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In this paper we develop new fast Fourier-based methods for the Coulomb
problem. We combine the Ewald summation formulas and the fast summation
approach based on the nonequispaced fast Fourier transform (NFFT) in order to
develop efficient methods for calculating the Coulomb potentials as well as the
acting forces in charged particle systems subject to mixed periodic boundary con-
ditions. Therewith, we extend the applicability of NFFT based methods, which
already exist for open as well as for 3d-periodic boundary conditions, to arbi-
trary combinations of periodic and open boundary conditions. We reconsider the
derivation of the Ewald formulas for 2d- and 1d-periodic systems, introduce the
new algorithms and present numerical results.
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1. Introduction

Let N charges qj ∈ R at positions xj ∈ R3, j = 1, . . . , N , be given, fulfilling the charge
neutrality condition

N∑
j=1

qj = 0 . (1.1)

The Coulomb energy is basically a sum of the form

US := 1
2

N∑
j=1

qjφS(xj), (1.2)
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where for each particle j the potential φS(xj) is given by

φS(xj) :=
∑
n∈S

N∑
i=1

′ qi
‖xij +Bn‖

. (1.3)

Thereby, we denote by ‖·‖ the Euclidean norm and define the difference vectors xij := xi−xj .
The set of translation vectors S ⊆ Z3 is defined according to the given boundary conditions
and B ∈ R is the edge length of the simulation box in each dimension subject to periodic
boundary conditions. The prime on the double sum indicates that for n = 0 all terms
with i = j are omitted. It is important to note that the sum (1.3) is, assuming charge
neutrality (1.1), only conditionally convergent, i.e., the values of the potentials φS(xj) depend
on the order of summation. In addition to the calculation of the potentials φS(xj) and the
total energy US of the system, we are also interested in evaluating the forces acting on the
particles, which are given by

F S(xj) := qjES(xj), with the fields ES(xj) := −∇φS(xj). (1.4)

The well known Ewald-Summation technique [16], which was originally developed for 3d-
periodic systems, where we set S := Z3 in our notation, is the main basis for a variety of fast
algorithms for the evaluation of (1.2) under fully periodic boundary conditions, see [26, 13,
12, 15, 20]. The Ewald summation method [16] makes use of the trivial identity

1
r

= erf(αr)
r

+ erfc(αr)
r

, (1.5)

where α > 0 is generally known as the splitting parameter, erf(x) := 2√
π

∫ x
0 e−t2dt is the well

known error function and erfc(x) := 1− erf(x) is the complementary error function. If (1.5)
is applied in (1.3) the potential φS(xj) is split into two rapidly converging parts. Thereby,
the erf-terms have the finite limit

lim
r→0

erf(αr)
r

= 2α√
π
, (1.6)

so that this part can be transformed into a sum in Fourier space, which allows the application
of fast Fourier methods in order to derive efficient algorithms. The second part, containing
the complementary error function, is absolutely convergent and can be calculated by a direct
summation after truncating the infinite sum.
We describe 2d-periodic boundary conditions by choosing S := Z2×{0} with xj ∈ BT2×R

and 1d-periodic constraints by choosing S := Z×{0}2 with xj ∈ BT×R2. Thereby, we denote
the torus T by T := R/Z ' [−1/2, 1/2). For a graphical illustration see Figure 1.1.
The Ewald formulas for 2d-periodic as well as for 1d-periodic geometries were already

proposed in [18] and [32], respectively, and form the basis of the algorithms proposed in
this paper. In contrast to the case of 3d-periodic boundary conditions, the application of the
Ewald formulas for mixed periodic systems does not straightforwardly lead to fast algorithms.
Some Fourier based algorithms, like MMM2D, MMM1D or ELC, see [6, 8, 7] and the fast and
spectrally accurate Ewald summation in slab geometry [27], already exist, see also [37, 10, 9]
for algorithms with higher complexity.
For open boundary conditions, i.e., S := {0}3 in (1.3), fast Fourier based methods [33, 34]

where suggested, too. The relation of the Fourier based algorithms for open and 3d-periodic
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Figure 1.1: The simulation box is duplicated along two of three dimensions in the 2d-periodic
case (left) and along one dimension in the 1d-periodic setting (right).

boundary conditions were already investigated in [30]. In this paper we aim to close the gap
and propose FFT based algorithms also for 2d- and 1d-periodic boundary conditions. This
approach was already proposed in the short paper [29]. In this paper we also present numerical
results, show that the performance of the new algorithms is similar to the 3d-periodic case
and go into detail about our implementation. Furthermore, we derive the Ewald formulas
for 2d- and 1d-periodic systems, see Theorem 4.1 and Theorem 5.2, respectively. Thereby,
we always start with the splitting (1.5) and then use the technique of convergence factors
to derive the Fourier space representation of the long range part by applying the Poisson
summation formula. We show that the obtained formulas can be used in order to derive
the related algorithms, see Algorithm 4.3 and Algorithm 5.5. The main advantage of our
approach is that the new algorithms are completely of the same structure as the well known
algorithms for fully periodic and open boundary conditions, see [30]. That is that the short
range parts of the potentials are computed directly and the long range parts are computed
by an adjoint NFFT, followed by a multiplication in Fourier domain and again an NFFT in
three dimensions, see Remark 4.4 and Remark 5.6.
As the paper contains numerical results we introduce the relative root mean square (rms)

error in the fields, which is given by

∆ES :=
(∑N

j=1
∥∥ES(xj)− ẼS(xj)

∥∥2∑N
j=1 ‖ES(xj)‖2

)1/2

, (1.7)

where ẼS(xj) is some approximation of ES(xj), defined in (1.4). This error is often taken
as a measure of accuracy. We remark that the fast multipole method can also handle all
mentioned types of boundary conditions very efficiently, see [23, 22]. In order to estimate the
rms field error in our numerical tests we used reference data computed with the fast multipole
method for mixed periodic constraints.
The outline of this paper is as follows. We start with a short introduction to the non-

equispaced fast Fourier transform (NFFT) in Section 2 and review the idea of fast Ewald
summation based on NFFTs for 3d-periodic systems in Section 3. In Section 4 we consider
the case of periodic boundary conditions in two of three dimensions. To this end, we introduce
and prove the 2d-Ewald formulas, see Subsection 4.1, and develop a new fast algorithm in
Subsection 4.2 for 2d-periodic systems. Furthermore, we present numerical results in Sub-
section 4.3, which show its efficiency. In order to rate the very good performance of the
new algorithm, we compare the method to the particle-particle NFFT (P2NFFT) method for
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3d-periodic systems [31]. Note that this algorithm is highly optimized and recently compared
with other methods, such as the particle-particle particle-mesh (P3M) method, the fast mul-
tipole method or multigrid based methods, see [5]. The 1d-periodic case is considered in an
analog manner in Section 5. We present the 1d-Ewald formulas, see Subsection 5.1, develop
a new fast algorithm in Subsection 5.2 for 1d-periodic systems and present numerical results
in Subsection 5.3. Finally, we conclude with a short summary.

2. Prerequisite and NFFT
In this section we introduce the main notation and give a short introduction to the NFFT in
three variables. To keep the notation short we define for some M = (M1, . . . ,Md) ∈ 2Nd the
index set IM by

IM :=
d⊗
j=1
IMj , where IMj :=

{
−Mj

2 , . . . ,
Mj

2 − 1
}
,

and the cardinality by |IM | :=
∏d
j=1Mj . We do not distinguish between row and column

vectors and denote by x · y := x1y1 + x2y2 + x3y3 the scalar product and by x � y :=
(x1y1, x2y2, x3y3) ∈ R3 the component wise product of two vectors x,y ∈ R3. For some x ∈ R3

with non-vanishing components we further define the vector x−1 := (x−1
1 , x−1

2 , x−1
3 ) ∈ R3.

Let a trigonometric polynomial f : T3 → C be given by

f(x) =
∑

k∈IM

f̂ke−2πik·x, (2.1)

with the Fourier coefficients f̂k ∈ C, k ∈ IM . The fast evaluation of f at arbitrarily chosen
nodes xj ∈ T3, j = 1, . . . , N ∈ N, i.e., the efficient computation of

fj := f(xj) =
∑

k∈IM

f̂ke−2πik·xj , j = 1, . . . , N, (2.2)

is known as three-dimensional NFFT. We take the approach from [33] and approximate the
trigonometric polynomial f by a sum of translates of a one-periodic function ϕ̃, which is
defined via a tensor product of the periodization of a univariate window function ϕ, i.e., we
set ϕ̃1(x) :=

∑∞
j=−∞ ϕ(x+ j) and define the trivariate function ϕ̃ by ϕ̃(x) := ϕ̃1(x1) · ϕ̃1(x2) ·

ϕ̃1(x3). We obtain
f(x) ≈

∑
l∈Im

glϕ̃(x− l�m−1), (2.3)

where we choose M ≤m ∈ 2N3 (component wise). Furthermore, the function ϕ̃ is assumed
to be well localized in spatial and frequency domain. Under these assumptions, it can be
shown that

gl := 1
|Im|

∑
k∈IM

f̂k

ck(ϕ̃)e2πik·(l�m−1)

is a reasonable choice of the unknown coefficients in (2.3), where ck(ϕ̃) denotes the k-th
Fourier coefficient of ϕ̃. After calculating the coefficients gl by an FFT the function values fj
are computed via (2.3), where the sums are short due to the good localization of ϕ̃ in spatial
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domain. The adjoint nonequispaced fast Fourier transform (NFFTH) is an algorithm for the
fast evaluation of

ĥk =
N∑
j=1

fje2πik·xj , k ∈ IM , (2.4)

where now the coefficients fj ∈ C are given. Both algorithms have very similar structures
and can be performed in O(|IM | log |IM |+N) arithmetic operations, see [35, 24].

3. Fast Ewald summation for 3d–periodic boundary conditions
For an electrical neutral system of N charges qj distributed in a cubic box of edge length B
we define the electrostatic potential subject to 3d–periodic boundary conditions by

φp3(xj) := φZ3(xj) =
∞∑
s=0

∑
n∈Z3
‖n‖2=s

N∑
i=1

′ qi
‖xij +Bn‖

, (3.1)

i.e., we set S := Z3 within the definitions (1.2) – (1.4) and apply a spherical order of summa-
tion. We obtain [16, 25]

φp3(xj) = φp3,S(xj) + φp3,L(xj) + φp3,self(xj), (3.2)

where for the splitting parameter α > 0 we define the short range part

φp3,S(xj) :=
∑

n∈Z3

N∑
i=1

′qi
erfc(α‖xij +Bn‖)
‖xij +Bn‖

,

the long range part

φp3,L(xj) := 1
πB

∑
k∈Z3\{0}

e−π2‖k‖2/(α2B2)

‖k‖2

(
N∑
i=1

qie2πik·xi/B

)
e−2πik·xj/B,

and the self potential

φp3,self(xj) := − 2α√
π
qj .

