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Abstract

We use a geometric technique based on embeddings of graphs to provide an
explicit formula for the absolute algebraic connectivity and its eigenvectors of
double brooms.
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1. Introduction and Preliminaries

Ordering graphs is a classic problem in combinatorics that many authors
have been studying throughout the years. One common approach to this prob-
lem is the use of spectral parameters of graphs. There is a great deal of papers
using different sorts of spectral parameters, for instance the largest eigenvalues
[15, 10, 17], index [25], Laplacian index [23, 13, 18], graph energy [20, 12, 21],
Laplacian energy [19, 8, 9] and the algebraic connectivity [11, 24, 16, 22].

The algebraic connectivity, defined as the second smallest eigenvalue of the
Laplacian matrix is one of the most popular spectral invariants. First studied
by Fiedler in [5], he named this eigenvalue algebraic connectivity due to its sig-
nificance on connectivity properties of graphs. For instance a graph is connected
if and only if the algebraic connectivity is different from zero. After that, many
applications for this eigenvalue were found, for example: graph partitioning,
expanding properties of graphs, isoperimetric number, genus and the traveling
salesman problem. For a survey of such results we refer the reader to [1].

Despite all the effords, a complete order of the full class of graphs by the
algebraic connectivity is not known and it seems to be a very difficult problem.
However, there are many studies providing a partial order in particular classes.
One of them, named the double broom trees, is the subject of this paper.

First, we consider a graph G = (V,E) with vertex set V and edge set E. In
this paper, Pn denotes the path with n vertices. A double broom tree with n ver-
tices is defined as follows: take a path Pd−1 and label its vertices as s1, . . . , sd−1,
then for 0 ≤ k ≤

⌊
n−d+1

2

⌋
− 1 attach

⌈
n−d+1

2

⌉
+ k leaves at s1 and

⌊
n−d+1

2

⌋
− k

leaves at sd−1. Clearly the diameter of such double broom is d. We denote the
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Figure 1: A double broom T (10, 6, 0).

double broom with n vertices, diameter d and parameter k by T (n, d, k). See
Figure 1.

The first study ordering double brooms by the algebraic connectivity is due
to Grone and Merris [11]. They completely ordered the class of double brooms
with diameter three. Later, Fallat and Kirkland [4] generalized these results for
the whole set of double brooms. The authors proved that for fixed n and d the
algebraic connectivity a(T (n, d, k)) is a strictly increasing function of k. In order
to prove it, the authors used algebraic techniques together with an application
of the Perron-Frobenius theory. We notice that such techniques do not provide
the value of a(G), which is a rather difficult problem. We refer the reader to
the survey of results about ordering graphs by algebraic connectivity [2].

In [6], Fiedler studied the absolute algebraic connectivity â(G) of a graph
G. It is defined as the maximum of algebraic connectivities for all nonnegative
valuations on edges of G whose values sum up to |E|. A sharp upper bound
for the absolute algebraic connectivity in terms of vertex connectivity is proved
in [14]. We notice that up to now there is no partial order for graphs by the
absolute algebraic connectivity.

Since the absolute algebraic connectivity is not a well known parameter we
proceed with its study using a different approach. In this paper, we provide an
explicit formula for the absolute algebraic connectivity of double brooms. There-
fore, an order by the absolute algebraic connectivity in this class is straightfor-
ward. In order to compute the formulas, we use a geometric technique that
is not well known and we would like to share with the spectral graph theory
community.

Our approach relies on results of [7], where the authors used semidefinite
programming techniques to describe the absolute algebraic connectivity as a
problem of finding an embedding of vertices of the graph in n-space. More
precisely, they showed that

|E|
â(G)

= max
∑

i∈V ‖vi‖
2

s.t.
(∑

i∈V vi
)2

= 0

‖vi − vj‖ ≤ 1, ij ∈ E, (1)
vi ∈ Rn for i ∈ V

2



By solving problem (1) for the class of double brooms we calculate expres-
sions for the absolute algebraic connectivity. Then it is possible to get a bet-
ter understanding of the behaviour of the absolute algebraic connectivity in
this class. For instance, for fixed n and d the absolute algebraic connectivity
â(T (n, d, k)) as a function of k increases, but with a different function from
a certain value of k. This phenomenon can be summarized in the following
Theorem.

