
Computational solutions of a family of generalized

Procrustes problems

Jens Fankhänel, Peter Benner

Preprint 2014-6

Preprintreihe der Fakultät für Mathematik

ISSN 1614-8835

Contents

1 Introduction 5

2 The (`p; `q) Procrustes problem 6

2.1 The cases with p 6= 2 . 7
2.1.1 The solution of the one-dimensional minimization problems in the cases F = R

as well as F = C and q = 2 . 9
2.2 Numerical results . 10

2.2.1 The case F = R and q 2 [1;1)nf2g . 10
2.2.2 The case F = C and q = 2 . 11
2.2.3 The case F = R and q =1 . 11
2.2.4 Conclusions of the numerical tests . 11

3 Optimization methods for the remaining cases with p 6= 2 14

3.1 Standard iteration methods for convex optimization 14
3.2 Some statements about concave minimization and the SLA 14
3.3 A Branch-and-Bound-Method for concave minimization 15
3.4 An approach from Location Theory . 15
3.5 Addition of a paraboloid . 16

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g 17

4.1 Transformation into two-dimensional real minimization problems 18
4.2 The case q 2 [1; 2) . 19
4.3 The case q 2 [4;1) . 29
4.4 The case q 2 (2; 4) . 32
4.5 The special case q = 4 . 37
4.6 The solution in the case q =1 . 44

5 Conclusions 51

3

4

1 Introduction

Procrustes problems ask for a transformation which matches a given matrix A as close as possible to a
target matrix B subject to some constraints on the feasible transformations. The traditional example
is the orthogonal Procrustes problem:

minimize jjAQ�BjjF
s: t: QTQ = I;

(1.1)

where jj�jjF denotes the Frobenius norm of a matrix. This problem was solved by Schönemann in
1966 [40].
Several Procrustes problems di�er in at least one of the following two items:

� Which constraints are imposed on the feasible transformations?

� How is the distance between the target matrix and the transformation of the matrix Ameasured?

In the orthogonal Procrustes problem the feasible transformations are imposed to be rotations and/or
re�ections. Schönemann extended this problem by additionally admitting translations. A further
extension is to allow to multiply the matrix A by a scaling factor, too [41], [7].
Admitting scaling arbitrary but orthogonal axes by di�erent nonnegative factors leads to the real
semide�nite Procrustes problem which was considered by Allwright [2]. Kiskiras and Halikias consid-
ered the complex case in [27].
The distance between the target matrix and the transformation of the matrix A is often measured
by the Frobenius norm. However, other measures are possible. Watson considered the Procrustes
problem for a family of orthogonally invariant norms which contains (1.1) as a spezial case [47].
Kintzel explored the Procrustes problem in inde�nite inner product spaces [26]. The feasible trans-
formations are imposed to be isometric with respect to an inde�nite inner product. The distance
between the target matrix and the transformation of the matrix A is also measured by an inde�nite
inner product.
Procrustes problems have many applications in statistics, robotics and computer graphics.
This paper is organized as follows: In chapter 2 we de�ne the (`p; `q) Procrustes problem and show
a decomposition into smaller problems for p 6= 2: Furthermore, we display some numerical results
for the real cases as well as the complex case with q = 2: In chapter 3 we discuss some optimization
methods for the remaining cases with p 6= 2: Chapter 4 treats applications for these cases. The cases
p = 2 and q 6= 2 remain open and are under current investigation. However, there is a paper from
Trenda�lov [43] which treats the real case for p = 2 and q = 1: The case p = 2 = q is, of course, the
well known orthogonal Procrustes problem (1.1).
We denote the `p norm of a row or column vector v by jjvjjp: vT or v� is the transposed or the
conjugate transposed of the vector v: <z or =z means the real or the imaginary part of a complex
number z, respectively. Let A be a matrix. Then aj�; a�k or ajk denotes the j-th row vector, the
k-th column vector or the (j; k)-th entry of A, respectively. The symbol i is the imaginary unit which
is a square root of �1:

5

2 The (`p; `q) Procrustes problem

De�nition 2.1. Let F = R be the �eld of the real numbers or F = C be the �eld of the complex
numbers.
For a natural number n and a real number p 2 [1;1]; we de�ne the set of isometries with respect
to the `p norm:

Un;p =
n
U 2 Fn�n j jjU�vjjp = jjvjjp 8v 2 Fn

o
:

Furthermore we de�ne for natural numbers n < N , real numbers p 2 [1;1]; q 2 [1;1) and an
ordered pair (A;B) with A;B 2 FN�n the (`p; `q) Procrustes problem:

rp;q(A;B) =

NX
j=1

�������aj�U (p;q)
A;B � bj�

��������q
q

= min
U2Un;p

NX
j=1

����(aj�U � bj�)
�����q

q

(2.1)

as well as the (`p; `1) Procrustes problem:

rp;1(A;B) = max
1�j�N

�������aj�U (p;1)
A;B � bj�

��������
1

= min
U2Un;p

max
1�j�N

����(aj�U � bj�)
�����

1
:

(2.2)

The matrix U
(p;q)
A;B 2 Un;p is called a solution of the (`p; `q) Procrustes problems (q 2 [1;1]) with

respect to the pair of matrices (A;B).

If p = q = 2; we get exactly the usual orthogonal Procrustes problem, which was investigated in [40]
for example. According to [26] and [40] this problem can be solved by the positive semide�nite polar
decomposition

A�B = U
(2;2)
A;B M; (2.3)

where U
(2;2)
A;B is a unitary matrix and M is a positive semide�nite matrix. The factor U

(2;2)
A;B of (2.3) is

a solution of the minimization problem (2.1), if p = q = 2:
Trenda�lov explored the real (`2; `1) Procrustes problem in [43] and together with Watson in [44].

Proposition 2.2. :

(i) A matrix U 2 Fn�n is an isometry with respect to the `2 norm, if and only if U is a unitary
matrix.

6

2 The (`p; `q) Procrustes problem

(ii) Let p 2 [1;1]nf2g: A matrix U 2 Fn�n is an isometry with respect to the `p norm, if and only
if U = DP; where P is a permutation matrix and D is a unitary diagonal matrix.

Item (i) is trivial, and item (ii) is proved in [4] and [31] for example.

Remark 2.3. In the cases (ii) of Proposition 2.2, it is true that U = DP = P ~D; where ~D is a
unitary diagonal matrix, too, and can be obtained by permutation of the entries of the matrix D.

2.1 The cases with p 6= 2

Proposition 2.2 (ii) gives good reason for the following assumption:

Conjecture 2.4. Let p 2 [1;1] n f2g; q 2 [1;1] and F; n;N;A;B as in De�nition 2.1. Then
we can decompose the solution of the (`p; `q) Procrustes problem into three steps. First we compute
at most n2 candidates for the entries of a unitary diagonal matrix D. Then we search an optimal

permutation matrix P . Finally we construct D and compute U
(p;q)
A;B = DP:

For each pair (j; k) 2 f1; 2; :::; ng2 there is a permutation matrix P 2 f0; 1gn�n with pjk = 1: 1

Because of this we could compute an optimal factor �
(q)
jk 2 F for the j-th column of A with

����(q)jk ��� =

1: The actual a�liation of this factor to the diagonal matrix D depends apparently only on the j-th
row of the optimal permutation matrix which is found in the second step. We can do so for all pairs

(j; k) 2 f1; 2; :::; ng2 : This gives rise to the following de�nitions of numbers c
(q)
jk ; �

(q)
jk and functions

(q)
jk :

c
(q)
jk =

NX
l=1

����(q)jk � alj � blk

���q

= min
j�j=1

NX
l=1

j� � alj � blkjq| {z }
=:

(q)
jk

(�)

for q 2 [1;1)

or c
(1)
jk = max

1�l�N

����(1)
jk � alj � blk

���
= min

j�j=1
max
1�l�N

j� � alj � blkj| {z }
=:

(1)
jk

(�)

j; k = 1; 2; :::; n;

(2.4)

respectively. The optimal numbers �
(q)
jk are candidates for the diagonal entries of the matrix D in

the sense of Conjecture 2.4, and the nonnegative real numbers c
(q)
jk are the contributions of the k-th

coordinate to the residual rp;q(A;B) in (2.1). We want to clarify this issue exactly:

Lemma 2.5. Let p 2 [1;1] n f2g; q 2 [1;1] and F; n;N;A;B; rp;q(A;B) as in De�nition 2.1.

Assume U
(p;q)
A;B = DP is a solution of the (`p; `q) Procrustes problems with respect to the pair of

matrices (A;B), where P is a permutation matrix and D a unitary diagonal matrix. Furthermore, let

�
(q)
jk and c

(q)
jk (j; k = 1; 2; :::; n) be as in (2.4). Then the following two statements hold:

(i)

pjk = 1 =) djj = �
(q)
jk : (2.5)

1Indeed there are (n� 1)! permutation matrices with pjk = 1:

7

2 The (`p; `q) Procrustes problem

(ii)

rp;q(A;B) =

8><
>:

nP
j=1

nP
k=1

c
(q)
jk � pjk; q <1

max
1�j�n

max
1�k�n

c
(q)
jk � pjk; q =1:

Proof. Any solution of the (`p; `q) Procrustes problems has the form U
(p;q)
A;B = DP according to

Proposition 2.2 (ii), because p 6= 2:
(i): The permutation matrix P represents a bijective function

� : f1; 2; :::; ng �! f1; 2; :::; ng
with �(k) = j () pjk = 1:

So we obtain for q <1 from (2.1):

rp;q(A;B) = min
U2Un;p

NX
l=1

����(al�U � bl�)
�����q

q

=

NX
l=1

�������al�U (p;q)
A;B � bl�

��������q
q

=

NX
l=1

����(al�DP � bl�)
�����q

q

=

NX
l=1

nX
k=1

��al;�(k)d�(k);�(k) � bl;k
��q

=

nX
k=1

NX
l=1

��al;�(k)d�(k);�(k) � bl;k
��q

=) d�(k);�(k) = �
(q)
�(k);k:

(2.6)

For q =1 we obtain from (2.2):

rp;q(A;B) = min
U2Un;p

max
1�l�N

����(al�U � bl�)
�����

1

= max
1�l�N

�������al�U (p;q)
A;B � bl�

��������
1

= max
1�l�N

����(al�DP � bl�)
�����

1

= max
1�l�N

max
1�k�n

��al;�(k)d�(k);�(k) � bl;k
��

= max
1�k�n

max
1�l�N

��al;�(k)d�(k);�(k) � bl;k
��

=) d�(k);�(k) = �
(1)
�(k);k:

(2.7)

(ii) follows for q <1 from (2.4) and (2.6) by summation over the coordinates, for q =1 from (2.4)
and (2.7) by taking the maximum over the coordinates.

8

2 The (`p; `q) Procrustes problem

Now we look for a permutation matrix P in the sense of Conjecture 2.4. Hereby we can hardly use
the standard methods of analysis, because the set of the permutation matrices is discrete. Therefore
it makes sense to use appropriate models of Discrete Mathematics.

Lemma 2.6. Let q 2 [1;1] and F; n;N; p;A;B; rp;q(A;B) as well as U
(p;q)
A;B = DP as in Lemma 2.5.

Assume, the n2 one-dimensional minimization problems (2.4) are already solved. Then the complexity
of the computation of the permutation matrix P is in O �n3� : In the case q = 1 the complexity of

the computation of the permutation matrix P is even in O �n2:5� :
Proof. We construct a bipartite graph G = (V;E) of the set of vertices V = fv1; v2; :::; vn; w1; w2; :::; wng
and the set of edges E =

�fvj ; wkg j j; k 2 f1; 2; :::; ng	: The vertex vj represents the j-th row
and the vertex wk the k-th column of a matrix K = K ~G 2 f0; 1gn�n; which represents a subgraph

~G =
�
V; ~E

�
with ~E � E: The entry (j; k) of the matrix K ~G is one if and only if the edge fvj ; wkg

belongs to the set ~E. Furthermore we let the edge fvj ; wkg 2 E possess the weight c
(q)
jk from (2.4)

(for j; k = 1; 2; :::; n).
Then K ~G is a permutation matrix if and only if ~G is a perfect matching within the bipartite graph G.

