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ABOUT A DEFICIT IN LOW ORDER CONVERGENCE
RATES ON THE EXAMPLE OF AUTOCONVOLUTION

STEVEN BÜRGER AND BERND HOFMANN

Abstract. We revisit in L2-spaces the autoconvolution equation
x ∗ x = y with solutions which are real-valued or complex-valued
functions x(t) defined on a finite real interval, say t ∈ [0, 1]. Such
operator equations of quadratic type occur in physics of spectra,
in optics and in stochastics, often as part of a more complex task.
Because of their weak nonlinearity deautoconvolution problems are
not seen as difficult and hence little attention is paid to them
wrongly. In this paper, we will indicate on the example of au-
toconvolution a deficit in low order convergence rates for regular-
ized solutions of nonlinear ill-posed operator equations F (x) = y
with solutions x† in a Hilbert space setting. So for the real-valued
version of the deautoconvolution problem, which is locally ill-posed
everywhere, the classical convergence rate theory developed for the
Tikhonov regularization of nonlinear ill-posed problems reaches its
limits if standard source conditions using the range of F ′(x†)∗ fail.
On the other hand, convergence rate results based on Hölder source
conditions with small Hölder exponent and logarithmic source con-
ditions or on the method of approximate source conditions are
not applicable since qualified nonlinearity conditions are required
which cannot be shown for the autoconvolution case according to
current knowledge. We also discuss the complex-valued version of
autoconvolution with full data on [0, 2] and see that ill-posedness
must be expected if unbounded amplitude functions are admissi-
ble. As a new detail, we present situations of local well-posedness
if the domain of the autoconvolution operator is restricted to com-
plex L2-functions with a fixed and uniformly bounded modulus
function.

1. Introduction

Regularization theory for linear ill-posed operator equations in
Hilbert spaces representing linear inverse problems seems to be almost
complete, including results on convergence rates (cf. [8, Chapters 2-9]
and more recently for example [29, 31, 36]). Moreover, there are now
successful steps toward Banach space theory (cf., e.g., [37] and refer-
ences therein). However, in the treatment of nonlinear inverse problems
aimed at solving operator equations

(1.1) F (x) = y
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with nonlinear forward operators F : D(F ) ⊆ X → Y and domain
D(F ) there is still much to do even in the Hilbert space setting. With
focus on autoconvolution problems we will consider in this paper nonlin-
ear equations (1.1), where X and Y are infinite dimensional separable
Hilbert spaces, and we denote by the symbols ‖ · ‖ and 〈·, ·〉 the norms
and the inner products, respectively, in both spaces.

It begins with the rarely clarified question of how ill-posedness is
to be defined for nonlinear problems, whereas for linear problems ill-
posedness is completely well-defined by the fact that the range of the
linear forward operator is not closed in Y . In [23, Definition 2] a
concept of local well-posedness and ill-posedness was suggested and we
repeat here this idea:

Definition 1.1. We call a nonlinear operator equation (1.1) locally
well-posed at a solution point x† ∈ D(F ) if there is a closed ball
Br(x

†) := {x ∈ X : ‖x − x†‖ ≤ r} around x† with radius r > 0
such that, for every sequence {xn}∞n=1 ⊂ Br(x

†) ∩D(F ), the limit con-
dition lim

n→∞
‖F (xn) − F (x†)‖ = 0 implies that lim

n→∞
‖xn − x†‖ = 0.

Otherwise the equation is called locally ill-posed at x† ∈ D(F ), which
means that, for arbitrarily small radii r > 0, there exist sequences
{xn}∞n=1 ⊂ Br(x

†) ∩ D(F ) such that lim
n→∞

‖F (xn) − F (x†)‖ = 0, but

lim
n→∞

‖xn − x†‖ = 0 fails.

Furthermore, in the past 25 years a general theory including con-
vergence rates results was developed for variational (Tikhonov-type)
regularization methods (cf., e.g., [8, Chapter 10] and [34, Chapter 3])
and iterative regularization methods (cf., e.g., [27]) applied to abstract
ill-posed nonlinear equations (1.1). This general theory is mostly based
on Gâteaux, Frechét or directional derivatives F ′(x) of F for elements
x from some neighborhood of a solution x† to (1.1). There is a collec-
tion of nonlinearity conditions which are relevant for that theory. In
particular, starting from the paper [16], the tangential cone condition

(1.2) ‖F (x)− F (x†)− F ′(x†)(x− x†)‖ ≤ C ‖F (x)− F (x†)‖

for some constant 0 < C < ∞ and all x ∈ Br(x
†) ∩ D(F ) is playing

a prominent role, where the focus of iterative regularization methods
is on constants 0 < C < 1. But the verification of such qualified
nonlinearity conditions is still missing or cannot be proven for large
relevant classes of nonlinear inverse problems. The same can be said
for weaker conditions of the form

