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Abstract

In this paper we consider random Hamiltonians defined on long-range percolation
graphs over Zd. The Hamiltonian consists of a randomly weighted Laplacian plus a
random potential. We prove uniform existence of the integrated density of states and
express the IDS using a Pastur-Shubin trace formula.

1 Introduction

In the study of solution properties and spectral features of random ergodic and periodic
operators the integrated density of states (IDS), also known as spectral distribution function,
plays and important role. While it is by its very nature a much simpler object than the
original one, i.e. the operator family, it exhibits a number of features which turn out to be
crucial for the understanding of the spectrum and the corresponding eigensolutions. Let us
spell out some of these features explicitly:

(A) the low energy asymptotics of the IDS,

(B) its local and global continuity properties, and

(C) its approximability by finite volume analogues.

In fact, (C) is of relevance for all other questions about the IDS since all methods used
to answer/understand them rely on one stage or another on finite volume approximations.
Of course, depending on the question which is being considered, the type and quality of the
approximation (C) will vary.

Let us highlight the intimate relationship between the continuity (B) and approximability
(C) properties on an elementary level, to provide a motivation for the discussion which follows.
On the one hand, if a sequence of probability measures converges weakly to a measure with
no atoms, the corresponding distribution functions converge already uniformly. On the other
hand, uniform convergence of continuous distribution functions obviously implies that the
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limiting measure has no atoms. Now, there are important classes of random operators where
it is known that the IDS is not continuous (and other, where continuity is still an open
question). In this setting the question arises whether the approximability (C) in the L∞-
topology persists or not. More precisely, it is natural to ask, what are reasonable criteria,
and which is the mechanism, which ensures that the finite volume approximating distribution
functions converge uniformly to the IDS.

Let us review the history of works addressing the above explained approximability ques-
tion. In the simplest setting of finite-hopping range ergodic operators on `2(Zd) the continuity
of the IDS was established already in [13]. In fact, this result can be sharpened under very
mild conditions to a quantitative form of continuity, namely log-Hölder continuity, c.f. [11].
In the corresponding continuum setting, more specifically for ergodic Schrödinger operators
on L2(Rd), the complexity of this question is highly dependent on the space dimension d. For
one dimension, log-Hölder continuity of the IDS of ergodic operators was established in [12].
This result uses a technique very specific to one space dimension, namely transfer matrices.
The higher dimensional case was tackled only very recently in [6], where log-Hölder continu-
ity of the IDS was shown for Schrödinger operators on L2(Rd) for d ≤ 3. The case d ≥ 4
is still open. This is due to the fact that the present state of knowledge about quantitative
unique continuation properties of eigensolutions of Schrödinger operators based on Carleman
estimates, cf. e.g. [5], is good enough for the IDS-continuity proof in dimensions three and
less, but not above this threshold. (Let us also note that this result is not stable under the
addition of magnetic field, the primary counterexample being the Landau Hamiltonian, whose
IDS is a step function. Note that the eigenfunctions there have a Gaussian decay, in contrast
to the lower bounds on the decay established in [5].)

Let us stress that we are discussing here continuity properties of the integrated density
of states and the associated measure without assuming that the underlying random variables
are continuously distributed. If this distribution is sufficiently regular, one can prove the
continuity of the integrated density of states along the lines introduced in the famous paper
by Wegner [37]. Although this is a quite different phenomenon than the one analyzed in this
paper, let us give the interested reader references where these aspects of random operators
on graphs and in the continuum are explored in detail. For random Schrödinger operators on
the lattice a rigorous formulation of Wegner’s proof can be found e.g. in the summer course
notes [17], which implies the continuity of the integrated density of states and carries directly
over to periodic graphs. A survey on regularity results for the integrated density of states
of random Schrödinger operators in the continuum, covering the period up to 2007, can be
found in [36]. More recently, further progress about quantitative estimates on the continuity
of the integrated density of states was achieved in e. g. [8, 10, 9].

Once one moves away from the Euclidean setting, continuity is no longer a prevailing
feature of the IDS. There are two important prototypical examples of discrete Laplace and
Schrödinger operators whose IDS exhibit jumps: Hamiltonians on percolation clusters [7],
[35] and quasi-crystal graphs [23, 24, 19]. In the former model the discontinuities form even
a dense set in the spectrum. Nevertheless, it has been established that the sequence of
normalized finite volume eigenvalue counting functions converges at every energy and even
uniformly along the energy axis to the IDS, cf. [35, 24, 21, 25].

