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The Laplacian energy of a graph sums up the absolute values of the differences
of average degree and eigenvalues of the Laplace matrix of the graph. This
spectral graph parameter is upper bounded by the energy obtained when
replacing the eigenvalues with the conjugate degree sequence of the graph, in
which the i-th number counts the nodes having degree at least i. Because the
sequences of eigenvalues and conjugate degrees coincide for the class of threshold
graphs, these are considered likely candidates for maximizing the Laplacian
energy over all graphs with given number of nodes. We do not answer this
open problem, but within the class of threshold graphs we give an explicit and
constructive description of threshold graphs maximizing this spectral graph
parameter for a given number of nodes, for given numbers of nodes and edges,
and for given numbers of nodes, edges and trace of the conjugate degree sequence
in the general as well as in the connected case. In particular this positively
answers the conjecture that the pineapple maximizes the Laplacian energy over
all connected threshold graphs with given number of nodes.
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degree sequence
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1 Introduction

For a simple undirected graph G on n nodes, consider the Laplacian matrix LG = D −A,
where A is the adjacency matrix of G and D is the diagonal degree matrix. The spectral
parameter

LE(G) =
n∑
i=1

|λi(LG)− δ̄|,

where λi(LG) are the eigenvalues of LG and δ̄ is the average degree, has been defined by
Gutman and Zhou [4] as the Laplacian energy of G and it has been extensively studied
since then.
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Finding the graph on n nodes with largest Laplacian energy is a natural extremal problem
in the area of spectral graph theory and has been considered before. In [3] it has been
proved that the star Sn is the tree with largest Laplacian energy. For general graphs, in [2],
we read “There was a conjecture that maximum Laplacian energy was obtained by a special
class of threshold graphs called pineapples. A disconnected counterexample was discovered
but the conjecture remains open for connected graphs. The (strict) upper bound of 2m (m
is the number of edges) was obtained for Laplacian energy. Many related questions were
posed and discussed concerning this hard topic.”

Threshold graphs appear in many applications (see [5] for an account) but its connection
with high Laplacian energy may be explained as follows (see the next section for definitions).
For the graph G with degree sequence d and conjugate degree sequence d∗, the Grone-Merris
conjecture, proved by Bai [1], states that the sequence of Laplacian eigenvalues is majorized
by the sequence d∗, implying that

LE(G) ≤
n∑
i=1

|d∗i − δ̄|.

Since equality is attained by threshold graphs, it is natural to consider this class of graphs
as good candidates for those having largest Laplacian energy.

In this paper we consider the problem of finding threshold graphs with maximal Laplacian
energy. We find extremal graphs in this class fixing several parameters. First we determine
optimal graphs for a fixed number of nodes, edges and trace. Then we find extremal graphs
fixing the number of nodes and edges and finally we fix only the number of nodes.
Hence, in particular, we determine a threshold graph with highest Laplacian energy

among those having n nodes. Indeed, we show that an extremal graph is a disconnected
threshold graph with trace f = b2n+1

3 c, f(f + 1)/2 edges and whose Ferrers diagram is
a rectangle f(f + 1). That is a clique of size b2n+1

3 c + 1 together with bn−2
3 c isolated

vertices. For connected threshold graphs, we show that the Pineapple Pn,f ′ with clique size
f ′ + 1 = b2n

3 c+ 1 has largest Laplacian energy among all connected threshold graphs with
n vertices. This partially proves the conjecture posed in [8], giving further evidence that
Pn,f ′ is a connected graph on n vertices having largest Laplacian energy.
The paper is organized as follows. The next section introduces notions and definitions

used throughout the paper. Then in Section 3 we determine threshold graphs, with fixed
number of nodes, edges and trace, having largest Laplacian energy. We also show which
one has largest Laplacian energy among those having fixed number of edges and nodes
(dropping the fixed trace). In Section 4, studying the development of the energy when edges
are added successively, we determine threshold graphs of maximum Laplacian energy among
those having a fixed number of nodes. Finally, in the last section, we consider connected
threshold graphs and prove that the Pineapple Pn,f ′ is extremal.

2 Degree sequences, threshold graphs and pineapples

Let G = (V,E) be a simple undirected graph with node set V = [n] := {1, . . . , n} for some
n ∈ N and edge set ∅ 6= E ⊆

(
V
2

)
:= {{i, j} : i, j ∈ V, i 6= j}. Denote by m = |E| the number

of edges and for i ∈ V by di := |{j ∈ V : {i, j} ∈ E}| the degree of node i. We assume
throughout that the node numbering is such that degree sequences are non increasing, i. e.
d1 ≥ · · · ≥ dn. Any degree sequence d ∈ Nn0 arising this way is an n-partition of 2m. For
i ∈ [n] the conjugate degree sequence is defined as d∗i := |{j ∈ V : dj ≥ i}|, so d∗n = 0.
The conjugate degree sequence is conveniently visualized by means of Ferrers (or Young)
diagrams, see [7]. For degree sequence d ∈ Nn0 it consists of n left justified rows of �-symbols
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where row i holds di boxes. In this diagram, the conjugate degree d∗i counts the number of
boxes in column i. The diagonal width of the degree sequence f = max{i ∈ V : di ≥ i} is
called the trace of the partition. For a given n-partition d ∈ Nn0 of 2m one can construct
a graph having this degree sequence if and only if