U
(p;q)
A;B = DP minimizes the residual rp;q(A;B) in (2.1), so it follows from Lemma 2.5 for q <1; that

the permutation matrix P represents a perfect matching of minimal weight. According to [29, chapter
11] this problem can be solved by the Successive Shortest Path Algorithm. This algorithm can accor-
ding to [29, chapter 9] be implemented in such a way that its runtime is in O �jV j � jEj+ jV j2 � log jV j� :
In our case we have jV j = 2n; jEj = n2; and so the rumtime of the algorithm is in O �n3� :
According to Lemma 2.5 for q = 1; the permutation matrix P represents a perfect matching for
which the largest edge weight is minimal. In other words: P is a solution of the bottleneck assignment
problem or the bottleneck bipartite matching problem, respectively. In [38], Punnen and Nair suggest

for this problem an algorithm of runtime in O
�
jV j �pjV j � jEj� : In our case this yields a runtime in

O �n2:5� :
The algorithm of Punnen and Nair consists of two phases:

� First it calls O (log n) times an algorithm of Alt, Blum, Mehlhorn and Paul [3]. The algorithm
of Alt et al. has a runtime in O �n2:5= log n� and applies methods from [1], [15] and [22]. The
�rst phase of the algorithm of Punnen and Nair yields a matching of cardinality n� dpne :

� The remaining dpne augmentations of the matching are computed by the Successive Shortest
Path Algorithm with a modi�ed cost function and a heuristic from [16].

This combined algorithm speeds up the runtime relatively to the exclusive application of the Successive
Shortest Path Algorithm.

If we know the numbers c
(q)
jk and �

(q)
jk (j; k = 1; 2; :::; n) as in (2.4), then we can �nd a permutation

matrix P . Moreover, the implication (2.5) yields the construction of the unitary diagonal matrix D
as in Conjecture 2.4. This shows that Conjecture 2.4 is true, if the one-dimensional minimization
problems (2.4) are computable in �nite time.

2.1.1 The solution of the one-dimensional minimization problems in the cases
F = R as well as F = C and q = 2

Now we want to investigate how to solve the n2 one-dimensional minimization problems (2.4). We

look for the optimal solutions �
(q)
jk ; for j; k = 1; 2; :::; n:

This is easy for F = R; because �
(q)
jk 2 f�1; 1g 8j; k 2 f1; 2; :::; ng: Therefore we must only calculate

9

2 The (`p; `q) Procrustes problem

the sum for both values and compare these two sums. The complexity of this computation is thus in
O �Nn2� :
In the case F = C and q = 2; (2.4) is a usual orthogonal Procrustes Problem which can be solved by
a positive semide�nite polar decomposition (2.3) (for all j; k 2 f1; 2; :::; ng:) This is particularly easy
in the one-dimensional case. We compute

zjk = a��jb�k:

The complex number zjk possesses the representation

zjk = exp
�
i�

(2)
jk

�
� jzjkj ; �

(2)
jk 2 R; (2.8)

and this is a positive semide�nite polar decomposition, because
���exp�i�(2)jk ���� = 1 and jzjkj � 0: We

can set

�
(2)
jk = exp

�
i�

(2)
jk

�
:

If zjk 6= 0; then the factor exp
�
i�

(2)
jk

�
in (2.8) is unique. Otherwise, every unitary factor yields a

positive semide�nite polar decomposition of the form (2.8). In that special case every complex number

of modulus 1 is an optimal solution �
(2)
jk for (2.4).

2.2 Numerical results

We programmed the algorithms as m-�les in MATLAB2 for the cases of subsection 2.1.1 and tested
them. We always let N = 2 � n and drew pseudo-random numbers for all entries of A and B.

2.2.1 The case F = R and q 2 [1;1)nf2g

We tested 50 examples for each entry of the Table 2.1 and Table 2.2.

We compare these results graphically to the graph of a function time = c �n3; because the complexity
of the computation is in O �n3� : We determine the unknown factor c so that its cube root is the
arithmetic mean of the cube roots of the factors ckjl which would stand in this equation for the tested
examples. The index j runs over the q's, the index k over the n's and the index l runs over the number
of the examples.

timekjl = ckjl � n3k; k = 1; 2; :::;m1; j = 1; 2; :::m2; l = 1; 2; :::;m3

and 3
p
c =

1

m1m2m3
�
m1X
k=1

m2X
j=1

m3X
l=1

3
p
ckjl

=
1

m1m2m3
�
m1X
k=1

m2X
j=1

m3X
l=1

3

s
timekjl
n3k

:

(2.9)

Here, we have m1 = 10;m2 = 3 and m3 = 50: Figure 2.1 and 2.2 display the measured runtimes
together with the graph of the function c � n3:
2MATLAB is a registered trademark of The MathWorks Inc.; see www.mathworks.com

10

2 The (`p; `q) Procrustes problem

2.2.2 The case F = C and q = 2

We tested 50 examples for each problem size of Table 2.3 and drew pseudo-random numbers for the
real and imaginary parts of all entries of A and B. In order to compare these results to the graph of
a function time = c � n3; we compute a factor c as in (2.9) with m1 = 10;m2 = 1 and m3 = 50: The
measured runtimes are displayed in Table 2.3 and together with the graph of the function c � n3 in
Figure 2.3.

2.2.3 The case F = R and q =1

We tested 50 examples for each problem size of Table 2.4. The algorithm from Punnen and Nair
promises a better runtime for the computation of the optimal permutation (see Lemma 2.6). How-

ever, the computation of the numbers �
(1)
jk as in (2.4) requires cubic runtime. Therefore we use a

function time = c �n3 with c as in as in (2.9) with m1 = 10;m2 = 1 and m3 = 50: for the comparison
to the expected runtime. The measured runtimes are displayed in Table 2.4 and together with the
graph of the function c � n3 in Figure 2.4.
The runtimes are actually better than those in the previous tests. This is because of the fast algorithm
from Punnen and Nair. Nevertheless we cannot give a better upper bound than O �n3� :

2.2.4 Conclusions of the numerical tests

The results con�rm the stated complexity bounds. But the runtime of real examples can be better
than the upper bound.

n Average runtime in seconds
q = 1:0 q = 1:2 q = 1:5

10 0.014748 0.015023 0.015930
20 0.078757 0.084309 0.084140
30 0.234773 0.252455 0.252869
40 0.524623 0.564437 0.566878
50 0.991554 1.071351 1.073917
60 1.669336 1.801428 1.805245
70 2.611202 2.823891 2.826408
80 3.831442 4.124252 4.126859
90 5.367909 5.825500 5.831750
100 7.479148 8.101754 8.106456

Table 2.1: The measured runtimes for F = R and q 2 [1; 2):

n Average runtime in seconds
q = 3 q = 5 q = 10

10 0.015959 0.015149 0.015800
20 0.084742 0.085035 0.085819
30 0.255369 0.254879 0.256215
40 0.573667 0.573160 0.575470
50 1.087895 1.086968 1.088257
60 1.836464 1.838448 1.842627
70 2.883685 2.888313 2.889532
80 4.269644 4.249226 4.256956
90 6.022608 6.017283 6.028104
100 8.140372 8.135836 8.136754

11

2 The (`p; `q) Procrustes problem

Table 2.2: The measured runtimes for F = R and q 2 (2;1):

n Runtime in seconds
minimum average maximum

10 0.016921 0.017866 0.026170
20 0.086813 0.088923 0.099390
30 0.253735 0.257121 0.264710
40 0.558403 0.565227 0.576827
50 1.038469 1.053656 1.067858
60 1.750335 1.771959 1.788947
70 2.722435 2.761703 2.783121
80 4.024518 4.053560 4.109038
90 5.700010 5.719499 5.776263
100 7.677121 7.751119 7.804609

Table 2.3: The measured runtimes for F = C and q = 2:

n Runtime in seconds
minimum average maximum

10 0.008056 0.009847 0.020849
20 0.026735 0.030201 0.034344
30 0.058850 0.066005 0.076477
40 0.113653 0.126223 0.142218
50 0.191917 0.208091 0.232473
60 0.268390 0.292564 0.324753
70 0.401007 0.436926 0.464889
80 0.522879 0.564658 0.599515
90 0.709464 0.754060 0.807523
100 0.869627 0.932012 0.985356

Table 2.4: The measured runtimes for F = R and q =1:

Figure 2.1: The black curve represents the graph of the function time = c �n3 with c as in (2.9). The
stars correspond to the measured runtimes for F = R:

12

2 The (`p; `q) Procrustes problem

Figure 2.2: The black curve represents the graph of the function time = c �n3 with c as in (2.9). The
stars correspond to the measured runtimes for F = R:

Figure 2.3: The black curve represents the graph of the function time = c �n3 with c as in (2.9). The
stars correspond to the measured runtimes for F = C and q = 2:

Figure 2.4: The black curve represents the graph of the function time = c �n3 with c as in (2.9). The
stars correspond to the measured runtimes for F = R and q =1:

13

3 Optimization methods for the remaining

cases with p 6= 2

In the following chapter we will investigate the solution of the one-dimensional minimization problems
(2.4) for F = C and q 2 [1;1]nf2g: The di�erent cases can be treated with various optimization
algorithms which we will brie�y review here.

3.1 Standard iteration methods for convex optimization

For convex minimization, interior-point methods and active-set methods are usually applied. There
exist already several optimization solvers in which such methods are implemented.
The optimization solver KNITRO consists of three algorithms in one: a direct interior-point algorithm,
an interior-point-CG-algorithm and an active-set-algorithm. The objective function as well as the
constraints should be smooth. But convexity is not required. KNITRO is even globally convergent,
but only to a local minimum.
The solver KNITRO is available on the NEOS1 server. It accepts tasks in the modelling languages
AMPL2 and GAMS3. We used AMPL and sent several examples to the solver KNITRO on the NEOS
solver.

3.2 Some statements about concave minimization and the SLA

If we transform our one-dimensional complex problem (2.4) into a two-dimensional real problem, then
our feasible set is the unit circle. We can relax this problem to the closed unit disk in order to make
our our feasible set convex. If our objective function is also convex, then each local minimum is a
global minimum, too. But this minimum does not necessesarily lie on the unit circle.
Minimizing a concave function over a convex set has other advantages and disadvantages. It is well
known that a continuous and concave function over a convex set has always a global minimum at
an extreme point [5], [32]. This is quite a desired property for our problems. On the other hand,
concave minimization is NP-hard in general [5], [34], [37]. The paper [5] provides also a survey about
algorithms which yield always the exact solution. But such algorithms are ine�cient, of course. It is
often necessery to strike a good balance between speed and correctness.
Mangasarian developed the Successive Linearization Algorithm (SLA) for the minimization of a con-
cave function over a polytope [17], [32]. The SLA �nds always a stationary point, which is often also
a global minimum. The SLA computes in each iteration

x(k+1) 2 arg min
x2E(P)

rf
�
x(k)

�
�
�
x� x(k)

�
; (3.1)

where rf(�) is the gradient of the objective function, and E(P) is the set of extrempoints of the
feasible polytope P , which are the vertices of P . The algorithm stops if rf �x(k)���x(k+1) � x(k)

�
= 0:

1http://www.neos-server.org/neos/solvers/index.html
2http://www.ampl.com
3http://www.gams.com

14

3 Optimization methods for the remaining cases with p 6= 2

We can consider the closed unit disk to be a polytope with in�nitely many vertices. But in our case we
cannot expect, that rf �x(k)� ��x(k+1) � x(k)

�
becomes zeros in �nite time, because we have in�nitely

many extreme points on the disk. Therefore we must introduce a tolerance parameter " > 0; such
that the algorithm terminates if rf �x(k)� � �x(k+1) � x(k)

�
is small enough.

3.3 A Branch-and-Bound-Method for concave minimization

Branch-and-Bound is one of the proposed methods for concave minimization in [5]. A Branch-and-
Bound-Method decomposes the feasible set into �nitely many pieces and computes a lower bound of
the values of the objective function for each piece. In each step the algorithm considers a piece of
the minimal lower bound and decomposes it into smaller pieces. Then the lower bounds for the new
pieces are computed.
Schöning gives a detailed description of the Branch-and-Bound-principle in [42]. He suggests using a
heap in order to �nd a search node of the minimal lower bound e�ciently in each step. Nevertheless,
the number of steps of a Branch-and-Bound-Method can grow exponentially with regard to the size
of the problem. It is only appropriate for small instances of a problem.

