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Abstract. Let G be a simple, undirected, and connected graph on n vertices with eigen-
values λ1 ≤ ... ≤ λn. Moreover, let m, δ, and α denote the size, the minimum degree,
and the independence number of G, respectively. W.H. Haemers proved α ≤ −λ1λn

δ2−λ1λnn

and, if η is the largest Laplacian eigenvalue of G, then α ≤ η−δ
η
n is shown by C.D. God-

sil and M.W. Newman. We prove α ≤ 2σ−2
σδ

m for the largest normalized eigenvalue σ
of G, if δ ≥ 1. For ε > 0, an infinite family Fε of graphs is constructed such that
2σ−2
σδ

m = α < (2
3
+ ε)min{ −λ1λn

δ2−λ1λnn,
η−δ
η
n} for all G ∈ Fε. Moreover, a sequence of graphs

is presented showing that the difference between 2σ−2
σδ

m and D.M. Cvetković’s upper bound
min{|{i ∈ {1, ..., n}|λi ≤ 0}|, |{i ∈ {1, ..., n}|λi ≥ 0}|} on α can be arbitrarily small.
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1 Introduction and Result
We use standard notation and terminology of graph theory and consider a finite, simple,
and undirected graph G with vertex set V = {1, ..., n} and edge set E, where m = |E|.
Let di and δ denote the degree of i ∈ V in G and the minimum degree of G, respectively.
Furthermore, we assume that G has no isolated vertices, i.e. δ ≥ 1. A set of vertices I ⊆ V
in G is independent, if no two vertices in I are adjacent. The independence number α of G
is the maximum cardinality of an independent set of G.

The independence number is one of the most fundamental and well-studied graph
parameters [14]. In view of its computational hardness [11] various bounds on the inde-
pendence number have been proposed, for a survey see [12].

In this paper, we are interested in upper bounds on α involving eigenvalues of matrices
assigned to G (lower bounds on α in terms of eigenvalues can be found in [16]). Let
λ1 ≤ ... ≤ λn denote the eigenvalues of the adjacency matrix A of G. Our starting point is
the following Delsarte-Hoffman-bound [4, 8, 10, 13]. If G is an r-regular graph, then

α ≤ −λ1
r − λ1

n.

Note that λn = r if G is r-regular [4]. In [9, 10], W.H. Haemers proved the following
extension of the Delsarte-Hoffman-bound for arbitrary graphs.
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α ≤ −λ1λn
δ2 − λ1λn

n.

If all eigenvalues of G are taken into consideration, then D.M. Cvetković [4, 6, 7] proved

α ≤ min{|{i ∈ {1, ..., n}|λi ≤ 0}|, |{i ∈ {1, ..., n}|λi ≥ 0}|}.

Let D be the degree matrix of G, that is an (n × n) diagonal matrix, where di is the i-th
element of the main diagonal. Moreover, let 0 = η1 ≤ ... ≤ ηn be the eigenvalues of the
Laplacian matrix L = D − A of G [1].

In [8], C.D. Godsil and M.W. Newman established the following inequality, which is also
a consequence of a result in [2] concerning the size of a cut in a graph.

α ≤ ηn − δ
ηn

n.

For G without isolated vertices, the normalized Laplacian is the (n × n) matrix L = (lij)
with lij = 1 if i = j, lij = − 1√

didj
if ij ∈ E, and lij = 0 otherwise. The eigenvalues

σ1 ≤ ... ≤ σn of L are the normalized eigenvalues of G [3, 5]. It is known that σ1 = 0 and
1 < σn ≤ 2 [3, 5].

Our result is the following inequality.

α ≤ 2σn − 2

σnδ
m.

For its proof, let {u1, ..., un} be an orthonormal basis of Rn consisting of eigenvectors of
the symmetric matrix L such that ui is an eigenvector of σi for i = 1, ..., n.
Moreover, let y = (y1, ..., yn) ∈ Rn and y = µ1u1 + ...+ µnun for suitable µ1, ..., µn ∈ R.
It follows
yTLy = σ2µ

2
2+ ...+σnµ

2
n = −σnµ2

1+(σ2−σn)µ2
2+ ...+(σn−1−σn)µ2

n−1+σn(µ
2
1+ ...+µ2

n)

≤ −σnµ2
1+σn(µ

2
1+ ...+µ

2
n) = −σn(yTu1)2+σn(yTy). LetM be an (n×n) diagonal matrix,

where 1√
di

is the i-th element of the main diagonal, and I be the (n× n) identity matrix.
With MT =M and L = I −MAM , we obtain yTMAMy ≥ σn(y

Tu1)
2 + (1− σn)yTy. We

may choose uT1 = 1√
2m

(
√
d1, ...,

√
dn) and, substituting yi = xi

√
di for i = 1, ..., n, it follows

that

σn(
n∑
i=1

dixi)
2 + 2m(1− σn)

n∑
i=1

dix
2
i ≤ 4m

∑
ij∈E

xixj (1)

for arbitrary real numbers x1, ..., xn. Let I be a maximum independent set of G and
x = (x1, ..., xn) with xi = 1 if i ∈ I and xi = 0, otherwise. By inequality (1),

σn(
∑
i∈I
di)

2 + 2m(1− σn)
∑
i∈I
di = σn(

n∑
i=1

dixi)
2 + 2m(1− σn)

n∑
i=1

dix
2
i ≤ 4m

∑
ij∈E

xixj,

hence, with
∑
ij∈E

xixj = 0 and
∑
i∈I
di ≥ δα, it follows α ≤ 2σn−2

σnδ
m.