The question whether the approximability (C) holds at any given energy is also of interest
in a purely geometric setting, where no randomness in involved. More specifically, the papers
[27, 29, 28, 14] study the approximation of Betti numbers by their finite volume analogues.
The usual weak convergence of measures is not sufficient to yield this statement. The results
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of [25, 22, 32] actually apply under very mild and natural geometric assumptions (namely
amenability) and thus lift the pointwise everywhere convergence results of [27, 29, 28, 14] to
uniform convergence.

However, all papers mentioned so far concern local operators (in the continuum setting)
respectively finite-hopping range operators (in the discrete setting). Let us spell out the last
property explicitly: A bounded operator A on `2(G) for some graph G is called of finite
hopping range R ∈ N if for any ϕ ∈ `2(G) and x ∈ G with distance larger than R to suppϕ

(Aϕ)(x) = 0

The first result for an ensemble of operators on `2(G) beyond this restriction was achieved
in [33]. It studies Laplace operators on long-range percolation graphs. These operators are
not of finite hopping range, albeit non-zero “matrix elements far off the diagonal” appear
with small probability. Due to the methods applied in [33], the randomness present in the
model had to be of finite local complexity.

In the present paper we continue this line of research. Here we are able to treat models
with real-valued entries, possibly continuously distributed, and with long-range interactions.
As mentioned above, the proof of [33] does not apply in this setting, but a combination of ideas
from this paper together with methods from [25] allows one to prove uniform approximability
in this more general situation. Also, we will treat here randomized versions of adjacency as
well as Laplace operators. The results of [33] apply to the second type of ensembles only.

Question (A) has been addressed for certain long-range percolation models before in [1],
extending previous results for the usual quantum percolation model on Zd, cf. for example [18,
30]. We will quote for completeness sake the result of [1] below, once we have the necessary
notation at disposal.

Let us stress an important feature of long-range percolation Hamiltonians. They provide
a simple model interpolating between discrete random Schrödinger operators and random
matrices. This is of interest, since the two last mentioned classes of operators have quite
different spectral features. Thus one is led to ask in which aspects and regimes, long-range
percolation Hamiltonians share features with one or the other of these classes. To explain the
structural difference between discrete random Schrödinger operators and random matrices
let us restrict ourselves for the moment to operators on finite segments of Z. The arising
Schrödinger operators are a special type of finite Jacobi matrices, and are in particular tri-
diagonal. Random matrices have a full array of random entries. The non-zero entries of a
Laplacian of a typical long-range percolation graph are concentrated mostly near the main
diagonal, however no diagonal will consist entirely of zeros. This is the mentioned interpolat-
ing property. The relation between long-range percolation models and random matrices was
for instance studied in [3, 4].

Let us describe the content of the paper in detail. In the next section we state the main
result in a concise form, discuss extensions to groups and graphs beyond Zd and the relation
to results concerning the low energy asymptotics of the IDS (A) established for long-range
percolation graphs in [1].

In Section 3 we present the long-range percolation model and in particular the underlying
probability space. Furthermore we define the randomly weighted Hamiltonian Hω on the long-
range percolation graph as a selfadjoint and metrically transitive random operator. Depending
on the choice of the corresponding parameters, the operator in question is either the adjacency
operator of a long-range percolation graph, a Laplacian, or a Schrödinger operator (i.e. a

3



Laplacian plus a random potential), each one with random weights on the edges. For a
realization ω the restriction of this operator to a finite box Λn ⊂ Zd gives rise to the eigenvalue-
counting function Fωn . This function encodes the distribution of the spectrum of the restricted
operator. In the sequel we pursue the question whether and in which sense the limit of
the sequence of functions (Fωn ) exists. In Section 4, weak convergence of this sequence is
established for almost all realizations using a result of Figotin. In Section 5 this statement
is upgraded to uniform convergence along the energy axis. This is done by proving that the
functions Fωn do not only approximate the limit function at its continuity points, but also
give an efficient estimate of the size of the jumps at a point of discontinuity. The key tool to
control the size of the jumps is Theorem 5.5, formulating the main technical contribution of
the present paper.

Let us stress that we give a detailed account of all the main steps of the proof thus making
it accessible to non-specialists.

2 Main result

Here we formulate the main result of the paper using a minimum of notation needed for this
purpose. More detailed definitions of the framework can be found in Section 3.