(1.3) ‖F (x)− F (x†)− F ′(x†)(x− x†)‖ ≤ C ϕ(‖F (x)− F (x†)‖),
where ϕ is a concave index function ϕ : (0,∞) → (0,∞). As usual
(cf. [20, 30]) we call ϕ an index function if it is strictly increasing with
the limit condition lim

t→+0
ϕ(t) = 0.
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However, for wide classes of problems there are good chances to show
at least a local Lipschitz condition of F ′ at x† with the consequence
that

(1.4) ‖F (x)− F (x†)− F ′(x†)(x− x†)‖ ≤ K ‖x− x†‖2

holds for some constant 0 < K <∞ on Br(x
†)∩D(F ). This is of great

interest for the classical form of Tikhonov regularization for nonlinear
ill-posed problems in Hilbert spaces, where instead of y = F (x†) only
noisy data yδ ∈ Y with ‖y − yδ‖ ≤ δ with noise level δ > 0 are
available. Then stable approximate solutions xδα to x† are minimizers
of the extremal problem

(1.5) ‖F (x)− yδ‖2 + α ‖x− x‖2 → min, subject to x ∈ D(F ),

with regularization parameter α > 0 and a prescribed reference element
x ∈ X. Whenever the limit conditions

(1.6) α→ 0 and
δ2

α
→ 0

hold for the regularization parameter one can show by using the con-
cept of x-minimum-norm solutions (see [8, Sect. 10.1]) that the reg-
ularized solutions xδα converge (in the sense of subsequences, cf. [8,
Theorem 10.3]) for δ → 0 with respect to the norm in X to such solu-
tions x† which have minimal distance to x under all solutions to (1.1)
If, moreover, for convex domain D(F ) and weakly sequentially closed
operator F the benchmark source condition

(1.7) x† = x+
1

2
F ′(x†)∗v

with the adjoint operator F ′(x†)∗ of F ′(x†) and with a source element
v ∈ Y is satisfied and moreover the smallness condition

(1.8) K ‖v‖ < 1

is fulfilled, then the results of the seminal paper [9] on convergence
rates for the Tikhonov regularization of nonlinear ill-posed problems
apply and yield for an a priori choice α(δ) ∼ δ of the regularization the
convergence rate

(1.9) ‖xδα(δ) − x†‖ = O
(√

δ
)

as δ → 0.

If the set of x-minimum-norm solutions to (1.1) is not unique, then
it is an immediate consequence of the result (1.9) that only one such
solution x† ∈ D(F ) to (1.1) can satisfy the three conditions (1.4), (1.7)
and (1.8), simultaneously.

The papers [19] and [3] have discussed consequences of nonlinear-
ity conditions of the form (1.3) for Banach space regularization, but
they also apply to the Hilbert space situation of Tikhonov regulariza-
tion (1.5) under consideration here. In this situation, we obtain for a
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choice α = α(δ, yδ) of the regularization parameter by the sequential
discrepancy principle (cf. [1, 21]) convergence rates

(1.10) ‖xδα(δ,yδ) − x
†‖ = O

(√
ϕ(δ)

)
as δ → 0

whenever (1.3) is satisfied for some concave index function ϕ together
with the benchmark source condition (1.7), and no smallness condition
is required. If the benchmark source condition fails, but the derivative
F ′(x†) : X → Y is an injective and bounded linear operator, then
under (1.3) the method of approximate source conditions developed
in [18] can be used together with variational inequalities combining
solution smoothness and nonlinearity structure in one tool (cf. [22],
[34, Chapt. 3], [11, Chapt. 12] and [15]). This yields convergence rates

(1.11) ‖xδα(δ,yδ) − x
†‖ = O (ψ(δ)) as δ → 0,

which are lower than the rates in (1.10). Taking into account [3, The-
orem 5.2] and [21, Theorem 2] it can be seen that the rate function ψ
in (1.11) is an index function of the form

ψ(δ) = d
(
Ψ−1(ϕ(δ))

)
with Ψ(R) :=

d(R)2

R
,

essentially based on the decay rate of the concave decreasing and strictly
positive distance function

d(R) := min{‖x† − x− 1

2
F ′(x†)∗w‖ : w ∈ Y, ‖w‖ ≤ R}, R > 0,

to zero as R → ∞ which indicates for x† the degree of violation with
respect to (1.7). The rate (1.11) can be arbitrarily slow if x† misses
the benchmark source condition significantly what goes hand in hand
with a very low decay of d(R)→ 0 as R→∞.

If the benchmark source condition (1.7) fails, but the Fréchet de-
rivative F ′(x) exists for all x ∈ Br(x

†) ⊂ D(F ) and some r > 0, by
extending the ideas of [16, 33, 38] two further alternatives for obtaining
convergence rates to (1.5) have been presented in the paper [26] with
focus on low order Hölder source conditions (see also [23, 38])

(1.12) x† = x+ (F ′(x†)∗F ′(x†))ν w, w ∈ X, 0 < ν <
1

2
,

and logarithmic source conditions (cf. [17])
(1.13)
x† = x+ f(F ′(x†)∗F ′(x†))w, w ∈ X, f(t) := (− log t)−µ, µ > 0.