3.4 An approach from Location Theory

This approach is concerned with the special case q = 1: Let p1; p2; :::; pN 2 R2 be given points in the
Euclidean plane, called facilities, and w1; w2; :::; wN 2 R+ nonnegative weights. According to [39],
the Euclidean single facility location problem (ESFL) asks for the minimum of the following function

'(x) =

NX
l=1

wl � jjx� pljj2 ; x 2 R2: (3.2)

In the ESFL we search a new facility x in the plane such that the sum of its Euclidean distances to
the existing facililies is minimized. The ESFL is also called the general Fermat problem. Obviously,
the ESFL is convex. Thus every local minimum is also a global minimum. Weiszfeld gave a simple
iteration algorithm solving this problem [48]. Kuhn proved the global convergence of this algorithm
[30].

Lemma 3.1. The one-dimensional minimization problem (2.4) for q = 1 without the constraint
j�j = 1 is equivalent to some Euclidean single facility location problem.

Proof. For a pair of indices (j; k) it su�ces to minimize

~
(1)
jk (�) =

X
l2I1(j;k)

j� � alj � blkj

=
X

l2I1(j;k)

����alj �
�
�� blk

alj

�����
=

X
l2I1(j;k)

jalj j �
������ blk

alj

���� :
We can consider the positive numbers jalj j as weights, the complex numbers blk=alj as facilities in
the real plane and the complex number � as a new facility in the real plane.

�

15

3 Optimization methods for the remaining cases with p 6= 2

It is also recommendable to apply a hyperbolic approximation of the fuction ' in (3.2) in order to
avoid non-di�erentiability in any points [39]:

~'(x) =
X
l2I1

wl �
q

(x� pl)
T
(x� pl) + �: (3.3)

3.5 Addition of a paraboloid

We will transform our one-dimensional complex problem (2.4) into a two-dimensional real problem.
Then our feasible set is the unit circle. We can exploit the special structur of our feasible set by adding
a paraboloid

� � �1� xTx
�

with some � 2 R (3.4)

to our objective function. This modi�cation has obviously no e�ect to the set of the feasible solutions
because the paraboloid (3.4) vanishes on the unit circle for all � 2 R:

16

4 The one-dimensional minimization

problems in the cases F = C; p 6= 2 and

q 2 [1;1]nf2g

For simpli�cation we set:

�
(jk)
l := 2 � (< (alj) � < (blk) + = (alj) � = (blk)) ;

�
(jk)
l := 2 � (< (alj) � = (blk)�= (alj) � < (blk)) ;

(jk)
l := jalj j2 + jblkj2 8j; k 2 f1; 2; :::; ng; l 2 f1; 2; :::; Ng:

(4.1)

We consider the functions g
(q)
jk (�) :=

(q)
jk (exp (i � �)) over an angle with � = exp (i � �) with

(q)
jk as

in (2.4). Together with the replacements (4.1) we can write these functions as follows:

g
(q)
jk (�) =

8>><
>>:

NP
l=1

�

(jk)
l � �

(jk)
l � cos � � �

(jk)
l � sin �

�q=2
; q <1

max
1�l�N

�

(jk)
l � �

(jk)
l � cos � � �

(jk)
l � sin �

�1=2
; otherwise

with � = cos � + i � sin � j; k = 1; 2; :::; n:

(4.2)

Vanishing summands can give rise to poles in the �rst derivative, if q < 2; and in the second derivative,

if q 2 [1; 4)nf2g: Therefore we de�ne two index sets and slightly modi�ed functions ~g
(q)
jk (�) and

ĝ
(q)
jk (�) for q <1:

I1(j; k) := fl 2 f1; 2; :::; Ng j alj 6= 0 ^ blk 6= 0g ;

~g
(q)
jk (�) :=

X
l2I1(j;k)

�

(jk)
l � �

(jk)
l � cos � � �

(jk)
l � sin �

�q=2
and I2(j; k) :=

n
l 2 f1; 2; :::; Ng j �

(jk)
l 6= 0 _ �

(jk)
l 6= 0

o
;

ĝ
(q)
jk (�) :=

X
l2I2(j;k)

�

(jk)
l � �

(jk)
l � cos � � �

(jk)
l � sin �

�q=2
:

(4.3)

Obviously the di�erences g
(q)
jk (�) � ~g

(q)
jk (�) and g

(q)
jk (�) � ĝ

(q)
jk (�) are independent of �: Thus the

derivative of ~g
(q)
jk (�) or ĝ

(q)
jk (�) ; respectively, has exactly the same value as the derivative of g

(q)
jk (�)

for all � 2 R: In particular, � 2 R minimizes g
(q)
jk (�) if and only if it minimizes ~g

(q)
jk (�) or ĝ

(q)
jk (�) ;

respectively.

17

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

4.1 Transformation into two-dimensional real minimization

problems

We transform the one-dimensional complex minimization problems (4.2) into two-dimensional real

minimization problems. Hereby we replace the functions g
(q)
jk (�) =

(q)
jk (exp (i � �)) = (�) by

functions f
(q)
jk (x) where x =

�
cos � sin �

�T
=
�<� =��T :

In the cases q <1 we can write the problem to minimize (4.2) as follows:

min f
(q)
jk (x) =

X
l2I1(j;k)

�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�q=2

s: t: xTx = 1; x 2 R
2

(4.4)

with �
(jk)
l ; �

(jk)
l and

(jk)
l l 2 f1; 2; :::; Ng as in (4.1). In the case q =1 we can write it as follows:

min f
(1)
jk

s: t: f
(1)
jk (x) �

r

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x; l = 1; 2; :::; N

xTx = 1; x 2 R
2:

(4.5)

Obviously, ~g
(q)
jk (�) � f

(q)
jk

��
cos �
sin �

��
for q <1 and g

(1)
jk (�) is equal to the minimal possible value

of f
(1)
jk

��
cos �
sin �

��
for all � 2 R:

It is well known, that a local minimum of a convex program is always a global minimum, too. But the
circle in the constraint of (4.4) and the (N + 1)-th constraint of (4.5) is not a convex set. Therefore
let us consider the following relaxed program for q <1:

min f
(q)
jk (x) =

X
l2I1(j;k)

�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�q=2

s: t: xTx � 1; x 2 R
2

(4.6)

with �
(jk)
l ; �

(jk)
l and

(jk)
l l 2 f1; 2; :::; Ng as in (4.1).

Lemma 4.1. If q 2 [2;1); then the program (4.6) is convex in the closed unit disk.

Proof. Obviously, the Hessian matrix of the objective function is zero for q = 2: For q 2 (2;1) we
consider the l-th summand of the objective function:

f
(q)
jkl(x) :=

�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�q=2

When this summand is nonzero, then we can calculate the Hessian matrix:

18

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

d2f
(q)
jkl(x)

dx2
=

q

2
�
�q
2
� 1

�
�
�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�q=2�2

�

2
64
�
�
(jk)
l

�2
�
(jk)
l � �(jk)l

�
(jk)
l � �(jk)l

�
�
(jk)
l

�2
3
75

=

"
�
(jk)
l

�
(jk)
l

#
�
h
�
(jk)
l �

(jk)
l

i
� q
2
�
�q
2
� 1

�
| {z }

�0

�
�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�q=2�2

| {z }
�0

(4.7)

So the l-th summand is convex, because its Hessian matrix is positive semide�nite.

The l-th summand of the objective can become zero only on the unit circle. When f
(q)
jkl (x) = 0;

then we choose a neighborhood U"(x) :=
�
~x 2 R2 j jj~x� xjj2 < "

	
for an arbitrary small " > 0:

Additionally we draw the tangent L(x) on the unit circle through x: L(x) borders an open half plane
P+
l � R2 where fjkl (~x) > 0: Now the Hessian matrix of the l-th summand is positive semide�nite

at all ~x 2 U"(x)\P+
l : Since the l-th summand is continuous in the closed unit disk, it is also convex

there.
The objective function is convex, because it is a sum of convex functions.

Corollary 4.2. If q 2 [2;1); then each local minimum of (4.6) is also a global minimum.

Lemma 4.3. If q = 2; then a global minimum of (4.6) lies on the unit circle, and with probability
one no minimum lies in the interior of the disk.

Proof. Let A and B be random matizes as in De�nition 2.1 with any continuous distribution. The
gradient of the objective function is

df
(q)
jk (x)

dx
= �

2
664
NP
l=1

�l(jk)

NP
l=1

�
(jk)
l

3
775 :

If a minimum of (4.6) lies in the interior of the unit disk, then this gradient must be zero. It is
obvious, that this special case occurs only with probability zero. In such a case the objective function
is independent of x, and we can choose an arbitrary point of the unit circle as a global minimum.

4.2 The case q 2 [1; 2)

The objective function of (4.6) is concave, if q < 2: Since concave minimization is NP-hard in general,
we cannot expect an e�cient algorithm which yields the exact solution in this case.
First we want to apply the Branch-and-Bound-principle for our problem. A Branch-and-Bound meth-
ods �nds either a global minimum or fails by exceeding the assigned space. It can require an expo-
nential runtime with respect to the length of the input. Our Branch-and-Bound algorithm should
decompose our feasible set into pieces and compute a lower bound of the values of the objective func-
tion for each piece. However, it is (in general) di�cult to determine a lower bound for a piece of the
feasible region which has a curved border. Therefore we extend the considered region not only to the
unit disk, but also beyond. Hereby we must be cautious, because a term in parentheses in (4.6) could
become negative outside the unit disk1.

1These terms are exponentiated by
q

2
.

19

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

De�nition 4.4. Given the program (4.6) with q 2 [1; 2): Let I2(j; k) be as in (4.3). The low points
of the program are

y(jk)m :=
1r�

�
(jk)
m

�2
+
�
�
(jk)
m

�2 �
"
�
(jk)
m

�
(jk)
m

#

for all m 2 I2(j; k):

We compute the set of low points as in De�nition 4.4. If this set is empty, then the problem is trivial.
Therefore let us assume that the set of low points is not empty. The tangent to the unit circle at the

point y
(jk)
m borders a half plane in which the term in parentheses of the m-th summand of f

(q)
jk in

(4.6) cannot become negative.
We can assume that we have at least two di�erent low points2. Then the tangents to the unit circle

at the low points form a (possibly unbounded) polygon in which no term in parentheses in f
(q)
jk can

become negative.
If the polygon which is formed by the tangents at the low points is not bounded, then we can insert
an arti�cial low point and draw the tangent to the unit circle at this point such that we get a bounded
polygon. Then we draw all the rays from the origin to all vertices of the polygon as well as the rays
from the origin to all the low points (including the possibly inserted arti�cial low point). The polygon
together with the rays yields our initial search nodes for the Branch-and-Bound-Method (see Figure
4.1). Note that each search node represents a triangle which has exactly one vertex on the unit circle.
We compute the value of the objective function on each vertex of such a triangle. The minimum of
these three values is obviously a lower bound for the values of the objective function over the whole
triangle, because the objective function is concave. We do so for all the search nodes.
Now we insert the initial search nodes into a heap. The heap condition guarantees that a search node
of the minimal lower bound is stored in the root of the heap. In each step the algorithm treats such a
node and decomposes it into two child nodes by a straight line through the origin. Another area is cut
o� from exactly one of the two child triangles in order to the recovery of the status that each triangle
has one vertex on the unit circle (see Figure 4.2). Then the father node is deleted, lower bounds of
the child node are computed, and the heap is updated. The algorithm stops in three cases:

(i) The lower bound of the considered triangle is achieved on its vertex which lies on the unit circle.

(ii) The angle of the considered triangle on the origin is smaller than a predetermined tolerance
parameter.

(iii) The number of the search nodes exceeds a predetermined amount.

Table 4.1: The cases for the termination of the Brach-and-Bound algorithm.

The perfect case is (i), because the algorithm gives an exact solution. Stopping in case (ii) yields
obviously an approximative solution. Case (iii) should be avoided if possible.

Algorithm 4.5.

Input: N; q 2 [1; 2); �l; �l;
l (l = 1; 2; :::; N) as in (4.1), a
positive integer m̂ giving the maximal size of the heap,
a tolerance parameter " > 0:

Output: An error message or a point x as in (4.6) which is
globally optimal up to a tolerance depending on ".

Data structures: Search nodes which store at least two vertices in the
plane as well as a lower bound; a min-heap for

2Otherwise the one-dimensional minimization problem was trivial.

20

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

such search nodes which stores additionally the cur-
rent and the maximal number of search nodes.

1.) Construct a min-heap for maximal m̂ search nodes.
Set the current number of search nodes to zero.