∑k
i=1 di ≤

∑k
i=1(d∗i − 1) for k ∈ [f ]

(Ruch-Gutman Theorem, cf. [7]). Letting δ̄ = 1
n

∑
i∈V di = 2m

n denote the average degree
of G, the Laplacian energy is defined as LE(G) =

∑
i∈[n] |λi(LG)− δ̄|.

Figure 1: Ferrers diagram of a threshold graph.

Threshold Graphs. G is called a threshold graph if di = d∗i − 1 for i ∈ [f ]. Note that
the degree sequence of threshold graphs is fully specified once the conjugate degrees d∗i are
given for i ∈ [f ]. This will be exploited heavily and is easily seen by looking at a Ferrers
diagram. There the part strictly below the diagonal boxes is the transpose of the part
above and including the diagonal. The right hand side of Figure 1 is the Ferrers diagram of
the (threshold) graph given by the degree sequence d = (7, 6, 5, 5, 4, 4, 2, 1), whereas the left
hand side illustrates the general appearance of a threshold graph.

A pineapple Pn,f is an n node graph composed by a clique of size f + 1 and the remaining
n − f − 1 vertices are all adjacent to a single vertex of the clique. It is easy to see that
Pn,f is a threshold graph of trace f . As an example, Figure 2 shows on the right hand side
the pineapple P13,5 and on the left hand side its Ferrers diagram. For a fixed number n
of nodes, we can construct n− 1 pineapples by varying the trace from 1 (a star) to n− 1
(a complete graph). In [8] it has been shown that among all pineapples with n nodes, the
Pineapple Pn,f ′ , f ′ = b2n

3 c, has largest Laplacian energy. In this paper we show that Pn,f ′
is the extremal graph among all connected threshold graphs with n nodes.

Figure 2: The pineapple P13,5.

For n nodes and m edges the feasible range of traces f is determined by the constraints

f(f + 1) ≤ 2m and f(f + 1) + 2(n− 1− f)f = −f2 + (2n− 1)f ≥ 2m.
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Thus,

f(n,m) :=

⌈
n− 1

2
−
√
n2 − n+

1

4
− 2m

⌉
≤ f ≤

⌊
−1

2
+

√
2m+

1

4

⌋
=: f̄(m).

If n and m are clear from the context, we use f and f̄ without their arguments. We will
denote the threshold graph induced by a suitable conjugate degree sequence d∗ ∈ Nn0 by
Th∗(d∗).

In a threshold graph G its conjugate degree sequence d∗ gives the spectrum of the Laplace
matrix LG, in particular 0 = λ1(LG) = d∗n ≤ λ2(LG) = d∗n−1 ≤ · · · ≤ λn(LG) = d∗1, see [6].
Thus, for any threshold graph G we have

LE(G) =
∑
i∈[n]

|d∗i − δ̄| =
∑
d∗i>δ̄

(d∗i − δ̄) +
∑
d∗i≤δ̄

(δ̄ − d∗i ).

By
∑

i∈[n] d
∗
i = 2m we have

∑
i∈[n](d

∗
i − δ̄) = 0 or

∑
d∗i≥δ̄

(d∗i − δ̄) =
∑

d∗i≤δ̄
(δ̄ − d∗i ), so

LE(G) = 2
∑
d∗i≥δ̄

(d∗i − δ̄) = 2
∑
d∗i≤δ̄

(δ̄ − d∗i ). (1)

Our aim is to determine which threshold graphs are candidates for having maximal
Laplacian energy for given n and m. Treating the general case first will also pave the
way for the case of connected threshold graphs. Indeed, connected threshold graphs have
d∗1 = n, so node 1 is connected to all other vertices. Thus, by “ignoring” this first node and
the corresponding first column and row in its Ferrers diagram, the connected case can be
reduced to the same procedure used for the solution of the general case.

3 Maximal energy for fixed number of nodes and edges

We first consider threshold graphs with fixed n, m and f and observe that within this group
of threshold graphs a specific optimizer can be given explicitly. We explain the construction
of the Ferrers diagram of the candidate graphs.

Figure 3: Type I threshold graph for (n,m, f) = (11, 31, 4).