As first option the nonlinearity condition
(1.14)
F ′(x) = R(x, x†)F ′(x†), ‖R(x, x†)−I‖Y→Y ≤ CR ‖x−x†‖κ, 0 < κ ≤ 1,

for some constant 0 < CR < ∞ and all x ∈ Br(x
†) ⊂ D(F ) is recom-

mended. Then the mean value theorem in integral form yields (cf. [16,
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p.28])

‖F (x)−F (x†)−F ′(x†)(x−x†)‖ = ‖
∫ 1

0

[F ′(x†+t(x−x†))−F ′(x†)](x−x†)dt‖

≤ ‖
∫ 1

0

[R(x† + t(x− x†), x†)− I]F ′(x†)(x− x†) dt‖

≤ CR

(∫ 1

0

tκ dt

)
‖F ′(x†)(x− x†)‖ ‖x− x†‖κ

and hence
(1.15)

‖F (x)− F (x†)− F ′(x†)(x− x†)‖ ≤ CR
1 + κ

‖F ′(x†)(x− x†)‖ ‖x− x†‖κ.

Now the inequality (1.15) implies on the one hand that

(1.16) ‖F (x)− F (x†)− F ′(x†)(x− x†)‖ ≤ C̃ ‖F ′(x†)(x− x†)‖

holds for some constant 0 < C̃ <∞ and all x ∈ Br(x
†). On the other

hand, by using the triangle inequality, from (1.15) we even derive the
tangential cone condition (1.2) in the case of sufficiently small r > 0,
which is then also a consequence of (1.14).

As second option the nonlinearity condition
(1.17)
F ′(x) = F ′(x†)R(x, x†), ‖R(x, x†)−I‖X→X ≤ CR ‖x−x†‖κ, 0 < κ ≤ 1,

for some constant 0 < CR < ∞ and all x ∈ Br(x
†) ⊂ D(F ) has been

suggested, which is very different from the tangential cone condition
but can be verified for inverse problems with boundary measurements
(cf., e.g., [5]). For Hölder and logarithmic rates under (1.17) we refer
to [26, Theorem 2.1] and should mention in this context that for the
proof of those convergence rates a condition of form (1.17) must be
valid with a uniform constant CR for all x and x† lying in a small ball.

On the other hand, when the benchmark source condition (1.7) fails
or the source element v ∈ Y in (1.7) violates the smallness condition
(1.8) and if moreover neither a condition (1.3) with any concave index
function ϕ nor the condition (1.17) are satisfied, but only a nonlinearity
condition (1.4) holds, then to our knowledge the literature provides no
convergence rate result. Hence, this situation of low solution smooth-
ness in combination with a poor structure of nonlinearity describes an
unexplored area with respect to convergence rates for the Tikhonov
regularization. In Section 2 we will show that this situation may arise
for the real-valued autoconvolution problem on the unit interval.

This variety of autoconvolution problems, occurring for example in
the deconvolution of appearance potential spectra, leads to operator
equations (1.1) which are locally ill-posed everywhere. As the numeri-
cal case studies in [10] show, the strength of ill-posedness is somewhat
reduced if for a support of solutions x† on [0, 1] the full data of F (x†)



6 STEVEN BÜRGER AND BERND HOFMANN

are observed on [0, 2]. The question of ill-posedness must be reset in
the case of the complex-valued autoconvolution equations motivated
by an application from laser optics (cf. [13]). We will show in Section 3
that both locally well-posed and ill-posed situations occur for such
complex-valued problems with full data in dependence of the domain
D(F ) under consideration.

2. Autoconvolution for real functions on the unit
interval

In this section, we consider the autoconvolution operator F on the
space X = Y = L2(0, 1) of quadratically integrable real functions over
the unit interval [0, 1]. Then (1.1) attains the form

(2.1) [F (x)](s) :=

s∫
0

x(s− t)x(t)dt = y(s), 0 ≤ s ≤ 1,

with F : L2(0, 1) → L2(0, 1) and D(F ) = L2(0, 1). This operator
equation of quadratic type occurs in physics of spectra, in optics and
in stochastics, often as part of a more complex task (see, e.g., [2, 6, 35]).
A series of studies on deautoconvolution and regularization have been
published for the setting (2.1), see for example [7, 24, 25, 32]. Some
first basic mathematical analysis of the autoconvolution equation can
already be found in the paper [14]. Moreover, a regularization approach
for general quadratic operator equations was suggested in the recent
paper [12], corresponding numerical case studies have been presented
in [4].

Example 2.1. The simple example of a sequence belonging toBr(x
†) ⊂

L2(0, 1),

xn(t) =

{
x†(t) if 0 ≤ t ≤ 1− 1

n
x†(t) + r

√
n if 1− 1

n
< t ≤ 1

(n = 2, 3, ...),

with ‖xn − x†‖ = r, but

‖F (xn)− F (x†)‖ ≤ 2r

1/n∫
0

|x†(t)|dt ≤ 2r√
n
‖x†‖ → 0 as n→∞,

shows that the equation (2.1) is locally ill-posed at every point x† ∈
L2(0, 1).