Denote by E := {{x, y} ⊆ Zd | x, y ∈ Zd} the set of all edges (or loops) on Zd and
by ae, be, e ∈ E a collection of independent real-valued random variables on a probability
space (Ω,A,P). The variance of the ae, e ∈ E is uniformly bounded and any two a{x,y} and

a{x+k,y+k} are identically distributed for x, y, k ∈ Zd. Let p ∈ `1(Zd) with 0 ≤ p(x) = p(−x) ≤
1 and b{x,y} be Bernoulli distributed with parameter p(x − y). The kernel, resp. the matrix
entries of the random Hamiltonian H(ω) are given by:

Hx,y(ω) := Hα,β
x,y (ω) :=

{
a{x,y}(ω)b{x,y}(ω) if x 6= y,

αa{x}(ω)b{x}(ω)− β
∑

z 6=x a{x,z}(ω)b{x,z}(ω) if x = y,
(2.1)

where α, β ∈ [0, 1] are fixed numbers. Selfadjointness properties of H(ω) are discussed in
Section 3. Depending on the values α and β we obtain several interesting subclasses: ran-
domly weighted Laplacians or adjacency operators, with or without random potentials (on
the diagonal), cf. Remark 3.4.

For n ∈ N let Λn := ([−n, n] ∩ Z)d, Hn(ω) be the restriction of H(ω) to Λn, and Fωn (λ)
the number of eigenvalues of Hn(ω) not exceeding λ, counting eigenvalues according to their
multiplicity. Set F : R→ R,

F (λ) := E{〈EH((−∞, λ])δ0, δ0〉}, (2.2)

where E{·} is the expectation with respect to the measure P, 〈·, ·〉 is the scalar product in
`2(Z) and EH(ω)((−∞, λ]) is the spectral projector of H(ω) on the interval (−∞, λ].

Theorem 2.1. Let Fωn , F be the distribution functions given above. Then there exists a set
Ω̃ ⊆ Ω of full measure such that for all ω ∈ Ω̃ we have

lim
n→∞

sup
λ∈R

∣∣∣∣ Fωn|Λn|(λ)− F (λ)

∣∣∣∣ = 0.
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Remark 2.2. The limit of the functions Fωn /|Λn| for n→∞ is called the integrated density of
states (IDS). Theorem 2.1 shows that this limit exists in the topology of uniform convergence.
Moreover, the theorem provides the equality of the IDS with the function F given in (2.2),
which is the expectation of an diagonal element of associated spectral projector. Note that
by translation invariance we obtain for any finite Λ ⊆ Zd

F (λ) = E{〈EH((−∞, λ])δ0, δ0〉} =
1

|Λ|
E
{∑
x∈Λ

〈EH((−∞, λ])δx, δx〉
}
. (2.3)

Thus the IDS, originally obtained as a macroscopic limit, can be identified as an averged trace
per unit volume. An equality of this type is called Pastur-Shubin trace formula.

Extension to more general geometries

In the presentation of our results we have not striven for the maximal possible generality,
but rather tried to present proofs as explicitly as possible in their most accessible form. This
concerns in particular the restriction to operators defined on `2(Zd). In fact, the presented
results carry over to operators on `2(Γ), where Γ may be a much more general graph than the
lattice Zd. The explicit calculations in this case can be found in the submitted Thesis [34].
Here we will only state only the scope of the general results:

Let G be a finitely generated discrete amenable group, and Γ a graph on which G acts
freely and cocompactly by translations. Completely analogously as in the Zd setting one
can define long-range percolation on such graphs, as well as random operators introduced in
Definition (2.1), respectively (3.5). For such models the results which we use from [31] can
be proven analogously. Consequently, Lemma 3.6 and Theorem 4.2 have their generalized
counterparts in this setting. Relying on the ideas of [25] and [33] one can see that it is
possible to extend the results of Section 5, as well. Here one needs to apply the pointwise
ergodic theorem of Lindenstrauss [26] instead of Theorem 5.1 to finally obtain that Theorem
2.1 holds analogously.

Let us note that the method we use here is in the sense efficient, that it does not need
any condition beyond amenability, i.e. the existence of a Følner sequence, on the discrete
group G. In comparison to this, the method of [33] relies on the following additional tiling
condition:

It is assumed that there exists a Følner sequence (Qn)n such that for each n ∈ N there is
a set Tn = T−1

n ⊆ G with the property that G is the disjoint union of the sets {Qnt | t ∈ Tn}.
This assumption is satisfied for many amenable groups, however it is not clear whether it
holds for all of them.

