7. Inversion of T + H-Bezoutians via H-Bezoutians of half order. In our second
approach we start again from the representation (5.2) of a centroskew T +H-Bezoutian B of
order n = 2ℓ, i.e.,

B = M+
n−1Bezsp(f+,g+)(M

−
n−1)

T +M−
n−1Bezsp(y+, z+)(M

+
n−1)

T .

Recall that both Bezsp(f+,g+) and Bezsp(y+, z+) are split-Bezoutians of odd order n −
1 and of (+)type since the vectors f+,g+,y+, z+ ∈ Fn+1

+ are symmetric. Such split-
Bezoutians are can be reduced to H-Bezoutians of half order ℓ as established in the following
theorem. Introduce a matrix Sℓ of size (2ℓ− 1)× ℓ as the isomorphism defined by

Sℓ : Fℓ → F2ℓ−1
+ , (Sℓx) (t) = x(t+ t−1)tℓ−1, x ∈ Fℓ.

Notice that

(Sℓ)
T =



0
(
0
0

)
0(

1
0

)
0

(
1
1

)(
2
0

)
0

(
2
1

)
0

(
2
2

)
. .

. . . .(
ℓ−1
0

)
0

(
ℓ−1
1

)
0 · · · 0

(
ℓ−1
ℓ−2

)
0

(
ℓ−1
ℓ−1

)


.

THEOREM 7.1. [13] Let u+,v+ ∈ Fn+1
+ , n = 2ℓ, and let u,v ∈ Fℓ+1 be such that

u+ = Sℓ+1u , v+ = Sℓ+1v. Then

(7.1) Bezsp(u+,v+) = −Sℓ BezH(u,v)ST
ℓ .

Notice that the pair u(t) and v(t) is generalized coprime if and only if the pair u+(t)
and v+(t) is coprime.

Combining this theorem with Theorem 5.3 we conclude the following.
THEOREM 7.2. Let n = 2ℓ. Then B ∈ Fn×n is a nonsingular, centroskew T + H-

Bezoutian if and only if it can be represented in the form

(7.2) B = M+
n−1SℓBezH(g, f)ST

ℓ (M
−
n−1)

T +M−
n−1SℓBezH(z,y)ST

ℓ (M
+
n−1)

T

with generalized coprime pairs {f(t),g(t)} and {z(t),y(t)}.
The vectors f ,g, z,y ∈ Fℓ+1 are given by

(7.3) f+ = Sℓ+1f , g+ = Sℓ+1g, y+ = Sℓ+1y, z+ = Sℓ+1z,

or, equivalently, by

f+(t) = tℓf(t+ t−1), g+(t) = tℓg(t+ t−1), etc.

Let us introduce the shift matrix of order m

(7.4) Vm =


0 1 0

0 1
. . . . . .

0 1
0 0

 ,
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as well as the matrices

(7.5) T±
m = Im ± Vm , Tm = Im − V 2

m.

Moreover, we need the following matrices of order m,

(7.6) Qm =



(
0
0

)
0

(
2
1

)
0 · · ·(

1
0

)
0

(
3
1

) ...(
2
0

)
0

. . . 0(
3
0

) . . .
(
m−1
1

)
. . . 0

0
(
m−1
0

)


,

i.e.,

Qm := [ qij ]
m−1
i,j=0 with qij =

{ ( j
j−i
2

)
if j ≥ i and j − i is even

0 otherwise,

as well as

Um := [uij ]
m−1
i,j=0 with uij =

{ (−i−1
j−i
2

)
if j ≥ i and j − i even

0 otherwise.

Noting that
(−i−1

k

)
= (−1)k

(
i+k
k

)
, we see that

(7.7) Um =



(
0
0

)
0 −

(
1
1

)
0 · · ·(

1
0

)
0 −

(
2
1

) ...(
2
0

)
0

. . . 0(
3
0

) . . . −
(
m−2
1

)
. . . 0

0
(
m−1
0

)


.

It can be proved straightforwardly (see also Lemma 5.1 in [2]) that

(7.8) Uℓ+1Tℓ+1Qℓ+1 = Iℓ+1.

Observe that Qℓ+1 is the lower part of Sℓ+1. The upper part, i.e., the first ℓ rows of Sℓ+1,
is the ℓ× (ℓ+ 1) matrix Jℓ+1Qℓ+1 after cancelling its last row.

Denoting by f l+,g
l
+, . . . the last ℓ+ 1 components of f+,g+, . . . , respectively, (7.3) can

be written as

(7.9) f = Q−1
ℓ+1f

l
+, g = Q−1

ℓ+1g
l
+ , etc.,

where Q−1
ℓ+1 = Uℓ+1Tℓ+1.
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Let us continue with discussing what follows from Theorem 7.2. The representation (7.2)
can be written in the form

B = Wn

[
0 BezH(g, f)

BezH(z,y) 0

]
WT

n ,

where Wn := [M+
n−1Sℓ | M−

n−1Sℓ] ∈ Fn×n. We are going to rewrite Wn in a suitable way.
A straightforward computation yields

M±
n−1Sℓ =

[
±JℓT

±
ℓ Qℓ

T±
ℓ Qℓ

]
.