Theorem 1. For a double broom T (n, d, k), let p = −d whenever T (n, d, k) has
an odd number of leaves and p = 0 otherwise. Define

M =


n( 1

2d
2 − d + 1)− d( 1

6d
2 + 1

2d−
7
6 )− k(d2 − 2d) k ≥ n(d−2)+p

2d and p 6= 0

n( 1
2d

2 − d + 1)− 1
6d(d2 − 1)− k(d2 − 2d) k ≥ n(d−2)+p

2d and p = 0
1
4nd

2 − 1
6d(d2 − 1)− d2

n (k2 + k + 1
4 ) k < n(d−2)+p

2d and p 6= 0
1
4nd

2 − 1
6d(d2 − 1)− k2d2

n k < n(d−2)+p
2d and p = 0.

Then â(T (n, d, k)) = n−1
M .

Furthermore, it is possible to provide a full description of the eigenspace
associated with â(T (n, d, k)). For this purpose we use a result of [7] that we
summarize as follows.

Lemma 2. Let v1, . . . , vn be an optimal solution of (1) and define the matrix
V = [v1, v2, . . . , vn]. Let z ∈ Rn\ {0} and define the vector u = V T z. Then u is
an eigenvector to â(G).

Since we provide a full description of the embedding, we use projections of
the embedding to obtain the following result.

Theorem 3. Let T (n, d, k) be a double broom and define p = −d whenever
T (n, d, k) has an odd number of leaves and p = 0 otherwise, let m =

(⌊
n−d+1

2

⌋
− k
)
d2+

2d3−3 d2+d
6 − 1 and q =

⌊
n−d+1

2

⌋
+ k (the number of leaves on the left side). Let

f = [u1, u2, . . . , un]
T be an eigenvector to â(T (n, d, k)).

If k < n(d−2)+p
2d , then â(T (n, d, k)) has one eigenvector given by

ui =


−(bn−d+1

2 c − k + d−1
2 ) d

n i = 1, . . . , q

u1 + i i = q + 1, . . . , q + d

u1 + q + d + 1 i = q + d + 1, . . . , n

.

Otherwise â(T (n, d, k)) has two eigenvectors: the first one is given by

ui =



i i = q + 1, . . . , q + d

q + d + 1 i = q + d + 1, . . . , n

−m
q i = 1, . . . , q and q even

−m+1
q−1 i = 1, . . . , q − 1 and q odd

−1 i = q and q odd.
The second one for even q is given by
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ui =


√

1− (m
q )2 i = 1, . . . , q

2

−
√

1− (m
q )2 i = q

2 + 1, . . . , q

0 otherwise.
If q is odd then we have

ui =


√

1− (m−1
q−1 )2 i = 1, . . . , q−1

2

−
√

1− (m−1
q−1 )2 i = q+1

2 , . . . , q − 1

0 otherwise.

The paper is organized as follows. In Section 2 we prove that there are two
possible structures for an optimal embedding of double brooms. In Section 3
we compute the values of these two embeddings and we provide conditions for
either one or the other to be the optimal.

2. Embeddings Description

In this section we rule out the embeddings that cannot be an optimal solution
of (1). Clearly the first constraint of problem (1) requires that the embedding
has the barycenter at the origin, which we call equilibrium constraint, and the
second constraint requires that the distances of adjacent vertices are bounded
by one, which we call distance constraints.

In general solving problem (1) is difficult. However, the authors of [7]
showed a property for an optimal embedding which is described in the so called
Separator-Shadow Theorem.

Theorem 4. (Separator-Shadow) Let vi ∈ Rn (i ∈ N) be an optimal solution
of (1) for a connected graph G = (V,E) and let S be a separator in G giving
rise to disconnected sets C1 and C2. For at least one Cj,

conv {0, vi} ∩ conv {vs : s ∈ S} 6= ∅,∀i ∈ Cj .

In words, the straight line segments conv {0, vi} of all nodes i ∈ Cj intersect the
convex hull of the points in S.

We remark some additional properties of an optimal embedding that follow
from results proven in [7].

Remark 5. Optimal embeddings of a tree satisfy ‖vi − vj‖ = 1 for all ij ∈ E.

Remark 6. The barycenter of an optimal embedding of a tree is either on an
edge or on a vertex.

After applying the Separator-Shadow Theorem, we can discard many struc-
tures as candidates for an optimal embedding of a double broom.

Furthermore, it is possible to rule out embeddings of dimensions higher than
two. In order to do this, we need the definitions of the tree-decomposition and
the tree-width from [3].
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Definition 7. For a graph G = (N,E) a tree-decomposition of G is a tree
T = (N , E) with N ⊆ 2N and E ⊆

(N
2

)
satisfying the following requirements:

(i) N = ∪U∈NU
(ii) For every e ∈ E there is an U ∈ N with e ∈ U .
(iii) If U1, U2, U3 ∈ N with U2 on the T -path from U1 to U2, then U1 ∩U3 ⊆

U2.
The width of T is the number max {|U | − 1 : U∈N}. The tree-width tw(G)

is the least width of any tree-decomposition of G.
In [7] the authors showed the following relation between the dimension of an

optimal embedding and the tree-width of a graph.