Often a fourth term, the so called dipole correction term, appears in the decomposition (3.2),
cf. [13]. The dipole correction term is the only part depending on the order of summation.
However, if a spherical summation order is applied, the dipole correction term depends only
on the norm of the dipole moment

∑N
j=1 qjxj and, additionally, on the dielectric constant

of the surrounding medium. Therefore, it can be computed efficiently in O(N) arithmetic
operations. If the medium is assumed to be metallic, the dipole term vanishes and (3.2)
applies. It should be mentioned that the formulas above can be generalized to non-cubic
boxes and also non-orthogonal (triclinic) boxes, cf. [16, 12, 21]. As the complementary error
function erfc rapidly tends to zero, the short range part of each potential φp3,S(xj) can be
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obtained by direct evaluation. In order to compute the long range parts φp3,L(xj) we truncate
the infinite sum and compute approximations of the sums

Ŝ(k) :=
N∑
i=1

qie2πik·xi/B, k ∈ IM ,

with an adjoint NFFT and evaluate

φp3,L(xj) ≈
1
πB

∑
k∈IM\{0}

b̂kŜ(k)e−2πik·xj/B, j = 1, . . . , N,

where we define the Fourier coefficients

b̂k := e−π2‖k‖2/α2B2

‖k‖2
, (3.3)

via the NFFT. In matrix vector notation we may write(
φp3,L(xj)

)N
j=1
≈ ADAàq, (3.4)

where A denotes the matrix representation of the NFFT in three dimensions, D is a diagonal
matrix with entries 1

πB b̂k, k ∈ IM , and q = (q1, . . . , qN )> ∈ RN .
The force acting on a particle j can be written as

F p3(xj) = F p3,S(xj) + F p3,L(xj) := −qj∇φp3,S(xj)− qj∇φp3,L(xj),

where the short range part F p3,S(xj) is given by

F S
S(xj) := −qj

∑
n∈S

N∑
i=1

′qi

(
2α√
π

e−α2‖xij+Bn‖2 + erfc(α‖xij +Bn‖)
‖xij +Bn‖

)
xij +Bn

‖xij +Bn‖2
(3.5)

with S := Z3 and can be evaluated by direct summation, too. The long range part can be
obtained by differentiation in Fourier space, i.e., we write

F p3,L(xj) = 2iqj
B2

∑
k∈Z3\{0}

b̂kkŜ(k)e−2πik·xj/B

and use a NFFT in each dimension for an efficient evaluation. This approach is widely
known as ik differentiation, see [13] for instance. An alternative is the so called analytic
differentiation approach [12], where the ∇ operator is applied to the NFFT window function.
In terms of (2.1) and (2.3) this means that we set

f̂k :=
{
b̂kŜ(k) : k 6= 0,
0 : k = 0

and compute the long range portion of the force F p3(xj) by

F p3,L(xj) ≈ −
qj
πB

∑
l∈Im

gl∇ϕ̃(xj − l�m−1). (3.6)

6



4. Fast Ewald summation for 2d-periodic boundary conditions
4.1. Ewald summation
We consider a system of N charges qj ∈ R at positions xj ∈ BT2 × R. Under periodic
boundary conditions in the first two dimensions we define the potential of each single particle
by

φp2(xj) := φZ2×{0}(xj) =
∞∑
s=0

∑
n∈Z2×{0}
‖n‖2=s

N∑
i=1

′ qi
‖xij +Bn‖

(4.1)

and define the Coulomb energy via

Up2 := UZ2×{0} = 1
2

N∑
j=1

qjφ
p2(xj), (4.2)

i.e., we set S := Z2 × {0} in (1.2) – (1.4) and use the spherical limit as in (3.1).
In the following theorem we consider the 2d-Ewald formula, see [18], and give a proof using

convergence factors, similar to [25], where the 3d-periodic case is treated. In this section we
denote for y ∈ R3 the vector of its first two components by ỹ := (y1, y2) ∈ R2.

Theorem 4.1. Consider an electrical neutral system of N charges qj ∈ R at positions xj =
(x̃j , xj,3) ∈ BT2 × R, j = 1, . . . , N . Under periodic boundary conditions in the first two
variables the potentials φp2(xj), defined in (4.1), can be written in the form

φp2(xj) = φp2,S(xj) + φp2,L(xj) + φp2,0(xj) + φp2,self(xj),

where for some α > 0 we define the short range part

φp2,S(xj) :=
∑

n∈Z2×{0}

N∑
i=1

′qi
erfc(α‖xij +Bn‖)
‖xij +Bn‖

, (4.3)

the long range parts

φp2,L(xj) := 1
2B

∑
k∈Z2\{0}

N∑
i=1

qi e2πik·x̃ij/B ·Θp2(‖k‖, xij,3),

φp2,0(xj) := −2
√
π

B2

N∑
i=1

qi

(
e−α

2x2
ij,3

α
+
√
πxij,3erf(αxij,3)

)
,

the self potential

φp2,self(xj) := − 2α√
π
qj ,

and the function Θp2(k, r) for k, r ∈ R is defined by

Θp2(k, r) := 1
k

[
e2πkr/Berfc

(
πk

αB
+ αr

)
+ e−2πkr/Berfc

(
πk

αB
− αr

)]
. (4.4)
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Proof. In contrast to the case of periodicity in all three dimensions, it can be shown that a
convergence factor of the form e−s‖xij+Bn‖ instead of e−s‖Bn‖ can be used in order to calculate
the spherical limit (4.1). For a proof see [6] or [4]. Thereby, the factor e−s‖xij+Bn‖ can be
replaced by e−s‖xij+Bn‖2 .
As in [28] we apply the convergence factor e−s‖xij+Bn‖2 for the calculation of the poten-

tial (3.1), i.e., we compute the limit

φp2(xj) = lim
s→0

∑
n∈Z2×{0}

N∑
i=1

′ qie−s‖xij+Bn‖2

‖xij +Bn‖
.

For the calculation of φp2(xj) we first apply (1.5) for the splitting parameter α > 0 and obtain
by exploiting (1.6)

φp2(xj) = φp2,S(xj) +
∑

n∈Z2×{0}

N∑
i=1

qi
erf(α‖xij +Bn‖)
‖xij +Bn‖

+ φp2,self(xj).

In order to calculate the remaining long range part we define

φs(xj) :=
∑

n∈Z2×{0}

N∑
i=1

qie−s‖xij+Bn‖2 erf(α‖xij +Bn‖)
‖xij +Bn‖

,

which is absolutely convergent for all s > 0 and uniformly convergent on s ≥ 0, cf. [25]. Then,
we consider the limit lims→0 φs(xj). In the following, we apply the identity

erf(α‖xij +Bn‖) = 2√
π
‖xij +Bn‖

∫ α

0
e−‖xij+Bn‖2z2dz (4.5)

in φs(xj) and use the Poisson summation formula∑
n∈Z2

e−β‖x+Bn‖2 = 1
B2

∑
k∈Z2

π

β
e−π2‖k‖2/(B2β)e2πik·x/B

for a Gaussian kernel in two variables, which is valid for β > 0 and uniformly convergent on
R2. Applying (4.5) we can write φs(xj) for s > 0 as an absolutely and uniformly convergent
sum of absolutely and uniformly convergent integrals. Thus, we may change the order of
summation and integration to get

φs(xj) = 2√
π

∫ α

0

N∑
i=1

qie−(s+z2)x2
ij,3
∑

ñ∈Z2

e−(s+z2)‖x̃ij+Bñ‖2dz

= 2√
π

∫ α

0

N∑
i=1

qie−(s+z2)x2
ij,3
∑
k∈Z2

π

B2(s+ z2)e
−π2‖k‖2

B2(s+z2) e2πik·x̃ij/Bdz.

As the Fourier series is uniformly convergent and the terms of the sum are continuous functions
on [0, α] we obtain

φs(xj) = 2√
π

∑
k∈Z2

N∑
i=1

qi
π

B2 e2πik·x̃ij/B
∫ α

0

1
s+ z2 e

−π2‖k‖2

B2(s+z2) e−x
2
ij,3(s+z2)dz. (4.6)
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In the following we separate the k = 0 term and consider the sum

2√
π

∑
k∈Z2\{0}

N∑
i=1

qi
π

B2 e2πik·x̃ij/B
∫ α

0

1
s+ z2 e

−π2‖k‖2

B2(s+z2) e−x
2
ij,3(s+z2)dz.

If the limit for s → 0 of each single summand exists, we are allowed to change the order of
summation and calculating the limits. In the following, we will show that these limits exist.
We have

lim
s→0

∫ α

0

1
s+ z2 e

−π2‖k‖2

B2(s+z2) e−x
2
ij,3(s+z2)dz =

∫ α

0

1
z2 e

−π2‖k‖2

B2z2 e−x
2
ij,3z

2
dz.

This can be proved as follows. For s > 0 we define the function fs by fs(z) := z2 + s and set
f(z) := z2. Then the convergence fs → f is uniform on [0, α]. The function

h(y) :=

 1
y e
−π2‖k‖2

B2y e−x
2
ij,3y : z 6= 0,

0 : z = 0

is continuous and, therefore, uniformly continuous on [0, α]. Thus, the convergence h ◦ fs →
h◦f is also uniform on [0, α] and the limit can be applied to the integrand. For the computation
of the integral on the right hand side we substitute y := z−1 and obtain∫ α

0

1
z2 e

−π2‖k‖2

B2z2 e−x
2
ij,3z

2
dz =

∫ ∞
1/α

exp
(
−π2‖k‖2y2

B2 − x2
ij,3
y2

)
dy

=
∫ ∞

1/α
exp

[
−
(
π‖k‖y
B + xij,3

y

)2
+ 2π‖k‖xij,3

B

]
dy (4.7)

=
∫ ∞

1/α
exp

[
−
(
π‖k‖y
B − xij,3

y

)2
− 2π‖k‖xij,3

B

]
dy. (4.8)

For the substitutions

t1 := π‖k‖y
B

+ xij,3
y

and t2 := π‖k‖y
B

− xij,3
y

we obtain

dt1 + dt2 =
(
π‖k‖
B
− xij,3

y2

)
dy +

(
π‖k‖
B

+ xij,3
y2

)
dy = 2π‖k‖

B
dy.

