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Detecting all local extrema or the global extremum of a polynomial on the torus,
the sphere or the rotation group is a tough yet often requested numerical problem.
We present a heuristic approach that applies common descent methods like non-
linear conjugated gradients or Newtons methods simultaneously to a large number
of starting points. The corner stone of our approach are FFT like algorithms, i.e.,
algorithms that scale almost linearly with respect to the sum of the dimension
of the polynomial space and the number of evaluation points. These FFT like
algorithms allow us to compute one step of a descent method simultaneously for
all staring points at almost the same cost as for one single starting point. The
effectiveness of the proposed algorithms is demonstrated in various applications.
In particular, we apply it to the Radon transform of a spherical function which
allows us to detect lines in spherical patterns.

1 Introduction

Detecting local extrema of a function f defined on a manifold M is a frequent problem in
mathematical applications. As an important and practical example one might think of a func-
tion defined on some subgroup of the Euclidean transformation group describing the binding
energy between some molecules, proteins, etc.. Since local extrema of the binding energy are
related to stable bindings one is interested in fast algorithms for their determination, cf. [6].

Clearly there won’t be any algorithm that determines all local extrema or the global ex-
tremum of an arbitrary function in finite time. A common heuristic approach is as follows:

i) Chose an arbitrary set of M ∈ N initial points x1, . . . ,xM ∈ X.

ii) For each initial point xj , j = 1, . . . ,M , perform a local search for an extrema x∗j , e.g.
by applying a local optimization method such as the method of nonlinear conjugated
gradients or Newton’s method.

iii) Determine the global extremum from the local extrema x∗j , j = 1, . . . ,M .
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Let us assume that the function f is a trigonometric polynomial of degree N on the d-
dimensional torus Td. Then the nonequispaced fast Fourier transform (NFFT) allows for the
approximate evaluation of the polynomial f at all initial points xj , . . . ,xM with arithmetic
complexity O(Nd logN +M), cf. [23]. We shall refer to such algorithms that scales linearly
modulo a log term with respect to the sum of the dimension of the polynomial space and the
number of evaluation points as FFT like algorithms. It is not difficult to see that also the
gradient and the Hessian of f at all initial nodes xj , . . . ,xM can be computed by FFT like
algorithms, i.e. with the same arithmetic complexity as the evaluation of the function values.
In particular, for M ∼ Nd the arithmetic complexity of one iteration step in commonly used
optimization methods for all M initial points is almost the same as for one single initial point,
O(Nd logN), cf. Theorem 3.1.

Generalizations of the nonequispaced fast Fourier transform are known for the two-dimensional
sphere S2, cf. [25] and the group SO(3) of rotations in three-dimensional Euclidean space, cf.
[29, 24]. We show that the above observation generalizes to these settings as well, i.e., that
there are FFT like algorithms for the evaluation of the gradient and the Hessian of polynomi-
als on S2 and SO(3). More precisely, we prove in Theorem 4.3 and 5.3 that for polynomials
on the sphere or the rotation group the simultaneous computation of one iteration step of a
local descent method for as many initial points as the dimension of the polynomial space has
almost the same arithmetic complexity as for one initial point.

We illustrate the applicability of our approach with two real world examples. The first
example deals with line detection in so called Kikuchi pattern on the sphere, cf. [16], which
we realize by first computing a spherical polynomial f : S2 → C approximating the given data
by an appropriate quadrature rule. Second, we compute the Radon transform

Rf(η) =
1

2π

∫
ξ⊥η

f(ξ) dξ

of the spherical polynomial f by using the fact that the spherical harmonics are eigenfunctions
of the operator R. Third, we apply our algorithm for simultaneous detection of the local
extrema of Rf . And, finally, we compute the lines corresponding to these extrema. Those
lines in a Kikuchi pattern correspond to crystallographic lattice planes and are instrumental
for the identification of crystals and there orientation within a specimen [4].

As an example for the rotation group SO(3) we consider functions f : SO(3) → R which
model the distribution of crystal orientations in a polycrystalline material. In practice, the
function f is often given as a polynomial on the rotation group as it is derived from experi-
mental data by solving an inverse problem. Local maxima of f correspond to preferred crystal
orientation and are of great practical importance, cf. [21] .

We conclude that such simultaneous optimization is applicable whenever the function of
interest has a finite representation in a basis that allow for FFT like algorithms for point
evaluation as well as for the computation of the gradient and the Hessian.

2 Local Optimization Methods on Riemannian Manifolds

In what follows we consider compact Riemannian manifolds M ⊂ Rd without boundary
and sufficiently smooth (at least continuously differentiable) functions f : M → R. In
general we are interested in the determination of local extreme points, which can computed by
straightforward generalizations of the well-known optimization methods in Euclidean space
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Rd. An excellent reference for optimization methods in Euclidean space is given in [28].
Generalizations to Riemannian manifolds have been investigated originally by Udrişte [34]
and Smith [31].

For simplicity we restrict our attention to the determination of a local minimizer x∗ ∈ M
of f by means of what is know as descent or line search methods. However, we like to
mention that other optimization methods such as trust region methods have been generalized
to Riemannian manifolds as well, cf. [3].

In Euclidean space Rd descent methods are iterative methods, which start from an initial
point x(0) ∈ Rd and generate a sequence of points x(k) ∈ Rd accordingly to the iteration

x(k+1) := x(k) + α(k)d(k) ∈ Rd, k = 0, 1, . . . , (2.1)

where d(k) is the search direction and α(k) ≥ 0 is the step length. We note that the well-known
method of steepest descent, the conjugate gradient method, and Newton’s method fit into
this class of descent methods.

For Riemannian manifolds M the iteration scheme (2.1) does not make sense, since the
lines lx,d : R → Rd, lx,d(t) := x + td, do not need to run in M. However, we recall that
for any point x ∈ M we may associate a subspace of Rd which is called the tangent space
TxM ⊂ Rd and that additionally for a given tangent vector d ∈ TxM there is a unique
geodesic curve γx,d : R → M with γx,d(0) = x and γ̇x,d(0) = d, e.g. cf. [17]. Then, after
replacing the straight lines on the right hand side in (2.1) by geodesic curves γx(k),d(k) , we
obtain descent methods on Riemannian manifolds M given by

x(k+1) := γx(k),d(k)(α
(k)) ∈M, k = 0, 1, . . . , (2.2)

where the search direction must be a tangent vector d(k) ∈ Tx(k)M. The determination of
effective search directions d(k) and step lengths α(k) is crucial for the success of such iteration
schemes. We note that the computation of a reasonable step size α(k) > 0 leads to a generic
one dimensional optimization problem usually referred to as the line search. Before we explain
in detail the line search, we briefly describe the generic generalizations of the standard descent
methods.

Generic descent methods. The method of steepest descent is obtained by setting

x(k+1) := γx(k),d(k)(α
(k)), d(k) := −∇Mf(x(k)) ∈ Tx(k)M, k = 0, 1, . . . , (2.3)

where ∇Mf is the gradient of f and α(k) is determined by a line search. Since it requires
only first order derivatives it is quite easily to implement. However, it suffers from very slow
convergence (linear rate), due to the “zig-zagging” nature of this method, cf. [31].