2.) Compute the initial search nodes as described above.
3.) If the problem has fewer than two proper low points

solve the problem immediately and stop.
4.) For each initial search node � do

compute the values of the objective function at the three
vertices of �,
store a minimum of these three values as a lower bound of �,
insert � into the min-heap,
increment the number of search nodes by one.

5.) Restore the heap condition.
6.) Repeat f

Read the search node � from the root of the heap.
If the lower bound of � is attained on a vertex
which lies on the unit circle // case (i)

output this vertex point as the solution and stop.
If the angle of � on the origin is smaller than " // case (ii)

output the vertex point of � which lies on the
unit circle as the solution and stop.

If the current number of search nodes is m̂; // case (iii)
display an error message and stop.

Decompose � into two search nodes �1 and �2 as described above.
For k := 1 to 2 do

compute the values of the objective function at the three
vertices of �k,
store a minimum of these three values as a lower bound
of �k:

Remove � from the heap and insert �1; �2 into the heap.
Increment the current number of search nodes by one.
Restore the heap condition.

g

Figure 4.1: The initial search nodes for the Branch-and-Bound Method.

21

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

Figure 4.2: The decomposition of a search node.

Lemma 4.6. The maximal number of sweeps through the loop in step 6 of Algorithm 4.5 is at most
4�

"
:

Proof. Obviouly, the maximal number of search nodes which exist during the last sweep is at most�
2�

"

�
: When the algorithm reaches the loop, then at least three initial search nodes exist, and each

sweep in step 6 of Algorithm 4.5, except the last one, increments the number of search nodes by one.

Thus the number of executions of this loop can not be greater than
4�

"
:

Theorem 4.7. The entire runtime of Algorithm 4.5 is in O (N � logN) +O
�
log(1=")

"

�
:

Proof. Sorting the low points with respect to their angles in step 2 and restoring the heap condition
in step 5 of Algorithm 4.5 is possible in O (N � logN) : The rest of step 1 till 4 is done in O (N) :
A sweep in step 6 requires O (log(1=")) because of the restoration of the heap condition, and the
algorithm needs only O (1=") sweeps according to Lemma 4.6.

Remark 4.8. The summand O
�
log(1=")

"

�
in Theorem 4.7 can be exponential with respect to the

input length, because the input of the tolerance parameter " requires only a logarithmic number of bits.

Next we apply the SLA and the solver KNITRO in order to solve our program (4.6) faster. At least
KNITRO is e�cient, but both methods yield only a stationary point. The computation of a step of
the SLA as in (3.1) is very easy in our case.

Lemma 4.9. Given a minimization problem over the disk P of radius R > 0 around the origin. Let
the objective function f : P � R2 ! R be concave and di�erentiable. Assume rf �x(k)� 6= 0 at a

point x(k) 2 P: Then

x(k+1) = �R � rf �x(k)�����rf �x(k)�����
2

(4.8)

is the unique solution of (3.1).

22

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

Proof. It holds for the minimal value in (3.1):

min
x2E(P)

rf
�
x(k)

�
�
�
x� x(k)

�
= �rf

�
x(k)

�
� x(k)

+ min
x2E(P)

rf
�
x(k)

�
� x

= �rf
�
x(k)

�
� x(k)

+ min
xT x=R

rf
�
x(k)

�
� x

= �rf
�
x(k)

�
� x(k)

+ rf
�
x(k)

�
� x(k+1)

Now the statement follows by the Cauchy-Schwarz inequality.

Fung and Mangasarian consider the real multidimensional `q minimization problem for q < 1 in [17].
They suggest starting the SLA iteration with the solution of the `1 minimization problem which is
linear in the real case. However, we have not a proper `q minimization problem in the real plane, but
a relaxed optimization problem over the circle. The case q = 1 is not linear in (4.6). Therefore we
use the solution of the `2 minimization problem as start point, because the `2 optimization is linear
in our case. Now the SLA can be adapted for (4.6) with q 2 [1; 2) in the following way:

Algorithm 4.10.

Input: N; q 2 [1; 2); �l; �l;
l (l = 1; 2; :::; N) as in (4.1),
a positive number R � 1 giving the radius of the disk,
a positive integer m̂ giving the maximal number of iterations,
a tolerance parameter " > 0:

Output: A stationary point x 2 R2 with � = (x1 + i � x2) =R as in (2.4).
1.) I2 := ;:
2.) For l := 1 to N do

if
�
�2l + �2l > "2

�
I2 := I2 [flg;

3.) y(0) :=
P
l2I2

�
�l �l

�T
; n̂ :=

����y(0)����
2
:

4.) If (n̂ > ")

then x(0) := R � y
(0)

n̂
; // start with R times

// the `2 solution

else x(0) :=
�
R 0

�T
: // an arbitrary point

// with radius R

// (see the proof of
// Lemma 4.3.)

5.) For k := 1 to m̂ do

y(k) :=
P
l2I2

�
�l �l

�T�

l �

�
�l �l

� � x(k�1)�1�q=2 ;
// y(k) = �rf �x(k�1)�

n̂ :=
����y(k)����

2
:

If (n̂ < ")
then x(k) := x(k�1); break;

23

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

else x(k) := R � y
(k)

n̂
; // see (4.8)

if
��
x(k) � x(k�1)

�T � �x(k) � x(k�1)
�
< "2

�
then break.

6.) � :=
1

R
�
�
x
(k)
1 + i � x(k)2

�
:

Remark 4.11. The gradient of the objective function can have poles on the unit circle if jalj j = jblkj
for at least one l 2 f1; 2; :::; Ng: Thus we can use a slightly smaller disk to avoid this di�culty. The
radius R could be 1� " for a small " > 0:
On the other hand, poles can only occur with probability zero. Therefore we can �rst test whether a
pair of corresponding coordinates has the same absolute value. Then we decrease the radius R below
one only is necessary.

Example 4.12. We set N := 1000; q := 1 and drew 20 pseudo-random numbers for the real and
the imaginary parts of al and bl (l = 1; 2; :::; N); respectively. We solved the instances of the
problem by Algorithm 4.10 which we have implemented in MATLAB and compiled. Thereby we set
the tolerance parameter " := 10�7 and m̂ := 2000: We sent the instances of the problem also to the
solver KNITRO on the NEOS server. We veri�ed by the Branch-and-Bound method which method
yielded a global minimum.

SLA KNITRO
Did it yield required Did it yield required

no. a global runtime in a global runtime in
minimum? milliseconds minimum? milliseconds

1 X 15 X 4.39
2 X 15 X 4.79
3 X 31 X 5.58
4 X 16 X 7.42
5 X 29 4.79
6 140 4.15
7 X 16 5.19
8 X 16 X 32.53
9 X 31 X 8.14
10 X 11 X 6.84
11 X 31 5.05
12 X 31 X 4.53
13 X 15 3.16
14 X 16 X 2.27
15 X 31 X 11.05
16 X 31 X 3.47
17 31 5.67
18 X 16 3.92
19 X 32 X 7.45
20 X 15 X 26.24

sum: 569 156.63

24

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

Figure 4.3: The runtimes of KNITRO and the SLA for Example 4.12.

The SLA yielded eighteen times a global minimum, KNITRO found only thirteen times a global mini-
mum.

�

We programmed the Branch-and-Bound method in C++. We coded also the SLA in C++ in order
to treat the data with the same program.

Example 4.13. We set q := 1 and drew 50 sets of pseudo-random numbers for the real and imaginary
parts of al and bl for l = 1; 2; :::; N and N 2 f100; 200; :::; 1000g: The tolerance parameter " was 10�7,
the maximal heap size was 5000 and the maximal number of iterations for the SLA was bounded to
1000. Never the maximal heap size nor the maximal number of iterations was attained. A solution of
the SLA was considered being a global minimum if j�BaB � �SLAj < 10�6 or jg (�BaB)� g (�SLA)j <
10�6 � g (�BaB) : Table 4.2 and Figure 4.4 display the results.

�

We wanted also to test how the runtime depends on the tolerance parameter. If " becomes very small,
then the number of search nodes for the Branch-and-Bound-Method could explode and therefore the
required runtime could also rise.

Example 4.14. We set q := 1 and drew 50 sets of pseudo-random numbers for the real and imaginary
parts of al and bl for l = 1; 2; :::; N with N = 500: for " 2 �

10�12; 10�11; :::; 10�3
	
: The maximal

heap size was 5000 and the maximal number of iterations for the SLA was bounded to 2000. Never
the maximal heap size nor the maximal number of iterations was attained. A solution of the SLA was
considered being a global minimum if j�BaB � �SLAj < 10�6 or jg (�BaB)� g (�SLA)j < 10�"�g (�BaB) :
Table 4.3 and Figure 4.5 display the results.
There was no signi�cant increase of the runtime of the Branch-and-Bound method for decreasing " in
this example.

�

25

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

N Average runtime in milliseconds How often did
Branch SLA the SLA �nd a

and Bound global minimum?
100 6.86 0.32 16
200 18.12 2.78 50
300 35.92 5.56 50
400 63.62 6.26 39
500 95.52 9.62 50
600 135.76 16.80 36
700 192.90 24.26 50
800 248.90 22.56 50
900 365.32 40.28 48
1000 342.28 33.02 47

Table 4.2: The results of Example 4.13.

" Average runtime in milliseconds How often found
Branch SLA the SLA a

and Bound global minimum?
10�12 102.14 19.14 50
10�11 98.90 17.36 42
10�10 98.24 16.36 50
10�9 93.98 12.22 50
10�8 95.46 15.10 40
10�7 98.02 11.94 47
10�6 98.44 9.26 43
10�5 102.92 6.98 41
10�4 90.90 4.54 50
10�3 85.68 2.86 50

Table 4.3: The results of Example 4.14.

Figure 4.4: The average runtimes of the Branch-and-Bound-Method and the SLA for Example 4.13.

26

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

Figure 4.5: The average runtimes of the Branch-and-Bound-Method and the SLA for xample 4.14.

In practical tests the runtime of the Branch-and-Bound method depended hardly on the tolerance
parameter ", although this is the most crucial dependence in the worst case according to Theorem 4.7
and Remark 4.8. In Example 4.13 the runtime rose faster as predicted in Theorem 4.7. This is because
a problem with fewer summands will possess fewer stationary points on average. Therefore we can
expect that the Branch-and-Bound method will faster �nd an optimal search node or its ancestors,
respectively.

Figure 4.6: The SLA iteration: The solid curve is a section of the unit circle, and an SLA iteration
with m̂ = 5 is dashed.

Finally, we investigate the solution of the problems (2.4) by Weiszfelds algorithm for the ESFL with
the hyperbolic approximation from Rosen and Xue (3.3). However, a global minimum need not lie
on the unit circle. It is possible to add a penalty function [25], [35] in order to force the solution to
the unit circle. But we cannot expect to obtain a global minimum with respect to the unit circle in
this way, because we loose the convexity of our problem. Instead of the solution of our problems with
several parameters for the penalty function, we can exploit the geometric structure of the circle. Past
each iteration in the sense of Weiszfelds algorithm we project the new iteration point to the circle in
the following way:

27

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

�(x) :=
x

jjxjj2 ; x 6= 0:

Now we can present our algorithm based on [48] and [39]:

Algorithm 4.15.

Input: N; al; bl; (l = 1; 2; :::; N);
a natural number m̂ giving the maximal number of iterations,
a tolerance parameter " > 0
an approximation parameter � > 0:

Output: A locally minimizing � as in (2.4) for q = 1:
1.) I1 := ;:
2.) For l := 1 to N do

if
��
jalj2 > "2

�
and

�
jblj2 > "2

��
I1 := I1 [flg;
p1l := < bl

al
;

p2l := = bl
al

;

3.) y(0) := a�b; n̂ :=
����y(0)����

2
:

If (n̂ > ")

then x(0) :=
y(0)

n̂
; // start with the `2 solution

else x(0) :=
�
1 0

�T
: // an arbitrary point on

// the circle.
4.) For k := 1 to m̂ do

y(k) :=
P
l2I1

jalj � p�lq�
y(k�1) � p�l

�T �
y(k�1) � p�l

�
+ �

;

n̂ :=
����y(k)����

2
:

If (n̂ < ")
then x(k) := x(k�1); break;

else x(k) :=
y(k)

n̂
;

if
��
x(k) � x(k�1)

�T � �x(k) � x(k�1)
�
< "2

�
then break.