Low energy asymptotics

In [1] the authors study low energy asymptotics of the IDS for the long-range percolation
model. Again, let p ∈ `1(Zd) with 0 ≤ p(x) = p(−x) ≤ 1 and b{x,y} be Bernoulli distributed

with parameter p(x − y). We define for each ω the set Eω := {{x, y} ⊆ Zd | b{x,y}(ω) = 1}.
The operator under consideration is the (non-weighted) Laplacian ∆ω of the graph (Zd, Eω),
i.e. the operator acting on any ϕ : Zd → C with finite support by

(∆ωϕ)(x) =
∑
y 6=x

{x,y}∈Eω

(ϕ(x)− ϕ(y)) .
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This equals the operator in (2.1) in the case α = 0, β = 1 and where the random variables ae
are constant 1, see also (3.6)

An in physical communities common way to introduce the long-range percolation model
is the following: For each pair of vertices x, y ∈ Zd let Jx,y be a non-negative real number
such that

• Jx,y = Jy,x

• Jx+z,y+z = Jx,y for all z ∈ Zd,

• J := Jx :=
∑

y∈Zd Jx,y is finite and independent of x ∈ Zd.

We fix β > 0 and declare an edge {x, y} to be an element of Eω with probability 1− e−βJx,y .
This gives the random graph Γω = (Zd, Eω). Notice that the probability that certain edge
is an element of Eω is increasing in β. Thus, the subcritical phase, in which all clusters
are almost surely finite corresponds to small values of the parameter β and the supercritical
phase in which there exists almost surely an infinite cluster corresponds to large values of the
parameter β. Just like in the case of the nearest neighbor percolation model these two phases
are separated by a single value of the parameter β. The authors of [1] define the IDS as in
(2.2) and prove that for every subcritical β there are constants c(β), d(β) > 0 such that for
E > 0 small enough

exp
(
−c(β)E−1/2

)
≤ F (E)− F (0) ≤ exp

(
−d(β)E−1/2

)
.

Actually the results of [1] apply to operators on quasi-transitive graphs Γ. The present result
is complementary to these observations, as we show that the finite volume approximants do
actually converge to this limit function given by the Pastur-Shubin formula. Furthermore
the combination of both results shows that even the approximating functions will exhibit
exponential behavior for low energies.

Note that in this paper we introduce the long-range percolation model in another, but
equivalent (see [33]) way, via a certain function p ∈ `1(Zd), see (3.1). More background on
the models considered in [1] can be found in the review paper [2].

3 Setting and first results

Let Γ be the Zd lattice and denote by d : Zd × Zd → N0 the graph distance in the lattice
or equivalently the `1-distance in Zd. With this metric we define the R-boundary of a set
Λ ⊆ Zd by

∂RΛ := {x ∈ Λ | d(x, y) ≤ R for some y ∈ Zd \ Λ}.

Furthermore we let E := {{x, y} ⊆ Zd | x, y ∈ Zd} be the set of all subsets of Zd containing
either one or two elements. The set E can be interpreted as the edge set of the complete
undirected graph over Zd, containing loops at each vertex.

The probability space (Ω,A,P) is given in the following way. The sample space is Ω =∏
e∈E(R × {0, 1}) and we denote the elements in Ω by ω = (ω′e, ω

′′
e )e∈E . The appropriate

σ-algebra is A =
⊗

e∈E(B(R)⊗ P({0, 1})). In order to define a measure on this space we fix
some p ∈ `1(Zd) with

0 ≤ p(x) = p(−x) ≤ 1 (x ∈ Zd) (3.1)
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and for each z ∈ Zd some probability measure µz on R such that there is v ∈ R with∫
R
x2dµz(x) ≤ v2 (z ∈ Zd). (3.2)

We set P :=
⊗
{x,y}∈E(µx−y ⊗ νx−y) where for each z ∈ Zd the measure νz is Bernoulli with

parameter p(z).

Remark 3.1. The σ-algebraA is generated by the cylinder sets Z, which are given the following
way

Z = {Z(Ae1 , Be1 , . . . , Aek , Bek) | k ∈ N, ei ∈ E,Aei ∈ B(R), Bei ∈ P({0, 1}) for i = 1, . . . , k}

where

Z(Ae1 , Be1 , . . . , Aek , Bek) =
{
ω ∈ Ω | ω′ei ∈ Aei , ω

′′
ei ∈ Bei for i = 1, . . . , k

}
.

Now for each ω = (ω′e, ω
′′
e )e∈E and e ∈ E we set ae(ω) := ω′e and be(ω) := ω′′e . This

procedure gives independent random variables ae, be, e ∈ E satisfying P(ae ∈ B) = µe(B)
as well as P(be = 1) = νe({1}) = p(x − y) for arbitrary e = {x, y} ∈ E and B ∈ B(R).
Furthermore, by (3.2) we have for each e ∈ E

E(|ae|) ≤ v2 + 1.