In contrast, Newton’s method is given by the more sophisticated scheme

x(k+1) := γx(k),d(k)(1), k = 0, 1, . . . , (2.4)

where the descent direction d(k) ∈ Tx(k)M is determined by the requirement

HMf(x(k))(d(k),v) = −∇Mf(x(k))>v, v ∈ Tx(k)M, (2.5)

where HMf is the Hessian bilinear form associated to f . We note that for the Euclidean
space M = Rd the relation (2.5) is equivalent to the more familiar description d(k) :=
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−Hf(x(k))−1∇f(x(k)). It can be shown that nearby a local minimizer with positive def-
inite Hessian the convergence of Newton’s method is very fast (quadratic rate), cf. [31].
However, the generic scheme (2.4) suffers from serious instability problems if the sufficient
convergence conditions are not met. Furthermore, the determination of the Newton step, cf.
(2.5), by solving an equation system for the Hessian matrix, might be far to expansive for
large scale problems.

A reasonable trade-off between stability, convergence rate and computational complexity
is given by the nonlinear conjugate gradient method (CG method) determined by

x(k+1) := γx(k),d(k)(α
(k)), d(k+1) := −g(k+1) + β(k)d̃

(k) ∈ Tx(k+1)M, k = 0, 1, . . . ,
(2.6)

where g(k) := ∇Mf(x(k)) ∈ Tx(k)M and d(0) := −g(0) ∈ Tx(0)M is the initial search di-

rection. The tangent vector d̃
(k) ∈ Tx(k+1)M is defined by the parallel transported tangent

vector d(k) due to

d̃
(k)

:= γ̇x(k),d(k)(α
(k)) ∈ Tx(k+1)M. (2.7)

Specific choices of the parameter β(k) in (2.6) lead to several well-known conjugate gradient
methods. In the case of Euclidean space an overview is given in [15]. For instance the CG
method proposed by Daniel in [11] adapted to Riemannian manifolds, replaces the scalar β(k)

by

β
(k)
D :=

HMf(x(k+1))(g(k+1), d̃
(k)

)

HMf(x(k+1))(d̃
(k)
, d̃

(k)
)
. (2.8)

For this particular CG method the convergence is shown to behave superlinear, cf. [12]. In
the reminder of this paper we restricted our self to this specific coefficient rule since the
computation of the Hessian matrix for the functions we have in mind will not increases the
arithmetic complexity compared to CG methods without Hessian evaluation.

The line search. The search of a reasonable step length in an iterative optimization method
of the form (2.2) leads to a generic one-dimensional optimization problem. The ideal choice
of a step length would be the nearest local minimizer of the function f ◦ γx,d, x ∈ M,
d ∈ TxM. However, the determination of an exact local minimum is usually impractically
so that the step lengths in (2.2) are usually computed by algorithms known as inexact line
search methods.

Reasonable inexact line search methods determine step lengths α which satisfy the Wolfe
conditions

f(γx,d(α))− f(γx,d(0)) ≤ µα d
dtf(γx,d(t))

∣∣∣
t=0

(2.9)

d

dt
f(γx,d(t))

∣∣∣
T=α

≥ η d
dtf(γx,d(t))

∣∣∣
t=0

, (2.10)

for fixed constants 0 < µ < η. We remark that the relatively mild Wolfe conditions (2.9)–
(2.10) imply for a large class of functions f convergence results for the method of steepest
descent, Newton’s method, and the nonlinear conjugate gradient method, which establish the
classical convergence rate estimates, cf. [28, 12].

For simplicity we will use a simple Armijo line search method, cf. Algorithm 1, which only
tries to enforce condition (2.9) and requires only the evaluation of the function f and its
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gradient ∇Mf at points along a given geodesic γx,d. Note, we observed in the test cases in
Section 3–5 that for the most starting points the second condition (2.10) is satisfied as well.
For more sophisticated line search algorithms we refer to [28] and the references therein.

Algorithm 1 (Simultaneous Line Search - Armijo condition)

Parameters: 0 < µ < 1
2 , 0 < τ < 1, maximal iterations kmax ∈ N;

Input: differentiable function f : M → R, starting points xi ∈ M, descent directions

di ∈ TxiM, initial step lengths α
(1)
i > 0, i = 1, . . . ,M ;

Initialization: f
(0)
i := f(xi), gi := (f ◦ γxi,di)′(0), i = 1, . . . ,M , iteration counter k := 1;

while k <= kmax do
f
(k)
i := f ◦ γxi,di(α

(k)
i ), i = 1, . . . ,M ;

allgood:=true;
for i = 1, . . . ,M do

if f
(k)
i − f (0)i > µ · α(k)

i · gi then

α
(k+1)
i := τ · α(k)

i ;
allgood:=false;

else
α
(k+1)
i := α

(k)
i ;

end if
end for
k := k + 1;
if allgood==true then

break;
end if

end while
Output: step lengths α

(k)
i ≥ 0, i = 1, . . . ,M .

Simultaneous optimization methods. In practical applications one is often interested in
finding all local extrema of a function f . Unless f has additional properties, e.g. is strictly
convex, this is impossible to accomplish by an algorithm, as f may have infinitely many local
extrema. A common heuristic approach is to apply local optimization methods repeatedly
with different and evenly spread starting points xi ∈ M, i = 1, . . . ,M . With this direct
approach the numerical cost is proportional to the number of starting points M times the
numerical cost of computing one local extremum. Usually, the evaluations of the function
f as well as the evaluation of its gradient and Hessian are the most expensive steps in such
algorithms.

In the remainder of this paper we will consider functions f belonging to functions spaces
that allow for FFT like algorithms for function evaluations as well as for evaluations of the
gradient and the Hessian, i.e., for algorithms that scales linearly, modulo a log factor, with
respect to the sum M +Nd of the number M of evaluation points and the dimension Nd of
the function space. Under these requirements we can arrange the evaluations of the function,
its gradient and its Hessian such that they are performed simultaneously for each iteration
step of some local optimization method. As a consequence, the arithmetic complexity of
one simultaneous iteration for M ∼ Nd starting points is the same, modulo a log factor,
as for a single starting point. The following two concrete implementations, cf. Algorithm 1
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Algorithm 2 (Simultaneous CG Method (with restarts))

Parameters: regularization parameter λ > 0, tolerance τ > 0, maximal iterations kmax;

Input: twice differentiable function f : M→ R, initial points x
(0)
1 , . . . ,x

(0)
M ∈M;

Initialization: g
(0)
i := ∇Mf(x

(0)
i ), d

(0)
i := −g(0)i , i = 1, . . . ,M , dimension d of M,

iteration counter k = 1;

while 1
M

∑M
i=1 |g

(k)
i | > τ and k < kmax do

h
(k)
i := HMf(x

(k)
i )(d

(k)
i ,d

(k)
i ), i = 1, . . . ,M ;

α̃
(k)
i :=

|g(k)i ·d
(k)
i |

h
(k)
1,i+λ|g

(k)
i ·d

(k)
i ||d

(k)
i |

, i = 1, . . . ,M, (initial step lengths);

compute α
(k)
i by the simultaneous line search Algorithm 1 with starting points x