4.) � := x
(k)
1 + i � x(k)2 :

We programmed Algorithm 4.15 in order to compare it with our Branch-and-Bound-Method as well
as the SLA.

Example 4.16. We set q := 1 and drew 50 sets of pseudo-random numbers for the real and imaginary
parts of al and bl for l = 1; 2; :::; N and N 2 f100; 200; :::; 1000g: The tolerance parameter " was 10�7,
the approximation parameter � was 10�9, the maximal heap size was 5000 and the maximal number
of iterations for Algorithm 4.15 and the SLA was bounded to 2000. Never the maximal heap size nor
the maximal number of iterations was anytime attained. A solution of the SLA was considered to be
a global minimum if j�BaB � �SLAj < 10�6 or jg (�BaB)� g (�SLA)j < 10�6 � g (�BaB) ; analogously
for Algorithm 4.15. The average runtimes are displayed in Table 4.4 and Figure 4.7.

�

28

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

N Average runtime of How often found
B. a. B. Algor. 4.15 SLA Algor. 4.15 SLA

in milliseconds a global minimum?
100 4.98 0.32 1.26 29 29
200 13.72 0.96 2.82 50 50
300 25.96 0.32 6.54 50 50
400 52.70 3.10 9.50 50 50
500 79.06 2.18 8.14 50 50
600 109.26 3.82 10.04 50 50
700 148.50 7.08 14.72 43 43
800 193.18 5.98 15.54 50 50
900 241.60 6.82 21.62 35 35
1000 292.48 8.16 18.74 46 46

Table 4.4: The results of Example 4.16.

Figure 4.7: The average runtimes of Algorithm 4.15 and the SLA.

4.3 The case q 2 [4;1)

In the next section we will investigate the case q 2 (2; 4): The treatment of that case will be a
re�nement of our approach in this section. Therefore we �rst present the case q 2 [4;1): In section
4.5 we will see that there exists a much better approach for the special case q = 4: But for q 2 (4;1);
we are not able to give an e�cient algorithm which always yields a global minimum.
Let us consider the following modi�cation of the program (4.6):

min f̂
(q)
jk (x) =

X
l2I1(j;k)

�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�q=2

+
�(jk)

2
� �1� xTx

�
s: t: xTx � 1; x 2 R

2

(4.9)

with �
(jk)
l ; �

(jk)
l and

(jk)
l ; l 2 f1; 2; :::; Ng; as in (4.1) and �(jk) 2 R:

Obviously, the additional summand
�(jk)

2
� �1� xTx

�
vanishes on the unit circle. Therefore the

29

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

objective function of the program (4.9) has the same value as the objective function of the program
(4.6) on each point of the unit circle.

Lemma 4.17. Let f
(q)
jk (x) be the objective function as in program (4.6) and U � R2 a closed bounded

convex set. If q 2 (4;1) and �(jk) is greater than or equal to the largest eigenvalue of the Hessian

matrix
d2f

(q)
jk (x)

dx2
for all x 2 U; then the objective function of the program (4.9) is concave over U:

Proof. The Hessian matrix of the objective function is

d2f̂
(q)
jk

�
x; �(jk)

�
dx2

=
d2f

(4)
jk (x)

dx2
� �(jk) � I2;

and this matrix is negative semide�nite for all x 2 U; because �(jk) is greater than or equal to the
largest eigenvalue of the �rst summand if x 2 U:

Lemma 4.18. Let f
(q)
jk (x) be the objective function as in program (4.6) as well as �

(jk)
l ; �

(jk)
l and

(jk)
l for l 2 f1; 2; :::; Ng as in (4.1) and R 2 (0; 1]: If we set

�(jk) = �(jk)(R)

:=
q

2
�
�q
2
� 1

�
�

X
l2I1(j;k)

�
(1 +R)

(jk)
l

�q=2�2
�
��

�
(jk
l)

�2
+
�
�
(jk)
l

�2�
;

(4.10)

then �(jk) is greater than or equal to the largest eigenvalue of the Hessian matrix
d2f

(q)
jk (x)

dx2
for all x

within the closed disk with radius R around the origin.

Proof. According to (4.7) the Hessian matrix of f
(q)
jk (x) is

d2f
(q)
jk (x)

dx2
=

q

2
�
�q
2
� 1

�
�

X
l2I1(j;k)

�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�q=2�2

�
"
�
(jk)
l

�
(jk)
l

#
�
h
�
(jk)
l �

(jk)
l

i

=:

�
h11(x) h12(x)
h21(x) h22(x)

�
:

The largest eigenvalue of this matrix is

�1(x) =
h11(x) + h22(x)

2
+

s
(h11(x) + h22(x))

2

4
+ h12(x) � h21(x)� h11(x) � h22(x)

� h11(x) + h22(x)

=
q

2
�
�q
2
� 1

�
�

X
l2I1(j;k)

�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�q=2�2

�
��

�
(jk
l)

�2
+
�
�
(jk)
l

�2�

� q

2
�
�q
2
� 1

�
�

X
l2I1(j;k)

�
(1 +R)

(jk)
l

�q=2�2
�
��

�
(jk
l)

�2
+
�
�
(jk)
l

�2�

8x with xTx � 1:

(4.11)

30

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

If we set �(jk) = �(jk)(1) as in (4.10), then the objective function of (4.9) is concave over the unit
disk according to Lemma 4.17 and 4.18. Our modi�cation has the advantage that the global minimum
lies on the unit circle and has there the same value as the original program (4.6) according to section
3.5. The modi�ed program is still hard to solve. But the Successive Linearization Algorithm ([17],
[32]) as well as the solver KNITRO �nds always a stationary point which is also a global minimum in
many cases. Here is the slightly modi�ed Successive Linearization Algorithm from Mangasarian for
the case q 2 (4;1):

Algorithm 4.19.

Input: N; q 2 (4;1); �l; �l;
l (l = 1; 2; :::; N) as in (4.1),
a nonnegative real number � := �(jk)(1) as in (4.10),
a positive integer m̂ giving the maximal number of
iterations, a tolerance parameter " > 0:

Output: A stationary point x 2 R2 with � = (x1 + i � x2) as in (2.4).

1.) y(0) :=
NP
l=1

�
�l �l

�T
; n̂ :=

����y(0)����
2
:

2.) If (n̂ > ")

then x(0) :=
y(0)

n̂
; // start with the `2 solution

else x(0) :=
�
1 0

�T
: // an arbitrary point

// with radius 1

3.) For k := 1 to m̂ do

y(k) := � � x(k�1) +
NP
l=1

�

l �

�
�l �l

� � x(k�1)�q=2�1 � ��l
�l

�
;

n̂ :=
����y(k)����

2
:

If (n̂ < ")
then x(k) := x(k�1); break;

else x(k) :=
y(k)

n̂
;

if
��
x(k) � x(k�1)

�T � �x(k) � x(k�1)
�
< "2

�
then break.

4.) � :=
�
x
(k)
1 + i � x(k)2

�
:

In the third step of the algorithm we used the convention 0q=2�1 := 0 for all q 2 (4;1):
Furthermore, we can use �(jk)(R) as in Lemma 4.18 in order to make our modi�ed objective function
as in (4.9) concave over a disk with an arbitrary radius R around the origin. This modi�cation works
also for our Branch-and-Bound-Method which we have introduced in section 4.2. If we set R to the
maximal Euclidean norm over the vertices of the triangles which correspond to the initial search nodes
of our Branch-and-Bound-Method, then our modi�ed objective function with �(jk)(R) will be concave
over all triangles which are represented by the initial search nodes and thus for all the triangles which
correspond to the search nodes which are produced by the Branch-and-Bound-Method (see Figure
4.1).

Example 4.20. We set q := 5 and drew 50 sets of pseudo-random numbers for the real and imaginary
parts of al and bl for l = 1; 2; :::; N and N 2 f100; 200; :::; 1000g: The tolerance parameter " was 10�7,
the maximal heap size was 5000 and the maximal number of iterations for the SLA was bounded to
2000. Neither the maximal heap size nor the maximal number of iterations was attained. A solution of
the SLA was considered being a global minimum if j�BaB � �SLAj < 10�6 or jg (�BaB)� g (�SLA)j <
10�6 � g (�BaB) : Table 4.5 and Figure 4.8 display the results.

�

Example 4.21. We set q := 10 and drew 50 sets of pseudo-random numbers for the real and imaginary
parts of al and bl for l = 1; 2; :::; N and N 2 f100; 200; :::; 1000g: The tolerance parameter " was

31

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

N Average runtime in milliseconds How often did
Branch SLA the SLA �nd a

and Bound global minimum?
100 35.88 3.44 50
200 74.32 6.50 50
300 118.86 6.54 50
400 160.10 11.80 50
500 208.40 19.98 50
600 260.94 32.36 40
700 344.46 36.36 45
800 451.16 47.70 50
900 532.28 43.12 44
1000 585.22 55.88 48

Table 4.5: The results for Example 4.20.

N Average runtime in milliseconds How often did
Branch SLA the SLA �nd a

and Bound global minimum?
100 14.34 6.24 50
200 40.60 11.84 50
300 90.48 19.34 33
400 146.02 27.76 39
500 203.90 43.84 50
600 269.64 76.98 34
700 333.48 81.18 39
800 412.44 114.52 45
900 480.08 149.50 40
1000 573.46 195.62 31

Table 4.6: The results for Example 4.21.

10�7 and the maximal heap size was 5000. The SLA became slower for q = 10: Therefore we set the
maximal number of iterations for the SLA to 2000. Neither the maximal heap size nor the maximal
number of iterations was attained. A solution of the SLA was considered being a global minimum if
j�BaB � �SLAj < 10�6 or jg (�BaB)� g (�SLA)j < 10�6 � g (�BaB) : Table 4.6 and Figure 4.9 display
the results.

�

4.4 The case q 2 (2; 4)

This case is quite similar to the case q 2 (4;1); but there is an essential di�erence. If q 2 (2; 4) and
jalj j = jblkj for at least one l 2 f1; 2; :::; Ng; then the second derivative of the objective function has
at least one pole on the unit circle. Thus we can use a slightly smaller disk to avoid this di�culty.
On the other hand poles can only occur with probability zero. Therefore we can �rst test whether a
pair of corresponding coordinates has the same absolute value. Then we decrease the radius R below
one only if necessary.

Lemma 4.22. Let f
(q)
jk (x) be the objective function as in the program (4.6) as well as �

(jk)
l ; �

(jk)
l

and

(jk)
l ; l 2 f1; 2; :::; Ng; as in (4.1). Let R 2 (0; 1]: If we set

32

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

Figure 4.8: The average runtimes of the Branch-and-Bound-Method and the SLA in Example 4.20.

Figure 4.9: The average runtimes of the Branch-and-Bound-Method and the SLA in Example 4.21.

33

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

�(jk) = �(jk)(R)

:=
q

2
�
�q
2
� 1

�
�

8>>><
>>>:

P
l2I1(j;k)

�
(1�R) �
(jk)l

�q=2�2
�
��

�
(jk
l)

�2
+
�
�
(jk)
l

�2�
; if R < 1;

P
l2I1(j;k)

jjalj j � jblkjjq=2�2 �
��

�
(jk
l)

�2
+
�
�
(jk)
l

�2�
; otherwise,

(4.12)

then �(jk)(R) is greater than or equal to the largest eigenvalue of the Hessian matrix
d2f

(q)
jk (x)

dx2
for

all x within the closed disk around the origin with radius R:

Proof. According to (4.7), the Hessian matrix of f
(q)
jk (x) is

d2f
(q)
jk (x)

dx2
=

q

2
�
�q
2
� 1

�
�

X
l2I1(j;k)

�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�q=2�2

�
"
�
(jk)
l

�
(jk)
l

#
�
h
�
(jk)
l �

(jk)
l

i

=:

�
h11(x) h12(x)
h21(x) h22(x)

�
:

We have the bound �1(x) � h11(x) + h22(x) for the largest eigenvalue of the Hessian matrix from
(4.11). This means for q 2 (2; 4) and R < 1

�1(x) � q

2
�
�q
2
� 1

�
�

X
l2I1(j;k)

�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�q=2�2

�
��

�
(jk
l)

�2
+
�
�
(jk)
l

�2�

� q

2
�
�q
2
� 1

�
�

X
l2I1(j;k)

�
(1�R) �
(jk)l

�q=2�2
�
��

�
(jk
l)

�2
+
�
�
(jk)
l

�2�

8x with xTx � R2:

For the largest eigenvalue of the Hessian matrix in the case R = 1; it holds

�1(x) � q

2
�
�q
2
� 1

�
�

X
l2I1(j;k)

�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�q=2�2

�
��

�
(jk
l)

�2
+
�
�
(jk)
l

�2�

� q

2
�
�q
2
� 1

�
�

X
l2I1(j;k)

jjalj j � jblkjjq=2�2 �
��

�
(jk
l

�2
+
�
�
(jk)
l

�2�

8x with xTx � 1:

Now we can solve the program

min f̂
(q)
jk (x;R) =

X
l2I1(j;k)

�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�q=2

+
�(jk)(R)

2
� �R2 � xTx

�
s: t: xTx � R2; x 2 R

2

(4.13)

34

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

with R 2 (0; 1] and �(jk)(R) as in (4.12). According to section 3.5 the objective function has the same
value as the program 4.6 on the circle around the origin with radius R. Acoording to Lemma 4.17 and
4.22 the objective function of the program 4.13 is concave. We adopted the Successive Linearization
Algorithm from Mangasarian also for this case.