These random variables induce for each ω ∈ Ω a graph Γω = (Zd, Eω) with weighted edges.
Here Zd is the vertex set and Eω is the subset of E, where an edge e ∈ E is an element of Eω
if and only if be(ω) = 1. In this case one can think of ae(ω) as the weight of the edge e. For a
subset Λ ⊆ Zd and an element x ∈ Zd we write x

ω∼ Λ if there exists y ∈ Λ with {x, y} ∈ Eω.
The following Lemma shows that Γω is almost surely locally finite, i.e. with probability

one each vertex is incident to only finitely many edges in Γω.

Lemma 3.2. The graph Γω is locally finite for almost all ω ∈ Ω.

Proof. Fix an element x ∈ Zd and consider the events Ay := {b{x,y} = 1}, y ∈ Zd. Then
clearly ∑

y∈Zd
P(Ay) =

∑
y∈Zd

p(x− y) <∞,

as p ∈ `1(Zd). Hence, the Borel-Cantelli Lemma gives a set Ωx of full measure such that each
ω ∈ Ωx is contained in only finitely many Ay, y ∈ Zd. As Zd is countable Ω̃ :=

⋂
x∈Zd Ωx is a

set of full measure as well. Furthermore Γω is locally finite for all ω ∈ Ω̃. �

Given γ ∈ Zd, let us define translations Tγ : Ω→ Ω by

Tγ(ω) = Tγ((ω′e, ω
′′
e )e∈E) = (ω′e+γ , ω

′′
e+γ)e∈E

where for e = {g, h} ∈ E we mean by e+ γ the element {g + γ, h+ γ} ∈ E. For γ ∈ Zd and
B ∈ A we denote the image and the preimage of B under Tγ by

Tγ(B) = {Tγ(ω) ∈ Ω | ω ∈ B} and T−1
γ (B) = {ω ∈ Ω | Tγ(ω) ∈ B}.

Note that for B ∈ A we have T−1
γ (B) = Tγ−1(B). We further define T to be the mapping

γ 7→ Tγ which maps each element of Zd into the space of automorphisms on (Ω,A,P). Note
that by definition T is ergodic if and only if for any B ∈ A with Tγ(B) = B for all γ ∈ Zd
one has P(B) ∈ {0, 1}. The following result is basic, but we do not know an explicit reference
in the literature, so we include a proof for completeness sake.

7



Lemma 3.3. T is a measure preserving, ergodic left-action on (Ω,A,P).

Proof. For an edge e = {g, h} ∈ E, vertices x, y ∈ Zd and ω ∈ Ω we have T0(ω) = ω and

Tx+y(ω) = (ω′e+x+y, ω
′′
e+x+y)e∈E = Tx(Ty(ω))

which shows that T is a left action of Zd on Ω.
By definition of P and the random variables ae and be we have P(ae ∈ B) = P(ae+γ ∈ B)

as well as P(be = 1) = P(be+γ = 1) for any e ∈ E, γ ∈ Zd and B ∈ B(R). Furthermore, as Tγ
is a translation, P(Z) = P(Tγ(Z)) holds obviously for any γ ∈ Zd and any cylinder set Z ∈ Z,
which implies the same property for any set B ∈ A, c.f. Remark 3.1.

To prove ergodicity let B ∈ A with B = Tγ(B) for all γ ∈ Zd and P(B) > 0 be given.
We need to show that this implies P(B) = 1. In the following we apply the approximation
lemma for measures, which belongs to the entourage of Carathéodory’s extension theorem,
cf. e.g. Theorem 1.65 in [20]. Let ε > 0. As B ∈ A = σ(Z) and as Z is a semiring we can
find cylinder sets Z1, . . . , Zn ∈ Z such that

P(B4Z) < ε where Z :=

n⋃
k=1

Zk,

which gives
P(B)2 − 2P(B)ε ≤ P(Z)2 ≤ P(B)2 + 2P(B)ε+ ε2. (3.3)

Furthermore we have for any γ ∈ Zd

P(Z ∩ TγZ) ≤ P ((B ∪ (Z \B)) ∩ TγZ)

≤ P (B ∩ TγZ) + P ((Z \B) ∩ TγZ)