This ill-posedness occurs although the corresponding nonlinear op-
erator F is not compact (cf. [14, Prop. 4]). However, its linearization
is compact, since

(2.2) [F ′(x)h] (s) = 2

s∫
0

x(s− t)h(t)dt, 0 ≤ s ≤ 1, h ∈ L2(0, 1),
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characterizes the Fréchet derivative F ′(x) : L2(0, 1) → L2(0, 1) of F
in all points x ∈ L2(0, 1) and any linear convolution operator mapping
x ∈ L2(0, 1) 7→ a ∗ x ∈ L2(0, 1) with a ∈ L2(0, 1) is compact. Based on
Titchmarsh’s theorem (cf. [14, Lemma 3]) it can be shown that F ′(x†)
is just an injective operator if

(2.3) sup{ t ∈ [0, 1] : x†(t) = 0 a.e. on [0, t]} = 0.

If a solution x† to (2.1) satisfies the condition (2.3), then x† and −x†
are the only solutions of this equation, i.e. the solution is twofold.
On the other hand, it was also shown in [14, Theorem 2] that F is
weakly continuous, hence weakly sequentially closed. Moreover, F ′(x)
is Lipschitz continuous and satisfies the condition

(2.4) ‖F (x)− F (x†)− F ′(x†)(x− x†)‖ = ‖F (x− x†)‖2 ≤ ‖x− x†‖2,
for all x, x† ∈ L2(0, 1), such that the nonlinearity condition (1.4) is
fulfilled with K = 1 and for arbitrarily large balls Br(x

†). A further
assertion on nonlinearity is formulated in the following proposition.

Proposition 2.2. For the autoconvolution operator F mapping in
L2(0, 1) and any element x† ∈ L2(0, 1) there is no index function η
in combination with a radius r > 0 such that

(2.5) ‖F (x)− F (x†)‖ ≤ Ĉ η(‖F ′(x†)(x− x†)‖)
for some constant 0 < Ĉ <∞ and all x ∈ Br(x

†).

Proof. To construct a contradiction it is enough to find a sequence
{xn}∞n=1 ⊂ Br(x

†) such that ‖F ′(x†)(xn − x†)‖ → 0 as n → ∞, but
lim
n→∞

‖F (xn) − F (x†)‖ > 0. Along the lines of Example 4 from [14]

we can consider the sequence of functions xn = x† + ∆n ∈ Br(x
†) with

∆n(t) =
√

2r sin(πnt) and ‖∆n‖ = r > 0. Taking into account the weak
convergence xn − x† ⇀ 0 in L2(0, 1) we have ‖F ′(x†)(xn − x†)‖ → 0
and for any index function η also η(‖F ′(x†)(xn−x†)‖)→ 0 as n→∞,
because F ′(x†) is a compact operator. However, F is not compact and
lim
n→∞

‖F (xn) − F (x†)‖ = lim
n→∞

‖(2x† + ∆n) ∗ ∆n‖ = lim
n→∞

‖∆n ∗ ∆n‖ =

r2√
6
> 0. This proves the proposition. Note that we have used in this

context the limit lim
n→∞

‖x† ∗∆n‖ = 0, which is again a consequence of

the compactness of linear convolution operators. �

Now the following corollary of Proposition 2.2 is valid.

Corollary 2.3. For the autoconvolution operator from Proposition 2.2
a condition (1.16) and consequently a nonlinearity condition (1.14)
cannot hold. Moreover also the tangential cone condition (1.2) can-
not hold with a small constant 0 < C < 1.

Proof. From (1.16) we would obtain by using the triangle inequality

‖F (x)−F (x†)‖ ≤ ‖F (x)−F (x†)−F ′(x†)(x− x†)‖+ ‖F ′(x†)(x− x†)‖
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≤ (C̃ + 1) ‖F ′(x†)(x − x†)‖ and hence (2.5) with η(t) = t, which con-
tradicts Proposition 2.2. By taking into account that (1.16) is a con-
sequence of the nonlinearity condition (1.14) we see that also (1.14)
cannot hold. Moreover, a tangential cone condition (1.2) would yield

‖F (x)−F (x†)‖ ≤ ‖F (x)−F (x†)−F ′(x†)(x− x†)‖+ ‖F ′(x†)(x− x†)‖
≤ C ‖F (x)−F (x†)‖+‖F ′(x†)(x−x†)‖, and in particular with 0 < C < 1

‖F (x)− F (x†)‖ ≤ 1

1− C
‖F ′(x†)(x− x†)‖,

which is also incompatible with Proposition 2.2. �

With the following proposition we will show that also the nonlinear-
ity condition (1.17) cannot hold.

Proposition 2.4. For the autoconvolution operator F mapping in
L2(0, 1) a nonlinearity condition (1.17) cannot hold.