Thus, using (4.7) and (4.8), we get∫ α

0

1
z2 e

−π2‖k‖2

B2z2 e−x
2
ij,3z

2
dz = B

2π‖k‖

[
e2π‖k‖xij,3/B

∫ ∞
π‖k‖
αB

+αxij,3
e−t21dt1

+ e−2π‖k‖xij,3/B
∫ ∞
π‖k‖
αB
−αxij,3

e−t22dt2

]
= B
√
π

4π Θp2(‖k‖, xij,3)

and, therefore, the limit of φs(xj) can be written in the form

lim
s→0

φs(xj) = φp2,L(xj) + lim
s→0

2
√
π

B2

N∑
i=1

qie−sx
2
ij,3

∫ α

0

e−x
2
ij,3z

2

s+ z2 dz.
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Now, we use the substitution y := z√
s
and obtain

I(s) :=
∫ α

0

e−x
2
ij,3z

2

s+ z2 dz =
∫ α√

s

0

e−sx
2
ij,3z

2

√
s(1 + z2)

dz.

Replacing the term f(s) := e−sx
2
ij,3z

2
by its Taylor representation f(s) =

∞∑
n=0

(−1)n(xij,3z)2n sn
n!

we have

I(s) =
∞∑
n=0

(−1)nx2n
ij,3s

n

n!
√
s

∫ α√
s

0

z2n

1 + z2 dz. (4.9)

In the following steps we make use of the identity∫ β

0

z2n

1 + z2 dz = (−1)n arctan β + (−1)n+1
n−1∑
k=0

(−1)k β
2k+1

2k + 1 , (4.10)

which is valid for β > 0, n ∈ N0 and can easily be verified by induction. Furthermore, we use
the Taylor representation

√
παz · erf(αz) + e−α2z2 = 1 +

∞∑
n=0

(−1)n(αz)2n+2

(n+ 1)!(2n+ 1)

holding for α > 0 and each z ∈ R. Applying (4.10) with β = α√
s
we get

sn√
s

∫ α√
s

0

z2n

1 + z2 dz = (−1)nsn√
s

arctan
(
α√
s

)
+ (−1)n+1

n−1∑
k=0

(−1)k α2k+1sn

(2k + 1)sk+1

=

O(
√
s) + α2n−1

(2n−1) +O(s) for s→ 0 : n > 0,
1√
s

arctan
(
α√
s

)
: n = 0.

Inserting this result into (4.9) we obtain

I(s) = 1√
s

arctan
(
α√
s

)
+
∞∑
n=1

(−1)nx2n
ij α

2n−1

n!(2n− 1) +O(
√
s)

= 1√
s

arctan
(
α√
s

)
+
∞∑
n=0

(−1)n+1x2n+2
ij α2n+1

(n+ 1)!(2n+ 1) +O(
√
s)

= 1√
s

arctan
(
α√
s

)
−
√
πxij,3 · erf(αxij,3)− 1

α
e−α

2x2
ij,3 + 1

α
+O(

√
s)

and by exploiting the charge neutrality (1.1) we get

lim
s→0

φs(xj) = φp2,L(xj) + lim
s→0

2
√
π

B2

N∑
i=1

qie−sx
2
ij,3I(s)

= φp2,L(xj)−
2
√
π

B2

N∑
i=1

qi

(
e−α

2x2
ij,3

α
+
√
πxij,3 · erf(αxij,3)

)
= φp2,L(xj) + φp2,0(xj) .
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With the following lemma we show that the function Θp2(k, r) tends to zero exponentially
fast with respect to k, i.e., we can truncate the infinite sum in φp2,L(xj).

Lemma 4.2. For arbitrary r ∈ R we have for the function Θp2 given in (4.4)

Θp2(k, r)→ 0 with Θp2(k, r) = o(k−2e−k2) for k →∞.

Proof. The function Θp2 has the integral representation

Θp2(k, r) = 4
√
π

B

∫ α

0

1
t2

exp
(
−π

2k2

B2t2
− r2t2

)
dt,

as we have seen in the proof of Theorem 4.1. Now, we easily see

Θp2(k, r) ≤ Θp2(k, 0) = 2
k

erfc
(
πk

αB

)
≈ 2αB
k2π3/2 e−

π2k2
α2B2 ,

which is valid for large k, cf. [2, number 7.1.23].

4.2. Fast NFFT based algorithm for 2d-periodic systems
Based on Theorem 4.1 we derive a fast algorithm. The evaluation of the short range part
φp2,S(xj) is done by a direct evaluation. For the computation of the long range part we apply
the fast summation method [33] to the functions Θp2(k, ·).

4.2.1. Computational approach

Due to Lemma 4.2 we can truncate the infinite sum in φp2,L(xj), i.e., for some appropriate
M̃ = (M1,M2) ∈ 2N2 we set

φp2,L(xj) ≈
1

2B
∑

k∈IM̃\{0}

N∑
i=1

qie2πik·x̃ij/BΘp2(‖k‖, xij,3).

Note, that all the functions Θp2(‖k‖, ·) have to be evaluated only within a finite interval
[−B3/2,B3/2]. The main idea is to approximate the functions Θp2(‖k‖, ·) on this interval by a
truncated Fourier series. However, the odd derivatives of Θp2(‖k‖, ·) at the points −B3/2 and
B3/2 do not match, which yields a bad convergence rate of the Fourier series. Therefore, we
extend the interval at both ends, where we construct a smooth transition. In the following,
we give the formal derivation of this idea.
Let h > 0 and ε > 0 such that |xij,3| ≤ h(1/2− ε) for all i, j = 1, . . . , N and define

Θp2
0 (r) := e−α2r2

α
+
√
πrerf(αr).

In order to approximate the long range parts φp2,L(xj) + φp2,0(xj) efficiently we consider for
k ∈ {‖k‖ : k ∈ IM̃} the regularizations

KR(k, r) :=


1

2BΘp2(k, r) : k 6= 0, |h−1r| ≤ 1/2− ε,

−2
√
π

B2 Θp2
0 (r) : k = 0, |h−1r| ≤ 1/2− ε,

KB(k, r) : |h−1r| ∈ (1/2− ε, 1/2],

(4.11)
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where we claim that each function KB(k, ·) : [−h/2 + hε,−h/2] ∪ [h/2, h/2− hε]→ R fulfills the
Hermite interpolation conditions

∂j

∂rj
KB(k, h/2− hε) =

{
1

2B
∂j

∂rj
Θp2(k, h/2− hε) : k 6= 0

−2
√
π

B2
dj
drj Θp2

0 (h/2− hε) : k = 0
, (4.12)

∂j

∂rj
KB(k,−h/2 + hε) =

{
1

2B
∂j

∂rj
Θp2(k,−h/2 + hε) : k 6= 0

−2
√
π

B2
dj
drj Θp2

0 (−h/2 + hε) : k = 0
(4.13)

for all j = 0, . . . , p − 1. Hereby, we refer to p ∈ N as the degree of smoothness. In order
to end up with h-periodic, smooth functions KR(k, ·), the functions KB(k, ·) are constructed
such that

∂j

∂rj
KR(k, h/2) = ∂j

∂rj
KR(k,−h/2), j = 0, . . . , p− 1

is also fulfilled. In Section 4.2.2 we show that the functions KB(k, .) can be constructed as
polynomials of degree 2p− 1 by two point Taylor interpolation. Figure 4.1 shows an example
of such a regularization KR(k, ·).

0

−h/2 + hε h/2 − hε

−h/2 h/2

∂j

∂rj
KB(k, h/2 − hε) =

1
2B

∂j

∂rj
Θp2(k, h/2 − hε)

1
2B

Θp2(k, ·)

KB(k, ·) KB(k, ·)

1

Figure 4.1: Example for KR(k, ·) for k ≥ 1. At the boundaries (gray area) the regularization
adopts the values of the boundary function KB(k, ·). We also marked the points,
where the conditions (4.12) and (4.13) are fulfilled.

In summary, the functions KR(k, ·) are h-periodic and smooth, i.e., KR(k, ·) ∈ Hp(hT).
Therefore, they can be approximated by a truncated Fourier series up to a prescribed error.
To this end, we approximate for each k ∈ {‖k‖ 6= 0 : k ∈ IM̃} the function

1
2BΘp2(k, r) ≈

∑
l∈IM3

b̂k,le2πilr/h (4.14)

for |r| ≤ h/2 − hε by the truncated Fourier series of its regularization KR(k, ·). Analogously,
for k = 0 we have

− 2
√
π

B2 Θp2
0 (r) ≈

∑
l∈IM3

b̂0,le2πilr/h. (4.15)
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Thereby, we choose the frequency cutoff M3 ∈ 2N large enough and compute the Fourier
coefficients b̂k,l in (4.14) as well as b̂0,l in (4.15) by the discrete Fourier transform

b̂k,l := 1
M3

∑
j∈IM3

KR

(
k, jhM3

)
e−2πijl/M3 , l = −M3/2, . . . ,M3/2− 1. (4.16)

This ansatz is closely related to the fast summation method described in [33]. Due to the
fact that for each k we have Θp2(k, ·) ∈ C∞(R) we are not restricted in the choice of the
parameter p. By choosing M3 large enough we can construct approximations (4.14) of a
required accuracy.
In summary, we obtain the following approximation for the long range parts,

φp2,L(xj) + φp2,0(xj) ≈
∑

k∈IM̃

∑
l∈IM3

b̂‖k‖,l

N∑
i=1

qie2πik·x̃ij/Be2πilxij,3/h

=
∑

(k,l)∈IM

b̂‖k‖,l

(
N∑
i=1

qie2πiv(k,l)·xi

)
e−2πiv(k,l)·xj , (4.17)

where we substitute the truncated Fourier series (4.14), (4.15) into Theorem 4.1 and define
M := (M̃ ,M3) ∈ 2N3 as well as the vectors v(k, l) := (k/B, l/h) ∈ B−1Z2 × h−1Z. The
expressions in the inner brackets

Ŝ(k, l) :=
N∑
i=1

qie2πiv(k,l)·xi , (k, l) ∈ IM (4.18)

can be computed by an NFFTH. This will be followed by |IM | multiplications with b̂‖k‖,l
and completed by an NFFT to compute the outer summation with the complex exponentials.
Therefore, the proposed evaluation of φp2,L(xj) + φp2,0(xj) at the points xj , j = 1, . . . , N ,
requires O(N + |IM | log |IM |) arithmetic operations.
The calculation of the forces is done analogously to the 3d-periodic case. We set S :=

Z2×{0}, define F p2(xj) := F S(xj) via (1.4) and calculate the short range portions F p2,S(xj)
given by (3.5) via a direct summation. In the long range part we can either use the ik
approach, i.e., we set

F p2,L(xj) + F p2,0(xj) ≈ 2πiqj
∑

(k,l)∈IM

b̂‖k‖,l

(
N∑
i=1

qie2πiv(k,l)·xi

)
v(k, l)e−2πiv(k,l)·xj , (4.19)

or the analytic differentiation, where the ∇ operator is applied to the window function ϕ̃ in
(2.3) within the NFFT, cf. (3.6).
In summary, we obtain Algorithm 4.3 for the fast computation of 2d-periodic Coulomb

interactions.