Algorithm 4.23.

Input: N; q 2 (2; 4); �l; �l;
l (l = 1; 2; :::; N) as in (4.1),
a radius R 2 (0; 1] and a nonnegative number � := �(jk)(R)
as in (4.12),
a positive integer m̂ giving the maximal number of iterations,
a tolerance parameter " > 0:

Output: A stationary point x 2 R2 with � = (x1 + i � x2) =R as in (2.4).

1.) y(0) :=
NP
l=1

�
�l �l

�T
; n̂ :=

����y(0)����
2
:

2.) If (n̂ > ")

then x(0) := R � y
(0)

n̂
; // start with R times

// the `2 solution

else x(0) :=
�
R 0

�T
: // an arbitrary point

// with radius R

3.) For k := 1 to m̂ do

y(k) := � � x(k�1) +
NP
l=1

�

l �

�
�l �l

� � x(k�1)�q=2�1 � ��l
�l

�
;

n̂ :=
����y(k)����

2
:

If (n̂ < ")
then x(k) := x(k�1); break;

else x(k) := R � y
(k)

n̂
;

if
��
x(k) � x(k�1)

�T � �x(k) � x(k�1)
�
< "2

�
then break.

4.) � :=
1

R
�
�
x
(k)
1 + i � x(k)2

�
:

Obviously, we can use f̂
(q)
jk (x;R) as in (4.13) with the same radius R as in the SLA also for our

Branch-and-Bound-Method. If "l � 0 for a l 2 I1(j; k); then we must use a radius which is slightly
smaller than one (see Figure 4.11).

Example 4.24. We set q := 3 and drew 50 sets of pseudo-random numbers for the real and imaginary
parts of al and bl for l = 1; 2; :::; N and N 2 f100; 200; :::; 1000g: The tolerance parameter " was 10�7.
According to our expierence, both the SLA and the Branch-and-Bound-Method became very slow for
q 2 (2; 4) Therefore we set the maximal heap size to 20000 and the maximal number of iterations for
the SLA to 100000. After these settings neither the maximal heap size nor the maximal number of
iterations was anymore attained. A solution of the SLA was considered being a global minimum if
j�BaB � �SLAj < 10�6 or jg (�BaB)� g (�SLA)j < 10�6 � g (�BaB) :

35

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

N Average runtime in milliseconds How often did
Branch SLA the SLA �nd a

and Bound global minimum?
100 48.44 15.38 50
200 101.12 80.96 50
300 145.80 122.44 48
400 151.32 170.32 50
500 220.84 301.20 49
600 296.88 395.30 48
700 411.08 632.22 50
800 560.04 843.12 50
900 657.42 1138.10 48
1000 713.02 1020.96 50

Table 4.7: The average runtimes of the Branch-and-Bound-Method and the SLA for Example 4.24.

Figure 4.10: The average runtimes for Example 4.24.
�

Figure 4.11: The initial search nodes for the Branch-and-Bound-Method if R < 1.

36

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

4.5 The special case q = 4

In section 4.3 (q 2 [4;1)) we modi�ed the objective function in order to make it concave. By that
the local mimima lay on the border of the unit disk. But the global minimum could not be found
e�ciently.
However, we can �nd the global minimum very e�ciently in the special case q = 4: The essential
approach is the addition of a paraboloid again. But the resulting objective function stays convex this
time and has a global minimum on the unit circle. Then the modi�ed program can be solved exactly
by a standard solver like KNITRO.
According to the proof of Lemma 4.1, the Hessian matrix is constant in the case q = 4: This matrix
can be computed in O(N); and its eigenvalues can be computed in constant time, because this matrix
is in R2�2: Let �1 � �2 � 0 be the eigenvalues of this matrix. Then we can modify the program 4.6
as follows:

min ~f
(4)
jk (x) =

X
l2I1(j;k)

�

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x
�2

+
�2
2
� �1� xTx

�
s: t: xTx � 1; x 2 R

2

(4.14)

with �
(jk)
l ; �

(jk)
l and

(jk)
l ; l 2 f1; 2; :::; Ng; as in (4.1). Obviously, the additional summand

�(jk)

2
� �1� xTx

�
vanishes on the unit circle. Therefore the objective function of the program (4.9)

has the same value as the objective function of the program (4.6) on each point of the unit circle.

Lemma 4.25. If q = 4 and �2 is the smallest eigenvalue of the matrix
d2f

(4)
jk (x)

dx2
with f

(4)
jkl(x) as

in program (4.6), then the program (4.14) is convex.

Proof. The Hessian matrix of the objective function is

d2 ~f
(4)
jk (x)

dx2
=

d2f
(4)
jk (x)

dx2
� �2 � I2;

and this matrix is positive semide�nite, because �2 is the smallest eigenvalue of the �rst summand.

Lemma 4.26. If q = 4 and �2 is the smallest eigenvalue of the matrix
d2f

(4)
jkl(x)

dx2
with f

(4)
jk (x) as

in program (4.6), then a global minimum of (4.14) lies on the unit circle, and with probability one no
minimum lies in the interior of the disk.

Proof. Let A and B be random with some continuous distribution, �1 � �2 � 0 the eigenvalues

of the Hessian matrix
d2f

(4)
jk (x)

dx2
and v1 as well as v2 the corresponding eigenvectors. Moreover,

let y = Qx be an orthogonal transformation of x into the v1-v2-coordinate system. The objective
function of the program (4.14) has the form

~f
(4)
jk

�
Q�1y

�
=

1

2
� (�1 � �2) � y21 + s � y1 + t � y2 + u

with some constants s; t and u depending only on a�j and b�k. The gradient with respect of the
v1-v2-coordinate system is

37

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

d ~f
(4)
jk

�
Q�1y

�
dy

=

�
(�1 � �2) � y1 + s

t

�
:

If a minimum lies in the interior of the disk, then this gradient must be zero. But the second component
of the gradient can be zero only with probability zero. Now, let ~y = Q~x be such a global minimum
in the interior of the disk. The objective function has the same value on each point of the straight
line L := f~x+ dv2 j d 2 Rg : The line L intersects the unit circle in exactly two points, and each
of them is a global minimum.

Example 4.27. We set N := 12 and drew pseudo-random numbers for the real and imaginary parts
of al and bl (l = 1; 2; :::; 12): The following table shows these randomly drawn numbers as well as
the computed numbers �l; �l;
l (l = 1; 2; :::; 12) as in (4.1).

l al bl �l �l
l
1 2:065� 11:242i �9:393 + 14:520i �365:26 �151:22 429:71
2 �6:038� 8:704i 6:636� 12:277i 133:58 263:78 306:98
3 �4:042 + 1:931i �9:281� 13:444i 23:107 144:52 286:94
4 �14:745 + 2:481i 11:363 + 9:354i �288:68 �332:23 440:19
5 �5:747� 6:257i �14:826 + 8:653i 62:126 �284:99 366:86
6 �6:673 + 7:203i 6:251 + 4:829i �13:859 �154:50 158:81
7 12:763� 10:924i 10:047 + 0:879i 237:26 241:94 383:94
8 9:274� 8:142i �10:771 + 10:689i �373:84 22:865 382:57
9 14:695 + 10:880i �3:386 + 5:177i 13:137 225:83 372:58

10 6:722� 0:656i 5:819� 9:655i 90:898 �122:17 172:70
11 6:528� 10:835i 11:613� 11:115i 392:48 106:54 418:42
12 6:981� 0:866i �0:866 + 8:280i �26:432 114:11 118:79

Figure 4.12: The graph of the function f (4) (x) as in (4.6) for Example 4.27. It is curved in each
direction in the plane.

38

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

Figure 4.13: The niveau lines of the function f (4) (x) are ellipses.

The Hessian matrix of f (4) (x) as in (4.6) is

d2f (4)(x)

dx2
= 2 �

12X
l=1

�
�l
�l

�
� ��l �l

�
=

�
1:1968 � 106 5:0734 � 105
5:0734 � 105 9:5631 � 105

�

(See (4.7).) The spectral decomposition of the Hessian matrix is

d2f (4)(x)

dx2
= 1:597957177610454 � 106 � v1vT1 + 5:551633660185665 � 105 � v2vT2

with v1 =
��0:78442 �0:62023

�T
and v2 =

�
0:62023 �0:78442

�T
:

(4.15)

We sent the following program to the solver KNITRO on the NEOS server.

min ~f (4) (x) =

12X
l=1

�

l �

�
�l �l

� � x�2 + 277581:68300928325 � �1� xTx
�

s: t: xTx � 1

x 2 R
2:

with �l; �l and
l (l = 1; 2; :::; 12) as in the table at the beginning of this example. The solution is

x =
��0:601645 0:798764

�T
:

=) xTx = 1

and �(4) = �0:601645 + 0:798764i:

=) �(4) � 2:21635

with �(4) = exp
�
�(4) � i

�
:

39

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

Figure 4.12 shows the graph of the convex function f (4)(x) as in (4.6) and Figure 4.13 its niveau
lines. Figure 4.14 shows the modi�ed function ~f (4)(x) as in (4.14) and Figure 4.15 its niveau lines.
For comparison we show the graph of the function g(4) (�) as in (2.4) and in (4.2) in the interval
[0; 2�] in Figure 4.16.

�

Figure 4.14: The graph of the modi�ed function ~f (4) (x) as in (4.14) for Example 4.27. The graph of
the function ~f (4) (x) is not curved any more in v2-direction (with v2 as in (4.15)).

Figure 4.15: The niveau lines of the modi�ed function ~f (4) (x) are parabolas.

40

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

Figure 4.16: The graph of the function g(4) (�) as in (4.2) in the interval [0; 2�] for Example 4.27.

Example 4.28. We set N := 40; q := 4 and drew pseudo-random numbers for the real and imaginary
parts of al and bl (l = 1; 2; :::; 40):

We computed the Hessian matrix of f (4) (~x) as in (4.6). Its eigenvalue decomposition is

d2f (4)(~x)

d~x2
= 5:748610620006479 � 106 � ~v1 ~v1T + 3:064161625161817 � 106 � ~v2 ~v2T

with ~v1 =
��0:501848768960128 0:864955382140145

�T
and ~v2 =

��0:864955382140145 �0:501848768960128
�T
:

(4.16)

We sent the following program to the solver KNITRO on the NEOS server.

min ~f (4) (~x) =

40X
l=1

�

l �

�
�l �l

� � ~x�2 + 1532080:812580908 � �1� ~xT~x
�

s: t: ~xT~x � 1; ~x 2 R
2:

with �l; �l and
l (l = 1; 2; :::; 40) as in (4.1). The solution is

~x =
�
0:778031 0:628226

�T
:

=) ~xT~x = 1

and �(4) = 0:778031 + 0:628226i:

=) �(4) � 0:67927

with �(4) = exp
�
�(4) � i

�
:

�

41

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

Figure 4.17: The graph of the function f (4) (~x) as in (4.6) for Example 4.28. The graph of the function
f (4) (~x) is curved in each direction in the plane.

Figure 4.18: The niveau lines of the function f (4) (~x) are ellipses.

42

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

Figure 4.19: The graph of the modi�ed function ~f (4) (~x) as in (4.14) for Example 4.28. The graph of
the function ~f (4) (~x) is not curved any more in ~v2-direction (with ~v2 as in (4.16)).