Theorem 8. For each connected graph G there exists an optimal embedding of
(1) of dimension at most at most tw(G) + 1.

To proceed with the analysis, we refer to leaves on the left side and on the
right side as the leaves attached to s1 and sd−1, respectively. By definition, the
number of leaves on the left side is greater than or equal to the number of leaves
on the right side.

Proposition 9. An optimal embedding of a double broom in respect to (1) has
one of the following forms:

1. 1-dimensional: all nodes are on a straight line and the leaves are stretched
out. The barycenter is on an edge that does not contain a leaf or a vertex
different from s1;

2. 2-dimensional: the barycenter is on s1 and all vertices are over a line, with
the exception of the leaves attached to s1. The leaves attached to s1 are
embedded on the unit circle with center s1.

Proof. Since the tree-width of a tree is one, we can apply Theorem 8 to see that
there is an optimal embedding of a double broom with dimension at most two.

In reference to Remark 6, we can suppose that the barycenter is on an edge
or a vertex.

First, we consider an optimal embedding with the barycenter on an edge
sksk+1 ∈ {s1s2, . . . , sd−2sd−1}. Applying the Separator-Shadow Theorem for
vs = sk, sk+1 ∈ C1, we have conv {0, si} ∩ sk = ∅,∀si ∈ C1. Therefore,
conv{0, si} ∩ sk 6= ∅ holds for all si ∈ C2. Hence, every v ∈ C2 is embedded
over the line containing conv {0, vi}, vi ∈ C2. Again by the Separator-Shadow
Theorem, for the same embedding, by choosing vs = sk+1, sk ∈ C1, we conclude
that all vertices must be embedded over a line containing the barycenter. By the
maximality of the embedding and Remark 5, every vertex must be embedded
as far as possible from the barycenter. Therefore, all leaves are stretched out
on this line and it is an embedding of the form (1).

Now suppose an optimal embedding where the barycenter is on a vertex
v ∈ {s2, . . . , sd−2}. Again, by the maximality of the embedding and Remark 5
all leaves must be stretched out over a line and it is an embedding of the form
(1).
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If the barycenter is on a leaf, then the embedding cannot be maximal and
satisfy the equilibrium constraint at the same time. Note, that since the left
side has more leaves than the right side, the barycenter cannot be on sd−1 nor
on an edge on the right side.

Suppose the barycenter is on an edge containing s1 and a leaf from the left
side, say v1s1. Then we can choose vs = s1 as a separator, set C1 = v1 and
C2 = V \C1. Since conv{0, v1} ∩ s1 = ∅, all vertices in C2 have to be embedded
over a line containing the barycenter. By the maximality of the embedding and
Remark 5, every vertex in C2 must be embedded as far as possible from the
barycenter. This embedding is not feasible, because the barycenter is on v1s1

and the equilibrium constraint will not be satisfied.
Eventually, we consider an embedding where the barycenter is on s1. In

this case we get an embedding of the form (2). Applying the Separator-Shadow
Theorem for vs = s1 it is easy to see that every component must be over a line
segment containing the origin. Furthermore, the nodes must be embedded as
far as possible from the origin in order to attain the maximum. By Remark
6, we can embed the leaves on the left on the unit circle with center s1, and
with a suitable choice of the coordinates it is possible to satisfy the equilibrium
constraint.

3. Embedding calculations

In this section we will calculate the quantity
∑n

i=1 ‖vi‖
2 for the two de-

scribed possible forms of optimal embeddings of double brooms. We start with
embeddings of the form (2).

Lemma 10. Let u1, . . . , un be an embedding of T (n, d, k) of the form (2). If
T (n, d, k) has an even number of leaves, then

∑n
i=1 ‖ui‖2 = n + 1

6d −
1
6d

3 +
1
2d

2n− dn− kd2 + 2 kd. Otherwise,
∑n

i=1 ‖ui‖2 = n+ 7
6d−

1
6d

3− 1
2d

2 + 1
2d

2n−
dn− kd2 + 2kd.

Proof. Suppose T (n, d, k) has an even number of leaves. This embedding has
n−d+1

2 + k and n−d+1
2 − k leaves on the left side and right side, respectively.

Since each edge has length one, we get

n∑
i=1

‖ui‖2 =
n− d + 1

2
+ k +

d−2∑
i=1

i2 +

(
n− d + 1

2
− k

)
(d− 1)

2

= n +
1

6
d− 1

6
d3 +

1

2
d2n− dn− kd2 + 2kd.