Proof. For x† = 0 the assertion is obviously true since F ′(x†) is the
zero-operator in this case, but there are non-zero operators F ′(x) for
elements x in any ball Br(0). Hence we can restrict our proof to the
case that x† 6= 0. Now let us assume that condition (1.17) is satisfied.
From (1.17) we have that, for all x ∈ Br(x

†), R(x, x†) : X → X denotes
bounded linear operators with a uniform norm bound and

‖R(x, x†)∗ − I‖X→X = ‖R(x, x†)− I‖X→X ≤ CR r
κ

for all those operators and their adjoints. Let us define, for all s ∈ [0, 1],
the functions

xs(t) :=

{
x(s− t) for 0 ≤ t ≤ s

0 else
, x†s(t) :=

{
x†(s− t) for 0 ≤ t ≤ s

0 else
.

Then we have for arbitrary v ∈ L2(0, 1)

[F ′(x)v](s) = 2

s∫
0

x(s− t)v(t)dt = 2

1∫
0

xs(t)v(t)dt

and

[F ′(x†)R(x, x†)v](s) = 2

s∫
0

x†(s− t)R(x, x†)v(t)dt

= 2

1∫
0

x†s(t)R(x, x†)v(t)dt = 2

1∫
0

R(x, x†)∗x†s(t)v(t)dt.

Hence,

1∫
0

xs(t)v(t)dt =

1∫
0

R(x, x†)∗x†s(t)v(t)dt for all v ∈ L2(0, 1),
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which yields for all 0 ≤ s ≤ 1 the equality

(2.6) R(x, x†)∗ x†s = xs .

To construct a contradiction we consider x := x{n} (n = 1, 2, ...) with
x{n}(t) := x†(t) +

√
2r sin(πnt). From the last equality we get

R(x{n}, x†)∗(x†1−x
†
1− 1

n

) = R(x{n}, x†)∗x†1−R(x{n}, x†)∗x†
1− 1

n

= x
{n}
1 −x

{n}
1− 1

n

.

For the norms of x†1 − x
†
1− 1

n

and x
{n}
1 − x{n}

1− 1
n

we obtain

||x†1 − x
†
1− 1

n

||2 =

∫ 1− 1
n

0

(x†(1− t)− x†(1− 1
n
− t))2dt+

∫ 1

1− 1
n

x†(1− t)2dt

=

∫ 1− 1
n

0

(x†(t+ 1
n
)− x†(t))2dt+

∫ 1
n

0

x†(t)2dt

→ 0 as n→∞

and

||x{n}1 − x{n}
1− 1

n

||2 =

∫ 1− 1
n

0

(x{n}(1− t)− x{n}(1− 1
n
− t))2dt+

∫ 1

1− 1
n

x{n}(1− t)2dt

=

∫ 1− 1
n

0

(x†(t+ 1
n
) +
√

2r sin(πn(t+ 1
n
))− x†(t)−

√
2r sin(πnt))2dt

+

∫ 1
n

0

(x†(t) +
√

2r sin(πnt))2dt

≥
∫ 1− 1

n

0

2
(√2

2
(x†(t+ 1

n
)− x†(t))− 2r sin(πnt)

)2
dt.

Now the simple inequality 2(a+ b)2 ≥ b2 − 2a2 with

a :=

√
2

2
(x†(t+ 1

n
)− x†(t)) and b := −2r sin(πnt) yields

∫ 1− 1
n

0

2
(√2

2
(x†(t+ 1

n
)− x†(t))− 2r sin(πnt)

)2
dt

≥
∫ 1− 1

n

0

(
4
(
τ sin(πnt)

)2−(x†(t+ 1
n
)− x†(t)

)2)
dt

≥
∫ 1− 1

n

0

4r2 sin2(πnt)dt−
∫ 1− 1

n

0

(
x†(t+ 1

n
)− x†(t)

)2
dt

=2r2(1− 1

n
)−

∫ 1− 1
n

0

(
x†(t+ 1

n
)− x†(t)

)2
dt

→ 2r2 as n→∞.
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By (1.17) we obtain

‖x{n}1 − x{n}
1− 1

n

‖ ≤ ‖x†1 − x
†
1− 1

n

‖ ‖R(x{n}, x†)∗‖X→X

≤ ‖x†1 − x
†
1− 1

n

‖
(
‖R(x{n}, x†)− I‖X→X + ‖I‖X→X

)
.

≤ ‖x†1 − x
†
1− 1

n

‖ (CRr
κ + 1)

Taking the limit n → ∞ this turns to 2r2 ≤ 0 , which is a contradic-
tion. Thus the proof is complete. �

Unfortunately, by now we cannot prove for any element x† 6= 0 that
the autoconvolution operator (2.1) in L2(0, 1) satisfies the tangential
cone condition (1.2) or its attenuation (1.3) for some concave index
function ϕ. Taking into account the triangle inequality we can refor-
mulate the corresponding open problem in the following form:

Open problem 2.5. For which elements x† 6= 0 do we have a concave
index function ϕ in combination with a radius r > 0 for the autocon-
volution operator F mapping in L2(0, 1) such that

(2.7) ‖F ′(x†)(x− x†)‖ ≤ C̄ ϕ(‖F (x)− F (x†)‖)

holds for some constant 0 < C̄ <∞ and all x ∈ Br(x
†).