(k)
i ,

descent directions d
(k)
i , initial step lengths α̃

(k)
i for i = 1, . . . ,M ;

x
(k+1)
i := γ

x
(k)
i ,d

(k)
i

(α
(k)
i ), i = 1, . . . ,M ;

g
(k+1)
i := ∇Mf(x

(k+1)
i ), i = 1, . . . ,M ;

d̃i
(k)

:= γ̇
x
(k)
i ,d

(k)
i

(α
(k)
i ), i = 1, . . . ,M ;

β
(k)
n,i := HMf(x

(k+1)
i )(g

(k+1)
i , d̃i

(k)
), i = 1, . . . ,M ;

β
(k)
d,i := HMf(x

(k+1)
i )(d̃i

(k)
, d̃i

(k)
), i = 1, . . . ,M ;

for i = 1, . . . ,M do

if (k + 1) ≡ 0 mod d and β
(k)
d,i 6= 0 then

β
(k)
i :=

β
(k)
n,i

β
(k)
d,i

;

d
(k+1)
i := −g(k+1)

i + β
(k)
i d̃i

(k)
;

if g
(k+1)
i · d(k+1)

i > 0 then

d
(k+1)
i := −g(k+1)

i (enforce descent direction);
end if

else
d
(k+1)
i := −g(k+1)

i ;
end if

end for
k := k + 1;

end while
Output: approximate local minimizers x

(k)
1 , . . . ,x

(k)
M ∈M of f .

and Algorithms 2, of simultaneous optimization algorithms are used for later reference and
demonstration purposes. We remark that other well-know optimization methods such as
Newton’s method or trust region methods may be generalized as well and should provide on
the torus Td, the sphere S2, and the rotation group SO(3) similar complexity bounds as in
Theorem 3.1, Theorem 4.3, and Theorem 5.3, respectively.

In Algorithm 1 we present a simple implementation of a simultaneous line search which
consists of one simultaneous evaluation of the gradient of f at all starting points in the
initialization step and at most kmax + 1 simultaneous evaluations of the function f .

Algorithm 2 is the implementation of a simultaneous conjugated gradient method on Rie-
mannian manifolds, which consist of one simultaneous gradient evaluation and three simul-
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taneous Hessian evaluations per iteration step. We note that the first Hessian evaluations
lead to particular useful step length estimates for the initial step lengths used in Algorithm 1,
since we are able to compute regularized Newton steps for the one-dimensional optimization
problem. The chosen regularization parameter λ prohibits to take too large step lengths,
which may result from degenerated Hessian forms. In particular for evenly spread starting
points on compact manifolds this is a reasonable restriction, which allows us to search only in
a small neighborhood (within radius 1/λ) of the starting points for local minimizers without
limiting the fast convergence behavior near a local minimizer with positive definite Hessian.

In all the following numerical tests we set in Algorithm 1 the parameters µ := 0.4, τ := 0.5,
and the maximal iterations kmax := 6. In Algorithm 2 we use the regularization parameter
λ := d

√
M/10 (since we assume that the starting points are evenly spread), the tolerance

τ := 10−8, and the maximal iterations kmax := 10.

3 Global Optimization on the Torus

The most simple case of a non-Euclidean manifold is probably the d-dimensional torus Td :=
Rd/Zd. We recall that functions on the torus Td can be considered as one-periodic functions
in Rd, i.e., f : Rd → C with f(x + z) = f(x), x ∈ Rd, z ∈ Zd. Hence, the geometry of the
torus Td inherits naturally the geometry of the Euclidean space Rd. That is, the tangent space
TxTd at a point x ∈ Td is simply the Euclidean space Rd and the geodesics γx,d, x ∈ Td,
d ∈ Rd, are given by straight lines modulo one in each coordinate. It follows that the gradient
∇Tdf(x) as well as the Hessian form HTdf(x), x ∈ Td, of a sufficient smooth function on the
torus Td are also expressed by the usual gradient and Hessian in Rd.

Functions on the torus are often approximated by its truncated Fourier expansion. Let
f : Rd → C be a trigonometric polynomial of degree N ,

f(x) :=
∑

k∈Zd, |k|≤N

f̂(k)e2πik·x, x ∈ Rd (3.1)

with Fourier coefficients f̂(k) ∈ C, k ∈ Zd, |k| ≤ N . Then the evaluation of f at arbitrary
points x1, . . . ,xM ∈ Rd, M ∈ N, can be interpreted as the multiplication of the vector of
Fourier coefficients f̂ = (f̂k)|k|≤N ∈ C(2N+1)d with the Fourier matrix

FN,M := (e2πik·xj )j=1,...,M ;|k|≤N ∈ CM×(2N+1)d .

The matrix vector product FN,M f̂ can be computed approximately with accuracy ε by
the nonequispaced fast Fourier transform (NFFT), cf. [30, 23], with arithmetic complexity
O(Nd logN + M logd(ε−1)). Accordingly, we can approximately compute the gradient and
the Hessian matrix of f in M points x1, . . . ,xM ∈ Rd,

∇f(xj) = 2πi
∑
|k|≤N

f̂(k)e2πik·xjk ∈ Cd,

Hf(xj) = −4π2
∑
|k|≤N

f̂(k)e2πik·xjkkT ∈ Cd×d

by an NFFT for fixed d with arithmetic complexity O(Nd logN + M logd(ε−1)). Thus the
NFFT enables us to compute one step of a descent method (2.2) simultaneously for M start-
ing points with arithmetic complexity O(Nd logN + M logd(ε−1)) as long as the line search
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requires only a fixed number of evaluations of the Hessian and the gradient of f . This is
especially remarkable as for the number of starting points M being of the same magnitude as
the number of Fourier coefficients, i.e., M ∼ Nd, the arithmetic complexity of computing one
step of a descent method (2.2) for one point x ∈ Rd is almost the same (up to a logarithmic
factor) as computing it for all M points.

Theorem 3.1. Let f : Rd → R, d ∈ N0 fixed, be a real-valued trigonometric polynomial
of degree N ∈ N0 and x1, . . . ,xM ∈ Rd some nodes. Then the gradients ∇f(xj) and the
Hessian matrices Hf(xj), j = 1, . . . ,M , and therefore, one step of the simultaneous CG
method, cf. Algorithm 2, can be computed numerically with error ε and arithmetic complexity
O(Nd logN +M logd ε−1).

Numerical experiments. In order to demonstrate the performance of our approach we con-
sider the global minimization problem for the function f : [−1, 1]2 → R given by

f(x, y) :=

(
x2

4
+ esin(50x) + sin(70 sin(x))

)
+

(
x2

4
+ sin(60ey) + sin(sin(80y))

)
− cos(10x) sin(10y)− sin(10x) cos(10y), (x, y) ∈ [−1, 1]2.

(3.2)

Note, that this optimization problem has been originally proposed by Nick Trefethen as part
of the SIAM 100-digit challenge, so that the global minimizer is known up to very high
precision, cf. [7]. The challenge of finding the global minimum results from the many local
minima provided by the function f , cf. Figure 3.1. We also like to mention that this function
has also been used as a test function for the two-dimensional global optimization algorithm
presented in [33]. However, our approach is different, since we are able to compute all local
minimizers simultaneously.

