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1 Introduction

In this paper, we present a new deterministic approach to the reconstruction of sparse
Legendre and Gegenbauer expansions, if relatively few samples on a special grid are
given.

Recently the reconstruction of sparse trigonometric polynomials has attained much at-
tention. There exist recovery methods based on random sampling related to compressed
sensing (see e.g. [17, 10, 5, 4] and the references therein) and methods based on de-
terministic sampling related to Prony–like methods (see e.g. [15] and the references
therein).

Both methods are already generalized to other polynomial systems. Rauhut and Ward
[18] presented a recovery method of a polynomial of degree at most N − 1 given in
Legendre expansion with M nonzero terms, where O(M (logN)4) random samples are

∗potts@mathematik.tu-chemnitz.de, Chemnitz University of Technology, Department of Mathematics,
D–09107 Chemnitz, Germany

‡manfred.tasche@uni-rostock.de, University of Rostock, Institute of Mathematics, D–18051 Rostock,
Germany

1



taken independently according to the Chebyshev probability measure of [−1, 1]. The
recovery algorithms in compressive sensing are often based on `1–minimization. Exact
recovery of sparse functions can be ensured only with a certain probability. Peter,
Plonka, and Roşca [14] have presented a Prony–like method for the reconstruction of
sparse Legendre expansions, where only 2M + 1 function resp. derivative values at one
point are given.

Recently, the authors have described a unified approach to Prony–like methods in [15]
and applied to the recovery of sparse expansions of Chebyshev polynomials of first and
second kind in [16]. Similar sparse interpolation problems for special polynomial systems
are formerly explored in [11, 7, 2, 3] and also solved by Prony–like methods. A very
general approach for the reconstruction of sparse expansions of eigenfunctions of suitable
linear operators were suggested by Plonka and Peter in [13]. New reconstruction formulas
for M -sparse expansions of orthogonal polynomials using the Sturm–Liouville operator,
where presented. However one hast to use sampling points and derivative values.

In this paper we present a new method for the reconstruction of sparse Legendre expan-
sions which is based on local approximation of Legendre polynomials by cosine functions.
Therefore this algorithm is closely related to [16]. Note that fast algorithms for the com-
putation of Fourier–Legendre coefficients in a Legendre expansion (see [6, 1]) are based
on similar asymptotic formulas of the Legendre polynomials. However the key idea is
that the convenient scaled Legendre polynomials behave very similar as the cosine func-
tions near by zero. Therefore we use a sampling grid located near by zero. Finally we
generalize this method to sparse Gegenbauer expansions of low positive order.

The outline of this paper is as follows. In Section 2, we collect some useful properties
of Legendre polynomials. In Section 3, we present the new reconstruction method for
sparse Legendre expansions. We extend our recovery method in Section 4 to the case
of sparse Gegenbauer expansions of low positive order. Finally we show some results of
numerical experiments in Section 5.

2 Properties of Legendre polynomials

For each n ∈ N0, the Legendre polynomials Pn can be recursively defined by

Pn+2(x) :=
2n+ 3

n+ 2
xPn+1(x)− n+ 1

n+ 2
Pn(x) (x ∈ R)

with P0(x) := 1 and P1(x) := x. The Legendre polynomial Pn can be represented in the
explicit form

Pn(x) =
1

2n

bn/2c∑
j=0

(−1)j (2n− 2j)!

j! (n− j)! (n− 2j)!
xn−2j .
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Hence it follows that for m ∈ N0

P2m(0) =
(−1)m (2m)!

22m (m!)2
, P2m+1(0) = 0 , (2.1)

P ′2m+1(0) =
(−1)m (2m+ 1)!

22m (m!)2
, P ′2m(0) = 0 . (2.2)

Further, Legendre polynomials of even degree are even and Legendre polynomials of odd
degree are odd, i.e.

Pn(−x) = (−1)n Pn(x) . (2.3)

Moreover, the Legendre polynomial Pn satisfies the following homogeneous linear differ-
ential equation of second order

(1− x2)P ′′n (x)− 2xP ′n(x) + n2 Pn(x) = 0 . (2.4)

In the Hilbert space L2
1/2([−1, 1]) with the constant weight 1

2 , the normed Legendre
polynomials

Ln(x) :=
√

2n+ 1Pn(x) (n ∈ N0) (2.5)

form an orthonormal basis, since

1

2

∫ 1

−1
Ln(x)Lm(x) dx = δn−m (m, n ∈ N0) .

Note that the uniform norm

max
x∈[−1,1]

|Ln(x)| = |Ln(−1)| = |Ln(1)| = (2n+ 1)1/2

is increasing with respect to n.

Let M be a positive integer. A polynomial

H(x) :=
d∑

k=0

bk Lk(x) (2.6)

of degree d with d � M is called M -sparse in the Legendre basis or simply a sparse
Legendre expansion, if M coefficients bk are nonzero and if the other d−M+1 coefficients
vanish. Then such an M -sparse polynomial H can be represented in the form

H(x) =

M0∑
j=1

c0,j Ln0,j (x) +

M1∑
k=1

c1,k Ln1,k
(x) (2.7)

with c0,j := bn0,j 6= 0 for all even n0,j with 0 ≤ n0,1 < n0,2 < . . . < n0,M0 and with
c1,k := bn1,k

6= 0 for all odd n1,k with 1 ≤ n1,1 < n1,2 < . . . < n1,M1 . The positive integer
M = M0 + M1 is called the Legendre sparsity of the polynomial H. The numbers M0,
M1 ∈ N0 are the even and odd Legendre sparsities, respectively.
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Remark 2.1 The sparsity of a polynomial depends essentially on the chosen polynomial
basis. If

Tn(x) := cos(n arccosx) (x ∈ [−1, 1])

denotes the nth Chebyshev polynomial of first kind, then the nth Legendre polynomial
Pn can be represented in the Chebyshev basis by

Pn(x) =
1

22n

bn/2c∑
j=0

(2− δn−2j)
(2j)! (2n− 2j)!

(j!)2 ((n− j)!)2
Tn−2j(x) .

Thus a sparse polynomial in the Legendre basis is in general not a sparse polynomial in
the Chebyshev basis. In other words, one has to solve the reconstruction problem of a
sparse Legendre expansion without change of the Legendre basis.

Example 2.2 Let (r, ϕ, θ) be the spherical coordinates. We consider an axially sym-
metric solution Φ(r, θ) of the Laplace equation inside the unit ball which fulfills the
Dirichlet boundary condition

Φ(1, θ) = F (cos θ) (θ ∈ [0, π]) ,

where F : [−1, 1]→ R is continuously differentiable. Then the solution Φ(r, θ) reads as
follows

Φ(r, θ) =

∞∑
n=0

an r
n Ln(cos θ) (r ∈ [0, 1], θ ∈ [0, π])

with the Fourier–Legendre coefficients

an =
1

2

∫ 1

−1
F (x)Ln(x) dx =

1

2

∫ π

0
F (cos θ)Ln(cos θ) sin θ dθ .

If only a finite number of the Fourier–Legendre coefficients an does not vanish, then
Φ(r, θ) is a sparse Legendre expansion.