For solutions x†, which violate the condition (2.7) for all concave
index functions ϕ, to our best knowledge convergence rates for the
Tikhonov regularization (1.5) applied to equation (2.1) can currently
be established if and only if
(2.8)

x†(t) = x(t) +

1∫
t

x†(s− t) v(s)ds, 0 ≤ t ≤ 1, v ∈ L2(0, 1), ‖v‖ < 1,

holds, which expresses here the benchmark source condition (1.7) to-
gether with the smallness condition (1.8). Then we have for α(δ) ∼ δ
the rate (1.9) from [8, Theorem 10.4]. Necessary conditions to accom-
plish (2.8) concerning the interplay of x† and x are formulated in the
subsequent proposition.

Proposition 2.6. Apart from the trivial case x = x†, the condition
(2.8) can only hold if x† 6= 0 and if the reference element x ∈ L2(0, 1)
is chosen such that

(2.9)
‖x† − x‖
‖x†‖

< 1

and x†−x is a continuous function on [0, 1] with x(1) = x†(1). Hence,
for the appropriate choice of x the value x†(1) must be known. Fur-
thermore, for the choice x = 0 there is no x† 6= 0 which satisfies (2.8).
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Proof. For x = x† , (2.8) is always satisfied with v = 0. By using the
norm-conserving linear transformation L : v 7→ ṽ in L2(0, 1) defined as
[Lv](t) = ṽ(t) := v(1 − t), 0 ≤ t ≤ 1, we can rewrite the equation in
(2.8) as

x†(1− t)− x(1− t) =

t∫
0

ṽ(t− s)x†(s)ds, 0 ≤ t ≤ 1,

or short in convolution form as Lx† = Lx + [Lv] ∗ x† . However, the
transformation x 7→ Tx := L(Lx + [Lv] ∗ x) is a contractive, affine
linear mapping for fixed ‖v‖ < 1 and by Banach’s fixed point theorem
there is a uniquely determined solution x† ∈ L2(0, 1) satisfying the
equation in (2.8). For x = 0 we have x† = 0 as uniquely determined
solution to that equation for all such source elements v. Now we can
estimate ‖x†−x‖ ≤ ‖x†‖‖v‖ < ‖x†‖, for all nonzero solutions x†, which
yields the necessary condition (2.9). Moreover, x† − x is a continuous
function as the result of the convolution of the two functions ṽ and
x† from L2(0, 1), and thus we have x(1) = x†(1) as another necessary
condition imposed on x† to satisfy (2.8). �

Remark 2.7. If x† 6= 0 solves the operator equation (2.1) then there is
also a second different solution −x†. If 〈x†, x〉 = 0, then the reference
element x ∈ L2(0, 1) has the same norm distance to both solutions and
the x-minimum-norm solution is not unique. Hence, the benchmark
source condition (2.8) can apply for at most one of the solutions x†

or −x†. Otherwise by (1.9) the regularized solutions xδα would con-
verge with α = α(δ) ∼ δ simultaneously to both solutions x† and −x†.
However, from (2.9) we have for x† 6= 0

‖x† − x‖2 = ‖x†‖2 − 2 〈x†, x〉+ ‖x‖2 < ‖x†‖2

and thus

(2.10) ‖x‖2 < 2 〈x†, x〉, x† 6= 0.

Now the necessary condition (2.10 for obtaining (2.8) shows that under
〈x†, x〉 = 0, x† 6= 0, the benchmark source condition cannot hold at
all.

3. Local well-posedness and ill-posedness occurring in
the complex-valued autoconvolution equation

The complex-valued and full data analog to equation (2.1) was mo-
tivated by problems of ultrashort laser pulse characterization arising
in the context of the self-diffraction SPIDER method, and we refer to
[13, 28] for physical details. Taking into account L2

C-spaces of quadrat-
ically integrable complex-valued functions over finite real intervals we
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set X = L2
C(0, 1), Y = L2

C(0, 1), and consider the operator equation
(3.1)

F (x) = y, [F (x)](s) :=


s∫
0

x(s− t)x(t)dt if 0 ≤ s ≤ 1

1∫
s−1

x(s− t)x(t)dt if 1 < s ≤ 2

with F : L2
C(0, 1) → L2

C(0, 2) and D(F ) = L2
C(0, 1). Every function

x ∈ L2
C(0, 1) can be represented as x(t) = A(t) eiφ(t), 0 ≤ t ≤ 1, with

the nonnegative amplitude (modulus) function A = |x| and the phase
function φ : [0, 1]→ R.

Example 3.1. Since the Example 2.1 fails in the full data case, i.e. if
y(s) is observed for all 0 ≤ s ≤ 2, for showing the ill-posedness a new
sequence construction became necessary. So it was outlined in [10,
Prop. 2.3] that the sequence,

xn(t) = x†(t) + Ψ 1
2
− 1
n
(t), 0 ≤ t ≤ 1, Ψβ(t) :=

r
√

1− 2β

tβ
, β > 0,

with ‖xn−x†‖ = r and ‖F (xn)−F (x†)‖ → 0 as n→∞ is appropriate
for the full data case. This sequence even applies to x† ∈ L2

C(0, 1) and
shows local ill-posedness everywhere also for the complex-valued case
F : L2

C(0, 1)→ L2
C(0, 2) (cf. [13, Example 3.1]).