We call Type I the threshold graph with n vertices, m edges and trace f constructed
in such a way that its conjugate degree sequence d∗ is lexicographically maximal. In the
following algorithmic construction of such a sequence it suffices to describe the placement of
the m �-symbols below the diagonal, because for threshold graphs the other m �-symbols
have to be placed on and above the diagonal in the corresponding transposed positions.
In order to obtain a sequence with trace f , below the diagonal the first rows up to row
f + 1 have to be filled with �-symbols (positions (i, j) for 1 ≤ j < i ≤ f + 1), then
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the remaining m − f(f + 1)/2 �-symbols are placed in column-wise order, i.e., in the
sequence (f + 2, 1), (f + 3, 1), . . . , (n, 1), (f + 2, 2), (f + 3, 2), . . . . Figure 3 illustrates a
Type I threshold graph with n = 11, m = 31 and f = 4. The conjugate degree sequence is
d∗ = (11, 11, 11, 8, 4, 4, 4, 3, 3, 3, 0)

Figure 4: Type II threshold graph for (n,m, f) = (11, 31, 7).

We call Type II the threshold graph with n vertices, m edges and trace f constructed
in such a way that its conjugate degree sequence d∗ is lexicographically minimal. A
procedure to construct such a graph is to now to fill the positions on and above the
diagonal in column-wise order without exceeding row index f , i. e., the sequence reads
(1, 1), (1, 2), (2, 2), (1, 3), . . . , (f, f), (1, f+1), . . . , (f, f+1), (1, f+2), . . . until m �-symbols
have been placed (the corresponding m �-symbols below the diagonal need to be placed
in row-wise order without exceeding column f). Figure 4 illustrates a Type II threshold
graph with n = 11, m = 31 and f = 7. We notice that the conjugate degree sequence is
d∗ = (9, 9, 9, 8, 8, 8, 8, 3, 0, 0, 0).

Lemma 1 Among all threshold graphs on n nodes and m edges having a degree sequence
with trace f the following are among those with maximal Laplacian energy:

1. for f + 1 ≤ δ̄ the Type I graph i. e. with k =
⌊
m−f(f+1)/2

n−1−f

⌋
(≤ f) its first f conjugate

degrees are d∗i = n for i ∈ [k], d∗i = f + 1 for i ∈ {k + 2, . . . , f} and, if k < f ,
d∗k+1 = f + 1 +m− f(f + 1)/2− k(n− 1− f),

2. for f+1 ≥ δ̄ the Type II graph i. e. with h =
⌊
m−f(f+1)/2

f

⌋
and k = m−f(f+1)/2−fh

(≤ f) its first f conjugate degrees are d∗i = f + h+ 2 for i ∈ [k] and d∗i = f + h+ 1
for i ∈ {k + 1, . . . , f}.

Proof Case 1: Using Ferrers diagrams it can be worked out that the given conjugate degree
sequence d∗ has indeed trace f and belongs to a threshold graph G on n nodes and m
edges. Now consider all threshold graphs on n nodes and m edges with degree sequence of
trace f that have maximal Laplacian energy. Assume, for contradiction, that G is not in
this set. Among the maximizers pick Ĝ with degree sequence d̂ so that the largest index
i ∈ [f ] with d̂∗i > d∗i is minimal and d̂∗i − d∗i is minimal as well. Let ı̄ be the corresponding
index. Because d∗ is lexicographically maximal, there must be an index ı̂ < ı̄ with d∗ı̂ > d̂∗ı̂ .
Furthermore we may assume that either ı̂ = 1 or d̂∗ı̂−1 > d̂∗ı̂ by decreasing ı̂ otherwise.
Now consider the conjugate degree sequence d̃∗ of a threshold graph defined via its first f
elements by

d̃∗i =


d̂∗i i ∈ [f ] \ {ı̂, ı̄},
d̂∗i + 1 i = ı̂,

d̂∗i − 1 i = ı̄.
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The corresponding graph G̃ is again a threshold graph on n nodes and m edges having
a degree sequence of trace f . It remains to show that the Laplacian energy LE(G̃) =
2
∑

d̃∗i≥δ̄
(d̃∗i − δ̄) is at least as large as that of Ĝ, then by the choice of Ĝ this yields the

desired contradiction. For analyzing the change in energy we only need to consider the
changes in the conjugate degrees with indices in [f ], more precisely only in ı̂ and ı̄, because
for i ∈ [n] \ [f ] we have d̃∗i ≤ f < δ̄ as well as d̂∗i ≤ f . If d̃∗ı̄ ≥ δ̄ then also d̂∗ı̂ ≥ d̂∗ı̄ ≥ δ̄, so
both graphs have the same energy. We may thus assume d̃∗ı̄ = d̂∗ı̄ −1 < δ̄ in the following. If
d̃∗ı̂ ≤ δ̄ then again this results in the same energy so we may also assume d̃∗ı̂ = d̂∗ı̂ + 1 > δ̄. If
d̂∗ı̄ ≤ δ̄ then