As in [18], we transform the Legendre polynomial system {Ln; n ∈ N0} into a uniformly
bounded orthonormal system. We introduce the functions Qn : [−1, 1] → R for each
n ∈ N0 by

Qn(x) :=

√
π

2
4
√

1− x2 Ln(x) =

√
(2n+ 1)π

2
4
√

1− x2 Pn(x) . (2.8)

Note that these functions Qn have the same symmetry properties (2.3) as the Legendre
polynomials, namely

Qn(−x) = (−1)nQn(x) (x ∈ [−1, 1]) . (2.9)
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Further the functions Qn are orthonormal in the Hilbert space L2
w([−1, 1]) with the

Chebyshev weight w(x) := 1
π (1− x2)−1/2, since for all m, n ∈ N0∫ 1

−1
Qn(x)Qm(x)w(x) dx =

1

2

∫ 1

−1
Ln(x)Lm(x) dx = δn−m .

Note that ∫ 1

−1
w(x) dx = 1 .

In the following, we use the standard substitution x = cos θ (θ ∈ [0, π]) and obtain

Qn(cos θ) =

√
π

2

√
sin θ Ln(cos θ) =

√
(2n+ 1)π

2

√
sin θ Pn(cos θ) (θ ∈ [0, π]) .

Lemma 2.3 For all n ∈ N0, the functions Qn(cos θ) are uniformly bounded on the
interval [0, π], i.e.

|Qn(cos θ)| < 2 (θ ∈ [0, π]) . (2.10)

Proof. For n ≥ 2, we know by [19, p. 165] that for all θ ∈ [0, π]√
π

2

√
sin θ |Pn(cos θ)| < 1√

n
.

Then for the normed Legendre polynomials Ln, we obtain the estimate√
π

2

√
sin θ |Ln(cos θ)| <

√
2n+ 1

n

and hence

|Qn(cos θ)| <
√

2 +
1

n
< 2 .

By

Q0(cos θ) =

√
π

2

√
sin θ , Q1(cos θ) =

√
3π

2

√
sin θ cos θ ,

we see immediately that the estimate (2.10) is also true for n = 0 and n = 1.

By (2.4), the function Qn(cos θ) satisfies the following linear differential equation of
second order (see [19, p. 165])

d2

dθ2
Qn(cos θ) +

(
(n+

1

2
)2 +

1

4 (sin θ)2

)
Qn(cos θ) = 0 (θ ∈ (0, π)) . (2.11)

Now we use the known asymptotic properties of the Legendre polynomials. By the
asymptotic formula of Laplace, see [19, p. 194], one knows that for θ ∈ (0, π)

Qn(cos θ) =
√

2 cos[(n+
1

2
) θ − π

4
] +O(n−1) (n→∞) . (2.12)
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The error bound holds uniformly in [ε, π− ε] with ε ∈ (0, π2 ). Instead of (2.12), we will
use another asymptotic formula of Qn(cos θ), which has a better approximation property
in a small neighborhood of θ = π

2 for arbitrary n ∈ N0.

By the method of Liouville–Stekloff, see [19, p. 210], we show that for arbitrary n ∈ N0,
the function Qn(cos θ) is approximately equal to some multiple of cos[(n + 1

2) θ − π
4 ] in

the small neighborhood of θ = π
2 .

Theorem 2.4 For each n ∈ N0, the function Qn(cos θ) can be represented by the asymp-
totic formula of Laplace–type

Qn(cos θ) = λn cos[(n+
1

2
) θ − π

4
] +Rn(θ) (θ ∈ [0, π]) (2.13)

with the scaling factor

λn :=


√

(4m+1)π
2

(2m)!
22m (m!)2

n = 2m,√
π

4m+3
(2m+1)!

22m (m!)2
n = 2m+ 1

and the error term

Rn(θ) := − 1

4n+ 2

∫ θ

π/2

sin[(n+ 1
2)(θ − τ)]

(sin τ)2
Qn(cos τ) dτ (θ ∈ (0, π)) . (2.14)

The error term Rn(θ) fulfills the conditions Rn(π2 ) = R′n(π2 ) = 0 and has the symmetry
property

Rn(π − θ) = (−1)nRn(θ) . (2.15)

Further, the error term can be estimated by

|Rn(θ)| ≤ 1

2n+ 1
| cot θ| . (2.16)

Proof. 1. Using the method of Liouville–Stekloff (see [19, p. 210]), we derive the
asymptotic formula (2.13) from the differential equation (2.11), which can be written in
the form

d2

dθ2
Qn(cos θ) + (n+

1

2
)2Qn(cos θ) = − 1

4 (sin θ)2
Qn(cos θ) (θ ∈ (0, π)) . (2.17)

Since the homogeneous linear differential equation

d2

dθ2
Qn(cos θ) + (n+

1

2
)2Qn(cos θ) = 0

has the fundamental system

cos[(n+
1

2
) θ − π

4
] , sin[(n+

1

2
) θ − π

4
] ,
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the differential equation (2.17) can be transformed into the Volterra integral equation

Qn(cos θ) = λn cos[(n+
1

2
) θ − π

4
] + µn sin[(n+

1

2
) θ − π

4
]

− 1

4n+ 2

∫ θ

π/2

sin[(n+ 1
2)(θ − τ)]

(sin τ)2
Qn(cos τ) dτ (θ ∈ (0, π))

with certain real constants λn and µn. The integral (2.14) and its derivative vanish for
θ = π

2 .
2. Now we determine the constants λn and µn. For arbitrary even n = 2m (m ∈ N0),
the function Q2m(cos θ) can be represented in the form

Q2m(cos θ) = λ2m cos[(2m+
1

2
) θ − π

4
] + µ2m sin[(2m+

1

2
) θ − π

4
] +R2m(θ) .

Hence the condition R2m(π2 ) = 0 means that Q2m(0) = (−1)mλ2m. Using (2.8), (2.5)
and (2.1), we obtain that

λ2m =

√
(4m+ 1)π

2

(2m)!

22m (m!)2
.

From P ′2m(0) = 0 by (2.2) it follows that the derivative of Q2m(cos θ) vanishes for θ = π
2 .

Thus the second condition R′2m(π2 ) = 0 implies that 0 = µ2m (2m + 1
2) (−1)m , i.e.

µ2m = 0. Note that by the formula of Stirling lim
m→∞

λ2m =
√

2.

3. If n = 2m+ 1 (m ∈ N0) is odd, then

Q2m+1(cos θ) = λ2m+1 cos[(2m+
3

2
)θ − π

4
] + µ2m+1 sin[(2m+

3

2
) θ − π

4
] +R2m+1(θ) .

Hence the condition R2m+1(π2 ) = 0 implies by P2m+1(0) = 0 (see (2.1)) that 0 =
µ2m+1 (−1)m , i.e. µ2m+1 = 0. The second condition R′2m+1(π2 ) = 0 reads as follows

−
√

(4m+ 3)π

2
P ′2m+1(0) = −λ2m+1 (2m+

3

2
) sin(mπ +

π

2
)

= −λ2m+1 (2m+
3

2
) (−1)m .

Thus we obtain by (2.2) that

λ2m+1 =

√
π

4m+ 3

(2m+ 1)!

22m (m!)2
.

Note that by the formula of Stirling lim
m→∞

λ2m+1 =
√

2.