Figure 4.20: The niveau lines of the modi�ed function ~f (4) (~x) are parabolas.

43

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

Figure 4.21: The graph of the function g(4) (�) as in (4.2) in the interval [0; 2�] for Example 4.28.

4.6 The solution in the case q =1

For this case we developed a special combinatorial method which was not mentioned in the previous
chapter.
The constraints of the minimization problem (4.5) are not convex in general. But we can square them
and obtain an equivalent minimization problem (2.4) for the case q =1:

min rjk

s: t: rjk (x) �

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x; l = 1; 2; :::; N

xTx = 1; x 2 R
2

(4.17)

with �
(jk)
l ; �

(jk)
l and

(jk)
l (l 2 f1; 2; :::; Ng) as in (4.1). Obviously,

�
g
(1)
jk (�)

�2
is the minimal

possible value of rjk

��
cos �
sin �

��
: Moreover, the program (4.17) is linear. However, the global minimum

lies in the interior of the disk in general. Finding a global minimum over the circle requires more
considerations.
Let

S :=

��
x
r

� �� xTx = 1; r 2 R
�
� R

3;

Fl :=

��
x
r

� ��� r =

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x

�
� R

3

and El := Fl \ S � R
3; l = 1; 2; :::; N;

(4.18)

with �
(jk)
l ; �

(jk)
l and

(jk)
l ; l 2 f1; 2; :::; Ng; as in (4.1). Obviously, the sets Fl are planes, S is the

lateral area of a cylinder and the sets El are ellipses. We introduce some new terms in order to explain
our ideas concisely.

44

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

De�nition 4.29. Given the program (4.17). Let S and El (l = 1; 2; :::; N) be as in (4.18). A
point y 2 S is called a breakpoint, if it is an intersection point of two ellipses El; Em with l;m 2
f1; 2; :::; Ng as in (4.18) and El \ Em 6= El:
If m 2 I2(j; k); then ym 2 Em is called the low point of the ellipse Em; if ym minimizes the third
coordinate r with respect to Em: We call a point y 2 S a white point, if it is a breakpoint or a low
point of one of the N ellipses.

We say, that a white point ~y =
�
~x ~r

�T 2 R3 violates a constraint, if ~r <

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� ~x

for some l 2 f1; 2; :::; Ng:

Obviously, a low point ym 2 Em is unique with respect to the ellipse Em.

Lemma 4.30. Each white point as in De�nition (4.29) can be computed in constant time.

Proof. If m 2 I2(j; k); then

ym =

2
4 0

0

(jk)
m

3
5 +

1r�
�
(jk)
m

�2
+
�
�
(jk)
m

�2 �
2
664

�
(jk)
m

�
(jk)
m

�
�
�
(jk)
m

�2
�
�
�
(jk)
m

�2
3
775

is the low point of the ellipse Em: Existing breakpoints satisfy the system of equations

(jk)
l �

h
�
(jk)
l �

(jk)
l

i
� x =
(jk)m �

h
�
(jk)
m �

(jk)
m

i
� x;

xTx = 1:
(4.19)

We convert the �rst equation and square it.

(jk)
l �
(jk)m +

�
�(jk)m � �

(jk)
l

�
� x1 =

�
�
(jk)
l � �(jk)m

�
� x2�

(jk)
l �
(jk)m

�2
+ 2 �

�

(jk)
l �
(jk)m

��
�(jk)m � �

(jk)
l

�
� x1 +

�
�(jk)m � �

(jk)
l

�2
� x21 =

�
�
(jk)
l �(jk)m

�2
� x22

Using x22 = 1� x21 we obtain

h:=z }| {��
�(jk)m � �

(jk)
l

�2
+
�
�
(jk)
l � �(jk)m

�2�
�x21+

2 �
�

(jk)
l �
(jk)m

��
�(jk)m � �

(jk)
l

�
| {z }

=:z2

�x1 +
�

(jk)
l �
(jk)m

�2
�
�
�
(jk)
l � �(jk)m

�2
| {z }

=:t2

= 0:

(4.20)

We can try to solve this quadratic equation and insert the solution in the �rst equation of (4.19). If
the intersection line of Fl and Fm is parallel to x1; then that linear equation does not have a unique
solution. In this case we can use the analogous quadratic equation for x2.

45

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

��
�(jk)m � �

(jk)
l

�2
+
�
�
(jk)
l � �(jk)m

�2�
� x22+

2 �
�

(jk)
l �
(jk)m

��
�(jk)m � �

(jk)
l

�
| {z }

=:z1

�x2 +
�

(jk)
l �
(jk)m

�2
�
�
�
(jk)
l � �(jk)m

�2
| {z }

=:t1

= 0:
(4.21)

Therefore each existing breakpoint or low point can be computed in constant time.

Lemma 4.31. The one-dimensional minimization problem (2.4) with q =1 can be solved in O �N3
�

for one pair of coordinates (j; k) with I2(j; k) = f1; 2; :::; Ng:

Proof. The program (4.17) is equivalent to the problem (2.4) for the case q = 1: The �rst N
constraints describe a polyeder P which is bounded by at most N planes Fl as in (4.18). The (N +1)-
st constraint of (4.17) describes the lateral surface area S of a cylinder, and the planes Fl intersect
the area S in ellipses El as in (4.18).
Now, let us consider an arbitrary point ~x 2 R2 on the unit circle. There is a minimal r (~x) which
satis�es the �rst N constraints of (4.17) and an index m 2 f1; 2; :::; Ng such that

~y :=

�
~x

r (~x)

�
2 Em \ P:

If ~y = ym is the low point of the ellipse Em as in De�nition 4.29, then the point ~y is also a global
minimum of the program (4.17) because of the �rst N constraints.
Otherwise, Em contains a directed arc L from ~y to the low point ym as in De�nition 4.29 such that
the third coordinate decreases strictly monotonically on L. The arc L can only leave the polyeder
P when it intersects a plane F ~m with m 6= ~m 2 f1; 2; :::; Ng: Since ~x has been arbitrary, a global
minimum of the program (4.17) can only lie on breakpoints or low points as in De�nition 4.29. It is
easy to see that two di�erent ellipses in R3 can intersect in at most two points. Thus there are at most
N + 2 � �N2 � = N2 white points. According to Lemma 4.30 all the white points can be computed in

O �N2
�
: For each white point we must check, whether one of the �rst N constraints is violated. This

needs a runtime of O �N3
�
: Among the remaining white points, which satisfy all the constraints, we

must determine a point with minimal third coordinate r. This is possible in O �N2
�
:

Theorem 4.32. The one-dimensional minimization problem (2.4) with q = 1 can be solved in
O �N3

�
for one pair of coordinates (j; k):

Proof. If I2(j; k) = f1; 2; :::; Ng; then Lemma 4.31 yields the statement.

Now let m 2 f1; 2; :::; Ng be an index with �
(jk)
m = �

(jk)
m = 0: We use the same method as in the

proof of Lemma 4.31 and show that we can choose an arbitrary point ~y 2 Em instead of the not
existing low point of this ellipse. If no global minimum of the program (4.17) lies on the ellipse Em;
the choice of ~y has obviously no e�ect on the solution. Thus let ŷ 2 Em be a global minimum of the
program.
If ~y 2 Em satis�es all the constraints, then it is also a global minimum, because the third coordinate
is constant on Em: Otherwise ~y 2 Em violates the �m-th constraint of the program with �m 2
f1; 2; :::; Ngn fmg : Thus the ellipse Em contains at least two breakpoints, because it intersects the
ellipse E �m: One of these breakpoints which is the nearest one to ~y 2 Em satis�es all the constraints
and is a global minimum, too. This breakpoint is checked because we use the same method as in the
proof of Lemma 4.31 using an arbitrary point instead of the not existing low points of some ellipses.

46

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

Now we are able to construct an algorithm applying the proposed method of Lemma 4.31 and Theorem
4.32. However, our algorithm has some features which shall be explained before.

Lemma 4.33. (i) If a low point yl of some ellipse El (l 2 f1; 2; :::; Ng) violates no constraint,
then yl is a global minimum.

(ii) If �
(jk)
m = �

(jk)
m = 0 for some m 2 f1; 2; :::; Ng and ym 2 Em violates no constraint, then ym

is a global minimum.

(iii) If
�
�
(jk)
l � �

(jk)
m

�2
+
�
�
(jk)
l � �

(jk)
m

�2
= 0; then the planes Fl and Fm are parallel. This means

particularly that the ellipses El and Em cannot have an intersection point.

Proof. (i) This follows immediately from the de�nition of the low point.

(ii) If �
(jk)
m = �

(jk)
m = 0; then the third coordinate is constant on Em. This means that no point of

the feasible polyeder can have a lower value of the third coordinate.

(iii) If
�
�
(jk)
l � �

(jk)
m

�2
+
�
�
(jk)
l � �

(jk)
m

�2
= 0; then the gradients of the planes Fl and Fm must be

equal.

Our algorithm �rst sets the current optimal value r to in�nity. In the second step it veri�es whether
one of the low points satis�es all the constraints. If it can �nd such a low point, then it updates the
current optimal value. Moreover, in this case we will be ready according to Lemma 4.33 (i). If a plane
Fl has no descent up to a tolerance parameter ", then we can replace the low point by an arbitrary
point of the ellipse El according to the proof of Theorem 4.32 and Lemma 4.33 (ii).
The third step must only be executed if the current optimal value r is still in�nity after the second
step. The algorithm computes the intersection points of all pairs of ellipses which have two intersection
points. If one of these points satis�es all the constraints and its third coordinate is lower than the
current optimal value r, then r is updated.

Algorithm 4.34.

Input: N; �l; �l;
l (l = 1; 2; :::; N) as in (4.1),
a tolerance parameter " > 0:

Output: An optimal �(1) as in (2.4).
1.) Set r :=1: // r is the current

// optimal value.
2.) For l := 1 to N do

if
�
�2l + �2l < "2

�
set y :=

�
1 0

�T
; // an arbitrary point on

// the unit circle

else set y :=
1p

�2l + �2l
� ��l �l

�T
: // the low point of

// the l-th ellipse
Set ~r :=
l �

�
�l �l

� � y:
if (~r < r) do // Better than the

// current optimal value?
above := 0: // Then verify, whether
for j := 1 to N do // a constraint is

if
�

j �

�
�j �j

� � y > ~r + "
�
do // violated.

above := 1;
break;

if (above == 0) // If no constraint
// is violated,

set x := y and r := ~r: // then a global
break; // minimum is found.

// We are ready, if a low point
// satis�es all the constraints.

47

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

3.) If (r ==1) do // Otherwise we
for j := 1 to N � 1 do // search breakpoints.

for k := j + 1 to N do

h := (�j � �k)
2
+ (�j � �k)

2
;

if (h < ")
continue; // (Lemma 4.33 (iii))

set z1 := (
j �
k) � (�j � �k)

and t1 := (
k �
j)
2 � (�k � �j)

2
;

set z2 := (
j �
k) � ((�j � �k)

and t2 := (
k �
j)
2 � (�k � �j)

2
;

set d1 :=
�z1
h

�2
� t1
h

and d2 :=
�z2
h

�2
� t2
h
;

if (d1 > ") // See Remark 4.35.

set s1 :=
z1
h
�pd1

and s2 :=
z1
h

+
p
d1;

set c1 :=

k �
j + (�j � �k) � s1

�k � �j

and c2 :=

k �
j + (�j � �k) � s2

�k � �j
;

else if (d2 > ") // See Remark 4.35.

set c1 :=
z2
h
�pd2

and c2 :=
z2
h

+
p
d2;

set s1 :=

k �
j + (�j � �k) � c1

�k � �j

and s2 :=

k �
j + (�j � �k) � c2

�k � �j
;

set r1 :=
j �
�
�j �j

� � �c1
s1

�
and r2 :=
j �

�
�j �j

� � �c2
s2

�
;

if (r1 < r) do // Better than the current
// optimal value?

above := 0:
for l := 1 to N do

if

�

l �

�
�l �l

� � �c1
s1

�
> r1 + "

�
do

above := 1;
break;

if (above == 0)

set x :=

�
c1
s1

�
and r := r1: // found an

// improvement
if (r2 < r) do // Better than the current

// optimal value?
above := 0:
for l := 1 to N do

if

�

l �

�
�l �l

� � �c2
s2

�
> r2 + "

�
do

above := 1;
break;

if (above == 0)

48

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

set x :=

�
c2
s2

�
and r := r2: // found an

// improvement

Remark 4.35. The quadratic equation (4.21) has two real solutions if and only if the discriminant
satis�es d1 > 0 as well as the the quadratic equation (4.20) has two real solutions if and only if the
discriminant satis�es d2 > 0:

Example 4.36. We implemented Algorithm 4.34 in MATLAB and used a and b as in Example 4.27
with computing �; � and
 as in (4.1). We replaced q by 1:

The algorithm yields the solution

x =
�
0:44412544 �0:89596462

�T
:

=) xTx = 1

and �(1) = 0:44412544� 0:89596462i:

=) �(1) � 5:1725869

with �(1) = exp
�
�(1) � i

�
:

Figure 4.22: The graph of the function g(1) (�) as in (4.2) in the interval [0; 2�] for Example 4.36.