Algorithm 4.3 (2d-periodic P2NFFT).
Input: Positions xj ∈ BT2× [−B3/2,B3/2], charges qj ∈ R (j = 1, . . . , N), splitting parameter
α > 0, short range cutoff rcut > 0, long range cutoff M = (M̃ ,M3) ∈ 2N3, regularization
parameter ε > 0, degree of smoothness p ∈ N.
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0.) Precomputations:
a) Set h := (1/2− ε)−1B3.
b) Construct the regularization (4.11) for each k ∈ {‖k‖ : k ∈ IM̃}.
c) Compute the Fourier coefficients (4.16).

1.) Compute the short range parts of the potentials φp2,S(xj) and the short range parts of
the forces F p2,S(xj) by direct evaluation, i.e., restrict the summation in (4.3) and (3.5),
where S := Z2 × {0}, to all ‖xij +Bn‖ ≤ rcut.

2.) Compute the sums Ŝ(k, l) in (4.18) by the adjoint NFFT (2.4).
3.) Apply the NFFT (2.2) to compute the long range parts of the potentials φp2,L(xj) +

φp2,0(xj) by (4.17).
4.) Compute the long range parts of the forces F p2,L(xj)+F p2,0(xj) via the ik differentiation

approach (4.19) or the analytic differentiation, cf. (3.6).
5.) For all j = 1, . . . , N compute

φp2(xj) = φp2,S(xj) + φp2,L(xj) + φp2,0(xj) + φp2,self(xj)
F p2(xj) = F p2,S(xj) + F p2,L(xj) + F p2,0(xj).

6.) Compute the energy (4.2).
Output: Energy Up2, potentials φp2(xj) and forces F p2(xj).

Remark 4.4. Algorithm 4.3 has the same structure as the NFFT based method for 3d-
periodic systems, cf. Section 3. Thus, we also obtain a matrix vector notation of the form (3.4)
for the approximation of φp2,L(xj) + φp2,0(xj). In other words, we use the same algorithm,
where we replace the Fourier coefficients b̂k from (3.3) by the new coefficients b̂k,l in (4.16)
and insert the nodes (x̃ij/B, xij,3/h) ∈ T3 instead of xij/B ∈ T3 into the NFFT algorithms.

4.2.2. Implementation details

The precomputation step of Algorithm 4.3 includes the construction of the regularizations (4.11).
Thereby, we obtain KB(k, ·) by the unique polynomial of degree 2p−1 that fulfills the 2p Her-
mite interpolation conditions (4.12) – (4.13) in two points. An explicit representation of this
polynomial is given by Theorem A.1 in the appendix, where we set m = h/2 and r = hε and
aj , bj equal to the right hand sides of the interpolation conditions (4.12) – (4.13), respectively.
In order to compute the derivatives in (4.12) – (4.13) we use the following relations. We

define the function
Θ1(k, r) := e2πkr/Berfc

(
πk

αB
+ αr

)
(4.20)

and let Θ±(k, r) := Θ1(k, r) ± Θ1(k,−r). Note that we have Θp2(k, r) = 1
kΘ+(k, r). We

immediately see that

∂

∂r
Θ+(k, r) = 2πk

B
Θ−(k, r),

∂

∂r
Θ−(k, r) = 2πk

B
Θ+(k, r)− 4α√

π
e−α2r2−π2k2/α2B2

,
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and, therefore,

∂2

∂r2 Θ+(k, r) = 4π2k2

B2 Θ+(k, r)− 8α
√
πk

B
e−α2r2−π2k2/α2B2

.

For the computation of the derivatives of order n ≥ 2 we use the following recursive formula

∂n

∂rn
Θ+(k, r) = 4π2k2

B2
∂(n−2)

∂r(n−2) Θ+(k, r)− ∂(n−2)

∂r(n−2)
8α
√
πk

B
e−α2r2−π2k2/α2B2

.

The second term can be computed easily with the derivatives of the Gaussian window function

∂(n−2)

∂r(n−2)
8α
√
πk

B
e−α2r2−π2k2/α2B2 = 8α

√
πk

B
e−π2k2/α2B2 ∂(n−2)

∂r(n−2) e−α2r2
.

We remark that the numerical evaluation of the function (4.20) for large k, r > 0 is im-
portant in order to obtain a regularization of the 2d-periodic Ewald splitting. This can be
done straight forward for r ≤ 0, since we have the trivial upper bound Θ1(k, r) ≤ 2. In
contrast, for large values of r > 0 the exponential tends to infinity and exceeds rapidly the
range of representable floating point numbers in double precision. Since the complementary
error function tends much faster to zero, the function Θ(k, r) can be considered numerically
equal to zero for kr > 0 large enough. For the substitutions l = πk

Bα > 0 and t = lrα > 0 we
can use the standard estimate 0 ≤ (l −

√
t)2 that yields 2

√
t ≤ l + t/l and, finally, we obtain

Θ1

(
lBα

π
,
tB

πk

)
= e2terfc

(
l + t

l

)
≤ e2terfc

(
2
√
t
)

=: f(t).

The right hand side holds f(t) ≤ 10−16 for t > 18, i.e., whenever t := πkr
B > 18 we can assume

Θ1(k, r) to be numerically equal to zero.

4.3. Numerical results

In this section we present numerical results of our algorithm for 2d-periodic boundary con-
ditions. We implemented this algorithm as a part of the P2NFFT solver [31] within the
Scalable Fast Coulomb Solver (ScaFaCoS) library [1], i.e., our implementation is publicly
available at [1] and can be compared to various other well established methods with respect
to accuracy and run time. Recently, this library has been used for a broad comparison of
various fast Coulomb solvers for fully 3d-periodic boundary conditions [5]. In the following,
we show that our 2d-periodic algorithm can be tuned to high accuracy and offers a run time
comparable to the well established P3M algorithm for 3d-periodic systems.
For all tests the calculation of the forces was performed using the analytic differentiation

approach, cf. (3.6). Whenever the rms field error is examined, the comparative data were
computed with the fast multipole method [11, 23, 22] within ScaFaCoS tuned to sufficient
accuracy.
Our run time measurements have been performed on an Intel i5-2400 single core processor

that runs on 3.10 GHz with 8 GB main memory. The software was built with the GCC C
compiler at version 4.7.1 and optimization flags “-O3”.
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Figure 4.2: Cloud wall system with N = 300 charges qj = ±1 in a cubic box, see [5].
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Figure 4.3: Θp2
0 (r) and Θp2(1, r) with B = 10 for different splitting parameters α.

Example 4.5. We consider a so called cloud wall system consisting of N = 300 charges
in a cubic box of edge length B = 10 (see Figure 4.2). The system consists of a diffusive
particle cloud surrounding two oppositely charged walls and was proposed in [5] because of
its significant long range part.
In order to get an impression of the involved functions in (4.11) we plot these functions

over the interval [−B,B] for different values of α, see Figure 4.3.
In the following we choose the degree of smoothness p = 6, set M3 = 64 and investigate the

exactness of (4.15) as well as of (4.14) for k = 1 and k = 3 in dependency on the parameter
ε in (4.11). Therefore, we plot the maximum approximation errors in Figure 4.4, where the
maximum error of (4.15) is depicted in black. It can be seen that, for some fixed ε, the
errors decrease as α→ 0. On the other hand, the value of the optimal ε increases as α→ 0.
Additionally, we plot the error in the case k = 1 (blue) and for k = 3 (red).
In Figure 4.5 we choose the same values for ε and plot the relative rms field error (1.7) in the

cloud wall system as a function of the splitting parameter α, where we choose M = (64, 64, 64)
and m = (64, 64, 128) in (2.3). It can be seen that for ε too small we obtain a plateau in the
error plot, i.e., the error remains almost constant over a certain interval. If ε is chosen large
enough, the optimal approximation error becomes smaller, whereas for large values of α the
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Figure 4.4: Approximation errors for different values of ε with M3 = 64 and p = 6.
left: Maximum errors of (4.15) (black) and of (4.14) for k = 1 (blue).
right: Maximum errors of (4.14) for k = 1 (blue) as well as for k = 3 (red).

error is even worse. We obtain the smallest error for ε ≈ 0.145, where the optimal α ≈ 1,
which kind of goes along with the results plotted in Figure 4.4.
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Figure 4.5: Relative rms field error (1.7) over α for different regularization parameters ε. We
choose the short rang cutoff rcut = 4, the smoothness p = 6, M = (64, 64, 64),
m = (64, 64, 128) and the B-Spline of order 8 as NFFT window function ϕ in
Algorithm 4.3.

Obviously, the value of the optimal ε depends on both, the exactness of the approximation
of Θp2

0 in the k = 0 part as well as the goodness of the approximations of the kernel functions
for k > 0, but the error is dominated by the approximation in the k = 0 part.
In Figure 4.6 we plot the relative rms field error 4EZ2×{0} with respect to the splitting

parameter α for different FFT sizes M = (M,M,M). In the case M = 64 we set ε := 0.145.
For the other values of M we tuned ε by hand in order to get a small optimal rms field
error. On the right hand side we see the corresponding errors of the same particle system
treated under fully periodic boundary conditions. Of course, the 2d-periodic calculation
produces larger errors in the long range calculations, which is due to the fact that each
approximation (4.14) generates a certain error, whereas in the 3d-periodic case the Fourier
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coefficients (3.3) are exactly known. As the errors in the short range part behave exactly the
same way, the splitting parameter α adopts slightly different optimal values.
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Figure 4.6: The relative rms field error (1.7) over α for different FFT sizes. We choose the
short range cutoff rcut = 4, the smoothness p = 6, m = (M,M, 2M) and the
B-Spline of order 8 as NFFT window function ϕ in Algorithm 4.3. We plot the
results of the 2d-periodic (left) as well as of the 3d-periodic computation (right).