4. As shown, the error term Rn(θ) has the explicit representation (2.14). Using (2.10),
we estimate this integral and obtain

|Rn(θ)| ≤ 2

4n+ 2

∣∣∣ ∫ θ

π/2

1

(sin τ)2
dτ
∣∣∣ =

1

2n+ 1
| cot θ| .
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The symmetry property (2.15) of the error term

Rn(θ) = Qn(cos θ)− λn cos[(n+
1

2
)θ − π

4
]

follows from the fact that Qn(cos θ) and cos[(n + 1
2)θ − π

4 ] possess the same symmetry
properties as (2.9). This completes the proof.

Remark 2.5 For arbitrary m ∈ N0, the scaling factors λn in (2.13) can be expressed in
the following form

λn =


√

(4m+1)π
2 αm n = 2m,√

π
4m+3 (2m+ 2)αm+1 n = 2m+ 1

with

α0 := 1 , αn :=
1 · 3 · · · (2n+ 1)

2 · 4 · · · (2n)
(n ∈ N) .

In Figure 2.1, we plot the expression | tan(θ)Rn(θ)| for some polynomial degrees n.
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Figure 2.1: Expression | tan(θ)Rn(θ)| for n ∈ {3, 11, 51, 101}.

We have proved the estimate (2.16) in Theorem 2.4. In the Table 2.1, one can see that
the maximum value of | tan(θ)Rn(θ)| on the interval [0, π] is much smaller than 1

2n+1 .

n 3 5 7 9 11 13

max
θ∈[0,π]

|tan(θ)Rn(θ)| 0.0511 0.0336 0.0249 0.0197 0.0163 0.0139

Table 2.1: Maximum value of | tan(θ)Rn(θ)| for some polynomial degrees n.

We observe that the approximation of Rn(θ) is very accurate in a small neighborhood
of θ = π

2 . By the substitution t = θ − π
2 ∈ [−π

2 ,
π
2 ] and (2.9), we obtain

Qn(sin t) = (−1)n λn cos[(n+
1

2
) t+

nπ

2
] + (−1)nRn(t+

π

2
)

= (−1)n λn cos(
nπ

2
) cos[(n+

1

2
) t]− (−1)n λn sin(

nπ

2
) sin[(n+

1

2
) t]

+ (−1)nRn(t+
π

2
) . (2.18)
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3 Prony–like method

In a first step we determine the even and odd polynomial degrees n0,j , n1,k in (2.7),
similar as in [16]. We use (2.8) and consider the function

√
π

2
4
√

1− x2H(x) =

M0∑
j=1

c0,j Qn0,j (x) +

M1∑
k=1

c1,kQn1,k
(x) . (3.1)

Now we use the approximation from Theorem 2.4. This means that we have to determine
the even and odd polynomial degrees n0,j , n1,k from sampling values of the function√

π

2

√
cos tH(sin t) ≈ F (t)

and by using (2.18) we infer

F (t) :=

M0∑
j=1

c̃0,j cos[(n0,j +
1

2
)t] +

M1∑
k=1

c̃1,k sin[(n1,k +
1

2
)t] .

To this end we consider

F (t) + F (−t)
2

=

M0∑
j=1

c̃0,j cos[(n0,j +
1

2
)t] (3.2)

and

F (t)− F (−t)
2

=

M1∑
k=1

c̃1,k sin[(n1,k +
1

2
)t] . (3.3)

Now we proceed similar as in [16], but we use only sampling points near by 0, due to the
small values of the error term Rn(t+ π

2 ) in a small neighborhood of t = 0 (see (2.16)).

Let N ∈ N be sufficiently large such that N > M and 2N − 1 is an upper bound of the
degree of the polynomial (2.6). For uN := sin π

2N−1 we form the nonequidistant sine–grid

{uN,k := sin kπ
2N−1 ; k = 1− 2M, . . . , 2M − 1} in the interval [−1, 1].

We consider the following problem of sparse Legendre interpolation: For given sampled
data

hk :=

√
π

2

√
cos

kπ

2N − 1
H(sin

kπ

2N − 1
) (k = 1− 2M, . . . , 2M − 1)

determine all parameters n0,j (j = 1, . . . ,M0) of the sparse cosine sum (3.2), determine
all parameters n1,k (k = 1, . . . ,M1) of the sparse sine sum (3.3) and finally determine
all coefficients c0,j (j = 1, . . . ,M0) and c1,k (k = 1, . . . ,M1) of the sparse Legendre
expansion (2.7).
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3.1 Sparse even Legendre interpolation

For a moment, we assume that the even Legendre sparsity M0 of the polynomial (2.7)
is known. Then we see that the above interpolation problem is closely related to the
interpolation problem of the sparse, even trigonometric polynomial

hk + h−k
2

≈ fk :=

M0∑
j=1

c̃0,j cos
(n0,j + 1/2)kπ

2N − 1
(k = 0, . . . , 2M0 − 1) , (3.4)

where the sampled values fk (k = 0, . . . , 2M0 − 1) are approximatively given.
We introduce the Prony polynomial Π0 of degree M0 with the leading coefficient 2M0−1,

whose roots are cos
(n0,j+1/2)π

2N−1 (j = 1, . . . ,M0), i.e.

Π0(x) = 2M0−1
M0∏
j=1

(
x− cos

(n0,j + 1/2)π

2N − 1

)
.

Then the Prony polynomial Π0 can be represented in the Chebyshev basis by

Π0(x) =

M0∑
l=0

p0,l Tl(x) (p0,M0 := 1) . (3.5)

The coefficients p0,l of the Prony polynomial (3.5) can be characterized as follows:

Lemma 3.1 (see [16]) For all k = 0, . . . , M0 − 1, the sampled data fk and the coeffi-
cients p0,l of the Prony polynomial (3.5) satisfy the equations

M0−1∑
j=0

(fj+k + f|j−k|) p0,j = −(fk+M0 + f|M0−k|) .

Using Lemma 3.1, one obtains immediately a Prony method for sparse even Legendre
interpolation in the case of known even Legendre sparsity. This algorithm is similar to
Algorithm 2.7 in [16] and omitted here.
In practice, the even/odd Legendre sparsities M0, M1 of the polynomial (2.7) of degree
at most 2N − 1 are unknown. Then we can apply the same technique as in Section 3 of
[16]. We assume that an upper bound L ∈ N of max {M0, M1} is known, where N ∈ N
is sufficiently large with max {M0,M1} ≤ L ≤ N . In order to improve the numerical
stability, we allow to choose more sampling points. Therefore we introduce an additional
parameter K with L ≤ K ≤ N such that we use K + L sampling points of (2.7), more
precisely we assume that sampled data fk (k = 0, . . . , L + K − 1) from (3.4) are given.
With the L + K sampled data fk ∈ R (k = 0, . . . , L + K − 1), we form the rectangular
Toeplitz–plus–Hankel matrix

H
(0)
K,L+1 :=

(
fl+m + f|l−m|

)K−1,L

l,m=0
. (3.6)

Note that H
(0)
K,L+1 is rank deficient with rank M0 (see Lemma 3.1 in [16]).
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3.2 Sparse odd Legendre interpolation

For a moment, we assume that the odd Legendre sparsity M1 of the polynomial (2.7)
is known. Then we see that the above interpolation problem is closely related to the
interpolation problem of the sparse, odd trigonometric polynomial

hk − h−k
2

≈ gk :=

M1∑
j=1

c̃1,j sin
(n1,j + 1/2)kπ

2N − 1
(k = 0, . . . , 2M1 − 1) , (3.7)

where the sampled values gk (k = 0, . . . , 2M1 − 1) are approximatively given.
We introduce the Prony polynomial Π1 of degree M1 with the leading coefficient 2M1−1,

whose roots are cos
(n1,j+1/2)π

2N−1 (j = 1, . . . ,M1), i.e.