∑
d̃∗i≥δ̄

(d̃∗i−δ̄) =
∑

d̂∗i≥δ̄
(d̂∗i−δ̄)+min{1, d̃∗ı̂ −δ̄} and the energy increases. So the

remaining case is δ̄ < d̂∗ı̄ < δ̄+1 which leads to
∑

d̃∗i≥δ̄
(d̃∗i − δ̄) =

∑
d̂∗i≥δ̄

(d̂∗i − δ̄)+1−(d̂∗ı̄ − δ̄),
thus an increase in energy again.
Case 2: Here d∗ corresponds to a lexicographically minimal conjugate degree sequence

amongst all of trace f for n nodes and m edges, but on the index set [n] \ [f ] its completion
via the Ferrers diagram is in fact lexicographically maximal. This time, shifting one unit
from the largest index in [n] \ [f ] with larger value to a smaller one in [n] \ [f ] with smaller
value will prove the result by analogous arguments. �

The next result shows that the lexicographically extremal conjugate degree sequences
of trace f and f̄ give rise to candidates for threshold graphs on n nodes and m edges of
maximal Laplacian energy.

Theorem 2 The set of threshold graphs on n nodes and m edges with maximal Laplacian
Energy contains at least one of these: the Type I threshold graph of trace f or the Type II
threshold graph with trace f̄ .

Proof Let G be a threshold graph of maximal Laplacian energy on n nodes and m edges
and denote the trace of its conjugate degree sequence d∗ by f .
Suppose first f + 1 < δ̄. In this case we assume G to be selected so that its trace f is

minimal among all optimal threshold graphs. According to Lemma 1 we may assume that
the sequence d∗ of G is lexicographically maximal. If f = f we are done, so suppose, for
contradiction, that f > f . Because d∗ is lexicographically maximal with f > f we know
d∗f = f + 1, d∗f+1 < f and there is a smallest index ı̂ ∈ [f − 1] with d∗ı̂ < n. Define a new
conjugate degree sequence d̂∗ of a threshold graph Ĝ on n nodes and m edges with trace
f − 1 via

d̂∗i =

{
d∗i i ∈ [f − 1] \ {ı̂},
d∗i + 1 i = ı̂.

Note that extending this sequence results in d̂∗f = f − 1. Like in the proof of Lemma 1 one
checks that LE(Ĝ) ≥ LE(G). Because the trace of Ĝ is smaller than that of G this yields
the desired contradiction.

It remains to consider the case f + 1 ≥ δ̄. This time we assume G to have maximal trace
f among all optimal threshold graphs. By Lemma 1 its conjugate degree sequence d∗ may
be assumed to be lexicographically minimal. For f = f̄ the claim holds, so assume, for
contradiction, f < f̄ . This and lexicographic minimality of d∗ ensure d∗f ≥ f + 2, d∗f+1 = f
and the existence of a maximal index ı̂ ∈ [f ] with d∗ı̂ ≥ f + 3. Therefore we may specify a
threshold graph Ĝ on n nodes and m edges with trace f + 1 via the first f + 1 entries of its
degree sequence d̂∗ by

d̃∗i =


d∗i i ∈ [f ] \ {ı̂},
d∗i − 1 i = ı̂,
d∗i + 2 i = f + 1.
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Again it suffices to track the changes in order to prove LE(Ĝ) ≥ LE(G) and because of the
larger trace of Ĝ this establishes the desired contradiction. �

With this we can work out rather explicit formulas for the Laplacian energy for each case
with given n and m by using (1). For the Type I threshold graph f with lexicographic
maximal conjugate degree sequence d∗,

TE(n,m) := LE(Th∗(d∗)) =

{
2δ̄(n−m) 2m ≤ n,
2[(f − 1)(n− δ̄) + max{0, d∗f − δ̄}] 2m ≥ n, (2)

with
d∗f = f + 1 +m− f(f + 1)/2− (f − 1)(n− 1− f).

The case of Type II threshold graph with trace f̄ and lexicographic minimal conjugate
degree sequence d̄∗ reads

TE(n,m) := LE(Th∗(d̄∗)) = 2[(n− 1− f̄)δ̄ + max{0, δ̄ − d̄∗f̄+1}] (3)

with
d̄∗f̄+1 = m− f̄(f̄ + 1)/2.

4 Maximal energy for fixed number of nodes

In order to find, for a fixed number of nodes n, which m determines the threshold graph
with largest Laplacian energy, we study the behavior of the Laplacian energy of Type I and
Type II graphs as a function of m.

First consider, for increasing m, the development of TE(n,m), which corresponds to the
lexicographically maximal case generated in Ferrers diagram by filling up the first f(n,m)
columns below the diagonal in column-wise order. Observe that the same minimal trace
k = f(n,m) ∈ [n− 1] is obtained for

mk := k(k + 1)/2 + (k − 1)(n− 1− k) ≤ m ≤ mk+1 − 1.