In Example 3.1, the perturbation function Ψβ(t) is real-valued and
has a weak pole at t = +0. Then, for fixed n, the amplitude function
|xn| is not in L∞(0, 1) and hence xn need not belong to L∞C (0, 1). The
next example, however, shows that local ill-posedness everywhere can
also be shown by means of sequences {xn}∞n=1 ⊂ L∞C (0, 1).

Example 3.2. For the complex-valued case the linear operator
F ′(x) : L2

C(0, 1)→ L2
C(0, 2) defined as

[F ′(x)h] (s) = 2 [x ∗ h] (s), 0 ≤ s ≤ 2, h ∈ L2
C(0, 1),

is compact and represents the Fréchet derivative of F at all points x ∈
L2
C(0, 1). Hence for weakly convergent sequences zn ⇀ 0 in L2

C(0, 1),
i.e. if 〈zn, z〉 → 0 as n→∞ holds for all z ∈ L2

C(0, 1), we have the norm
convergence lim

n→∞
‖zn ∗ h‖ = 0 for all h ∈ L2

C(0, 1). Consequently, for

xn = x†+zn we have ‖F (xn)−F (x†)‖ = ‖zn∗(zn+2x†)‖ → 0 if and only

if ‖zn ∗ zn‖ → 0 as n → ∞. When we set zn(t) = r ei n
2t2 , 0 ≤ t ≤ 1,

for fixed and arbitrary r > 0 then we have ‖zn‖ = r and zn ⇀ 0 in
L2
C(0, 1) and ‖zn ∗ zn‖ → 0 as n→∞ in the norm of L2

C(0, 2). Hence,
the problem is locally ill-posed at any point x† ∈ L2

C(0, 1).

It was formulated in [13] as an open question whether the deauto-
covolution process remains always instable if only phase perturbations
occur. This question is motivated by the laser pulse problem, where a
complex-valued measuring tool based kernel function k(s, t) is added to
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the integral equation (3.1), but the amplitude function A = |x†| as part

of the solution x†(t) = A(t) eiφ
†(t), 0 ≤ t ≤ 1, can be measured and only

the phase function φ† is to be determined from observed y ∈ L2
C(0, 2).

The following proposition gives a negative answer to this question for
the simplified case (3.1) with trivial kernel k(s, t) ≡ 1.

Proposition 3.3. For solutions x†(t) = A(t) eiφ
†(t) to the complex-

valued autoconvolution equation (3.1) with a fixed amplitude function
A ∈ L∞(0, 1), which is not almost everywhere on [0, 1] the zero func-
tion, we restrict the domain of the operator F : D(F ) ⊂ L2

C(0, 1) →
L2
C(0, 2) to

D(F ) := {x(t) = A(t) eiφ(t), 0 ≤ t ≤ 1, φ : [0, 1]→ R} ⊂ L2
C(0, 1).

Then there exist phase functions φ† such that (3.1) is locally well-posed
at x†.

Proof. We set K1 := ‖A‖L1(0,1) > 0, K∞ := ‖A‖L∞(0,1) and will show

local well-posedness at points x†(t) = A(t) eiφ
†(t) with φ†(t) ≡ ω,

0 ≤ t ≤ 1, and an arbitrary real constant ω. Then we have for all
x ∈ BK1(x

†) ∩ D(F ) the local Hölder condition

(3.2) ‖x− x†‖ ≤ 23/4

√
K∞
K1

√
‖F (x)− F (x†)‖

with Hölder exponent 1/2, which yields the local well-posedness at
the point x†. Namely, using the Hölder inequality we have for all
x(t) = A(t) eiφ(t) the estimate

||F (x)−F (x†)|| =

√√√√√√ 2∫
0

∣∣∣∣∣∣∣
min(1,s)∫

max(0,s−1)

A(s− t)A(t)(e2iω − eiφ(s−t)eiφ(t))dt

∣∣∣∣∣∣∣
2

ds

≥ 1√
2

2∫
0

∣∣∣∣∣∣∣
min(1,s)∫

max(0,s−1)

A(s− t)A(t)(e2iω − eiφ(s−t)eiφ(t))dt

∣∣∣∣∣∣∣ ds
and further by setting ζ(t) := φ(t)− ω

2∫
0

∣∣∣∣∣∣∣
min(1,s)∫

max(0,s−1)

A(s− t)A(t)(e2iω − eiφ(s−t)eiφ(t))dt

∣∣∣∣∣∣∣ ds

=

2∫
0

∣∣∣∣∣∣∣
min(1,s)∫

max(0,s−1)

A(s− t)A(t)(1− eiζ(s−t)eiζ(t))dt

∣∣∣∣∣∣∣ ds
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≥
2∫

0

∣∣∣∣∣∣∣Re

min(1,s)∫
max(0,s−1)

A(s− t)A(t)(1− ei(ζ(s−t)+ζ(t)))dt

∣∣∣∣∣∣∣ ds

=

2∫
0

min(1,s)∫
max(0,s−1)

A(s− t)A(t)(1− cos(ζ(s− t) + ζ(t))dtds.