Π1(x) = 2M1−1
M1∏
j=1

(
x− cos

(n1,j + 1/2)π

2N − 1

)
.

Then the Prony polynomial Π1 can be represented in the Chebyshev basis by

Π1(x) =

M1∑
l=0

p1,l Tl(x) (p1,M1 := 1) . (3.8)

The coefficients p1,j of the Prony polynomial (3.8) can be characterized as follows:

Lemma 3.2 For all k = 0, . . . , M1 − 1, the sampled data gk and the coefficients p1,l of
the Prony polynomial (3.8) satisfy the equations

M1−1∑
j=0

(gj+k + gj−k) p1,j = −(gk+M1 + gM1−k) . (3.9)

Proof. Using sin(α+ β) + sin(α− β) = 2 sinα cosβ, we obtain by (3.7) that

gj+k + gj−k = 2

M1∑
l=1

c̃1,l

(
sin

(n1,l + 1/2)(j + k)π

2N − 1
+ sin

(n1,l + 1/2)(j − k)π

2N − 1

)
= 2

M1∑
l=1

c̃1,l sin
(n1,l + 1/2)jπ

2N − 1
cos

(n1,l + 1/2)kπ

2N − 1
.

Thus we conclude that

M1∑
j=0

(
gj+k + gj−k

)
p1,j = 2

M1∑
l=1

c̃1,l sin
(n1,l + 1/2)kπ

2N − 1

M1∑
j=0

p1,j cos
(n1,l + 1/2)jπ

2N − 1

= 2

M1∑
l=1

c̃1,l sin
(n1,l + 1/2)kπ

2N − 1
Π1

(
cos

(n1,l + 1/2)π

2N − 1

)
= 0 .

11



By p1,M1 = 1, this implies the assertion (3.9).

Using Lemma 3.2, one can formulate a Prony method for sparse odd Legendre interpola-
tion in the case of known odd Legendre sparsity. This algorithm is similar to Algorithm
2.7 in [16] and omitted here.
In general, the even/odd Legendre sparsities M0 and M1 of the polynomial (2.7) of
degree at most 2N − 1 are unknown. Similarly as in Subsection 3.1, let L ∈ N be
a convenient upper bound of max {M0, M1}, where N ∈ N is sufficiently large with
max {M0, M1} ≤ L ≤ N . In order to improve the numerical stability, we allow to
choose more sampling points. Therefore we introduce an additional parameter K with
L ≤ K ≤ N such that we use K +L sampling points of (2.7), more precisely we assume
that sampled data gk (k = 0, . . . , L+K−1) from (3.7) are given. With the L+K sampled
data gk ∈ R (k = 0, . . . , L+K−1) we form the rectangular Toeplitz–plus–Hankel matrix

H
(1)
K,L+1 :=

(
gl+m + gl−m

)K−1,L

l,m=0
. (3.10)

Note that H
(1)
K,L+1 is rank deficient with rank M1. This is an analogous result to Lemma

3.1 in [16].

3.3 Sparse Legendre interpolation

In this subsection, we sketch a Prony–like method for the computation of the polynomial
degrees n0,j and n1,k of the sparse Legendre expansion (2.7). Mainly we use singular
value decompositions (SVD) of the Toeplitz–plus–Hankel matrices (3.6) and (3.10). For
details of this method see Section 3 in [16]. We start with the singular value factorizations

H
(0)
K,L+1 = U

(0)
K D

(0)
K,L+1 W

(0)
L+1 ,

H
(1)
K,L+1 = U

(1)
K D

(1)
K,L+1 W

(1)
L+1 ,

where U
(0)
K , U

(1)
K , W

(0)
L+1 and W

(1)
L+1 are orthogonal matrices and where D

(0)
K,L+1 and

D
(1)
K,L+1 are rectangular diagonal matrices. The diagonal entries of D

(0)
K,L+1 are the

singular values of (3.6) arranged in nonincreasing order

σ
(0)
1 ≥ σ(0)

2 ≥ . . . ≥ σ(0)
M0
≥ σ(0)

M0+1 ≥ . . . ≥ σ
(0)
L+1 ≥ 0 .

We determine M0 such that σ
(0)
M0
/σ

(0)
1 ≥ ε, which is approximatively the rank of the

matrix (3.6) and which coincides with the even Legendre sparsity M0 of the polynomial
(2.7).

Similarly, the diagonal entries of D
(1)
K,L+1 are the singular values of (3.10) arranged in

nonincreasing order

σ
(1)
1 ≥ σ(1)

2 ≥ . . . ≥ σ(1)
M1
≥ σ(1)

M1+1 ≥ . . . ≥ σ
(1)
L+1 ≥ 0 .

We determine M1 such that σ
(1)
M1
/σ

(1)
1 ≥ ε, which is approximatively the rank of the

matrix (3.10) and which coincides with the odd Legendre sparsity M1 of the polynomial
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(2.7). Note that there is often a gap in the singular values, such that we can choose
ε = 10−8 in general.
Introducing the matrices

D
(0)
K,M0

:= D
(0)
K,L+1(1 : K, 1 : M0) =

(
diag (σ

(0)
j )M0

j=1

OK−M0,M0

)
,

W
(0)
M0,L+1 := W

(0)
L+1(1 : M0, 1 : L+ 1) ,

D
(1)
K,M1

:= D
(1)
K,L+1(1 : K, 1 : M1) =

(
diag (σ

(1)
j )M1

j=1

OK−M1,M1

)
,

W
(1)
M1,L+1 := W

(1)
L+1(1 : M1, 1 : L+ 1) ,

we can simplify the SVD of the Toeplitz–plus–Hankel matrices (3.6) and (3.10) as follows

H
(0)
K,L+1 = U

(0)
K D

(0)
K,M0

W
(0)
M0,L+1 , H

(1)
K,L+1 = U

(1)
K D

(1)
K,M1

W
(1)
M1,L+1 .

Using the know submatrix notation and setting

W
(0)
M0,L

(s) := W
(0)
M0,L+1(1 : M0, 1 + s : L+ s) (s = 0, 1) , (3.11)

W
(1)
M1,L

(s) := W
(1)
M1,L+1(1 : M1, 1 + s : L+ s) (s = 0, 1) , (3.12)

we form the matrices

F
(0)
M0

:=
(
W

(0)
M0,L

(0)
)†

W
(0)
M0,L

(1) , (3.13)

F
(1)
M1

:=
(
W

(1)
M1,L

(0)
)†

W
(1)
M1,L

(1) , (3.14)

where
(
W

(0)
M0,L

(0)
)†

denotes the Moore–Penrose pseudoinverse of W
(0)
M0,L

(0). Finally we
determine the nodes x0,j ∈ [−1, 1] (j = 1, . . . ,M0) and x1,j ∈ [−1, 1] (j = 1, . . . ,M1)

as eigenvalues of the matrix F
(0)
M0

and F
(1)
M1

, respectively. Thus the algorithm reads as
follows:

Algorithm 3.3 (Sparse Legendre interpolation based on SVD)

Input: L, K, N ∈ N (N � 1, 3 ≤ L ≤ K ≤ N), L is upper bound of max{M0,M1},
sampled values H(sin kπ

2N−1) (k = 1− L−K, . . . , L+K − 1) of the polynomial (2.7) of
degree at most 2N − 1.