For k ∈ [n − 2] and mk ≤ m < mk+1 − 1 the value h = m −mk + k + 1 gives the row
index of the last �-symbol in column k and increasing m by one results in appending a
�-symbol in row h+ 1 of column k. The change of the value of TE(n,m) with δ̄ = 2m

n to
TE(n,m+ 1) with δ̄+ = 2(m+1)

n can now be traced by distinguishing the cases on whether
this next �-symbol is still below the imaginary line through δ̄+, just crosses it or whether
the previous box was already above it. This gives rise to a recurrence relation for TE(n,m)
along columns that allows to conclude that the maximum value over all columns must be
attained in m = mk+1 − 1 for k = bn3 + 5

6c.

Lemma 3 Given n ≥ 2 and m ≥ n/2 so that k = f(n,m) ∈ [n− 2] and

mk = k(k + 1)/2 + (k − 1)(n− 1− k) ≤ m < mk+1 − 1,

let δ̄ = 2m
n , δ̄+ = 2m+2

n and h = m−mk + k + 1, then

TE(n,m+ 1) = TE(n,m) +


−4k−1

n h+ 1 ≤ δ̄+,

−4k−1
n + 2(dδ̄+e − δ̄+) h+ 2

n < δ̄+ < h+ 1,

−4k−1
n + 2− 4

n δ̄ ≤ h.

Furthermore, for fixed n ≥ 2 a number of edges m maximizing TE(n,m) is m = k(k +
1)/2 + k(n− 1− k) with k = dn3 e.
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Proof The case distinction is correct, because we cannot have δ̄+ = δ̄ + 2
n ≤ h+ 2

n < δ̄+

and once δ̄ ≤ h we also have δ̄ + 2
n < h+ 1. For m ≥ n

2 satisfying mk ≤ m ≤ mk+1 − 1 we
have f(n,m) = k, so h = k + 1 +m−mk is equal to d∗f(n,m) in (2), therefore

TE(n,m) = 2[(k − 1)(n− 2m
n ) + max{0, h− 2m

n }].

As the case h+ 2
n < δ̄+ < h+ 1 implies h+ 1 = dδ̄+e, the differences due to adding a single

edge are obtained by direct computation.
We proceed to show that for fixed n the maximum value of TE must be attained for some

k with m at the upper boundary. For k ∈ [n− 2] the relation h+ 2
n < δ̄+ < h+ 1 implies

dδ̄+e−δ̄+ < 1− 2
n , which ensures −4k−1

n ≤ −4k−1
n +2(dδ̄+e−δ̄+) ≤ −4k−1

n +2− 4
n . Therefore

for each k ≥ 2 the maxima or obtained at the boundary, thus either for mk or for mk+1− 1.
For k = 1 one checks directly that the value grows from m = 1 to m = n− 1 throughout.
Stepping to the next k > 1, compare TE(n,mk−1) = 2[(k−2)(n− 2(mk−1)

n ) +n− 2(mk−1)
n ]

to TE(n,mk) = 2[(k − 1)(n − 2mk
n ) + max{0, k + 1 − 2mk

n }]. The value increases only if
k + 1 ≥ 2mk

n + (k − 1) 2
n , which simplifies to the condition k(n+ 4) ≤ 3n. Hence, the only

case with TE(n,mk) > TE(n,mk − 1) is k = 2. For k = 2 and m = m2 = n we also have
h = 3 ≥ δ̄ = 2 resulting in TE(n,m′ + 1) = TE(n,m′) + 2 − 8

n for m2 ≤ m′ < m3 − 1,
which also holds for n = 3 because then m2 = m3 − 1. Thus, for fixed n the maximum
value of TE must be attained for some mk+1 − 1, k ∈ [n− 1].

In order to find the maximizing k ∈ [n− 1], observe that

n
2TE(n,mk+1 − 1) = k3 + (1− 2n)k2 + n2k. (4)

For k ≥ 2 the difference to the predecessor is n
2 (TE(n,mk+1 − 1) − TE(n,mk − 1)) =

3k2 − (4n + 1)k + (n2 + 2n) which is strictly positive for k < 2
3n + 1

6 −
√

(n3 −
2
3)2 − 5

12 .
Due to the integrality of k we may ignore the term − 5

12 below the square root whenever

x −
√
x2 − 5

12 ≤
1
6 which yields the condition 4

3 ≤ x = n
3 −

2
3 . Thus for n ≥ 6 a best k

is k∗ = bn3 + 5
6c = dn3 e. For n ∈ {2, 3, 4, 5} the same formula holds, as can be verified

directly. �

In studying the development of TE(n,m) for increasing m the same strategy works out
when proceeding in lexicographically minimal order by filling up the elements on and above
the diagonal in column-wise order. As before, h holds the row index of the last element
in column k, but this time h < k refers to the part above the diagonal. It turns out that
the formula for the next column can be continued directly from the diagonal element on
the previous column, allowing for a smooth transition between columns in the recurrence
relation for TE(n,m).