Example 4.6. We compute the potentials φp2(xj) as well as the forces F p2(xj) in cloud wall
systems of different size, where the particles are distributed in a cubic box of edge length B.
It can be seen from the data in Table 4.1 that the systems have the same particle density.

Therefore, the computations in the near field with fixed values of the short range cutoff
rcut and the splitting parameter α are comparable. In the calculation for the long range
part we choose M = (M,M,M) ∈ 2N3 in (4.17) and apply the NFFT with oversampling
factor 2 regarding the nonperiodic dimension, i.e., we set m := (M,M, 2M) in the NFFT
approximation (2.3) . In addition, we do the same calculation without oversampling, where
we set m := (M,M,M), and treat the same particle system under fully periodic boundary
conditions. As a window function we choose the cardinal B-spline of order 8 and construct
regularizations of smoothness p = 6. Note that in the case without oversampling the choice
of the parameters is the same as for the P3M.
For the cloud wall system of size N = 300 we set M = 16 and ε = 0.115 as in the last

example. For the short range cutoff rcut = 4 we find from Figure 4.6 that the error 4EZ2×{0}
is minimized for α ≈ 0.6. For the larger systems we choose larger values of M . Consequently,
we also have to choose other values for ε, too. For this reason we consider the error of the
approximation (4.15) for the different combinations of B and M , where we fix the splitting
parameter α = 0.6, see Figure 4.7.
ForM = 16 we obtain the optimal value εopt ≈ 0.13 regarding the exactness (4.15), whereas

we obtain the minimal rms field error 4EZ2×{0} for ε ≈ 0.115 ≈ 0.8846 · 0.13. Therefore, we
heuristically set ε = 0.8846 · εopt also in the other cases.
In Table 4.1 it can be seen that we achieve approximation errors of comparable size among

all systems. The fact that we are not far away from the errors of the 3d-periodic calculation
shows that the parameters where chosen appropriately.
In Figure 4.8 we plot the corresponding run times. We see that the oversampling slightly

increases the run time and that the fully periodic as well as the 2d-periodic calculation
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Figure 4.7: Maximum approximation error (4.15) for k = 0 over ε, where we choose the
splitting parameter α = 0.6.

oversampling no oversampling
N B ε M ∆EZ2×{0} ∆EZ2×{0} ∆EZ3

300 10 0.1150 16 1.5118e-03 4.3565e-03 4.1514e-04
2400 20 0.0641 32 7.6972e-04 1.1836e-03 4.1514e-04
19200 40 0.0332 64 5.5538e-04 8.2526e-04 4.1514e-04

153600 80 0.0221 128 5.2104e-04 7.6865e-04 4.1514e-04
1228800 160 0.0111 256 5.1955e-04 8.0417e-04 4.1514e-04

Table 4.1: Relative rms force errors in the cloud wall systems under 2d-periodic boundary
conditions (with and without oversampling in the third dimension) as well as under
fully periodic boundary conditions. These errors have been obtained with short
range cutoff rcut = 4 and splitting parameter α = 0.6.

without oversampling require almost the same amount of time. In summary, we remark that
in contrast to the fully periodic case, where the Fourier coefficients are given analytically
by (3.3), we have to precompute all the coefficients b̂k,l in (4.16). Of course, this leads to a
huge amount of precomputation steps for large values ofM , which is not included in the stated
run times. However, if one is interested in doing a large simulation with fixed parameters,
the precomputations have to be done only once.

5. Fast Ewald summation for 1d-periodic boundary conditions

5.1. Ewald summation

We consider a system of N charges qj ∈ R at positions xj ∈ BT× R2. If periodic boundary
conditions are assumed only in the first coordinate we define the potential of each single
particle j by

φp1(xj) := φZ×{0}2(xj) =
∞∑
s=0

∑
n∈Z×{0}2
|n1|=s

N∑
i=1

′ qi
‖xij +Bn‖

(5.1)
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Figure 4.8: Computation times with oversampling (o) and without oversampling (*) for the
2d-periodic case as well as for the fully periodic computation (+).
left: Attended times for the total computation (solid lines), the long range part
(dotted) as well as the short range part (dashed). We also plot exemplary behav-
iors where the run time grows proportional to N (red) and N logN (blue).
right: Total computation time scaled by the number of particles.
We achieved rms field errors of the size ≈ 5 · 10−4.

and define the Coulomb energy

Up1 := UZ×{0}2 = 1
2

N∑
j=1

qjφ
p1(xj),

i.e., we set S := Z×{0}2 in (1.2) – (1.4) and consider the spherical limit analogously to (3.1).
In this section we denote for some y = (y1, y2, y3) ∈ R3 the vector of its last two components
by ỹ := (y2, y3) ∈ R2.
The result of the following Lemma will be used in the derivation of the Ewald formulas.

Lemma 5.1. For β > 0 and n ∈ N we have∫ β

0

x2ndx√
1 + x2

= (−1)n (2n− 1)!!
(2n)!!

(√
1 + β2

n∑
k=1

(−1)k (2k − 2)!!
(2k − 1)!!β

2k−1 + ln(β +
√

1 + β2)
)
.

Proof. In the case n = 0 we obtain∫ β

0

dx√
1 + x2

= arsinh(β) = ln(β +
√

1 + β2).

For n ∈ N we get∫ β

0

x2ndx√
1 + x2

=
∫ β

0
x2n−1 xdx√

1 + x2
= β2n−1

√
1 + β2 − (2n− 1)

∫ β

0
x2n−2

√
1 + x2dx

= β2n−1
√

1 + β2 − (2n− 1)
∫ β

0
x2n−2 1 + x2

√
1 + x2

dx

⇐⇒
∫ β

0

x2ndx√
1 + x2

= 1
2n

(
β2n−1

√
1 + β2 − (2n− 1)

∫ β

0

x2n−2
√

1 + x2
dx
)
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and the claim follows by induction.

In the following we denote by

Γ(s, x) :=
∫ ∞
x

ts−1e−tdt (5.2)

the upper incomplete gamma function. For the case s = 0 the well known identity

Γ(0, x) = −γ − ln x−
∞∑
k=1

(−1)k x
k

k!k (5.3)

holds for all positive x, see [2, number 5.1.11]. Thereby, γ is the Euler-Mascheroni constant.
The function Γ(0, ·) is also known as the exponential integral function. We easily see

lim
x→0

Γ(0, x) + ln x+ γ = 0. (5.4)

In the following Theorem, we consider the 1d-Ewald formula, see [32], and give a proof using
convergence factors, analogously to the proof of Theorem 4.1.

Theorem 5.2. Consider an electrical neutral system of N charges qj ∈ R at positions xj =
(xj,1, x̃j) ∈ BT× R2, j = 1, . . . , N . Under periodic boundary conditions in the first variable
the potential φp1(xj), defined in (5.1), can be written as

φp1(xj) = φp1,S(xj) + φp1,L(xj) + φp1,0(xj) + φp1,self(xj),

where for the splitting parameter α > 0 we define the short range part

φp1,S(xj) :=
∑

n∈Z×{0}2

N∑
i=1

′qi
erfc(α‖xij +Bn‖)
‖xij +Bn‖

, (5.5)

the long range parts

φp1,L(xj) := 2
B

∑
k∈Z\{0}

N∑
i=1

qi e2πik(xi,1−xj,1)/B ·Θp1(k, ‖x̃ij‖)

φp1,0(xj) := − 1
B

N∑
i=1

‖x̃ij‖6=0

qi
[
γ + Γ(0, α2‖x̃ij‖2) + ln(α2‖x̃ij‖2)

]
,

the self potential

φp1,self(xj) := − 2α√
π
qj ,

and the function Θp1(k, r) for k, r ∈ R is defined by

Θp1(k, r) =
∫ α

0

1
z

e
−π2k2
B2z2 e−r2z2dz . (5.6)
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Proof. As in Theorem 4.1 we apply the convergence factor e−s‖xij+Bn‖2 for the calculation of
the potential (5.1). After using the splitting (1.5) we obtain

φp1(xj) = φp1,S(xj) +
∑

n∈Z×{0}2

N∑
i=1

qi
erf(α‖xij +Bn‖)
‖xij +Bn‖

+ φp1,self(xj).

We define

φs(xj) :=
∑

n∈Z×{0}2

N∑
i=1

qie−s‖xij+Bn‖2 erf(α‖xij +Bn‖)
‖xij +Bn‖

and use the Poisson summation formula∑
n∈Z

e−β(x+nB)2 = 1
B

∑
k∈Z

√
π

β
e−π2k2/(B2β)e2πikx/B

to obtain

φs(xj) = 2√
π

∑
k∈Z

N∑
i=1

qi

√
π

B
e2πik(xi,1−xj,1)/B

∫ α

0

1√
s+ z2

e
−π2k2

B2(s+z2) e−‖x̃ij‖2(s+z2)dz,

analogously to (4.6). Again, for k 6= 0 we compute the limit for s → 0 under the integrals
and obtain by similar steps as in the proof of Theorem 4.1

lim
s→0

φs(xj) = φp1,L(xj) + lim
s→0

2
B

N∑
i=1

qie−sξ
2
ij

∫ α

0

e−ξ
2
ijz

2

√
s+ z2

dz,

where we set ξij := ‖x̃ij‖. In order to compute the remaining limit for k = 0 we make use of
the substitution y := z√

s
again and get

I(s) :=
∫ α

0

e−ξ
2
ijz

2

√
s+ z2

dz =
∫ α√

s

0

e−sξ
2
ijz

2

√
1 + z2

dz.

Replacing the exponential by its Taylor representation in s we have

I(s) =
∞∑
n=0

(−1)nξ2n
ij s

n

n!

∫ α√
s

0

z2n
√

1 + z2
dz.

With the help of Lemma 5.1 we get∫ α√
s

0

1√
1 + z2

dz = ln
(
α√
s

+
√
s+ α2
√
s

)
for n = 0 and in the case n > 0 we obtain

sn
∫ α√

s

0

z2n
√

1 + z2
dz = (−1)n

√
s+ α2
√
s

sn
(2n− 1)!!

(2n)!!

n∑
k=1

(−1)k (2k − 2)!!
(2k − 1)!!