1. Multiply

hk :=

√
π

2

√
cos

kπ

2N − 1
H
(

sin
kπ

2N − 1

)
(k = 1− L−K, . . . , L+K − 1)

and form

fk :=
hk + h−k

2
, gk :=

hk − h−k
2

(k = 0, . . . , L+K − 1) .
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2. Compute the SVD of the rectangular Toeplitz–plus–Hankel matrices (3.6) and (3.10).

Determine the approximative rank M0 of (3.6) such that σ
(0)
M0
/σ

(0)
1 > 10−8 and form the

matrix (3.11). Determine the approximative rank M1 of (3.10) such that σ
(1)
M1
/σ

(1)
1 >

10−8 and form the matrix (3.12).
3. Compute all eigenvalues x0,j ∈ [−1, 1] (j = 1, . . . ,M0) of the square matrix (3.13).
Assume that the eigenvalues are ordered in the following form 1 ≥ x0,1 > x0,2 > . . . >
x0,M0 ≥ −1. Calculate n0,j := [2N−1

π arccosx0,j − 1
2 ] (j = 1, . . . ,M0), where [x] :=

bx+ 0.5c means rounding of x ∈ R to the nearest integer.
4. Compute all eigenvalues x1,j ∈ [−1, 1] (j = 1, . . . ,M1) of the square matrix (3.14).
Assume that the eigenvalues are ordered in the following form 1 ≥ x1,1 > x1,2 > . . . >
x1,M1 ≥ −1. Calculate n1,j := [2N−1

π arccosx1,j − 1
2 ] (j = 1, . . . ,M1).

5. Compute the coefficients c0,j ∈ R (j = 1, . . . ,M0) and c1,j ∈ R (j = 1, . . . ,M1) as
least squares solutions of the overdetermined linear Vandermonde–like systems

M0∑
j=1

c0,j Qn0,j

(
sin

kπ

2N − 1

)
= fk (k = 0, . . . , L+K − 1) ,

M1∑
j=1

c1,j Qn1,j

(
sin

kπ

2N − 1

)
= gk (k = 0, . . . , L+K − 1) .

Output: M0 ∈ N0, n0,j ∈ N0 (0 ≤ n0,1 < n0,2 < . . . < n0,M0 < 2N), c0,j ∈ R (j =
1, . . . ,M0). M1 ∈ N0, n1,j ∈ N (1 ≤ n1,1 < n1,2 < . . . < n1,M1 < 2N), c1,j ∈ R
(j = 1, . . . ,M1).

Remark 3.4 The Algorithm 3.3 is very similar to the Algorithm 3.5 in [16]. Note that
one can also use the QR decomposition of the rectangular Toeplitz–plus–Hankel matrices
(3.6) and (3.10) instead of the SVD. In that case one obtains an algorithm similar to
the Algorithm 3.4 in [16].

4 Extension to Gegenbauer polynomials

In this section we show that our reconstruction method can be generalized to sparse

Gegenbauer extensions of low positive order. The Gegenbauer polynomials C
(α)
n of degree

n ∈ N0 and fixed order α > 0 can be defined by the recursion relation (see [19, p. 81]):

C
(α)
n+2(x) :=

2α+ 2n+ 2

n+ 2
xC

(α)
n+1(x)− 2α+ n

n+ 2
C(α)
n (x) (n ∈ N0)

with C
(α)
0 (x) := 1 and C

(α)
1 (x) := 2αx. Sometimes, C

(α)
n are called ultraspherical polyno-

mials too. In the case α = 1
2 , one obtains again the Legendre polynomials Pn = C

(1/2)
n .

By [19, p. 84], an explicit representation of the Gegenbauer polynomial C
(α)
n reads as

follows

C(α)
n (x) =

bn/2c∑
j=0

(−1)j Γ(n− j + α)

Γ(α) Γ(j + 1) Γ(n− 2j + 1)
(2x)n−2j .
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Thus the Gegenbauer polynomials satisfy the symmetry relations

C(α)
n (−x) = (−1)nC(α)

n (x) . (4.1)

Further one obtains that for m ∈ N0

C
(α)
2m (0) =

(−1)m Γ(m+ 1
2)

Γ(α) Γ(m+ 1)
, C

(α)
2m+1(0) = 0 , (4.2)

( d

dx
C

(α)
2m+1

)
(0) =

2 (−1)m Γ(α+m+ 1)

Γ(α) Γ(m+ 1)
,
( d

dx
C

(α)
2m

)
(0) = 0 . (4.3)

Moreover, the Gegenbauer polynomial C
(α)
n satisfies the following homogeneous linear

differential equation of second order (see [19, p. 80])

(1− x2)
d2

dx2
C(α)
n (x)− (2α+ 1)x

d

dx
C(α)
n (x) + n (n+ 2α)C(α)

n (x) = 0 . (4.4)

Further, the Gegenbauer polynomials are orthogonal over the interval [−1, 1] with re-
spect to the weight function

w(α)(x) =
Γ(α+ 1)
√
π Γ(α+ 1

2)
(1− x2)α−1/2 (x ∈ (−1, 1)) ,

i.e. more precisely by [19, p. 81]∫ 1

−1
C(α)
m (x)C(α)

n (x)w(α)(x) dx =
αΓ(2α+ n)

(n+ α) Γ(n+ 1) Γ(2α)
δm−n (m, n ∈ N0) .

Note that the weight function w(α) is normalized by∫ 1

−1
w(α)(x) dx = 1 .

Then the normed Gegenbauer polynomials

L(α)
n (x) :=

√
(n+ α) Γ(n+ 1) Γ(2α)

αΓ(2α+ n)
C(α)
n (x) (n ∈ N0) (4.5)

form an orthonormal basis in the weighted Hilbert space Lw(α)([−1, 1]).
Let M be a positive integer. A polynomial

H(x) :=
d∑

k=0

bk L
(α)
k (x)

of degree d with d � M is called M -sparse in the Gegenbauer basis or simply a sparse
Gegenbauer expansion, if M coefficients bk are nonzero and if the other d − M + 1
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coefficients vanish. Then such an M -sparse polynomial H can be represented in the
form

H(x) =

M0∑
j=1

c0,j L
(α)
n0,j

(x) +

M1∑
k=1

c1,k L
(α)
n1,k

(x) (4.6)

with c0,j := bn0,j 6= 0 for all even n0,j with 0 ≤ n0,1 < n0,2 < . . . < n0,M0 and with
c1,k := bn1,k

6= 0 for all odd n1,k with 1 ≤ n1,1 < n1,2 < . . . < n1,M1 . The positive integer
M = M0 +M1 is called the Gegenbauer sparsity of the polynomial H. The integers M0,
M1 are the even and odd Gegenbauer sparsities, respectively.