By changing the order of integration and exploiting addition theorems
we moreover obtain

2∫
0

min(1,s)∫
max(0,s−1)

A(s− t)A(t)(1− cos(ζ(s− t) + ζ(t))dtds

=

1∫
0

t+1∫
t

A(s−t)A(t)(1−cos(ζ(s−t)) cos(ζ(t))+sin(ζ(s−t)) sin(ζ(t)))dsdt

=

1∫
0

A(t)

1+t∫
t

A(s−t)dsdt−
1∫

0

A(t) cos(ζ(t))

t+1∫
t

A(s−t) cos(ζ(s−t))dsdt

+

1∫
0

A(t) sin(ζ(t))

t+1∫
t

A(s− t) sin(ζ(s− t))dsdt

=

1∫
0

A(t)

1∫
0

A(s)dsdt−
1∫

0

A(t) cos(ζ(t))

1∫
0

A(s) cos(ζ(s))dsdt

+

1∫
0

A(t) sin(ζ(t))

1∫
0

A(s) sin(ζ(s))dsdt

=

 1∫
0

A(s)ds

2

−

 1∫
0

A(s) cos(ζ(s))ds

2

+

 1∫
0

A(s) sin(ζ(s))ds

2

≥

 1∫
0

A(s)(1 + cos(ζ(s)))ds

 1∫
0

A(s)(1− cos(ζ(s)))ds

 .
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On the other hand, we have

||x− x†||2 =

1∫
0

|A(t)eiω − A(t)eiφ(t)|2dt

=

1∫
0

A(t)2|1− eiζ(t)|2dt

=

1∫
0

A(t)2((1− cos(ζ(t)))2 + sin2(ζ(t)))dt

=

1∫
0

A(t)2(1− 2 cos(ζ(t)) + cos2(ζ(t)) + sin2(ζ(t)))dt

=2

1∫
0

A(t)2(1− cos(ζ(t)))dt

≤2K∞

1∫
0

A(t)(1− cos(ζ(t)))dt.

Owing to 1− cos(ζ(t)) ≤ 2 we have also the estimate

1∫
0

A(s)(1 + cos(ζ(s)))ds =2

1∫
0

A(s)ds−
1∫

0

A(s)(1− cos(ζ(s)))ds

≥2K1 −

√√√√√ 1∫
0

A(s)2(1− cos(ζ(s)))2ds

≥2K1 −

√√√√√2

1∫
0

A(s)2(1− cos(ζ(s)))ds

=2K1 − ||x− x†||.

This yields for x ∈ BK1(x
†)

1∫
0

A(s)(1 + cos(ζ(s)))ds ≥ K1

and hence by combining the above estimates (3.2), which proves the
proposition.

�
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Finally, we note that well-posedness situations for the real autocon-
volution operator F : D(F ) ⊂ L2(0, 1)→ L2(0, 2) and specific compact
domains D(F ) were already outlined in [10] by exploiting Fourier trans-
forms. In these cases, one can even verify the modulus of continuity of
the inverse operator F−1.

4. Conclusions and open questions

It is certainly future work to obtain progress with respect to the Open
Problem 2.5. For the general theory it will be of interest to derive (low
order) convergence rates for ill-posed nonlinear operator equations (1.1)
when the solution x† is too nonsmooth to satisfy the benchmark source
condition (1.7) and if moreover the nonlinearity structure of the oper-
ator F around x† is too poor to fulfil a condition (1.3) for some index
function ϕ or a condition of type (1.17). As another open question
from Section 2 we can ask for smoothness classes M of solutions x† of
the real-valued autoconvolution equation in L2(0, 1) such that for all
x† ∈M a convergence rate

(4.1) ‖xδα(δ,yδ) − x
†‖ = O (θ(δ)) as δ → 0,

with some fixed concave index function θ is obtained for the Tikhonov
regularization (1.5). For ill-posed operator equations Ax = y with
bounded linear operators A : X → Y possessing a nonclosed range in
Y such smoothness classes M yielding (4.1) are usually dense subsets
M = {x ∈ X : x = Gv, v ∈ X} of the Hilbert space X charac-
terized by ranges of some bounded linear operators G : X → X with
unbounded Moore-Penrose inverse G† where G and A are connected by
some link condition (cf. [20]). For nonlinear problems the smoothness
classes have a much more complicated structure. For the real-valued
autoconvolution problem (2.1) the benchmark source condition (1.7)
leading to (4.1) with θ(t) =

√
t is quite illustrative. Here, the smooth-

ness class M collects all elements x† solving the fixed point equation

x†(t) = x(t)+
1∫
t

x†(s−t)v(s)ds, 0 ≤ t ≤ 1, where the source elements v

pass through the open unit ball in L2(0, 1). This fixed point equation is
uniquely solvable for all such v, because the mapping x→ x+ 1

2
F ′(x)∗v

is contractive and Banach’s fixed point theorem applies.
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