Suppose T (n, d, k) has an odd number of leaves. For this embedding, there
are n−d+2

2 + k and n−d
2 − k leaves on the left side and right side, respectively.

Similarly, we have
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n∑
i=1

‖ui‖2 =
n− d + 2

2
+ k +

d−2∑
i=1

i2 +

(
n− d

2
− k

)
(d− 1)

2

= n +
7

6
d− 1

6
d3 − 1

2
d2 +

1

2
d2n− dn− kd2 + 2kd.

This shows the lemma.

We can calculate simple expressions for embeddings of the form (1) in the
same fashion. Since the coordinates of the embedded vertices are not that
obvious as before we start by giving expressions for these. In order to simplify
the calculations we summarize the leaves on the left and the right to a weighted
node, respectively. The weights on these two nodes are set to the corresponding
number of leaves. The weights of all other nodes are set to one. Therefore,∑n

i=1 ui =
∑n̄

i=1 wiui and
∑n

i=1 u
2
i =

∑n̄
i=1 wiu

2
i with n̄ = d + 1. Here u1, un̄

represent the coordinates of leaves on the left and the right, respectively, w1 =
dn−d+1

2 e+ k , wn̄ = bn−d+1
2 c − k and wi = 1 for i = 2, . . . , n̄− 1.

Proposition 11. Let u1, . . . un̄ be the coordinates of an optimal embedding of
T (n, d, k) of the form (1). Then u1 = −(bn−d+1

2 c − k + d−1
2 ) d

n and ui = u1 + i
for i = 2, . . . , n̄.

Proof. Let u1, . . . un̄ be the coordinates of an optimal embedding of T (n, d, k).
To satisfy the equilibrium constraint we need 0 =

∑n
i=1 ui =

∑n̄
i=1 wiui , hence

n̄∑
i=1

wiui =

(⌈
n− d + 1

2

⌉
+ k

)
u1 +

(⌊
n− d + 1

2

⌋
− k

)
(u1 + d)

+(d + 1)u1 +

d−1∑
i=1

i

= nu1 + d

(⌊
n− d + 1

2

⌋
− k +

d− 1

2

)
.

Therefore, u1 = − d
n

(⌊
n−d+1

2

⌋
− k + d−1

2

)
and ui = u1 + i because each edge

has length one.

Lemma 12. Let u1, . . . , un be the coordinates of an embedding of T (n, d, k)
of the form (1). If T (n, d, k) has an even number of leaves, then

∑n
i=1 u

2
i =

1
4d

2n − 1
6d

3 + 1
6d −

k2d2

n and
∑n

i=1 u
2
i = 1

4d
2n − 1

6d
3 + 1

6d −
k2d2

n − kd2

n −
1
4
d2

n
otherwise.

Proof. Let u1, . . . , un̄ be the coordinates of the embedding of T (n, d, k) as de-
scribed above. First, we consider double brooms with an even number of leaves.
By Proposition 11 we have u1 = − d

n

(
n
2 − k

)
and ui = u1 + i for i = 2, . . . , d+ 1

and therefore
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n∑
i=1

u2
i =

n̄∑
i=1

wiu
2
i

=

(
n− d + 1

2
+ k

)(
d

n

(n
2
− k
))2

+

(
n− d + 1

2
− k

)(
− d

n

(n
2
− k
)

+ d

)2

+

d−1∑
i=1

(
− d

n

(n
2
− k
)

+ i

)2

=
1

4
d2n− 1

6
d3 +

1

6
d− k2d2

n
.

Eventually, let T (n, d, k) be a double broom with an odd number of leaves.
Again by Proposition 11 we get u1 = − d

n

(
n−1

2 − k
)
and ui = u1 + i for i =

2, . . . , d + 1, hence,

n∑
i=1

u2
i =

n̄∑
i=1

wiu
2
i

=

(
n− d + 2

2
+ k

)(
d

n

(
n− 1

2
− k

))2

+

(
n− d

2
− k

)(
− d

n

(
n− 1

2
− k

)
+ d

)2

+

d−1∑
i=1

(
− d

n

(
n− 1

2
− k

)
+ i

)2

=
1

4
d2n− 1

6
d3 +

1

6
d− k2d2

n
− kd2

n
− 1

4

d2

n
.

Finally, we compare embeddings of the form (1) and (2) and describe which
one has a larger value.