In order to apply the proposed optimization algorithms on the torus, we need to transform
the given function f : [−1, 1]2 → R into a one-periodic function f̃ : R2 → R and, finally,
approximate that function f̃ by a trigonometric polynomial f̃N : R2 → R of degree N ∈ N0,
cf. (3.1). Since we aim to approximate the function f̃ by a trigonometric polynomial, we take
the usual approach and apply the cosine substitution

f̃(t1, t2) := f(x(t1, t2)), x(t1, t2) := (cos(2πt1), cos(2πt2))
>, (t1, t2)

> ∈ R2.

The reason for this substitution results from the good approximation properties of the Cheby-
shev polynomials of the first kind Tk : [−1, 1]→ R and their relations to trigonometric polyno-
mials due to Tk(cos(t)) = cos(kt). The Fourier coefficients f̂k, k := (k1, k2)

> ∈ Z2, |k| ≤ N ,
of the trigonometric polynomial

f̃N (t1, t2) :=

N−1∑
k1=−N

N−1∑
k2=−N

f̂(k1,k2)e
2πi(k1t1+k2t2)

are simply determined by a corresponding discrete Fourier transform

f̂(k1,k2) :=
1

4N2

2N∑
i=1

2N∑
j=1

f̃(ti,j)e
−2πik·ti,j , ti,j :=

(
i−N
2N

,
j −N

2N

)>
, i, j = 1, . . . , 2N,

which can be performed in O(N2 logN) arithmetic operations.
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For degree N = 250 we obtain an approximation error ‖f̃ − f̃N‖∞/‖f̃‖∞ < 2 · 10−3. After
applying the simultaneous CG method, cf. Algorithm 2, on the torus T2 to f̃N with starting
points xj , j = 1, . . . , 104, lying on an equispaced grid of size 100 × 100, we where able to
determine 719 local minimizers, illustrated in Figure 3.1. The computed global minimizer t̃∗
of f̃N satisfies |x(t̃∗)− x∗| < 10−4, where the global minimum of f is given by

x∗ := (−0.02440307969437517 . . . , 0.2106124271553557 . . . )>.

The error of the global minimizer can be readily reduced by applying a standard local mini-
mization method to the original function f with starting point x(t̃∗).

4 Global optimization on the two-dimensional sphere

In this section we want to apply the same ideas as in the previous one in order to develop a
simultaneous optimization scheme for functions defined on the sphere

S2 =
{
ξ ∈ R3 | |ξ| = 1

}
.

Most of the calculations presented in this section lead to formulas which can be found in [14]
where they have been applied for optimization on the sphere as well.

Geometry. As parameterisation of the sphere S2 we use spherical coordinates

ξ(θ, ρ) = (cos ρ sin θ, sin ρ sin θ, cos θ)>, θ ∈ [0, π], ρ ∈ [0, 2π).

Then the canonical basis of the tangent space

TξS2 = {x ∈ R3 | x · ξ = 0}

at a point ξ(θ, ρ) ∈ S2 \ {(0, 0,±1)>} is given by

ξθ =
∂

∂θ
ξ(θ, ρ), ξρ =

∂

∂ρ
ξ(θ, ρ). (4.1)

With respect to this basis the metric tensor GS2 takes the form

GS2(ξ(θ, ρ)) =

(
1 0
0 sin2 θ

)
,

which leads for any two tangent vectors x = xθξθ + xρξρ and y = yθξθ + yρξρ to the inner
product

x · y = (xθ xρ)GS2(ξ(θ, ρ))

(
yθ
yρ

)
.

The geodesics on the sphere are exactly the great circles. That is, for a starting point
ξ ∈ S2 and a direction d ∈ TξS2 the unique geodesics γξ,d : R → S2 with γξ,d(0) = ξ and
γ̇ξ,d(0) = d is given by, (cf. e.g. [34, p.19]),

γξ,d(λ) = cos(λ |d|)ξ + sin(λ |d|)d/ |d| . (4.2)
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Figure 3.1: Illustration of the function f : [−1, 1]2 → R given by (3.2) as a density plot and
719 local minima (black dots) detected by the simultaneous CG method applied
to the trigonometric polynomial f̃N , N = 250, and 10, 000 starting points lying
on an equispaced 100× 100 grid.

Gradient and Hessian. Let fθ := ∂
∂θf(ξ(θ, ρ)) and fρ := ∂

∂ρf(ξ(θ, ρ)) be the partial deriva-

tives of a function f ∈ C1(S2) with respect to θ and ρ. Then the spherical gradient
∇S2f(ξ(θ, ρ)) ∈ Tξ(θ,ρ)S2 has the following representation with respect to the basis given
in (4.1),

∇S2f(ξ(θ, ρ)) = (ξθ, ξρ)G
−1
S2 (θ, ρ)

(
fθ
fρ

)
= fθ ξθ + sin2 θ fρ ξρ. (4.3)
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In order to define the spherical Hessian matrix HS2f(ξ(θ, ρ)) ∈ C2×2 of a function f ∈
C2(S2) we need the spherical Christoffel symbols Γθij , Γρij , i, j = 1, 2, which can be written
in matrix form as

Γθ(θ, ρ) :=

(
0 0
0 − sin θ cos θ

)
, Γρ(θ, ρ) :=

(
0 cot θ

cot θ 0

)
.

Let fθ,θ, fθ,ρ, fρ,ρ be the partial derivatives of f with respect to the parameterization in polar
coordinates. Then the spherical Hessian of f with respect to the canonical basis (4.1) in the
tangent space Tξ(θ,ρ) reads as, cf. [34],

HS2f(ξ(θ, ρ)) =

(
fθ,θ fθ,ρ
fθ,ρ fρ,ρ

)
− fθΓθ − fρΓρ. (4.4)

Spherical harmonics. The analog of the exponential functions on the torus are the spherical
harmonics on the sphere. Let the Legendre polynomials Pn : [−1, 1] → R and the associated
Legendre functions P kn : [−1, 1]→ R be defined by

Pn(x) :=
1

2nn!

dn

dxn
(
x2 − 1

)n
, n ∈ N0,

P kn (x) :=

(
(n− k)!

(n+ k)!

)1/2 (
1− x2

)k/2 dk

dxk
Pn(x), n ∈ N0, k = 0, . . . , n.

(4.5)

Then the spherical harmonics Y k
n : S2 → C, n ∈ N0, k = −n, . . . , n,

Y k
n (ξ(θ, ρ)) :=

√
2n+ 1

4π
P |k|n (cos θ)eikρ (4.6)

constitute an orthonormal basis in the space L2(S2) with respect to the canonical surface
measure of the sphere µS2 satisfying µS2(S2) = 4π. By a spherical polynomial of degree
N ∈ N0 we denote a function f : S2 → C that has a finite series expansion in spherical
harmonics

f(ξ) :=
N∑
n=0

n∑
k=−n

f̂(n, k)Y k
n (ξ), ξ ∈ S2. (4.7)

As for the torus we can write the evaluation of f at arbitrary nodes ξ1, . . . , ξM ∈ S2 as the
product of a Fourier matrix

FN,M :=
(
Y k
n (ξj)

)
j=1,...,M ;(n,k)∈IN

∈ CM×|IN |

with the vector of Fourier coefficients f̂ := (f̂(n, k))(n,k)∈IN ∈ C|IN |, where we use the index
set

IN := {(n, k) ∈ N× Z : n = 0, . . . , N ; k = −n, . . . , n}.
The matrix vector product FN,M f̂ can be computed approximately with error ε by an noneq-
uispaced fast spherical Fourier transform (NFSFT) with arithmetic complexity O(N2 log2N+
M log2(ε−1)), cf. [25, 22].