α2k−1√s
sk

+ (−1)nsn (2n− 1)!!
(2n)!! ln

(
α√
s

+
√
s+ α2
√
s

)

=O(s) +
√
s+ α2 · α

2n−1

2n + (−1)nsn (2n− 1)!!
(2n)!! ln

(
α√
s

+
√
s+ α2
√
s

)
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for s→ 0. Applying (5.3), (5.4) as well as the charge neutrality condition (1.1) we get

lim
s→0

φs(xj) = φp1,L(xj) + lim
s→0

2
B

N∑
i=1

qie−sξ
2
ijI(s),

= φp1,L(xj) + 2
B

N∑
i=1

qi

∞∑
n=1

(−1)nξ2n
ij α

2n

n!2n

= φp1,L(xj)−
1
B

N∑
i=1

‖x̃ij‖6=0

qi
[
γ + Γ(0, α2‖x̃ij‖2) + ln(α2‖x̃ij‖2)

]
.

The function Θp1(k, r) can be expressed by the incomplete modified Bessel function of
the second kind [19], see Section 5.2.2. This function is known to be infinitely continuously
differentiable and, thus, we can construct regularizations of similar structure as (4.11) in order
to construct a fast algorithm. In this case the final algorithm requires a smooth bivariate
regularization, which can be obtained easily from a one dimensional construction as the
Fourier coefficients are radial in x̃ij . Then, the evaluation is done with the multivariate fast
summation method [34].
By the following Lemma 5.3 we show that the function Θp1(k, r) for fixed r tends to zero

exponentially fast for growing k, which allows the truncation of the infinite sum in φp1,L(xj).
Furthermore, Lemma 5.4 shows that also the kernel in φp1,0(xj) is a smooth function, which
allows the application of the fast summation method.
Lemma 5.3. For arbitrary r ∈ R we have for the function Θp1 given in (5.6)

Θp1(k, r)→ 0 with Θp1(k, r) = o(k−2e−k2) for k →∞.
Proof. By the definition (5.6) we immediately see

Θp1(k, r) ≤ Θp1(k, 0) = 1
2Γ
(

0, π
2k2

α2B2

)
.

The claim follows by applying the asymptotic expansion Γ(0, x) ≈ e−x
x , cf. [2, number 6.5.32],

which holds for large x := π2k2

α2B2 .

Lemma 5.4. For the univariate function

ϑ(x) :=
{

0 : x = 0,
Γ(0, x2) + ln(x2) + γ : else

we have ϑ ∈ C∞(R).
Proof. Since limt→0 Γ(0, t) + ln(t) + γ = 0 the function is continuous. As (5.3) holds for all
x > 0 we obtain

γ + Γ(0, x2) + ln(x2) =
∞∑
k=1

(−1)k+1x2k

k!k , x 6= 0.

From this representation we easily conclude

lim
x→+0

dn

dxn
(
γ + Γ(0, x2) + ln(x2)

)
= lim

x→−0

dn

dxn
(
γ + Γ(0, x2) + ln(x2)

)
6= ±∞.
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5.2. Fast NFFT based algorithm for 1d-periodic systems
Similar as in the previous section we derive the fast algorithm now based on Theorem 5.2.
The evaluation of the short range part φp1,S(xj) is done by a direct evaluation again.

5.2.1. Computational approach

Due to Lemma 5.3 we can truncate the infinite sum in φp1,L(xj), i.e., for some appropriate
M1 ∈ 2N we set

φp1,L(xj) ≈
2
B

∑
k∈IM1\{0}

N∑
i=1

qie2πikxij,1/BΘp1(k, ‖x̃ij‖).

In the following we choose h > 0 and ε > 0 such that ‖x̃ij‖ ≤ h(1/2− ε) for all i, j = 1, . . . , N
and define

Θp1
0 (r) := γ + Γ(0, α2r2) + ln(α2r2).

In order to approximate the long range part φp1,L(xj) + φp1,0(xj) efficiently we consider for
k ∈ {0, . . . ,M1/2} the regularizations

KR(k, r) :=



2
B

Θp1(k, r) : k 6= 0, |h−1r| ≤ 1/2− ε,

− 1
B

Θp1
0 (r) : k = 0, |h−1r| ≤ 1/2− ε,

KB(k, r) : |h−1r| ∈ (1/2− ε, 1/2],
KB(k, h/2) : |h−1r| > 1/2,

, (5.7)

where each functionKB(k, ·) : [h/2−hε, h/2]→ R is constructed such thatKR(k, ‖·‖) : hT2 → R
is in the Sobolev space Hp(hT2), i.e., KB(k, ·) fulfills the interpolation conditions

∂j

∂rj
KB(k, h/2− hε) =

{
2
B

∂j

∂rj
Θp1(k, h/2− hε) : k 6= 0

− 1
B

dj
drj Θp1

0 (h/2− hε) : k = 0
for j = 0, . . . , p− 1 (5.8)

as well as

∂j

∂rj
KB(k, h/2) = 0 for j = 1, . . . , p− 1. (5.9)

Note that KR(k, ‖ · ‖) is constant for all the points {y ∈ hT2 : ‖y‖ ≥ h/2}. Therefore, the
conditions (5.9) ensure smoothness of KR(k, ‖ · ‖) in the points {y ∈ hT2 : ‖y‖ = h/2}.
Furthermore, (5.9) does not include any restriction on the function value of KR(k, h/2), since
it does not influence the smoothness of KR(k, ‖ · ‖). In Section 5.2.2 we show that the
functions KB(k, ‖.‖) can be constructed as polynomials of degree 2p− 2 by two point Taylor
interpolation. By our construction the functions KR(k, ‖ · ‖) are h-periodic in each direction
and smooth, i.e., KR(k, ‖ · ‖) ∈ Hp(hT2). For a graphical illustration of a regularization
KR(k, ·) see Figure 5.1.
To this end, we approximate for each k ∈ IM1 \ {0} the function

2
B

Θp1(k, ‖y‖) ≈
∑

l∈IM̃

b̂k,le2πil·y/h. (5.10)
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∂j

∂rj
KB(k, h/2) = 0

∂j

∂rj
KB(k, h/2 − hε) =

2
B

∂j

∂rj
Θp1(k, h/2 − hε)

h/2 − hε

−h/2 + hε h/2

−h/2

2
B

Θp1(k, ·)

1

Figure 5.1: Example for KR(k, ·) for k ≥ 1. Over the gray area the regularization adopts the
values of the boundary function KB(k, ·). In the corners (striped area) KR(k, ·)
has the constant value KB(k, h/2). We also marked the points, where the condi-
tions (5.8) and (5.9) are fulfilled.

for ‖y‖ ≤ h/2−hε by a trigonometric polynomial. In the case k = 0 we use the approximation

− 1
B

Θp1
0 (α2‖y‖2) ≈

∑
l∈IM̃

b̂0,le2πil·y/h. (5.11)

Thereby, we choose M̃ = (M2,M3) ∈ 2N2 large enough and compute the Fourier coefficients
b̂k,l by

b̂k,l := 1
|IM̃ |

∑
j∈IM̃

KR

(
k, ‖j � M̃

−1‖h
)

e−2πij·(l�M̃
−1) (5.12)

for all k ∈ IM1 . In summary we obtain the following approximation for the long range parts

φp1,L(xj) + φp1,0(xj) ≈
∑
k∈IM1

∑
l∈IM̃

b̂|k|,l

N∑
i=1

qie2πikxij,1/Be2πil·x̃ij/h

=
∑

(k,l)∈IM

b̂|k|,l

(
N∑
i=1

qie2πiv(k,l)·xi

)
e−2πiv(k,l)·xj , (5.13)

where we use the truncated Fourier series (5.10), (5.11) in Theorem 5.2 and define M :=
(M1,M̃) ∈ 2N3 as well as the vectors v(k, l) := (k/B, l/h).
The expressions in the inner brackets

Ŝ(k, l) :=
N∑
i=1

qie2πiv(k,l)·xi , (k, l) ∈ IM (5.14)
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can be computed by an NFFTH. This will be followed by |IM | multiplications with b̂|k|,l
and completed by an NFFT to compute the outer summation with the complex exponentials.
The proposed evaluation of φp1,L(xj) + φp1,0(xj) at the points xj , j = 1, . . . , N , requires
O(N + |IM | log |IM |) arithmetic operations.
For the calculation of the forces we set S := Z× {0}2, define F p1(xj) := F S(xj) via (1.4)

and calculate the short range portions F p1,S(xj), as defined in (3.5), by a direct summation.
In the long range part we can either use the ik approach, i.e., we set

F p1,L(xj) + F p1,0(xj) ≈ 2πiqj
∑

(k,l)∈IM

b̂|k|,l

(
N∑
i=1

qie2πiv(k,l)·xi

)
v(k, l)e−2πiv(k,l)·xj , (5.15)

or the analytic differentiation, cf. (3.6).
In summary, we obtain Algorithm 4.3 for the fast computation of 1d-periodic Coulomb

interactions.

Algorithm 5.5 (1d-periodic P2NFFT).
Input: Positions xj ∈ BT × [−B2/2,B2/2] × [−B3/2,B3/2], charges qj ∈ R (j = 1, . . . , N),
splitting parameter α > 0, short range cutoff rcut > 0, long range cutoff M = (M1,M̃) ∈ 2N3,
regularization parameter ε > 0, degree of smoothness p ∈ N.
0.) Precomputations:

a) Set h := (1/2− ε)−1
√
B2

2 +B2
3 .

b) Construct the regularization (5.7) for each k ∈ {0, . . . ,M1/2}.
c) Compute the Fourier coefficients (5.12).

1.) Compute the short range parts of the potentials φp1,S(xj) and the short range parts of
the forces F p1,S(xj) by direct evaluation, i.e., restrict the summation in (5.5) and (3.5),
where S := Z× {0}2, to all ‖xij +Bn‖ ≤ rcut.

2.) Compute the sums Ŝ(k, l) in (5.14) by the adjoint NFFT (2.4).
3.) Apply the NFFT (2.2) to compute the long range parts of the potentials φp1,L(xj) +

φp1,0(xj) by (5.13).
4.) Compute the long range parts of the forces F p1,L(xj)+F p1,0(xj) via the ik differentiation

approach (5.15) or the analytic differentiation, cf. (3.6).
5.) For all j = 1, . . . , N compute

φp1(xj) = φp1,S(xj) + φp1,L(xj) + φp1,0(xj) + φp1,self(xj)
F p1(xj) = F p1,S(xj) + F p1,L(xj) + F p1,0(xj).

6.) Compute the energy (4.2).
Output: Energy Up1, potentials φp1(xj) and forces F p1(xj).