≤ P (B ∩ (TγB ∪ (TγZ \ TγB))) + ε

≤ P (B ∩ TγB) + P (B ∩ (TγZ \ TγB)) + ε

≤ P (B ∩ TγB) + 2ε

By symmetry we get for all γ ∈ Zd

P(B ∩ TγB)− 2ε ≤ P(Z ∩ TγZ) ≤ P(B ∩ TγB) + 2ε

and the T -invariance of B implies

P(B)− 2ε ≤ P(Z ∩ TγZ) ≤ P(B) + 2ε. (3.4)

As Z is a finite union of cylinder sets, it does only depend on finitely many edges. Hence
there exists an element h ∈ Zd such that Z and ThZ are independent, which gives

P(Z ∩ ThZ) = P(Z)P(ThZ) = P(Z)2

since T is measure preserving. This gives together with (3.3) and (3.4)

P(B)− 2P(B)ε− ε2 − 2ε ≤ P(B)2 ≤ P(B) + 2P(B)ε+ 2ε

and dividing by P(B) > 0 leads to

1− 2ε− ε2 + 2ε

P(B)
≤ P(B) ≤ 1 + 2ε+

2ε

P(B)

As these inequalities hold for arbitrary P(B) ≥ ε > 0 we get P(B) = 1. �
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Denote by `2(Zd) all square summable, complex-valued functions on Zd and by Cc(Zd) the
subset of `2(Zd) consisting of all finitely supported functions. Let α, β ∈ [0, 1] be some fixed
numbers. Using the random variables ae, be, e ∈ E we define for each ω ∈ Ω̃ as in Lemma 3.2
the random operator H̃(ω) := H̃α,β(ω) : Cc(Zd)→ `2(Zd) point-wise by

H̃x,y(ω) := H̃α,β
x,y (ω) :=

{
a{x,y}(ω)b{x,y}(ω) if x 6= y,

αa{x}(ω)b{x}(ω)− β
∑

z 6=x a{x,z}(ω)b{x,z}(ω) if x = y

and for ϕ ∈ Cc(Zd) we set

(H̃(ω)ϕ)(x) := (H̃α,β(ω)ϕ)(x) :=
∑
y∈Zd

H̃x,y(ω)ϕ(y). (3.5)

It is easy to see that

(H̃(ω)ϕ)(x) =
∑
y 6=x

{x,y}∈Eω

(ϕ(y)− βϕ(x)) a{x,y}(ω) + αϕ(x)a{x}(ω). (3.6)

Using this we obtain for each ϕ ∈ Cc(Z2) and ω ∈ Ω such that Γω is locally finite that
H̃(ω)ϕ ∈ `1(Zd) ⊆ `2(Zd). To see this we set A := suppϕ, m := maxx∈A |ϕ(x)| and Ny(ω) :=
{x ∈ Zd | {x, y} ∈ Eω} to estimate

∑
x∈Zd

∣∣∣∣∣∣
∑
y∈Zd

H̃x,y(ω)ϕ(y)

∣∣∣∣∣∣ ≤
∑
x∈Zd

∑
y∈A

∣∣∣H̃x,y(ω)
∣∣∣ |ϕ(y)| ≤ m

∑
x∈Zd

∑
y∈A

∣∣∣H̃x,y(ω)
∣∣∣

≤ m
∑
y∈A

∑
x∈Ny(ω)

∣∣∣H̃x,y(ω)
∣∣∣ ≤ m∑

y∈A

|H̃y,y(ω)|+
∑

x∈Ny(ω)
x 6=y

∣∣∣H̃x,y(ω)
∣∣∣


≤ m
∑
y∈A

|a{y}(ω)|+ 2
∑

x∈Ny(ω)
x 6=y

∣∣∣H̃x,y(ω)
∣∣∣
 <∞.

Note that here we used that Ny(ω) is finite, as the underlying graph Γω is locally finite. In
the sense of [31, Section §.1.B] the mapping

H̃ : Ω→ L(`2(Zd)), ω 7→

{
H̃(ω) if ω ∈ Ω̃,

Id else.

is a random operator with domain Cc(Zd). This means that almost surely Cc(Zd) is a subset
of the domain of H̃ and almost surely H̃u is for all u ∈ Cc(Zd) a random vector. Note that
here L(`2(Zd)) is the space of the linear operators which are densely defined in `2(Zd).
Remark 3.4. The operator H̃(ω) depends on the choice of α, β ∈ [0, 1] and is defined on the
finitely supported functions in `2(Zd). In Lemma 3.6 we will define the self-adjoint extension
H(ω) of this operator. Depending on α and β we have in particular the following special
cases for H(ω):

• if α = 0 and β = 1, then H(ω) is the randomly weighted Laplacian on the graph Γω,
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• if α = β = 1, then H(ω) is the randomly weighted Laplacian on the graph Γω plus a
random diagonal,

• if α = 1 and β = 0, then H(ω) is the randomly weighted adjacency operator of Γω with
a random diagonal,

• if α = β = 0, then H(ω) is the randomly weighted adjacency operator of Γω with zeros
on the diagonal.