The required runtime was 2:315238 � 10�4 seconds for N = 12. For comparison we show the graph of
the function g(1) (�) as in (2.4) and in (4.2) in the interval [0; 2�] in Figure 4.22.

�

Example 4.37. We used a and b as in Example 4.27 with computing �; � and
 as in (4.1). We
replaced q by 1:

The algorithm yields the solution

49

4 The one-dimensional minimization problems in the cases F = C; p 6= 2 and q 2 [1;1]nf2g

x =
�
0:73848348 �0:67427156

�T
:

=) xTx = 1

and �(1) = 0:73848348� 0:67427156i:

=) �(1) � 5:543207

with �(1) = exp
�
�(1) � i

�
:

Figure 4.23: The graph of the function g(1) (�) as in (4.2) in the interval [0; 2�] for Example 4.37.

50

5 Conclusions

We treated here the (`p; `q) Procrustes problem with p 6= 2: If F = R; then we can �nd e�ciently a
global minimum for each q 2 [1;1]:
If F = C; then we can �nd e�ciently a global minimum for the cases q 2 f2; 4;1g: In the remaining
cases we have the choice between speed and precision.
If a fast solution for an (`p; `q) Procrustes problem with F = C; p 6= 2 and q =2 f2; 4;1g is needed,
then the SLA is recommendable, because it it very fast and its solution is often a global minimum.
If we need a global minimum for such a problem, then we can try to apply the Branch-and-Bound
method. Although its runtime can grow exponentially with the input length in the worst case, its
measured runtime in our tests was slower than the SLA by a moderate factor only. If the Branch-and-
Bound method is requiring too much time for a pair (j; k) of coordinates, then abort it and apply
the SLA instead. Remember, we compute n2 candidates for n entries of a unitary matrix which is our
entire solution. The SLA yields often a global minimum. If it fails to �nd a global minimum, then
with high probability its partial solution has no e�ect to the entire solution.

51

Bibliography

[1] Aho, A. V.; Hopcroft, J. E. and Ullmann, J. D.: The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, Mass., (1974).

[2] Allwright, J. C.: Positive semide�nite matrices: Characterization via conical hulls and least-
squares solution of a matrix equation, SIAM J. Control and Optimization, Vol. 26, no. 3, 537 -
556 (1988).

[3] Alt, H.; Blum, N.; Mehlhorn, K. and Paul, M.: Computing a maximum cardinality matching

in a bipartite graph in time O
�
n1:5

p
m= log n

�
; Information Processing Letters 37, 237 - 240

(1991).

[4] Arazy, J.: Isometries of Complex Symmetric Sequence Spaces, Math. Z. 188, 427 - 431 (1985).

[5] Benson, H. P.: Deterministic Algorithms for Constrained Concave Minimization: A Uni�ed
Critical Survey, Naval Research Logistics, Vol. 43, pp. 765 - 795 (1996).

[6] Borg, I.; Groenen, P. J. F.: Modern multidimensional scaling (2nd ed.) NewYork: Springer
(2005).

[7] Borg, I.; Groenen, P. J. F.; Mair, P.: Applied Multidimensional Scaling, Springer (2013).

[8] Byrd, R. H.; Nocedal, J.; Waltz, R.: KNITRO: An integrated package for nonlinear optimization,
(English summary) Large-scale nonlinear optimization, 35 - 39, Nonconvex Optim. Appl. 83,
Springer, New York (2006).

[9] Byrd, R. H.; Hribar, M. E.; Nocedal, J.: An interior point algorithm for large-scale nonlinear
programming. Dedicted to John E. Dennis Jr. on his 60th birthday. SIAM J. Optim. 9 , no. 4,
877 - 900 (1999).

[10] Byrd, R. H.; Guanghui Liu; Nocedal, J.: On the local behaviour of an interior point method for
nonlinear programming. Numerical analysis 1997 (Dundee), 37 - 56, Pitman Res. Notes Math.
Ser., 380, Longman, Harlow, (1998).

[11] Byrd, R. H.; Gilbert, J. C.; Nocedal, J.: A trust region method based on interior point techniques
for nonlinear programming. (English summary) Math. Program. 89 (2000), no. 1, Ser. A, 149 -
185.

[12] Burkard, R. E.; Hahn, W.; Zimmermann, U.: An algebraic approach to assignment problems,
Mathematical Programming 12, 318 - 327, North-Holland Publishing Company (1977).

[13] Calamai, P. H. and Conn, A. R.: A stable algorithm for solving the multifacility location problem
involving Euclidean distances, SIAM J. Sci. Stat. Comp., Vol. 1, No. 4, 512 - 526 (1980).

[14] Chang, S.; Li, C. K.: Certain isometries on Rn, Linear Algebra and its Applications, 165, 251 -
265 (1992).

[15] Cheriyan, J.; Mehlhorn, K.: Can a maximum �ow be computed in O(nm) time?; Automata,
languages and programming, Proc. 17th Int. Colloq., Warwick/GB 1990; Lect. Notes Comput.
Sci. 443, 235 - 248 (1990).

52

Bibliography

[16] Derigs, U. and Zimmerman, U.: An augmenting path method for solving linear bottleneck as-
signment problems, Computing 19, 285 - 295 (1978).

[17] Fung, G. M.; Mangasarian, O. L.: Equivalence of Minimal `0 and `p Norm Solutions of Lin-
ear Equalities, Inequalities and Linear Programs for Su�ciently Small p (English summary), J.
Optim. Theory Appl. 151, no. 1, 1 - 10, 1573 - 2878 (2011).

[18] Golub, G. H. and Van Loan, C. F.: Matrix Computations, 2nd ed., John Hopkins University
Press, Baltimore, MD (1989).

[19] Gower, J. C.: Generalized Procrustes Analysis, Psychometrika, Vol. 40, no. 1, 33 - 51 (1975).

[20] Gower, J. C.: Multivariate analysis: ordination, multidimensional scaling and allied topics, in
Handbook of Applicable Mathematics, Vol. VI: Statistics, Lloyd, E.H., ed., John Wiley, Chich-
ester, 1984, pp. 727 - 781 (1984).

[21] Higham, N.: Matrix Procrustes Problems (1995).
http://www.maths.manchester.ac.uk/~higham/talks/procrust94.ps.gz

[22] Hopcroft, J. E. and Karp, R. M.: An n5=2 algorithm for maximum matchings in bipartite graphs,
SIAM J. Comput., Vol. 2, No. 4, 225 - 231 (1973).

[23] Horn, R.; Johnson, C. R.: Matrix Analysis, Cambrigde University Press (1985).

[24] Jarosz, K.: Any Banach space has an equivalent norm with trivial isometries, Israel Journal of
Mathematics, Vol. 64, No. 1, 49 - 56 (1988).

[25] Jarre, F.; Stoer, J.: Optimierung, Springer-Verlag, Berlin - Heidelberg, (2004).

[26] Kintzel, U.: Polar Decompositions and Procrustes Problems in Finite Dimensional Inde�-
nite Scalar Product Spaces, Dissertation, TU Berlin, Fakultät II: Mathematik und Naturwis-
senschaften, (2004).

[27] Kiskiras, J. and Halikias, G. D.: A note on the complex semi-de�nite matrix Procrustes problem,
Numer. Linear Algebra Appl. 14, 485 - 502 (2007).

[28] Klotzek, B.: Euklidische und nichteuklidische Elementargeometrien, Verlag Harri Deutsch,
(2001).

[29] Korte, B.; Vygen, J.: Combinatorial Optimization, Theory and Algorithms, fourth edition,
Springer (2008).

[30] Kuhn, H. W.: A Note on Fermat's Problem, Math. Prog. 4, 98 - 107, North-Holland Publishing
Company, (1973).

[31] Chi-Kwong Li, Wasin So: Isometries of `p-norm, Amer. Math. Monthly 101, no. 5, 452 - 453
(1994).

[32] Mangasarian, O. L.: Machine learning via polyhedral concave minimization. In: H. Fis-
cher, B. Riedmueller, S. Schae�er (eds.): Applied Mathematics and Parallel Computing
- Festschrift for Klaus Ritter, pp. 175 - 188. Physica-Verlag, Springer, Heidelberg (1996).
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/95-20.ps

[33] Lins, B.; Meade, P.; Mehl, C; Rodman, L.: Normal Matrices and Polar Decompositions in
Inde�nite Inner Products, Linear and Multilinear Algebra 49, no. 1, 45-89 (2001).

[34] Pardalos, P. M. and Vavasis, S. A.: Quadratic programming with one negative eigenvalue is
NP-hard, J. Global Optimization 1, 15 - 22 (1991).

[35] Pietrzykowski, T.: An exact potential method for constrained maxima, SIAM J. Numer. Anal.,
Vol. 6, No. 2, 299 - 304 (1969).

[36] Plantenga, T.: KNITRO for Nonlinear Optimization; Ziena Optimization, Inc., INFORMS Prac-
tices (2006).

53

Bibliography

[37] Porembski, M.: Cutting Planes for Low-Rank-Like Concave Minimization Problems, Operations
Research, Vol. 52, No. 6, 942 - 953 (2004).

[38] Punnen, A. P.; Nair, K. P. K.: Improved complexity bound for the maximum cardinality bottle-
neck bipartite matching problem, Discrete Applied Mathematics 55, 91 - 93 (1994).

[39] Rosen, J. B.; Xue, G. L.: On the convergence of a hyperboloid approximation procedure for the
perturbed Euclidean multifacility location problem, Operations Research, Vol. 41, No. 6, 1164 -
1171 (1993).

[40] Schönemann, P. H.: A Generalized Solution of the Orthogonal Procrustes Problem, Psychome-
trika, Vol. 31, No. 1, 1 - 10 (1966).

[41] Schönemann, P. H. and Carroll, R. M.: Fitting one matrix to another under choice of a central
dilation and a rigid motion, Psychometrika, Vol. 35, no. 2, 245 - 255 (1970).

[42] Schöning, U.: Algorithmik, Spektrum Akademischer Verlag Heidelberg - Berlin, (2001).

[43] Trenda�lov, N. T.: On the `1 Procrustes Problem, Future Generation Computer Systems 19,
1177 - 1186 (2003).

[44] Trenda�lov, N. T.; Watson, G. A.: The `1 oblique procrustes problem, Statistics and Computing
14, 39 - 51, (2004).

[45] Viklands, T.: Algorithms for the weighted orthogonal Procrustes problem and other least squares
problems, Ph. D. Thesis, (2006), http://www8.cs.umu.se/~viklands/PhD.pdf

[46] Watson, G. A.: Solving generalizations of orthogonal Procrustes problems, World Scienti�c Series
in Applicable Analysis 2, 413-426 (1993).

[47] Watson, G. A.: The solution of orthogonal Procrustes problems for a family of orthogonally
invariant norms, Advances in Computational Mathematics 2, 393-405 (1994).

[48] Weiszfeld, E.: Sur le Point par Lequel le Somme des Distances de n Points Donnes est Minimum,
Tokohu Math. J. 43, 355 - 386, (1937).

54

Impressum:
Herausgeber:
Der Dekan der
Fakult�at f�ur Mathematik
an der Technischen Universit�at Chemnitz
Sitz:
Reichenhainer Strae 39
09126 Chemnitz
Postanschrift:
09107 Chemnitz
Telefon: (0371) 531-22000
Telefax: (0371) 531-22009
E-Mail: dekanat@mathematik.tu-chemnitz.de
Internet:
http://www.tu-chemnitz.de/mathematik/
ISSN 1614-8835 (Print)