Remark 5.6. Algorithm 5.5 has the same structure as the NFFT based method for 3d-
periodic systems, cf. Section 3. Thus, we also obtain a matrix vector notation of the form (3.4)
for the approximation of φp1,L(xj) + φp1,0(xj). In other words, we use the same algorithm,
where we replace the Fourier coefficients b̂k from (3.3) by the new coefficients b̂k,l in (5.12)
and insert the nodes (xij,1/h, x̃ij/B) ∈ T3 instead of xij/B ∈ T3 into the NFFT algorithms.
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5.2.2. Implementation details

The precomputation step of Algorithm 5.5 includes the construction of the regularizations (5.7).
Thereby, we obtain KB(k, ·) by the unique polynomial of degree 2p− 2 that fulfills the 2p− 1
interpolation conditions (5.8) – (5.9). An explicit representation of this polynomial is given
by Theorem A.2 in the appendix, where we set m = h(1/2− ε/2), r = hε/2 and aj , bj equal to
the right hand side of the interpolation conditions (5.8) – (5.9), respectively.
In order to compute the derivatives in (5.8) – (5.9) we use the following relations. At first,

we consider the function Θp1(k, r) as defined in (5.6) and show that it can be expressed in
terms of an incomplete modified Bessel function of the second kind [19] defined by

Kν(x, y) :=
∫ ∞

1
t−ν−1e−xt−y/tdt, ν ∈ R, x ≥ 0, y ≥ 0.

Indeed, with the substitution t = α2/z2 in (5.6) we get

Θp1(k, r) =
∫ α

0

1
z

e
−π2k2
B2z2 e−r2z2dz t=

α2/z2

= 1
2

∫ ∞
1

t−1e−
π2k2
α2B2 t−α2r2t−1

dt = 1
2K0

(
π2k2

α2B2 , α
2r2
)
.

Note that the relation [19]
∂Kν(x, y)

∂y
= −Kν+1(x, y) (5.16)

gives an easy way to compute the necessary partial derivatives. In the following Lemma 5.7
we give a formula for the partial derivatives of K0(x, y2) with respect to y, which are needed
for the differentiation of the function Θp2(k, ·).

Lemma 5.7. For x ∈ R fixed and k ∈ N0 we have

∂2k

∂y2kK0(x, y2) =
k∑
l=0

αk,lKk+l(x, y2)y2l (5.17)

∂2k+1

∂y2k+1K0(x, y2) =
k∑
l=0

βk,lKk+1+l(x, y2)y2l+1, (5.18)

where the coefficients αk,l and βk,l are given recursively by

α0,0 = 1

βk,l =
{
−2αk,k : l = k

−2αk,l + 2(l + 1)αk,l+1 : else

αk,l =


βk−1,0 : k ≥ 1, l = 0
−2βk−1,l−1 : k ≥ 1, l = k

−2βk−1,l−1 + (2l + 1)βk−1,l : k ≥ 1, else.

Proof. Induction in k. Via the chain rule and relation (5.16) we have

∂

∂y
K0(x, y2) = −2yK1(x, y2).
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Thus, the claim is true for k = 0. If (5.18) holds for k − 1 ≥ 0, we obtain

∂

∂y

(
∂2k−1

∂y2k−1K0(x, y2)
)

=
k−1∑
l=0
−2βk−1,ly

2l+2Kk+l+1(x, y2) +
k−1∑
l=0

(2l + 1)βk−1,ly
2lKk+l(x, y2)

=
k∑
l=1
−2βk−1,l−1y

2lKk+l(x, y2) +
k−1∑
l=0

(2l + 1)βk−1,ly
2lKk+l(x, y2),

which shows the choice of the coefficients αk,l in (5.17). For the derivative of order 2k+ 1 we
get

∂

∂y

(
∂2k

∂y2kK0(x, y2)
)

=
k∑
l=0
−2αk,ly2l+1Kk+l+1(x, y2) +

k∑
l=1

2lαk,ly2l−1Kk+l(x, y2)

=
k∑
l=0
−2αk,ly2l+1Kk+l+1(x, y2) +

k−1∑
l=0

2(l + 1)αk,l+1y
2l+1Kk+l+1(x, y2),

which completes the proof.

We implemented the iterative algorithm given in [36] for the computation of the incomplete
modified Bessel function of the second kind Kν(x, y) for arbitrary order ν ∈ R. In our
algorithm, we evaluate this function with an absolute accuracy of ε = 10−15. However, this
iteration gets numerical problems for large values of x and y because the very small numbers
due to the exponential damping within the integral. Therefore, we compute the following
upper bounds on Kν(x, y) and assume Kν(x, y) to be numerically equal to zero whenever one
of these bounds is already very small. For ν ≥ −1 an upper bound is given by

Kν(x, y) ≤
∫ ∞

1

e−xt

tν+1 dt ≤
∫ ∞

1
e−xtdt = e−x

x
. (5.19)

For K0(x, ·) and its derivatives we always have ν ≥ 0, cf. (5.16). However, for x < y it was
suggested [36] to evaluate the faster convergent complement integral

Kν(x, y) = 2(x/y)ν/2Kν(2√xy)−K−ν(y, x), (5.20)

where the Bessel function Kν(·) is defined by

Kν(z) := 1
2

∫ ∞
0

e−z/2(t+1/t)

tν+1 dt,

cf. [19]. Thus, we also have to consider the case ν < −1. Here, we set n := −ν − 1 ≥ 1 and
obtain the upper bounds

Kν(x, y) ≤
∫ ∞

1

e−xt

tν+1 dt =
∫ ∞

1
tne−xtdt = e−x

n∑
k=0

n!
(n− k)!

1
xk+1

≤


e−xn!
xn+1

n∑
k=0

1
(n− k)! ≤

e1−xn!
xn+1 : x ≤ 1

e−xn!
x

n∑
k=0

1
(n− k)! ≤

e1−xn!
x

: x > 1
.
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By (5.20) we obtain another upper bound for Kν(x, y) in the case ν ≥ −1, namely,

Kν(x, y) < 2(x/y)ν/2Kν(2√xy) ≤ (x/y)ν/2
∫ ∞

0
e−t
√
xy/2dt = 2(x/y)ν/2 e−

√
xy/2
√
xy

.

This gives often a better estimate than (5.19) especially if x < y.
Another numerical difficulty appears in (5.12) for k 6= 0 when KR must be evaluated near

the origin. This corresponds to the evaluation of K0(x, y) with small x and y, where the
evaluation of the function is numerically demanding and the accuracy ε can not always be
achieved. However, we have

∂nK0(x, y)
∂yn

∣∣∣∣
y=0

= (−1)nKn(x, 0) = (−1)nxn
∫ ∞
x

e−tt−n−1dt = (−1)nxnΓ(−n, x) (5.21)

with the upper incomplete gamma function Γ, as defined in (5.2). Therewith, we obtain for
fixed x and m ∈ N

K0(x, y) =
m∑
n=0

(−1)n

n! xnΓ(−n, x)yn +RmK0(x, 0)

where for some 0 < ξ < 1

RmK0(x, 0) = (−1)m+1Km+1(x, ξy)
(m+ 1)! ym+1.

Applying (5.19) we compute the upper bound

|RmK0(x, 0)| ≤ Km+1(x, 0)ym+1

(m+ 1)! ≤ e−xym+1

(m+ 1)!x.

Thus, for x and y small we calculate the value of the truncated Taylor series in (5.21), where
we choose m large enough to fulfill |RmK0(x, 0)| < ε.
In order to compute the Fourier coefficients b̂0,l, we also have to evaluate the functions

Γ(0, α2r2) and ln(α2r2) as well as their derivatives. In the following Lemma we show how the
derivatives of Γ(0, x2) can be computed recursively.

Lemma 5.8. For k ∈ N we have

d2k

dx2kΓ(0, x2) = 2e−x2

(
k∑
l=1

(2k − 1)!
(k − l)! x

−2l + pk(x)
)

(5.22)

d2k+1

dx2k+1 Γ(0, x2) = −2e−x2

(
k∑
l=0

(2k)!
(k − l)!x

−(2l+1) + qk(x)
)

(5.23)

where pk and qk are polynomials of degree 2k − 2 and 2k − 1, respectively, fulfilling the
recursion

p1(x) = 2

qk(x) = 2xpk(x)− d
dxpk(x)

pk+1(x) = 2xqk(x)− d
dxqk(x) + 2(2k)!

k! .
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Proof. Induction in k ∈ N. We have

d2

dx2 Γ(0, x2) = d
dx

(
−2e−x2

x

)
= 2e−x2

(
1
x2 + 2

)
,

which shows the validity of (5.22) for k = 1 with p1(x) = 2. If (5.22) holds for some k ∈ N
we have

d
dx

d2k

dx2kΓ(0, x2) =− 4xe−x2

(
k∑
l=1

(2k−1)!
(k−l)! x

−2l + pk(x)
)

+ 2e−x2

(
−

k∑
l=1

2l(2k−1)!
(k−l)! x−(2l+1) + d

dxpk(x)
)
.

If we define the polynomial qk of degree 2k − 1 as qk(x) := 2xpk(x)− d
dxpk(x) we obtain

d2k+1

dx2k+1 Γ(0, x2) = −2e−x2

(
k−1∑
l=0

2(2k−1)!
(k−l−1)!x

−(2l+1) +
k∑
l=1

2l(2k−1)!
(k−l)! x−(2l+1) + qk(x)

)

= −2e−x2

(
(2k)!
k! x

−1 +
k−1∑
l=1

(2k−1)![2(k−l)+2l]
(k−l)! x−(2l+1) + (2k)!

0! x
−(2k+1) + qk(x)

)
,

which is equivalent to (5.23). For the derivatives of order 2k + 2 we get

d
dx

d2k+1

dx2k+1 Γ(0, x2) = 4xe−x2

(
k∑
l=0

(2k)!
(k−l)!x

−(2l+1) + qk(x)
)

+ 2e−x2

(
k∑
l=0

(2l+1)(2k)!
(k−l)! x−(2l+2) − d

dxqk(x)
)
.

Setting pk+1(x) := 2xqk(x) + 2(2k)!
k! −

d
dxqk(x) we obtain

d2k+2

dx2k+2 Γ(0, x2) = 2e−x2

(
k∑
l=1

2(2k)!
(k−l)!x

−2l +
k+1∑
l=1

(2l−1)(2k)!
(k−l+1)! x

−2l + pk+1(x)
)

= 2e−x2

(
k∑
l=1

(2k)![2(k−l+1)+2l−1]
(k−l+1)! x−2l + (2k+1)(2k)!

0! x−2(k+1) + pk+1(x)
)
.