Thus

Wn =

[
Jℓ −Jℓ
Iℓ Iℓ

] [
T+
ℓ Qℓ 0
0 T−

ℓ Qℓ

]
.

This matrix is invertible, and

W−1
n =

1

2

[
(T+

ℓ Qℓ)
−1 0

0 (T−
ℓ Qℓ)

−1

] [
Jℓ Iℓ
−Jℓ Iℓ

]
.

From Theorem 4.2 we obtain an inversion formula of the form

(7.10) B−1 = W−T
n

[
0 Hℓ(s2)

Hℓ(s1) 0

]
W−1

n .

Here s1, s2 ∈ F2ℓ−1 are obtained by solving the Bezout equations

(7.11)
g(t)α1(t) + f(t)β1(t) = 1,

gJ (t)γJ
1 (t) + fJ (t)δJ1 (t) = 1,

and

(7.12)
z(t)α2(t) + y(t)β2(t) = 1,

zJ(t)γJ
2 (t) + yJ (t)δJ2 (t) = 1.

and computing for i = 1, 2,

(7.13) sJi (t) = −αi(t)δi(t) + βi(t)γi(t) .

Now the inversion formula (7.10) can be written as stated in the following result.
PROPOSITION 7.3. Let B ∈ Fn×n, n = 2ℓ, be a nonsingular, centroskew T + H-

Bezoutian given in the from (7.2). Then

(7.14) B−1 =
1

4

[
−Jℓ
Iℓ

]
A

(1)
ℓ

[
Jℓ, Iℓ

]
+

1

4

[
Jℓ
Iℓ

]
A

(2)
ℓ

[
− Jℓ, Iℓ

]
with

A
(1)
ℓ := (T−

ℓ Qℓ)
−THℓ(s1)(T

+
ℓ Qℓ)

−1, A
(2)
ℓ := (T+

ℓ Qℓ)
−THℓ(s2)(T

−
ℓ Qℓ)

−1.

Here s1 and s2 are obtained from (7.11)–(7.13).
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It now remains to identify A
(i)
ℓ as centroskew T +H matrices, for which we need further

results. We will make use of the following three kinds of T +H matrices of order ℓ, which
we introduce for a skewsymmetric vector c = (ck)

2ℓ−1
k=−2ℓ+1 and a symmetric vector a# =

(a#k )
2ℓ−2
k=−2ℓ+2,

TH±
ℓ (c) =

(
ci−j ± ci+j+1

)ℓ−1

i,j=0

and

TH#
ℓ (a

#) =
(
a#i−j + a#i+j

)ℓ−1

i,j=0
.

The proof of the following lemma is straightforward.
LEMMA 7.4. Let a skewsymmetric vector c = (ck)

2ℓ−1
k=−2ℓ+1 ∈ F4ℓ−1

− , and a symmetric
vector a# = (a#k )

2ℓ−2
k=−2ℓ+2 ∈ F4ℓ−3

+ be related via

a#k = ck+1 − ck−1.

Then

(7.15) DℓTH
#
ℓ (a

#)Dℓ = −(T+
ℓ )TTH−

ℓ (c)T
−
ℓ = (T−

ℓ )TTH+
ℓ (c)T

+
ℓ

with Dℓ := diag( 12 , 1, 1, . . . , 1) and T±
ℓ given by (7.5).

Notice that the relationship between a# and c can be expressed by
2 0
0 1
−1 0 1

. . . . . . . . .
0 −1 0 1




c1
c2
...

c2ℓ−1

 =


a#0
a#1
...

a#2ℓ−2

 .

THEOREM 7.5. Given a skewsymmetric vector c = (ck)
2ℓ−1
k=−2ℓ+1 ∈ F4ℓ−1

− , define

(7.16) s = QT
2ℓ−1T

T
2ℓ−1(ck)

2ℓ−1
k=1 ∈ F2ℓ−2,

with T2ℓ−1 introduced by (7.5). Then

Hℓ(s) = −QT
ℓ (T

+
ℓ )TTH−

ℓ (c)T
−
ℓ Qℓ = QT

ℓ (T
−
ℓ )TTH+

ℓ (c)T
+
ℓ Qℓ.

Proof. Introduce a# = (a#k )
2ℓ−2
k=−2ℓ+2 ∈ F4ℓ−3

+ as in the previous lemma, i.e.,

D−1
2ℓ−1T

T
2ℓ−1(ck)

2ℓ−1
k=1 = (a#k )

2ℓ−2
k=0 .