Lemma 4 Given n ≥ 3 and m with k(k+1)/2 ≤ m < (k+1)(k+2)/2 for some k ∈ [n−2].
Put δ̄+ = 2(m+ 1)/n = δ̄ + 2

n and h = m− k(k + 1)/2, then

TE(n,m+ 1) = TE(n,m) +


2− 4 kn h+ 1 ≤ δ̄+

4− 4k+1
n − 2(δ̄ − bδ̄c) h+ 2

n < δ̄+ < h+ 1

4− 4k+1
n δ̄ ≤ h

Furthermore, for fixed n ≥ 3 a number of edges m̄ maximizing TE(n,m) is m̄ = k̄(k̄+ 1)/2
with k̄ = b1

3(2n+ 1)c.
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Proof The case distinction is correct, because we cannot have δ̄+ = δ̄ + 2
n ≤ h+ 2

n < δ̄+

and once δ̄ ≤ h we also have δ̄+ 2
n < h+1. Note that for k(k+1)/2 ≤ m < (k+1)(k+2)/2

we have f̄(m) = k. In contrast, m = (k + 1)(k + 2)/2 yields f̄(m) = k + 1. Yet, by (3), for
all k(k + 1)/2 ≤ m ≤ (k + 1)(k + 2)/2 there holds

TE(n,m) = 2[(n− (k + 1))2m
n + max{0, 2m

n − (m− k(k + 1)/2)}].

Indeed, for the special case m = (k + 1)(k + 2)/2 we get m− k(k + 1)/2 ≥ 2m
n as well as

d̄∗
f̄+1

= 0, so TE(n,m) = 2[(n− 1− (k+ 1))δ̄+ δ̄]. The case distinction now discerns which
of the terms within the max-expression is active for m and m + 1. In particular, in the
case h+ 2

n < δ̄+ < h+ 1 we use h = bδ̄c in max{0, δ̄ − h}. The differences in value due to
the additional edge are now obtained by direct computation.
Next, we show that for fixed n ≥ 3 the number of edges m∗ maximizing TE(n,m)

must satisfy m∗ ∈ {k(k + 1)/2: k ∈ [n − 1]}. This follows once we prove 2 − 4 kn ≤
4 − 4k+1

n − 2(δ̄ − bδ̄c) ≤ 4 − 4k+1
n , because then the maximum will be attained at the

boundary. But the condition h = bδ̄c < δ̄ < δ̄+ 2
n = δ̄+ < h+ 1 shows that δ̄−bδ̄c < 1− 2

n ,
so the relations hold.
In order to find the maximizing k ∈ [n− 1], observe that

n
2TE(n, k(k + 1)/2) = (n− k)k(k + 1). (5)

Because n
2 (TE(n, k(k + 1)/2) − TE(n, (k − 1)k/2)) = (2n + 1 − 3k)k ≥ 0 if and only if

k ≤ 1
3(2n+ 1), the maximum energy is found for k∗ = b1

3(2n+ 1)c. �

Comparing both maximizers, we arrive at the following result.

Theorem 5 For given n ≥ 2 a threshold graph on n nodes maximizing the Laplacian energy
is the Type II graph having conjugate degree sequence d∗i = k + 1, i ∈ [k], and d∗k+i = 0,
i ∈ [n− k], with trace k = b1

3(2n+ 1)c.

Proof For the given n let m, m̄ and k, k̄ be as defined in lemmas 3 and 4. By these
lemmas it suffices to show TE(n,m) ≤ TE(n, m̄), or equivalently, by (4) and (5)

k3 + (1− 2n)k2 + n2k ≤ (n− k̄)k̄(k̄ + 1). (6)

We prove this by discerning three cases:

Case 1: n = 3h with h ∈ N: Then k = h and k̄ = 2h. The left hand side of (6) evaluates to
4h3 + h2, the right hand side to 4h3 + 2h2, so (6) holds.

Case 2: n = 3h + 1 with h ∈ N: Then k = h + 1 and k̄ = 2h + 1. The left hand side now
reads 4h3 + 5h2 + 2h+ 1, the right hand side 4h3 + 6h2 + 2h and (6) holds again.

Case 3: n = 3h− 1 with h ∈ N: Then k = h and k̄ = 2h− 1. We obtain for the left hand side
4h3 − 3h2 + h and for the right hand side 4h3 − 2h2, proving the theorem. �

We observe that this maximizer is the disconnected threshold graph consisting of a union
of a complete graph of size b2n+1

3 c+ 1 with bn−2
3 c isolated vertices.