5.3. Numerical Results

In this section we present numerical results of our algorithm for 1d-periodic systems. We set
up the tests analogously to the 2d-periodic case, see Section 4.3 for details.
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Figure 5.2: Θp1
0 (r) and Θp1(1, r) with B = 10 for different splitting parameters α.

Example 5.9. As in Example 4.5 we consider the cloud wall system with N = 300 charged
particles and compute the potentials as well as the forces subject to 1d-periodic boundary
conditions. Again, we plot the functions Θp1(1, ·) as well as Θp1

0 (·) over the interval [−B,B]
for different splitting parameters α, see Figure 5.2.
We tested Algorithm 5.5 with the smoothness p = 6, the short range cutoff rcut = 4 and

M = (64, 64, 64). Within the NFFT computations we chose m = (64, 128, 128) in (2.3) and
the cardinal B-Spline of order 8 as a window function.
In Figure 5.3 we plot the rms field errors 4EZ×{0}2 with respect to the splitting parameter

α for different values of ε. We observe similar patterns as in the case for 2d-periodic boundary
conditions. We see that we obtain a considerably different optimal value for ε. We obtain the
smallest error for ε ≈ 0.115, where α ≈ 0.9 is optimal.
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Figure 5.3: Relative rms field error (1.7) over α for different regularization parameters ε. We
choose the short range cutoff rcut = 4, p = 6, M = (64, 64, 64), m = (64, 128, 128)
and the B-Spline of order 8 as NFFT window function ϕ in Algorithm 5.5.

In Figure 5.4 we plot the rms field error4EZ×{0}2 with respect to the splitting parameter α
for different long range cutoffs M = (M,M,M) ∈ 2N3. Again, the regularization parameter
ε is tuned by hand to obtain a small optimal rms field error. On the right hand side we see the
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corresponding errors produced by the 3d-periodic computation. As in the case for 2d-periodic
boundary conditions we obtain smaller errors in the 3d-periodic case, which implies that also
the optimal values for the splitting parameter α differ.
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Figure 5.4: The relative rms field error (1.7) over α for different FFT sizes. We choose the
short range cutoff rcut = 4, p = 6, m = (M, 2M, 2M) and the B-Spline of order
8 as NFFT window function ϕ in Algorithm 5.5. We plot the results of the 1d-
periodic (left) as well as of the 3d-periodic computation (right).

Example 5.10. We apply our Algorithm to the particle systems we already considered in
Example 4.6. We set rcut = 4 and compute the potentials as well as the forces in the system
with N = 300 particles with the far field cutoff M = (M,M,M) = (16, 16, 16). We found that
the rms field error 4EZ×{0}2 is minimized for the splitting parameter α ≈ 0.5 and ε ≈ 0.03,
see Example 5.9.
As the particle systems have the same particle density we keep the short range cutoff rcut = 4

and the splitting parameter α = 0.5 fixed, increase the value of M and vary ε. In order to
determine a good choice for ε we proceed as in Example 4.6 and investigate the exactness
of our two dimensional approximation (5.11) with respect to M and ε, see Figure 5.5. In
the case M = 16 we find the optimal value εopt ≈ 0.095, whereas the relative rms field error
error 4EZ×{0}2 is minimized for ε ≈ 0.03 ≈ 0.3158 · 0.095. Thus, we heuristically choose
ε = 0.3158 · εopt in our computations. Obviously, the error is not that much dominated by
the error in the k = 0 part as in the 2d-periodic case. The obtained errors can be found in
Table 5.1. Again, we computed the errors produced by Algorithm 5.5 without as well as with
oversampling, where m = (M, 2M, 2M). In Figure 5.6 we plot the corresponding run times.

6. Conclusion

In this paper we proposed new fast algorithms for the computation of the potentials and
the forces in three-dimensional particle systems subject to 2d- and 1d-periodic boundary
conditions. These algorithms are based on the Ewald summation formulas, which we combined
with the NFFT based fast summation method. Therefore, we obtain the same structure as the
well known NFFT based methods for open as well as for fully periodic boundary conditions.
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Figure 5.5: Maximum approximation error (5.11) for k = 0 over ε, where we choose α = 0.5.

oversampling no oversampling
N B ε M ∆EZ×{0}2 ∆EZ×{0}2 ∆EZ3

300 10 3.0000e-02 16 2.8812e-03 4.9664e-03 2.7126e-03
2400 20 1.5789e-02 32 2.9800e-03 4.1694e-03 2.7126e-03
19200 40 7.8947e-03 64 3.2359e-03 3.6469e-03 2.7126e-03

153600 80 1.5789e-03 128 3.2345e-03 3.6396e-03 2.7126e-03
1228800 160 3.1579e-05 256 3.2837e-03 3.6283e-03 2.7126e-03

Table 5.1: Relative rms force errors in the cloud wall systems under 1d-periodic boundary
conditions (with and without oversampling in the last two dimensions) as well as
under fully periodic boundary conditions. These errors have been obtained with
the short range cutoff rcut = 4 and the splitting parameter α = 0.5.

In addition to the splitting parameter α, the near field, and the far field cutoffs, the proposed
algorithms require numerous other parameters as input. On the one hand, we need to set the
NFFT specific parameters, as the type of the window function ϕ and related cutoffs, and, on
the other hand, we have to specify the degree of smoothness p as well as the regularization
parameter ε, which are needed for the fast summation.
Of course, without exact error estimates the task of tuning all parameters optimally is de-

manding. In our numerical examples we especially concentrated on the choice of the splitting
parameter α and the regularization parameter ε in dependance on the far field cutoff M .
We plotted the behavior of the relative rms field error over α for different M , where the
parameter ε was tuned by hand. In summary, we have to point out that the overall error very
much depends on the choice of ε, which seems to adopt different optimal values in the 2d- and
the 1d-periodic case. Furthermore, in comparison with the fully periodic case we have seen
that the algorithms for mixed periodic boundary conditions produce slightly larger errors in
the long range part. Thus, also the choice of the splitting parameter α has to be adjusted.
In contrast to the fully periodic case, the Fourier coefficients for the computation of the long

range part are computed via the FFT based on sampling the regularized kernel functions. Of
course, this produces additional errors and leads to a precomputation step, which has to be
done only once if the data are needed repeatedly. Especially the evaluation of the incomplete
modified Bessel function in the 1d-periodic case is numerically demanding.
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Figure 5.6: Computation times with oversampling (o) and without oversampling (*) for the
1d-periodic case as well as for the fully periodic computation (+).
left: Attended times for the total computation (solid lines), the long range part
(dotted) as well as the short range part (dashed). We also plot exemplary behav-
iors where the run time grows proportional to N (red) and N logN (blue).
right: Total computation time scaled by the number of particles.
We achieved rms field errors of the size ≈ 10−3.

For growing numbers of particles N our algorithms show the same behavior in computa-
tional costs as the method for 3d-periodic boundary conditions. Thereby, we were able to
keep the relative rms field error almost constant, where the parameter ε was set heuristically.
All in all, the proposed methods compete with the algorithm for 3d-periodic boundary

conditions. The deficiency of exactness is inevitable and of a reasonable size. A further
objective might be to derive error estimates, similar to the P3M [14], which allow an automatic
tuning of the involved parameters.

Appendix

A. Two point Taylor interpolation

Theorem A.1. Let an interval [m − r,m + r], r > 0, and the interpolation values aj =
K(j)(m− r), bj = K(j)(m+ r), j = 0, . . . , p− 1, be given. For y = x−m

r the polynomial

P (x) =
p−1∑
j=0

p−1−j∑
k=0

(
p− 1 + k

k

)
1

j!2p2k
[
rj(1− y)p(1 + y)k+jaj + (−r)j(1 + y)p(1− y)k+jbj

]

=
p−1∑
j=0

B(p, j, y)rjaj +
p−1∑
j=0

B(p, j,−y)(−r)jbj
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of degree 2p − 1 satisfies the interpolation conditions P (j)(m − r) = aj , P
(j)(m + r) = bj ,

j = 0, . . . , p− 1. Hereby, the basis polynomials B(p, j, y) are given by

B(p, j, y) :=
p−1−j∑
k=0

(
p− 1 + k

k

)
1

j!2p2k (1− y)p(1 + y)k+j .

Proof. See [3, Corollary 2.2.6] or [17, Proposition 3.2].

Theorem A.2. Let an interval [m − r,m + r], r > 0, and the interpolation values aj =
K(j)(m− r), j = 0, . . . , p− 1, and bj = K(j)(m+ r), j = 1, . . . , p− 1, be given. For y = x−m

r
the polynomial

Q(x) :=
p−2∑
j=0

I(p− 1, j, y)rj+1aj+1 +
p−2∑
j=0

I(p− 1, j,−y)(−r)j+1bj+1

−
p−2∑
j=0

I(p− 1, j,−1)rj+1aj+1 −
p−2∑
j=0

I(p− 1, j, 1)(−r)j+1bj+1 + a0

of degree 2p− 2 satisfies the interpolation conditions Q(j)(m− r) = aj , j = 0, . . . , p− 1, and
Q(j)(m+ r) = bj , j = 1, . . . , p− 1. Thereby, the polynomials I(p, j, y) are given by

I(p, j, y) :=
p−1−j∑
k=0

(
p− 1 + k

k

)
1

j!2p2k
p∑
l=0

p!
(p− l)!

(k + j)!
(k + 1 + j + l)! (1− y)p−l(1 + y)k+j+1+l.

Proof. According to Theorem A.1 the polynomial

P̃ (x) =
p−2∑
j=0

B(p− 1, j, y)rjaj+1 +
p−2∑
j=0

B(p− 1, j,−y)(−r)jbj+1

satisfies the interpolation conditions P̃ (j)(m− r) = aj+1, P̃
(j)(m+ r) = bj+1, j = 0, . . . , p− 2.

For k, l ∈ N we obtain by partial integration for l times∫
(1− x)l(1 + x)kdx =

l∑
j=0

l!
(l − j)!

k!
(k + 1 + j)! (1− x)l−j(1 + x)k+1+j + C,C ∈ R

and therewith ∫
B(p, j, y)dx = rI(p, j, y) + C,C ∈ R.

Thus, the antiderivatives of P̃ (x) are given by Q(x) := Q̃(x) + C, C ∈ R with

Q̃(x) :=
p−2∑
j=0

I(p− 1, j, y)rj+1aj+1 +
p−2∑
j=0

I(p− 1, j,−y)(−r)j+1bj+1.

Finally, we choose the constant C = a0 − Q̃(m− r) in order to satisfy Q(m− r) = a0.
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