In what follows we derive formulas for the gradient and the Hessian of a spherical polynomial
f that allow for fast evaluation at nodes ξj ∈ S2, j = 1, . . . ,M , using the NFSFT. Eventually,
we arrive at FFT like algorithms for the partial derivatives up to second order of polynomials
on the sphere S2. The following representations of partial derivatives of a spherical polynomial
have been originally utilized in [14, Lemma 3.1 and Theorem 3.2].
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Lemma 4.1. Let f : S2 → C be a spherical polynomial of degree N ∈ N with Fourier
coefficients f̂ := (f̂(n, k))(n,k)∈IN . Then its first order partial derivatives can be represented
by spherical polynomials

∂

∂ρ
f(ξ(θ, ρ)) =

N∑
n=0

n∑
k=−n

f̂ρ(n, k)Y k
n (ξ), ξ ∈ S2

and

sin θ
∂

∂θ
f(ξ(θ, ρ)) =

N+1∑
n=0

n∑
k=−n

f̂θ(n, k)Y k
n (ξ), ξ ∈ S2,

of degree N and N + 1, respectively. Their Fourier coefficients f̂ρ := (f̂ρ(n, k))(n,k)∈IN and

f̂ θ := (f̂θ(n, k))(n,k)∈IN+1
are related to the Fourier coefficients f̂ by the linear mappings

f̂ρ = DN,ρf̂ := (ikf̂(n, k))(n,k)∈IN and f̂ θ = DN,θf̂ := (f̂θ(n, k))(n,k)∈IN+1
,

respectively, where

f̂θ(n, k) := an−1,kf̂(n− 1, k)− bn+1,kf̂(n+ 1, k), (n, k) ∈ IN ,

with f̂n,k := 0 for |k| > n or n < 0 and

an,k := n

√
(n+ 1)2 − k2

(2n+ 1)(2n+ 3)
, bn,k := (n+ 1)

√
n2 − k2

(2n− 1)(2n+ 1)
, (n, k) ∈ IN \ {(0, 0)},

with a−1,0 := a0,0 := b0,0 := 0.

Proof. As a consequence of (4.6) and the recurrence relation of the associated Legendre
functions, cf. [2, Eq. 8.5.3 and 8.5.4], we obtain for the partial derivatives of the spherical
harmonics Y k

n , (n, k) ∈ IN , the expressions

∂

∂ρ
Y k
n (ξ(θ, ρ)) = ikY k

n (ξ(θ, ρ)),

and

sin θ
∂

∂θ
Y k
n (ξ(θ, ρ)) = an,kY

k
n+1(ξ(θ, ρ))− bn,kY k

n−1(ξ(θ, ρ)).

Similarly, we compute the second derivatives of a spherical polynomial by applying the
linear mappings DN,ρ : C|IN | → C|IN |, DN,θ : C|IN | → C|IN+1| multiple times on the vector f̂
of Fourier coefficients of f .
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Lemma 4.2. Let f : S2 → C be a spherical polynomial of degree N ∈ N with Fourier
coefficients f̂ := (f̂(n, k))(n,k)∈IN . Then its second order partial derivatives can be represented
as spherical polynomials

∂2

∂ρ2
f(ξ(θ, ρ)) =

N∑
n=0

n∑
k=−n

f̂ρ,ρ(n, k)Y k
n (ξ), ξ ∈ S2,

sin θ
∂2

∂θ∂ρ
f(ξ(θ, ρ)) =

N+1∑
n=0

n∑
k=−n

f̂θ,ρ(n, k)Y k
n (ξ), ξ ∈ S2,

and

sin2 θ
∂2

∂θ2
f(ξ(θ, ρ)) =

N+2∑
n=0

n∑
k=−n

f̂θ,θ(n, k)Y k
n (ξ(θ, ρ))− cos θ

N+1∑
n=0

n∑
k=−n

f̂θ(n, k)Y k
n (ξ(θ, ρ))

of degree N , N + 1 and N + 2, respectively. Their Fourier coefficients are given accordingly
to Lemma 4.1 by the linear mappings

f̂ρ,ρ := (f̂ρ,ρ(n, k))(n,k)∈IN = D2
N,ρf̂ ∈ C|IN |,

f̂ θ,ρ := (f̂θ,ρ(n, k))(n,k)∈IN+1
= DN,θDN,ρf̂ ∈ C|IN+1|.

(4.8)

and
f̂ θ,θ := (f̂θ,θ(n, k))(n,k)∈IN+2

= DN+1,θDN,θf̂ ∈ C|IN+2|,

f̂ θ := (f̂θ(n, k))(n,k)∈IN+1
= DN,θf̂ ∈ C|IN+1|.

(4.9)

Proof. The relation (4.8) follows readily from Lemma 4.1. For formula (4.9) we observe that

sin θ
∂

∂θ
sin θ

∂

∂θ
= sin2 θ

∂2

∂θ2
+ sin θ cos θ

∂

∂θ

and apply Lemma 4.1 again.

Combining Lemma 4.1 and 4.2 with the formulas for the spherical gradient (4.3) and the
spherical Hessian (4.4) we conclude that the computation of the gradient and the Hessian
allow for FFT like algorithms.

Theorem 4.3. Let f : S2 → R be a real-valued spherical polynomial of degree N ∈ N0

and x1, . . . ,xM ∈ S2 \ {(0, 0,±1)>} be some nodes. Then the spherical gradients ∇S2f(xj)
and the spherical Hessian matrices HS2f(xj), j = 1, . . . ,M , and therefore, one step of the
simultaneous CG method, cf. Algorithm 2, can be computed numerically with error ε and
arithmetic complexity O(N2 log2N +M log2 ε−1).

Proof. By Lemma 4.1 and Lemma 4.2 we know that the partial derivatives up to second
order of f can be represented by spherical harmonics, cf. Lemma 4.1 and Lemma 4.2, and
therefore can be evaluated by the NFSFT at any given points x1, . . . ,xM ∈ S2 \{(0, 0,±1)>}
numerically with arithmetic complexity O(N2 log2N +M log2 ε−1), after computing the cor-
responding Fourier coefficients in O(N2). Hence, it is readily seen that the spherical gradients
∇S2f , cf. (4.3), and the Hessian matrices HS2f , cf. (4.4), can be evaluated with the same
arithmetic complexity at these points.