Example 6 Let n = 11 be the number of nodes. The candidate threshold graphs for largest
Laplacian energy are the Type I with number of edges m = k(k + 1)/2 + k(n− 1− k) = 34
as k = bn3 + 5

6c = 4 and the Type II with number of edges m = k(k + 1)/2 = 28, for
k = b2∗11+1

3 c = 7. The respective Ferrers diagrams of these graphs are in Figure 5.
The Laplacian energy of the Type I graph (on the left hand side of Figure 5) is 38.545,

whereas the Type II (right hand side of Figure 5) has Laplacian energy 40.727, which is in
accordance with Theorem 5.

9



Figure 5: Type I and Type II threshold graph candidates for n = 11.

5 Maximal energy for connected threshold graphs

For connected threshold graphs we have m ≥ n− 1 and d∗1 = n. Thus the analysis for the
case of Type I with lexicographically maximal conjugate degree sequences can be applied
without any changes, and Lemma 3 still determines the best choice of m for given n in
the lexicographically maximal setting. The connected Type II case (with lexicographically
minimal connected conjugate degree sequence) needs some minor adaptations, but the same
line of arguments works out again.
In the connected setting, Lemma 1 reads as follows.

Lemma 7 Among all connected threshold graphs on n nodes and m ≥ n− 1 edges having a
degree sequence with trace f the following are among those with maximal Laplacian energy:

1. for f + 1 ≤ δ̄ the Type I threshold graph with lexicographically maximal conjugate
degree sequence, i. e. with k =

⌊
m−f(f+1)/2

n−1−f

⌋
(≤ f) its first f conjugate degrees are

d∗i = n for i ∈ [k], d∗i = f + 1 for i ∈ {k + 2, . . . , f} and, if k < f , d∗k+1 =
f + 1 +m− f(f + 1)/2− k(n− 1− f),

2. for f + 1 ≥ δ̄ the connected Type II threshold graph with lexicographically minimal
connected conjugate degree sequence, i. e. with h =

⌊
m−n+1−f(f−1)/2

f−1

⌋
and k = m−n+

1−f(f −1)/2− (f −1)h (≤ f) its first f conjugate degrees are d∗1 = n, d∗i = f +h+ 2
for i ∈ {2, . . . , 1 + k} and d∗i = f + h+ 1 for i ∈ {k + 2, . . . , f}.

As the proof follows that of Lemma 1 almost verbatim, it is omitted.
Due to the constraint d∗1 = n the upper bound on f is now determined from f(f − 1) ≤

2(m− n+ 1), thus for n− 1 ≤ m ≤ n(n− 1)/2 the former f̄(m) is replaced by

f̄c(m) :=

⌊
1

2
+

√
2(m− n) +

9

4

⌋
≥ δ̄ − 1.

As before, we will only write f̄c if the argument m is clear form the context. With this we
may now adapt the formulation of Theorem 2.

Theorem 8 The set of connected threshold graphs on n nodes and m ≥ n− 1 edges with
maximal Laplacian Energy contains at least one of these: the Type I threshold graph with
lexicographically maximal conjugate degree sequence of trace f or the connected Type II
threshold graph with lexicographically minimal connected conjugate degree sequence of trace
f̄c.
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Again the proof is skipped, because the arguments are identical.
For the connected case there is no change in the formula TE(n,m) of the Type I threshold

graph and for the connected Type II threshold graph with trace f̄c and lexicographically
minimal connected conjugate degree sequence d̄c, one obtains

TEc(n,m) := LE(Th∗(d̄∗c)) = 2[(n− 2− f̄c)(δ̄ − 1) + δ̄ + max{0, δ̄ − d̄cf̄c+1}]

with
d̄cf̄c+1 = m− n+ 2− f̄(f̄ − 1)/2.

Next, we adapt Lemma 4.

Lemma 9 Given n ≥ 3 and m with n− 1 + k(k− 1)/2 ≤ m < n− 1 + k(k+ 1)/2 for some
k ∈ [n− 2], put δ̄+ = 2(m+ 1)/n = δ̄ + 2

n and h = m− n+ 2− k(k − 1)/2, then

TEc(n,m+ 1) = TEc(n,m) +


2− 4 kn h+ 1 ≤ δ̄+

4− 4k+1
n − 2(δ̄ − bδ̄c) h+ 2

n < δ̄+ < h+ 1

4− 4k+1
n δ̄ ≤ h

.

Furthermore, for fixed n ≥ 2 a number of edges m̄ maximizing TEc(n,m) is m̄ = n− 1 +
k̄(k̄ − 1)/2 with k̄ = b2

3nc.