The diagonal elements which appear if α > 0 can be interpreted, either as random weights
on the loops or as a random potential. For values α, β ∈ (0, 1) the operator can be seen as
an interpolation between, the adjacency operator and the Laplacian respectively Schrödinger
operator of the graph Γω.

We will use the same symbol Tγ for a mapping Tγ : L(`2(Zd))→ L(`2(Zd)) defined by

Tγ((Ax,y)x,y∈Zd) := (Ax+γ,y+γ)x,y∈Zd ,

for arbitrary A = (Ax,y)x,y∈Zd ∈ L(`2(Zd)). We set Uγ : `2(Zd)→ `2(Zd)

Uγ((ϕ(x))x∈Zd) := (ϕ(x+ γ))x∈Zd

where ϕ = (ϕ(x))x∈Zd is arbitrary. Then obviously Tγ(A) = UγAU
−1
γ .

For each x, y, γ ∈ Zd with x 6= y and ω = (ω′e, ω
′′
e )e∈E we set s := {x, y} and have

H̃x,y(Tγ(ω)) = as(Tγ(ω))bs(Tγ(ω))

= as((ω
′
e+γ , ω

′′
e+γ)e∈E)bs((ω

′
e+γ , ω

′′
e+γ)e∈E)

= ω′s+γ · ω′′s+γ
= ω′{x+γ,y+γ} · ω

′′
{x+γ,y+γ}

= a{x+γ,y+γ}(ω) · b{x+γ,y+γ}(ω) = H̃x+γ,y+γ(ω)

Furthermore we have for the diagonal elements

H̃x,x(Tγ(ω)) = αa{x}(Tγ(ω))b{x}(Tγ(ω))− β
∑
z 6=x

a{x,z}(Tγ(ω))b{x,z}(Tγ(ω))

= αa{x+γ}(ω)b{x+γ}(ω)− β
∑
z 6=x

a{x+γ,z+γ}(ω)b{x+γ,z+γ}(ω) = H̃x+γ,x+γ(ω).

Therefore we have
H̃(Tγ(ω)) = Tγ(H̃(ω)). (3.7)

Definition 3.5. Let A be a random operator mapping each element of the probability space
(Ω,A,P) to an linear operator on the Hilbert space H. Then A is called metrically transitive,
if there exists a group T of measure preserving automorphisms of (Ω,A,P), a group of unitary
operators U := {UT | T ∈ T } on H and a homomorphism from T to U such that

B ∈ A such that TB = B for all T ∈ T ⇒ P(B) ∈ {0, 1} (3.8)

and one has for all ω ∈ Ω and all T ∈ T the relation

A(Tω) = UTA(ω)U−1
T . (3.9)
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The next aim is to prove that H̃ is essentially selfadjoint and that H̃ and its selfadjoint
extension are metrically transitive.

Lemma 3.6. Let (Ω,A,P) and the random operator H̃ be given as above. Then

(a) there exists a set Ω′ of full measure such that for each ω ∈ Ω′ the operator H̃(ω) is
essentially self-adjoint. We denote the closure of H̃(ω) by Hω and its domain by D(ω).

(b) the random operators H̃ and

H : Ω→ L(`2(Zd)) given by H(ω) =

{
Hω if ω ∈ Ω′

Id otherwise

are metrically transitive. Here Id is the identity operator in L(`2(Zd)).

To prove the Lemma we will make use of the following theorem due to Figotin [15], see
also [31].

Theorem 3.7 ([15], [31]). Let (Ω,A,P) be a probability space and A a metrically transitive
random operator with domain Cc(Zd) satisfying

E

( ∑
x∈Zd

|A0,x|
)2
 <∞. (3.10)

Then the operator A(ω) is for almost all ω ∈ Ω essentially self-adjoint.

Proof of Lemma 3.6. First we show that H̃ is metrically transitive. To this end, define T and
U as follows

T := {Tγ | γ ∈ Zd}, U := {UTγ := Uγ | γ ∈ Zd}.
and set ϕ : T → U , ϕ(Tγ) = Uγ , which clearly is a homomorphism. It is obvious that T
and U are groups and it is easy to prove that each Uγ is unitary. Furthermore we know from
Lemma 3.3 that the translations Tγ are measure preserving automorphisms of the probability
space. Property (3.8) follows from the ergodicity of T shown in Lemma 3.3 as well. From
line (3.7) we infer that (3.9) holds.