Note that by (4.2) we can evaluate the geodesics γxi,di(αi) for any given tangent vectors
di ∈ TxiS2 and step sizes αi ∈ R, as well as its derivatives γ̇xi,di(αi), i = 1, . . . ,M , in O(M).
Since any iteration step of Algorithm 2 and Algorithm 1 takes only a bounded number of
function and geodesic evaluations, including their derivatives, we arrive at the assertion.
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Figure 4.1: A raw EBSD image (left) and a simulated Kikuchi pattern on the sphere (right).
Data take from G. Nolze, Federal Institute for Materials Research and Testing,
Germany, personal communication.

A real world application – Band detection in Kikuchi pattern. In electron back scatter
diffraction a crystalline material is irradiated by an electron beam. The diffraction pattern, the
so called Kikuchi pattern, is measured by an area detector and results in an image containing
bands intersecting each other at specific angles, cf. Figure 4.1 (left). This pattern can be
interpreted best when projected on a two sphere, cf. Figure 4.1 (right). Then any band of
the pattern is the intersection of the sphere with a certain crystallographic lattice plane. As
the lattice planes are characteristic for each crystal EBSD measurements of Kikuchi pattern
are used to identify crystals and there orientation within a specimen [4].

There exist a lot of methods that aim at extracting all the bands in a Kikuchi pattern fast
and accurately, e.g., [16]. Most of them consider this problem in the plane as fast algorithms
for line detection are well known. On the other hand it is well known that the bands in
a Kikuchi pattern are not straight lines but hyperbolics which lowers the accuracy of those
methods cf. [27]. Our idea is to deal with the band detection problem directly on the sphere.
We propose the following procedure

(1) Project the image data to the sphere and approximate it by a spherical polynomial
f : S2 → R.

(2) Compute the integrals of f along all geodesics, i.e. compute the Radon transform of f ,

Rf(ξ) :=

∫
η⊥ξ

f(η) dη.

(3) Find all local extrema of Rf .

For the approximation of the data by a spherical polynomial we use spherical t-designs, i.e.,
sampling points ξj ∈ S2, j = 1, . . . ,M , that allow for exact quadrature up to a polynomial
degree t with equal quadrature weights. In our experiment we use a 1000-design consisting
of 520, 000 sampling points found on [13], which allows for the computation of the Fourier
coefficients of polynomials with degrees at most N = 500. In our specific example the data
does not cover the whole sphere but only some subregion. Therefore, we continue the data
by its mean value to the entire sphere. Figure 4.2 shows the approximation of the data by a
spherical polynomial of degree 500.
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Figure 4.2: The approximation of the raw EBSD data by a spherical polynomial of degree 500
(left) and its Radon transform (right).

For the second step of our procedure, i.e., for the computation of the Radon transform we
make use of the fact that the spherical harmonics are eigenfunctions, cf. [10, Lemma 2.1.6],
i.e.,

RY k
n = Pn(0)Y k

n , n ∈ N, k = −n, . . . , n,

where Pn is the Legendre polynomial defined in (4.5). In particular, the Radon transform
of a spherical polynomial is a spherical polynomial of the same degree and we can apply the
NFSFT to evaluate it at arbitrary points. The Radon transformed polynomial Rf of the
Kikuchy pattern is shown in Figure 4.2.

In the third step we apply the simultaneous CG method, cf. Algorithm 2, to the spherical
polynomial Rf with M = 100, 000 well distributed starting points xj := ξ(θj , ρj), j =
1, . . . ,M , given in spherical coordinates by

θj := arccos

(
2j − (M + 1)

M

)
, ϕj := π(2j − (M + 1))φ−1,

where φ = 1+
√
5

2 is the golden ratio. These points lie on a Fibonacci spiral as proposed in [32].
As a result the proposed optimization method detects about 30,000 different local minimzers
for the Radon transform Rf , where the most are caused by the constant continuation of the
original image together with the polynomial approximation. In Figure 4.3 we plot the 80
smallest one of the upper hemisphere in the Radon transformed image and in Figure 4.4 the
corresponding lines in the original image.

5 The rotation group

As a last example we consider the rotation group

SO(3) := {R ∈ R3×3 | detR = 1, R−1 = R>}

consisting of all orthogonal three-by-three matrices with determinant one. Any matrix R ∈
SO(3) has at least one eigenvalue 1. The corresponding eigenvector ξ ∈ S2 is called rotation

15



Figure 4.3: The top 80 detected minimizers of the upper hemisphere in the Radon transformed
image.

Figure 4.4: The lines corresponding to the top 80 detected minimizers in the Radon trans-
formed image in the original image.
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axis of R. The rotation angle ω is given by 2 cosω = trR − 1, where trR denotes the trace
of the matrix. Conversely, we denote for any rotation axis ξ ∈ S2 and any rotation angle
ω ∈ [0, 2π) the corresponding rotation matrix by Rξ,ω ∈ SO(3).

Geometry. As a parameterization of the rotation group we will use Euler angles, i.e., we use
the fact that any rotation R ∈ SO(3) can be represented as the composition

R(ϕ1, θ, ϕ2) := Re3,ϕ1Re2,θRe3,ϕ2

=

(
cosϕ1 cos θ cosϕ2 − sinϕ1 sinϕ2 − cosϕ1 cos θ sinϕ2 − sinϕ1 cosϕ2 cosϕ1 sin θ
sinϕ1 cos θ cosϕ2 + cosϕ1 sinϕ2 − sinϕ1 cos θ sinϕ2 + cosϕ1 cosϕ2 sinϕ1 sin θ

sin θ cosϕ2 sin θ sinϕ2 cos θ

)
(5.1)

of three rotations with fixed axes e3 := (0, 0, 1)>, e2 := (0, 1, 0)> and suitable chosen angles
(ϕ1, θ, ϕ2) ∈ [0, 2π)× [0, π]× [0, 2π).

The tangent space of the rotation group SO(3) at the identity matrix I ∈ SO(3) is given
by

TISO(3) = {S ∈ R3×3 | S> = −S},

i.e., it consists of all skew symmetric three-by-three matrices and is also known as the Lie
algebra so(3). It follows that the tangent space at an arbitrary rotationR ∈ SO(3) is obtained
by left multiplication with R, i.e.,

TRSO(3) = RTI = {RS ∈ R3×3 | S> = −S}.

For rotation matrices R(ϕ1, θ, ϕ2) ∈ SO(3) with θ /∈ {0, π} the the partial derivatives of
the parameterization with respect to the Euler angles form a basis of the tangent space
TR(ϕ1,θ,ϕ2)SO(3), which is given by

Rϕ1(ϕ1, θ, ϕ2) =
∂

∂ϕ1

R(ϕ1, θ, ϕ2)

=

(
− sinϕ1 cos θ cosϕ2 − cosϕ1 sinϕ2 sinϕ1 cos θ sinϕ2 − cosϕ1 cosϕ2 − sinϕ1 sin θ
− cosϕ1 cos θ cosϕ2 − sinϕ1 sinϕ2 − cosϕ1 cos θ sinϕ2 − sinϕ1 cosϕ2 cosϕ1 sin θ

0 0 0

)
,

Rϕ1(ϕ1, θ, ϕ2) =
∂

∂ϕ1

R(ϕ1, θ, ϕ2)

=

(
− cosϕ1 sin θ cosϕ2 cosϕ1 sin θ sinϕ2 cosϕ1 cos θ
− sinϕ1 sin θ cosϕ2 sinϕ1 sin θ sinϕ2 sinϕ1 cos θ

− cos θ cosϕ2 cos θ sinϕ2 − sin θ

)
,

Rϕ1(ϕ1, θ, ϕ2) =
∂

∂ϕ1

R(ϕ1, θ, ϕ2)

=

(
− cosϕ1 cos θ sinϕ2 − sinϕ1 cosϕ2 − cosϕ1 cos θ cosϕ2 + sinϕ1 sinϕ2 0
− sinϕ1 cos θ sinϕ2 + cosϕ1 cosϕ2 − sinϕ1 cos θ cosϕ2 − cosϕ1 sinϕ2 0

sin θ sinϕ2 sin θ cosϕ2 0

)
.