2



Let us remark that
n∑
i=1

dixi =
∑
ij∈E

(xi + xj) and
n∑
i=1

dix
2
i =

∑
ij∈E

(x2i + x2j). Hence, if G is

bipartite, then σn = 2 [5, 15] and (1) is equivalent to

(
∑
ij∈E

(xi + xj))
2 ≤ m

∑
ij∈E

(xi + xj)
2. (2)

Note that inequality (2) is a consequence of the Cauchy-Schwarz inequality and, therefore,
(2) is valid also for an arbitrary (not necessarily bipartite) graph G.

Using (2), 2m
n∑
i=1

dix
2
i − (

n∑
i=1

dixi)
2 = 2m

∑
ij∈E

(x2i + x2j)− (
∑
ij∈E

(xi + xj))
2

≥ m(2
∑
ij∈E

(x2i+x
2
j)−

∑
ij∈E

(xi+xj)
2) = m

∑
ij∈E

(xi−xj)2 ≥ 0 and it follows that the coefficient

c(σn) of σn in inequality (1) is not positive. Hence, the left side of (1) is a non-increasing
function in σn and, if σn < 2 and c(σn) < 0, then (1) is stronger than (2).

Next, for given ε > 0, we present the infinite family Fε mentioned in the abstract.
For a positive integer k, consider the graph Gk on n = 3k + 1 vertices obtained from k
pairwise disjoint paths each on 3 vertices, where the vertices of these paths are numbered
arbitrarily from 1 up to 3k, an additional vertex n = 3k + 1, and additional 2k edges con-
necting n with the 2k endvertices of these paths. Obviously, Gk is bipartite, n has degree
2k, each other vertex has degree 2, m = 4k, δ = 2, and, since Gk is bipartite, σn = 2 and
λ1 = −λn [5, 15]. Moreover, 2σn−2

σnδ
m = α = 2k = 2

3
(n−1). Let x ∈ Rn be defined by xi = 1

if i is a neighbour of n, xn =
√
2k, and xi = 0 otherwise. It follows λn ≥ xTAx

xT x
=
√
2k by

Rayleigh’s principle [4], hence, −λ1λn
δ2−λ1λnn = λ2n

4+λ2n
n > k

k+2
3k. If x is defined by xi = 1 if i = n

and xi = 0 otherwise, then ηn ≥ xTLx
xT x

= (xTDx−xTAx)
xT x

= 2k, hence, ηn−δ
ηn

n > k−1
k
3k. Let the

integer l = lε ≥ 2 be chosen large enough such that l
l+2

> 1 − 3ε
2+3ε

. It follows k−1
k
≥ k

k+2

and (2
3
+ ε)min{ −λ1λn

δ2−λ1λnn,
ηn−δ
ηn

n} > (2
3
+ ε)(1 − 3ε

2+3ε
)3k = 2k for all k ≥ l, hence, we are

done with Fε = {Gk | k ≥ lε}.

Eventually, we show that the difference between 2σn−2
σnδ

m and D.M. Cvetković’s bound
min{|{i ∈ {1, ..., n}|λi ≤ 0}|, |{i ∈ {1, ..., n}|λi ≥ 0}|} can be arbitrarily small. For
two graphs G on V (G) and G′ on V (G′), the cartesian product G × G′ is the graph on
V (G)× V (G′) and two vertices (v, v′) and (w,w′) of G×G′ are adjacent in G×G′ if and
only if v = w and v′w′ ∈ E(G′) or v′ = w′ and vw ∈ E(G). For a positive integer k,
consider the bipartite and 4-regular graph Hk = C4k×C4k on n = 16k2 vertices, where C4k

is the cycle on 4k vertices, and it follows 2σn−2
σnδ

m = α = n
2
for Hk.

If λ and λ′ are eigenvalues of G and G′, respectively, then λ+λ′ is an eigenvalue of G×G′
[4]. If the graph G is bipartite, then the set of its eigenvalues is symmetric w.r.t. 0 [4].
Since C4k has the eigenvalue 0 with multiplicity 2 [4], Hk has the eigenvalue 0 with multi-
plicity 4k + 2, and, consequently,
min{|{i ∈ {1, ..., n}|λi ≤ 0}|, |{i ∈ {1, ..., n}|λi ≥ 0}|} = n

2
+ 2k + 1 for Gk.
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