Now for each n ∈ N0, we introduce the functions Q
(α)
n by

Q(α)
n (x) :=

√
Γ(α+ 1)

√
π

Γ(α+ 1
2)

(1− x2)α/2 L(α)
n (x) (x ∈ [−1, 1]) (4.7)

These functions Q
(α)
n possess the same symmetry properties (4.1) as the Gegenbauer

polynomials, namely

Q(α)
n (−x) = (−1)nQ(α)

n (x) (x ∈ [−1, 1]) . (4.8)

Further the functions Q
(α)
n are orthonormal in the weighted Hilbert space L2

w([−1, 1])
with the Chebyshev weight w(x) = 1

π (1− x2)−1/2, since for all m, n ∈ N0∫ 1

−1
Q(α)
m (x)Q(α)

n (x)w(x) dx =

∫ 1

−1
L(α)
m (x)L(α)

n (x)w(α)(x) dx = δm−n .

In the following, we use the standard substitution x = cos θ (θ ∈ [0, π]) and obtain

Q(α)
n (cos θ) :=

√
Γ(α+ 1)

√
π

Γ(α+ 1
2)

(sin θ)α L(α)
n (cos θ) .

Lemma 4.1 For all n ∈ N0 and α ∈ (0, 1), the functions Q
(α)
n (cos θ) are uniformly

bounded on the interval [0, π], i.e.

|Q(α)
n (cos θ)| < 2 (θ ∈ [0, π]) . (4.9)

Proof. For n ∈ N0 and α ∈ (0, 1), we know by [12] that for all θ ∈ [0, π]

(sin θ)α |C(α)
n (cos θ)| < 21−α

Γ(α)
(n+ α)α−1 .

Then for the normed Gegenbauer polynomials L
(α)
n , we obtain the estimate

(sin θ)α |L(α)
n (cos θ)| < 21−α

Γ(α)

√
(n+ α) Γ(n+ 1) Γ(2α)

αΓ(2α+ n)
(n+ α)α−1 .
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Using the duplication formula of the gamma function

Γ(α) Γ(α+
1

2
) = 21−2α√π Γ(2α) , (4.10)

we can estimate

|Q(α)
n (cos θ)| <

√
2

√
Γ(n+ 1)

Γ(2α+ n)
(n+ α)α−1/2 .

For α = 1
2 , we obtain |Q(1/2)

n (cos θ)| <
√

2. In the following, we use the inequalities (see
[8]) (

n+
σ

2

)1−σ
<

Γ(n+ 1)

Γ(n+ σ)
<
(
n− 1

2
+

√
σ +

1

4

)1−σ
(4.11)

for all n ∈ N and σ ∈ (0, 1).

In the case 0 < α < 1
2 , the estimate (4.11) with σ = 2α implies that

|Q(α)
n (cos θ)| <

√
2
(n− 1

2 +
√

2α+ 1
4

n+ α

)−α+1/2
.

Since n− 1
2 +

√
2α+ 1

4 < 2 (n+ α) for all n ∈ N, we conclude that

|Q(α)
n (cos θ)| < 21−α .

In the case 1
2 < α < 1, we set β := 1 − 2α ∈ (0, 1). By (4.11) with σ = β, we can

estimate

Γ(n+ 1)

Γ(n+ 2α)
=

Γ(n+ 1)

(n+ β) Γ(n+ β)
<

1

n+ β

(
n− 1

2
+

√
β +

1

4

)1−β
.

Hence we obtain by n− 1
2 +

√
β + 1

4 < n+ β that

|Q(α)
n (cos θ)| <

√
2√

n+ β

(
n− 1

2
+

√
β +

1

4

)(1−β)/2
(n+ α)α−1/2

<
√

2
(
n− 1

2
+

√
β +

1

4

)−β/2 (
n+

1− β
2

)β/2
<
√

2 .

Finally, by

Q
(α)
0 (cos θ) =

√
αΓ(α)

√
π

Γ(α+ 1
2)

(sin θ)α

and

|Q(α)
0 (cos θ)| ≤ 4

√
π ,

we see that the estimate (4.9) is also true for n = 0.
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By (4.4), the function Q
(α)
n (cos θ) satisfies the following linear differential equation of

second order (see [19, p. 81])

d2

dθ2
Q(α)
n (cos θ) +

(
(n+ α)2 +

α(1− α)

(sin θ)2

)
Q(α)
n (cos θ) = 0 (θ ∈ (0, π)) . (4.12)

By the method of Liouville–Stekloff, see [19, p. 210 – 212], we show that for arbitrary n ∈
N0, the function Q

(α)
n (cos θ) is approximately equal to some multiple of cos[(n+α) θ− απ

2 ]
in a small neighborhood of θ = π

2 .

Theorem 4.2 For each n ∈ N0 and α ∈ (0, 1), the function Q
(α)
n (cos θ) can be repre-

sented by the asymptotic formula

Q(α)
n (cos θ) = λn cos[(n+ α) θ − απ

2
] +R(α)

n (θ) (θ ∈ [0, π]) (4.13)

with the scaling factor

λn :=


√

(2m+α) Γ(2m+1)
Γ(2α+2m)

2α−1/2 Γ(m+ 1
2

)

Γ(m+1) n = 2m,√
Γ(2m+2)

(2m+1+α) Γ(2α+2m+1)
2α+1/2 Γ(α+m+1)

Γ(m+1) n = 2m+ 1

and the error term

R(α)
n (θ) := −α(1− α)

n+ α

∫ θ

π/2

sin[(n+ α)(θ − τ)]

(sin τ)2
Q(α)
n (cos τ) dτ (θ ∈ (0, π)) . (4.14)

The error term R
(α)
n (θ) satisfies the conditions

R(α)
n (

π

2
) =

( d

dθ
R(α)
n

)
(
π

2
) = 0

and has the symmetry property

R(α)
n (π − θ) = (−1)nR(α)

n (θ) . (4.15)

Further, the error term can be estimated by

|R(α)
n (θ)| ≤ 2α(1− α)

n+ α
| cot θ| . (4.16)

Proof. 1. Using the method of Liouville–Stekloff (see [19, p. 210 – 212]), we derive the
asymptotic formula (4.13) from the differential equation (4.12), which can be written in
the form

d2

dθ2
Q(α)
n (cos θ) + (n+ α)2Q(α)

n (cos θ) = −α(1− α)

(sin θ)2
Q(α)
n (cos θ) (θ ∈ (0, π)) . (4.17)
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Since the homogeneous linear differential equation

d2

dθ2
Q(α)
n (cos θ) + (n+ α)2Q(α)

n (cos θ) = 0

has the fundamental system

cos[(n+ α) θ − απ

2
] , sin[(n+ α) θ − απ

2
] ,

the differential equation (4.17) can be transformed into the Volterra integral equation

Q(α)
n (cos θ) = λn cos[(n+ α) θ − απ

2
] + µn sin[(n+ α) θ − απ

2
]

−α(1− α)

n+ α

∫ θ

π/2

sin[(n+ α)(θ − τ)]

(sin τ)2
Q(α)
n (cos τ) dτ (θ ∈ (0, π))

with certain real constants λn and µn. The integral (4.14) and its derivative vanish for
θ = π

2 .
2. Now we determine the constants λn and µn. For arbitrary even n = 2m (m ∈ N0),

the function Q
(α)
2m(cos θ) can be represented in the form

Q
(α)
2m(cos θ) = λ2m cos[(2m+ α) θ − απ

2
] + µ2m sin[(2m+ α) θ − απ

2
] +R

(α)
2m(θ)

Hence the condition R
(α)
2m(π2 ) = 0 means that Q

(α)
2m(0) = (−1)mλ2m. Using (4.7), (4.5),

(4.2), and the duplication formula (4.10), we obtain that

λ2m =

√
(2m+ α) Γ(2m+ 1)

Γ(2α+ 2m)

2α−1/2 Γ(m+ 1
2)

Γ(m+ 1)
.