(5.2)

In contrast to the spherical case these basis vectors are not orthogonal and the corresponding
metric tensor reads as

GSO(3)(ϕ1, θ, ϕ2) =

 2 0 2 cos θ
0 2 0

2 cos θ 0 2

 .
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For two tangential vectors x,y ∈ TRSO(3), x = xϕ1Rϕ1 +xθRθ +xϕ2Rϕ2 and y = yϕ1Rϕ1 +
yθRθ + yϕ2Rϕ2 their inner product is

x · y = (xϕ1 , xθ, xϕ2)G(ϕ1, θ, ϕ2)(xϕ1 , xθ, xϕ2)>.

Let D ∈ TISO(3) be a tangential vector at the identity. Then the geodesic γI,D with
γI,D(0) = I and derivative γ̇I,D(0) = D is given by the exponential map

γI,D(t) = etD :=
∞∑
k=0

(tD)k

k!
. (5.3)

Accordingly, the geodesic γR,D with γR,D(0) = R ∈ SO(3) and derivative γ̇R,D(0) = D ∈
TRSO(3) is obtained by

γR,D(t) = RetR
TD.

Gradient and Hessian. With respect to the canonical basis the gradient of a function f ∈
C(SO(3)) takes the form

∇SO(3)f(R(ϕ1, θ, ϕ2)) = (Rϕ1 ,Rθ,Rϕ2)G−1SO(3)(ϕ1, θ, ϕ2)

fϕ1

fθ
fϕ2



where fϕ1 := ∂
∂ϕ1

f(R(ϕ1, θ, ϕ2), fθ := ∂
∂θf(R(ϕ1, θ, ϕ2) and fϕ2 := ∂

∂ϕ2
f(R(ϕ1, θ, ϕ2) are the

first order partial derivatives of f with respect to the Euler angles ϕ1, θ, ϕ2. Similarly, the
Hessian Hf(R(ϕ1, θ, ϕ2)) ∈ C3×3 reads in matrix form as

HSO(3)f(R(ϕ1, θ, ϕ2)) =

fϕ1,ϕ1 fϕ1,θ fϕ1,ϕ2

fθ,ϕ1 fθ,θ fθ,ϕ2

fϕ2,ϕ1 fϕ2,θ fϕ2,ϕ2

− fϕ1Γ
ϕ1 − fθΓθ − fϕ2Γ

ϕ2 ,

with Christoffel symbols Γϕ1
ij , Γθij , Γϕ1

ij , i, j = 1, 2, 3, given for the Euler angle parameterization
by

Γϕ1 =
1

2

 0 cot θ 0
cot θ 0 − sin−1 θ
0 − sin−1 θ 0

 , Γθ =
1

2

 0 0 sin θ
0 0 0

sin θ 0 0

 , Γϕ1 =
1

2

 0 − sin−1 θ 0
− sin−1 θ 0 cot θ

0 cot θ 0

 .

Wigner–D functions. As basis functions on the rotation group we consider Wigner-D func-
tions, cf. [35], which are defined in terms of Euler angles as

Dk,k′
n (R(ϕ1, θ, ϕ2)) = e−ikϕ1e−ik

′ϕ2dk,k
′

n (cos θ), n ∈ N, k, k′ = −n, . . . , n, (5.4)

with Wigner-d functions dk,k
′

n : [−1, 1]→ R, n ∈ N, k, k′ = −n, . . . , n,

dk,k
′

n (t) =
(−1)n−k

2n

√
(n+ k)!

(n− k′)!(n+ k′)!(n− k)!

√
(1− t)k′−k
(1 + t)k+k′

dn−k

dtn−k
(1 + t)k

′+n

(1− t)k′−n
. (5.5)

The Wigner-D functions form an orthogonal basis in the space L2(SO(3)) with respect to the
Haar measure of the Lie group SO(3). A polynomial of degree N on the rotation group is
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a function f : SO(3) → C that permits for a series expansion into Wigner-D functions up to
order N , i.e.,

f(R) :=
∑

(n,k,k′)∈JN

f̂(n, k, k′)Dk,k′
n (R), R ∈ SO(3), (5.6)

where we use the index set

JN := {(n, k, k′) ∈ N× Z2 : n = 0, . . . , N ; k, k′ = −n, . . . , n}.

Similar to the spherical case we can write the evaluation of a polynomial f on the rotation
group at arbitrary nodes R1, . . . ,RM ∈ SO(3) as the product of a Fourier matrix

FN,M :=
(
Dk,k′
n (Rj)

)
j=1,...,M ;(n,k,k′)∈JN

∈ CM×|JN |

with the vector of Fourier coefficients f̂ = (f̂(n, k, k′))(n,k,k′)∈JN . This matrix vector product
can be computed approximately by a nonequispaced fast SO(3) Fourier transform (NFSOFT)
with arithmetic complexity O(N3 log2N +M log2(ε−1)), cf. [29, 24].

For the partial derivatives of a polynomial on the rotation group we have the following
representations.

Lemma 5.1. Let f : SO(3)→ C be a polynomial on the rotation group of degree N ∈ N with
Fourier coefficients f̂ := (f̂(n, k, k′))(n,k,k′)∈JN . Then its first order partial derivatives can be
represented as polynomials on the rotation group

∂

∂ϕi
f(R(ϕ1, θ, ϕ2)) =

∑
(n,k,k′)∈JN

f̂ϕi(n, k, k
′)Dk,k′

n (R), R ∈ SO(3), i = 1, 2,

and

sin θ
∂

∂θ
f(R(ϕ1, θ, ϕ2)) =

∑
(n,k,k′)∈JN

f̂θ(n, k, k
′)Dk,k′

n (R), R ∈ SO(3),

of degree N and N+1, respectively. Their Fourier coefficients f̂ϕi := (f̂ϕi(n, k, k
′))(n,k,k′)∈JN ,

i = 1, 2, and f̂ θ := (f̂θ(n, k, k
′))(n,k,k′)∈JN+1

are related to the Fourier coefficients f̂ by the
linear mappings

f̂ϕ1
= DN,ϕ1 f̂ := (−ikf̂(n, k, k′))(n,k,k′)∈JN ,

f̂ϕ2
= DN,ϕ2 f̂ := (−ik′f̂(n, k, k′))(n,k,k′)∈JN ,

f̂ θ = DN,θf̂ := (f̂θ(n, k, k
′))(n,k)∈JN+1

,

where

f̂θ(n, k, k
′) := ak,k

′

n−1f̂(n− 1, k, k′)− bk,k′n f̂(n, k, k′)− ck,k
′

n+1f̂(n+ 1, k, k′), (n, k, k′) ∈ JN+1,

with f̂n,k,k′ := 0 for |k| > n or |k′| > n or n < 0 and

ak,k
′

n :=
n

(n+ 1)(2n+ 1)