Proof The case distinction is correct, because we cannot have δ̄+ = δ̄ + 2
n ≤ h+ 2

n < δ̄+

and once δ̄ ≤ h we also have δ̄+ 2
n < h+ 1. For n−1 +k(k−1)/2 ≤ m < n−1 +k(k+ 1)/2

we have f̄c(m) = k, while m = n − 1 + k(k + 1)/2 yields f̄c(m) = k + 1. For all
n− 1 + k(k − 1)/2 ≤ m ≤ n− 1 + k(k + 1)/2 there holds

TEc(n,m) = 2[(n− 2− k))(2m
n − 1) + 2m

n + max{0, 2m
n − (m− n+ 2− k(k − 1)/2)}].

Indeed, for the special case m = n− 1 + k(k + 1)/2 we get m− n+ 2− k(k − 1)/2 ≥ 2m
n

as well as d̄c
f̄c+1

= 1, so TEc(n,m) = 2[(n− 2− (k + 1))(δ̄ − 1) + δ̄ + (δ̄ − 1)]. As before,
the cases depend on which of the terms within the max-expression are active for m and
m + 1 and follow by direct computation. The case h + 2

n < δ̄+ < h + 1 uses h = bδ̄c in
max{0, δ̄ − h}.
For fixed n ≥ 3 the number of edges m∗ maximizing TEc(n,m) must satisfy m∗ ∈
{n − 1 + k(k − 1)/2: k ∈ [n − 1]}, because 2 − 4 kn ≤ 4 − 4k+1

n − 2(δ̄ − bδ̄c) ≤ 4 − 4k+1
n

implies attainment at the boundary. The latter inequalities hold because δ̄− bδ̄c < 1− 2
n is

guaranteed by h = bδ̄c < δ̄ < δ̄ + 2
n = δ̄+ < h+ 1.

In order to find the maximizing k ∈ [n− 1], observe that

n
2TEc(n, n−1+k(k−1)/2) = (n−k)(n−2+k(k−1))+n = −k3+k2(n+1)+k(2−2n)+n2−n.

(7)
The difference in values for k + 1 and k computes to

n
2 (TEc(n, n− 1 + k(k + 1)/2)− TEc(n, n− 1 + (k − 1)k/2)) = −3k2 + k(2n− 1) + 2− n,

which is strictly positive if and only if k <
n−1

2
3 +

√
(n−2)2+ 9

4

3 . More generally, the maximizing

parameter for n ≥ 2 is k̄ =

⌈
n−1

2
3 +

√
(n−2)2+ 9

4

3

⌉
= d2n

3 −
5
6e where the last equation holds for

n ∈ {2, . . . , 6} by direct computation and for n ≥ 7, because then n− 1
2 +

√
(n− 2)2 + 9

4 −
2n + 5

2 < 1
6 and integrality of n establish validity. In fact, d2n

3 −
5
6e = b2n

3 c holds for
n = 1, 2, 3 and thus for all n ∈ N, so for given n ≥ 2 the maximum energy is found for
k̄ = b2n

3 c. �
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This allows to identify the Pineapple Pn,f ′ , with trace f ′ = b2n
3 c, as a maximizer of the

Laplacian energy among all connected threshold graphs with a given number of nodes.

Theorem 10 For given n ≥ 2 a connected threshold graph on n nodes maximizing the
Laplacian energy has conjugate degree sequence d∗1 = n, d∗i = k+ 1 for i ∈ {2, . . . , k}, d∗i = 1
for i ∈ {k + 1, . . . , n− 1} and d∗n = 0 with k = b2

3nc.

Proof For the given n let m, m̄ and k, k̄ be as defined in lemmas 3 and 9. By these
lemmas it suffices to show TE(n,m) ≤ TEc(n, m̄), or equivalently, by (4) and (7)

k3 + (1− 2n)k2 + n2k ≤ (n− k̄)(n− 2 + k̄(k̄ − 1)) + n. (8)

Again we prove this by discerning the following three cases:

Case 1: n = 3h with h ∈ N: Then k = h and k̄ = 2h. The left hand side of (6) evaluates to
4h3 + h2, the right hand side to 4h3 + h2 + h, so (8) holds.

Case 2: n = 3h+ 1 with h ∈ N: Then k = h+ 1 and k̄ = 2h. The left hand side now reads
4h3 + 5h2 + 2h+ 1, the right hand side 4h3 + 5h2 + 3h and (8) holds again.

Case 3: n = 3h− 1 with h ∈ N: Then k = h and k̄ = 2h− 1. We obtain for the left hand side
4h3− 3h2 + h and for the right hand side 4h3− 3h2 + 2h− 1, proving the theorem. �

Example 11 For n = 11, the Pineapple P11,7 has m = 31 edges and largest Laplacian
energy among all connected threshold graphs with 11 vertices. We notice that LE(P11,7) =
39.091 < 40.727 = LE(G), where G is the Type II threshold graph of Example 6. This is
one more instance ascertaining the general belief that, fixing n, the maximal Laplacian
energy would be attained by a non connected graph.
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