From
(

d
dx C

(α)
2m

)
(0) = 0 by (4.3) it follows that the derivative of Q

(α)
2m(cos θ) vanishes for

θ = π
2 . Thus the second condition

(
d
dθ R

(α)
2m

)
(π2 ) = 0 implies that

0 = µ2m (2m+ α) (−1)m ,

i.e. µ2m = 0.
3. If n = 2m+ 1 (m ∈ N0) is odd, then

Q
(α)
2m+1(cos θ) = λ2m+1 cos[(2m+ 1 + α)θ − απ

2
]

+µ2m+1 sin[(2m+ 1 + α) θ − απ

2
] +R

(α)
2m+1(θ) .

Hence the condition R
(α)
2m+1(π2 ) = 0 implies by C

(α)
2m+1(0) = 0 (see (4.2)) that

0 = µ2m+1 (−1)m ,
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i.e. µ2m+1 = 0. The second condition
(

d
dθ R

(α)
2m+1

)
(π2 ) = 0 reads as follows

−

√
(n+ α) Γ(α) Γ(2α) Γ(2m+ 2)

√
π

Γ(α+ 1
2) Γ(2α+ 2m+ 1) Γ(α)

( d

dx
C

(α)
2m+1

)
(0) = −λ2m+1 (2m+ 1 + α) (−1)m .

Thus we obtain by (4.3) and the duplication formula (4.10) that

λ2m+1 =

√
Γ(2m+ 2)

(2m+ 1 + α) Γ(2α+ 2m+ 1)

2α+1/2 Γ(α+m+ 1)

Γ(m+ 1)
.

4. As shown, the error term R
(α)
n (θ) has the explicit representation (4.14). Using (4.9),

we estimate this integral and obtain

|R(α)
n (θ)| ≤ 2α(1− α)

n+ α

∣∣∣ ∫ θ

π/2

1

(sin τ)2
dτ
∣∣∣ =

2α(1− α)

n+ α
| cot θ| .

The symmetry property (4.15) of the error term

R(α)
n (θ) = Q(α)

n (cos θ)− λn cos[(n+ α)θ − απ

2
]

follows from the fact that Q
(α)
n (cos θ) and cos[(n+α)θ− απ

2 ] possess the same symmetry
properties as (4.8). This completes the proof.

Remark 4.3 The following result is stated in [9]: If α ≥ 1
2 , then

(sin θ)α |L(α)
n (cos θ)| ≤ 22

√√
π Γ(α+ 1

2)

Γ(α+ 1)

(
α− 1

2

)1/6 (
1 +

2α− 1

2n

)1/12

for all n ≥ 6 and θ ∈ [0, π]. Using (4.11), we can see that the function (sin θ)α |L(α)
n (cos θ)|

is uniformly bounded for all α ≥ 1
2 , n ≥ 6 and θ ∈ [0, π]. Using above estimate, one can

extend Theorem 4.2 to the case of moderately sized order α ≥ 1
2 .

We observe that the approximation of R
(α)
n (θ) in (4.16) is very accurate in a small

neighborhood of θ = π
2 . By the substitution t = θ − π

2 ∈ [−π
2 ,

π
2 ] and (4.8), we obtain

Q(α)
n (sin t) = (−1)n λn cos[(n+ α) t+

nπ

2
] + (−1)nRn(t+

π

2
)

= (−1)n λn cos(
nπ

2
) cos[(n+ α) t]− (−1)n λn sin(

nπ

2
) sin[(n+ α) t]

+ (−1)nRn(t+
π

2
) .

Now the Algorithm 3.3 can be straightforward generalized to the case of a sparse Gegen-
bauer expansion (4.6):
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Algorithm 4.4 (Sparse Gegenbauer interpolation based on SVD)

Input: L, K, N ∈ N (N � 1, 3 ≤ L ≤ K ≤ N), L is upper bound of max{M0,M1},
sampled values H(sin kπ

2N−1) (k = 1−L−K, . . . , L+K−1) of polynomial (4.6) of degree
at most 2N − 1 and of low order α > 0. (k = 0, . . . , L+K − 1).

1. Multiply

hk :=

√
Γ(α+ 1)

√
π

Γ(α+ 1
2)

(
cos

kπ

2N − 1

)α
H
(

sin
kπ

2N − 1

)
(k = 1− L−K, . . . , L+K − 1)

and form

fk :=
hk + h−k

2
, gk :=

hk − h−k
2

(k = 0, . . . , L+K − 1) .

2. Compute the SVD of the rectangular Toeplitz–plus–Hankel matrices (3.6) and (3.10).

Determine the approximative rank M0 of (3.6) such that σ
(0)
M0
/σ

(0)
1 > 10−8 and form the

matrix (3.11). Determine the approximative rank M1 of (3.10) such that σ
(1)
M1
/σ

(1)
1 >

10−8 and form the matrix (3.12).

3. Compute all eigenvalues x0,j ∈ [−1, 1] (j = 1, . . . ,M0) of the square matrix (3.13).
Assume that the eigenvalues are ordered in the following form 1 ≥ x0,1 > x0,2 > . . . >
x0,M0 ≥ −1. Calculate n0,j := [2N−1

π arccosx0,j − α] (j = 1, . . . ,M0).

4. Compute all eigenvalues x1,j ∈ [−1, 1] (j = 1, . . . ,M1) of the square matrix (3.14).
Assume that the eigenvalues are ordered in the following form 1 ≥ x1,1 > x1,2 > . . . >
x1,M1 ≥ −1. Calculate n1,j := [2N−1

π arccosx1,j − α] (j = 1, . . . ,M1).

5. Compute the coefficients c0,j ∈ R (j = 1, . . . ,M0) and c1,j ∈ R (j = 1, . . . ,M1) as
least squares solutions of the overdetermined linear Vandermonde–like systems

M0∑
j=1

c0,j Q
(α)
n0,j

(
sin

kπ

2N − 1

)
= fk (k = 0, . . . , L+K − 1) ,

M1∑
j=1

c1,j Q
(α)
n1,j

(
sin

kπ

2N − 1

)
= gk (k = 0, . . . , L+K − 1) .

Output: M0 ∈ N0, n0,j ∈ N0 (0 ≤ n0,1 < n0,2 < . . . < n0,M0 < 2N), c0,j ∈ R (j =
1, . . . ,M0). M1 ∈ N0, n1,j ∈ N (1 ≤ n1,1 < n1,2 < . . . < n1,M1 < 2N), c1,j ∈ R
(j = 1, . . . ,M1).