√
((n+ 1)2 − k2)((n+ 1)2 − k′2), (n, k, k′) ∈ JN ,

bk,k
′

n :=
kk′

n(n+ 1)
, ck,k

′
n =

n

n(2n+ 1)

√
(n2 − k2)(n2 − k′2), (n, k, k′) ∈ JN \ {(0, 0, 0)}

with a−1,0,0 := b0,0,0 := c0,0,0 := 0.
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Proof. As in Lemma 4.2 the assertion follows from recurrence relations of the Wigner-D
functions, cf. [35, Eq. (1), (8) and (9), p. 94],

∂

∂ϕ1
Dk,k′
n (R(ϕ1, θ, ϕ2)) = −ikDk,k′

n (R(ϕ1, θ, ϕ2))

∂

∂ϕ2
Dn
k,k′(R(ϕ1, θ, ϕ2)) = −ik′Dk,k′

n (R(ϕ2, θ, ϕ2))

sin θ
∂

∂θ
Dk,k′
n (R(ϕ1, θ, ϕ2)) =

ak,k
′

n Dk,k′

n+1(R(ϕ2, θ, ϕ2))− bk,k
′

n Dk,k′
n (R(ϕ2, θ, ϕ2))− ck,k

′
n Dk,k′

n−1(R(ϕ2, θ, ϕ2)).

Lemma 5.2. Let f : SO(3)→ C be a polynomial on the rotation group of degree N ∈ N with
Fourier coefficients f̂ := (f̂(n, k, k′))(n,k,k′)∈JN . Then its second order partial derivatives can
be represented as polynomials

∂2

∂ϕi∂ϕj
f(R(ϕ1, θ, ϕ2)) =

∑
(n,k,k′)∈JN

fϕi,ϕj (n, k, k
′)Dk,k′

n (R), R ∈ SO(3), i, j = 1, 2,

sin θ
∂2

∂θ∂ϕi
f(R(ϕ1, θ, ϕ2)) =

∑
(n,k,k′)∈JN

fθ,ϕi(n, k, k
′)Dk,k′

n (R), R ∈ SO(3), i = 1, 2,

and

sin2 θ
∂2

∂θ∂θ
f(R(ϕ1, θ, ϕ2)) =

∑
(n,k,k′)∈JN+2

fθ,θ(n, k, k
′)Dk,k′

n (R)

− cos θ
∑

(n,k,k′)∈JN+1

fθ(n, k, k
′)Dk,k′

n (R), R ∈ SO(3),

are polynomials of degree N , N + 1 and N + 2, respectively. Their Fourier coefficients are
given accordingly to Lemma 5.1 by

f̂ϕi,ϕj := (f̂ϕi,ϕj (n, k, k
′))(n,k,k′)∈JN = DN,ϕiDN,ϕj f̂ ∈ C|JN |, i, j = 1, 2,

f̂ θ,ϕi := (f̂θ,ϕi(n, k, k
′))(n,k,k′)∈JN+1

= DN,θDN,ϕi f̂ ∈ C|JN+1| i = 1, 2,

and

f̂ θ,θ := (f̂θ,θ(n, k, k
′))(n,k,k′)∈JN+2

= DN+1,θDN,θf̂ ∈ C|JN+2|,

f̂ θ := (f̂θ(n, k, k
′))(n,k,k′)∈JN+1

= DN,θf̂ ∈ C|JN+1|.

Proof. The assertions follow from Lemma 5.1 similarly as in Lemma 4.2.
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Theorem 5.3. Let f : SO(3)→ R be a real-valued polynomial on the rotation group of degree
N ∈ N0 and let x1, . . . ,xM ∈ SO(3) \ {R(ϕ1, θ, ϕ2) ∈ SO(3) : θ = 0, π; ϕ1, ϕ2 ∈ [0, 2π)}
be some nodes. Then the gradients ∇SO(3)f(ξi) and the Hessian matrices HSO(3)f(xj), j =
1, . . . ,M , , and therefore, one step of the simultaneous CG method, cf. Algorithm 2, can be
computed numerically with error ε and arithmetic complexity O(N3 log2N +M log2 ε−1).

Proof. The proof is similar to that of Theorem 4.3 on the sphere S2, where we note that the
evaluation of the exponential map in (5.3) for the description of the geodesics can be evaluated
in O(M) arithmetic operations by performing e.g. a singular value decomposition.

A real world application - Detecting preferred orientations in polycrystalline materials.
Polynomials on the rotation group are frequently applied in fabric analysis of polycrystalline
materials. In this setting a function f : SO(3) → R, the so called orientation distribution
function (ODF), is used to model the relative volume of crystal orientations within a specimen
[8]. There are two methods for determining this function experimentally.

The first method uses X–ray, neutron or synchrotron diffraction to measure pole figures
of the specimen which are essentially given by the SO(3) Radon transform of the ODF f .
Thus the determination of f requires the solution of an inverse problem [26]. As the Radon
transform on the rotation group allows for a similar singular value decomposition as the
spherical Radon transform [20] there are many algorithms for the solution of the inverse
problem, cf.[9, 20, 5, 19], that uses polynomials on the rotation group as approximation of
the ODF.

The second method for the determination of the ODF of a specimen uses electron back
scatter diffraction (EBSD) to measure the orientation of grains at certain locations at the
surface of the specimen directly. These orientations can be interpreted as a random sample of
the underlying orientation distribution function. In order to recover the ODF from such data
kernel density estimation is used, cf. [18]. The corresponding algorithms utilize the NSOFT
and, hence, end up with polynomials on the rotation group.

Figure 5.1 shows a typical example of an ODF. It was computed by kernel density estimation
from an EBSD data set of Forsterite crystals [1] as an polynomial of degree N = 32. Note that
the space of polynomials of degree 32 on the rotation group has dimension 47, 905. Applying
the simultaneous CG method, cf. Algorithm 2, with M = 50, 000 randomly chosen starting
points to the negated ODF we obtain more than 500 different local maximizers. In Figure 5.1
we plot the largest 21 local maximizers, which have function values greater than one.
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[31] S. T. Smith. Optimization techniques on Riemannian manifolds. In Hamiltonian and
gradient flows, algorithms and control, volume 3 of Fields Inst. Commun., pages 113 –
136. Amer. Math. Soc., Providence, RI, 1994.

[32] R. Swinbank and R. J. Purser. Fibonacci grids: A novel approach to global modelling.
Quarterly Journal of the Royal Meteorological Society, 132:1769 – 1793, 2006.

[33] A. Townsend and L. N. Trefethen. An extension of chebfun to two dimensions. SIAM J.
Sci. Comp., to appear.
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