Proposition 13. Let T (n, d, k) be a double broom, u1, ..., un be the coordinates
of its embedding of the form (1) and v1, ..., vn be the coordinates of its embedding
of the form (2). Define p = −d whenever T (n, d, k) has an odd number of leaves
and p = 0 otherwise. If k ≥ n(d−2)+p

2d , then
∑n

i=1 u
2
i <

∑n
i=1 ‖vi‖

2, otherwise∑n
i=1 ‖vi‖

2
<
∑n

i=1 u
2
i .

Proof. Suppose T (n, d, k) has an odd number of leaves. First, we claim that an
embedding of the form (2) can only occur if k ≥ n(d−2)−d

2d . As we described in
Proposition 11 the coordinates of the vertices of an one dimensional embedding
are u1 = − d

n (bn−d+1
2 c − k + d−1

2 ) and ui = u1 + i for i = 2, . . . , d + 1. By
Proposition 9 we conclude u2 = 0 as a necessary condition for an embedding of
the form (2), hence, − d

n (n−1
2 − k) + 1 = 0 and therefore k = n(d−2)−d

2d . Now, it
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is easy to see that for an embedding of the form (2) we need k ≥ n(d−2)−d
2d in

order to satisfy the equilibrium constraint.
Using Lemmas 10 and 12, we get

∑
u2
i −

n∑
i=1

‖vi‖2 =
d2

4
(n− 2d + 2) +

1

6
d(d− 1)(2d− 1)

−d2 (2k + 1)2

2n
+

d2

4n
+

d2

n
(k2 + k)

−
(
n +

7

6
d− 1

6
d3 − 1

2
d2 +

1

2
d2n− dn− kd2 + 2kd

)
= −d2

n
k2 +

(
(4n− 4)d2

4n
− 2d

)
k

− (n2 − 2n + 1)d− 4n2 + 4n

4n
d− n.

Now consider this difference as a quadratic function in k. Since the roots of
this function are both k0 = dn−d−2n

2d , the difference is negative for all k 6= k0.
Hence, the result follows for an odd number of leaves.

Suppose T (n, d, k) has an even number of leaves. Using the same procedure
as before, we can see that for an embedding of the form (2) we need k ≥ n(d−2)

2d
in order to satisfy the equilibrium constraint.

Using Lemmas 10 and 12, we have

∑
u2
i −

n∑
i=1

‖vi‖2 =
1

4
d2n− 1

6
d3 +

1

6
d− k2d2

n

−
(
n +

1

6
d− 1

6
d3 +

1

2
d2n− dn− kd2 + 2kd

)
= −k2d2

n
+
(
d2 − 2d

)
k − 1

12

d
(
2d2n− 2n− 3dn2

)
n

−1

2
d2n− n− 1

6
d +

1

6
d3 + dn.

We calculate the roots of this quadratic function again which are both k0 =
dn−2n

2d . Therefore, the difference is negative for all k 6= k0. Hence, the result
follows for the even case and the proof is complete.

Now we are ready to prove the main result of this section.

Theorem 14. Let T (n, d, k) be a double broom and define p = −d whenever
T (n, d, k) has an odd number of leaves and p = 0 otherwise. If k ≥ n(d−2)+p

2d ,
then the optimal solution of the problem (1) is given by an embedding of the
form (2) and by an embedding of the form (1) otherwise.
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Proof. Since we can restrict our attention to embeddings of the form (1) and
(2), the statement is just a consequence of Proposition 13.

Now in view of the problem (1), Theorem 14, Lemma 10 and Lemma 12 the
proof of Theorem 1 is straightforward.

Eventually, we give a proof for Lemma 3.

Proof. (Theorem 3) To see that it holds, we apply Theorem 2 and Proposi-
tion 11 using the 1-dimensional coordinates as a projection for the eigenvector.
Therefore, using Theorem 14 we are done if k < n(d−2)+p

2d .
Note, that for k ≥ n(d−2)+p

2d we have two eigenvectors that are projections
of the following 2-dimensional embeddings onto the x and y axis

If q is even then

vi =


(−m

q ,
√

1− (m
q )2) i = 1, . . . , q

2

(−m
1 ,−

√
1− (m

q )) i = q
2 + 1, . . . , q

(i, 0) i = q + 1, . . . , q + d

(q + d + 1, 0) otherwise.
If q is odd we have

vi =



(−m+1
q−1 ,

√
1−

(
m−1
q−1

)2

) i = 1, . . . , q−1
2

(−m+1
q−1 ,−

√
1−

(
m−1
q−1

)2

) i = q+1
2 , . . . , q − 1

(−1, 0) i = q

(i, 0) i = q + 1, . . . , q + d

(q + d + 1, 0) otherwise.
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