5 Numerical examples

Now we illustrate the behavior and the limits of the suggested algorithms. Using IEEE
standard floating point arithmetic with double precision, we have implemented our al-
gorithms in MATLAB. In Example 5.1, an M -sparse Legendre expansion is given in
the form (2.7) with normed Legendre polynomials of even degree n0,j (j = 1, . . . ,M0)
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and odd degree n1,k (k = 1, . . . ,M1), respectively, and corresponding real non-vanishing
coefficients c0,j and c1,k, respectively. In Examples 5.2 and 5.3, an M -sparse Gegenbauer
expansion is given in the form (4.6) with normed Gegenbauer polynomials (of even/odd
degree n0,j resp. n1,k and order α > 0) and corresponding real non-vanishing coefficients
c0,j resp. c1,k. We compute the absolute error of the coefficients by

e(c) := max
j=1,...,M0
k=1,...,M1

{|c0,j − c̃0,j |, |c1,k − c̃1,k|} (c := (c0,1, . . . , c0,M0 , c1,1, . . . , c1,M1)T) ,

where c̃0,j and c̃1,k are the coefficients computed by our algorithms. The symbol + in
the Tables 5.1 – 5.3 means that all degrees nj are correctly reconstructed, the symbol −
indicates that the reconstruction of the degrees fails. We present the error e(c) in the
last column of the tables.

Example 5.1 We start with the reconstruction of a 5–sparse Legendre expansion (2.7)
which is a polynomial of degree 200. We choose the even degrees n0,1 = 6, n0,2 = 12,
n0,3 = 200 and the odd degrees n1,1 = 175, n1,2 = 177 in (2.7). The corresponding
coefficients c0,j and c1,k are equal to 1. Note that for the parameters N = 400 and
K = L = 5, due to roundoff errors, some eigenvalues x̃0,j resp. x̃1,k are not contained
in [−1, 1]. But we can improve the stability by choosing more sampling values. In the
case N = 500, K = 9 and L = 5, we need only 2 (K + L) − 1 = 27 sampled values of
(3.1) for the exact reconstruction of the 5–sparse Legendre expansion (2.7).

N K L Algorithm 3.3 e(c)

101 5 5 + 3.3307e-15

200 5 5 + 5.5511e-16

300 5 5 + 1.5876e-14

400 5 5 − –

400 6 5 + 1.6209e-14

500 6 5 − –

500 7 5 − –

500 9 5 + 2.4780e-13

Table 5.1: Results of Example 5.1.

Example 5.2 We consider now the reconstruction of a 5–sparse Gegenbauer expansion
(4.6) of order α > 0 which is a polynomial of degree 200. Similar as in Example 5.1, we
choose the even degrees n0,1 = 6, n0,2 = 12, n0,3 = 200 and the odd degrees n1,1 = 175,
n1,2 = 177 in (4.6). The corresponding coefficients c0,j and c1,k are equal to 1. Here
we use only 2 (L + K) − 1 = 19 sampled values for the exact recovery of the 5–sparse
Gegenbauer expansion (4.6) of degree 200. Note that we show also some examples for
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α > 1. But the suggested method fails for α = 3.5. In this case our algorithm can not
exactly detect the smallest degrees n0,1 = 6 and n0,2 = 12, but all the higher degrees are
exactly detected.

α N K L Algorithm 4.4 e(c)

0.1 101 5 5 + 5.5511e-16

0.2 101 5 5 + 2.2204e-16

0.4 101 5 5 − –

0.4 200 5 5 + 1.0769e-14

0.5 200 5 5 + 8.8818e-16

0.9 200 5 5 + 7.5835e-16

1.5 200 5 5 + 1.3323e-15

2.5 200 5 5 + 1.1102e-16

3.5 200 5 5 − –

Table 5.2: Results of Example 5.2.

Example 5.3 We consider the reconstruction of a 5–sparse Gegenbauer expansion (4.6)
of order α > 0 which does not consist of Gegenbauer polynomials of low degrees. Thus
we choose the even degrees n0,1 = 60, n0,2 = 120, n0,3 = 200 and the odd degrees
n1,1 = 175, n1,2 = 177 in (4.6). The corresponding coefficients c0,j and c1,k are equal to
1. In Table 5.3, we show also some examples for α ≥ 2.5. But the suggested method
fails for α = 8. In this case, Algorithm 4.4 can not exactly detect the smallest degree
n0,1 = 60, but all the higher degrees are exactly recovered. This observation is in perfect
accordance with the very good local approximation near by θ = π/2, see Theorem 4.2
and Remark 4.3.

Example 5.4 We stress again that the Prony–like methods are very powerful tools for
the recovery of a sparse exponential sum

S(x) :=
M∑
j=1

cj efjx (x ≥ 0)

with distinct numbers fj ∈ (−∞, 0] + i [−π, π) and complex non–vanishing coefficients
cj , if only finitely many sampled data of S are given. In [16], we have presented a method
to reconstruct functions of the form

F (θ) =
M∑
j=1

(
cj cos(νjθ) + dj sin(µjθ)

)
(θ ∈ [0, π]) .
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α N K L Algorithm 4.4 e(c)

0.1 101 5 5 + 1.2879e-14

0.2 101 5 5 + 1.1879e-14

0.4 101 5 5 − –

0.4 200 5 5 + 3.1086e-15

0.9 200 5 5 + 1.3323e-14

2.5 200 5 5 + 7.7716e-16

3.5 200 5 5 + 5.4401e-15

4.5 200 5 5 + 3.3862e-14

7.0 200 5 5 + 2.2204e-16

7.5 200 5 5 + 3.3307e-16

8.0 200 5 5 − –

9.0 200 5 5 − –

Table 5.3: Results of Example 5.3.

with real coefficients cj , dj and distinct frequencies νj , µj > 0 by sampling the function
F , see [16, Example 5.5].

Now we reconstruct a sum of sparse Legendre and Chebyshev expansions

H(x) :=
M∑
j=1

cj Lnj (x) +
M ′∑
k=1

dk Tmk(x) (x ∈ [−1, 1]) . (5.1)

Here we choose cj = dk = 1, M = M ′ = 5 and (nj)
5
j=1 = (6, 13, 165, 168, 190)T and

(mk)
5
k=1 = (60, 120, 175, 178, 200)T. We apply Algorithm 3.3 with N = 200, K = L = 20

and calculate in step 3 for the even polynomial degrees

(
2N − 1

π
arccosx0,j)

7
j=1 = (199.999, 189.503, 178.002, 167.499, 120.000, 60.000, 5.519)T

and in step 4 for the odd polynomial degrees

(
2N − 1

π
arccosx1,j)

3
j=1 = (164.500, 175.000, 12.509)T .

We use now the information that only polynomial degrees with the orders α = 0 and
α = 1

2 occur. So we infer that (5.1) contains Legendre polynomials (for α = 1
2) of degrees

190, 168, and 6 by step 3 and of degrees 165 and 13 by step 4. Similarly we find the
Chebyshev polynomials (for α = 0) of degrees 200, 178, 120, and 60 by step 3 and of
degree 175 by step 4. Finally, we can compute the coefficients cj and dk.
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[19] G. Szegő. Orthogonal Polynomials. Amer. Math. Soc., Providence, RI, USA, 4th
edition, 1975.

26


	Introduction
	Properties of Legendre polynomials
	Prony–like method
	Sparse even Legendre interpolation
	Sparse odd Legendre interpolation
	Sparse Legendre interpolation

	Extension to Gegenbauer polynomials
	Numerical examples