In [1], Theorem 5, it was shown that

Hℓ(s) = QT
ℓ DℓTH

#
ℓ (a

#)DℓQℓ

if a# is symmetric and s = QT
2ℓ−1D2ℓ−1(a

#
k )

2ℓ−2
k=0 . Combining this with the lemma we arrive

at the stated formula.
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Notice that using (7.8), equation (7.16) can be written as

(7.17) (ck)
2ℓ−1
k=1 = UT

2ℓ−1s

with Um given in (7.7).
Applying Theorem 7.5 to Hℓ(si) with si given in (7.13) we see that

A
(1)
ℓ = TH+

ℓ (c
(1)), A

(2)
ℓ = −TH−

ℓ (c
(2))

where

(7.18) c(i) =

 −J2ℓ−1U
T
2ℓ−1si

0
UT
2ℓ−1si

 .

Combining this with the above formula (7.14), it follows that

(7.19) B−1 =
1

4

[
−Jℓ
Iℓ

]
TH+

ℓ (c
(1)) [ Jℓ Iℓ ]−

1

4

[
Jℓ
Iℓ

]
TH−

ℓ (c
(2)) [−Jℓ Iℓ ] ,

which equals

1

4

[
c
(1)
j−k + c

(1)
j+k+1

]ℓ−1

j,k=−ℓ
− 1

4

[
c
(2)
j−k − c

(2)
j+k+1

]ℓ−1

j,k=−ℓ
,

i.e.,

1

4

[
c
(1)
j−k + c

(1)
j+k+1−n

]n−1

j,k=0
− 1

4

[
c
(2)
j−k − c

(2)
j+k+1−n

]n−1

j,k=0
.

Summarizing we arrive at the following result.
THEOREM 7.6. The inverse of a nonsingular, centroskew T +H-Bezoutian B of order

n = 2ℓ given by (7.2) admits the representation

(7.20) B−1 =
1

2
(Tn(c

(1))P+ − Tn(c
(2))P−),

where c(i) is given in (7.18) and (7.11)–(7.13).
Finally, let us present the steps of a corresponding algorithm for the inversion of a cen-

troskew T +H-Bezoutian.
ALGORITHM 7.1.
We are given a centroskew T +H-Bezoutian of order n = 2ℓ in the form (5.2) with pairs

{f+(t),g+(t)} and {y+(t), z+(t)} of symmetric coprime polynomials in Fn+1
+ [t].

1. Compute the vectors f ,g,y, z ∈ Fℓ+1 according to (7.9), where Q−1
ℓ+1 = Uℓ+1Tℓ+1

with Uℓ+1, Tℓ+1 defined in (7.7), (7.5).
2. Solve the Bezout equations (7.11) and (7.12) by Euclid’s algorithm.
3. Compute the vectors si by polynomial multiplication according to (7.13).
4. Compute the symbols c(i) as in (7.18).
5. Compute the matrices

A1 := Tn(c
(1))P+ and A2 := Tn(c

(2))P− .

6. Then the inverse of B is given by

B−1 =
1

2
(A1 −A2).
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8. Final remarks. Comparing the inversion formulas (6.7) and (7.20) we obtain for the
symbols of the Toeplitz matrices the following equalities

c(1) = c and c(2) = d .

Indeed this is a consequence of the uniqueness of the representation (see Proposition 3.1). To
compute these symbols we have discussed two different possibilities, based on representa-
tions of the splitting parts of B,

B+− = M+
n−1Bezsp(f+,g+)(M

−
n−1)

T , B−+ = M−
n−1Bezsp(y+, z+)(M

+
n−1)

T .

Indeed, the representations

B+− = 2BezT (f+,g+)P− and B−+ = −2BezT (y+, z+)P+ .

led to the first algorithm, whereas

B+− = M+
n−1SℓBezH(g, f)ST

ℓ (M
−
n−1)

T

and

B−+ = M−
n−1SℓBezH(z,y)ST

ℓ (M
+
n−1)

T

was the basis of the second algorithm.
The advantage of the first approach is that it is simpler and straightforward. One has to

invert two T -Bezoutians of order n, but the symbols c,d of the corresponding two skewsym-
metric Toeplitz matrices are obtained directly after solving corresponding Bezout equations.

The second approach has the benefit that one has to invert two H-Bezoutians of half the
order ℓ = n

2 , which involves solving corresponing Bezout equations of half the size. On the
other hand, one has to perform additional matrix-vector multiplication before and after this
step, where the matrices are

Q−1
ℓ+1 = Uℓ+1Tℓ+1, and UT

2ℓ−1 .

Let us finally remark that the second approach is the analogue of the method for invert-
ing centrosymmetric T + H-Bezoutians, which we discuss in a previous paper [2]. Thus
we have shown here that the method of [2] also works in the case of centroskew T + H-
Bezoutians. But, we have not (yet) found how our first approach could be modified in order
to be applicable to centrosymmetric T +H-Bezoutians. (Note that in this case Rn given in
(3.2) nonsingular has not the consequence that Tn(c) and Tn(d) are nonsingular.) It seems,
somewhat surprisingly, as if the centroskewsymmetric case is easier to deal with than the
centrosymmetric case.

REFERENCES
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