In order to apply Theorem 3.7, to show that H̃ is almost surely essentially selfadjoint, it
remains to prove (3.10) for H̃. Therefore we consider for each ω ∈ Ω( ∑

x∈Zd
|H̃0,x(ω)|

)2

=

(
|H0,0(ω)|+

∑
x 6=0

|H0,x(ω)|
)2

≤
(
α|a{0}(ω)b{0}(ω)|+ (β + 1)

∑
x 6=0

|a{0,x}(ω)b{0,x}(ω)|
)2

(3.11)

≤ 4

( ∑
x∈Zd

|a{0,x}(ω)|b{0,x}(ω)

)2

.

For each ω ∈ Ω set N(ω) := {x ∈ Zd | b{0,x}(ω) = 1}. By Lemma 3.2 there exists a set Ω̃ ⊆ Ω

of full measure such that |N(ω)| <∞ for all ω ∈ Ω̃. For ω ∈ Ω̃ we have( ∑
x∈Zd

|a{0,x}(ω)|b{0,x}(ω)
)2

=
( ∑
x∈N(ω)

|a{0,x}(ω)|
)2
≤ |N(ω)| ·

∑
x∈N(ω)

|a{0,x}(ω)|2.
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Taking the expectation value on both sides and the application of the monotone convergence
theorem leads to

E
(( ∑

x∈Zd
|a{0,x}(ω)|b{0,x}(ω)

)2
)
≤ E

(( ∑
x∈Zd

|a{0,x}|2b{0,x}|N |
))
≤ v2

∑
x∈Zd

E(b{0,x}|N |),

where v2 is the upper bound for the second moments given in (3.2). For each x ∈ Zd and
ω ∈ Ω we set Nx(ω) := |N(ω) \ {x}|, then we obtain for fixed x ∈ Zd

E(b{0,x}|N |) =

∞∑
k=1

k · P(b{0,x}(ω) = 1, Nx(ω) = k − 1) = P(b{0,x}(ω) = 1)E(Nx + 1).

Using E(Nx) ≤ E(|N |) = ‖p‖1 <∞ this implies

E
(( ∑

x∈Zd
|a{0,x}(ω)|b{0,x}(ω)

)2
)
≤ v2(E(|N |) + 1)

∑
x∈Zd

p(x) = v2(‖p‖21 + ‖p‖1) <∞.

This shows together with (3.11) the finiteness of the expression in (3.10) for the operator H̃.
Hence Theorem 3.7 gives a set Ω′ of full measure such that for each ω ∈ Ω′ the operator H̃(ω)
is essentially selfadjoint. This proves of part (a).

To complete the prove of part (b) it remains to show that the operator H is metrically
transitive. This follows by the same argument as we used to prove metrically transitivity of
H̃. Note that here we use that (3.7) hold for H as well. �

The operator H defined as in Lemma 3.6 is a random operator with domain Cc(Zd), c.f.
[31]. We will refer to this operator as weighted Hamiltonian on the graph Γω.

Let (Λn) be a sequence of cubes given by

Λn := ([−n, n] ∩ Z)d (n ∈ N) (3.12)

and for each n ∈ N let Hn(ω) be the restriction of H(ω) to Λn. To be precise, for Λ ⊆ Zd let
the inclusion iΛ : `2(Λ)→ `2(Zd) and the projection pΛ : `2(Zd)→ `2(Λ) be given by

(iΛϕ)(x) =

{
ϕ(x) if x ∈ Λ

0 otherwise
and (pΛψ)(y) = ψ(y)

for all x ∈ Zd, y ∈ Λ, ϕ ∈ `2(Λ) and ψ ∈ `2(Zd). Then we set

Hn(ω) := pΛnH(ω)iΛn : `2(Λn)→ `2(Λn)

For each ω ∈ Ω and n ∈ N we define a function Fωn : R→ R by

Fωn (λ) := |{ eigenvalues of Hn(ω) not exceeding λ}| , (3.13)

where we count the eigenvalues with their multiplicity. Therefore Fωn is the distribution

function of a measure which we will denote by ρ
(ω)
n . Note that |Λn|−1ρ

(ω)
n is a probability

measure.
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4 Weak convergence

In order to prove weak convergence of the approximating distribution functions we make use
of an abstract result by Figotin [15], see also Theorem 4.8 in [31], which we now cite in a
special case.

Theorem 4.1 ([15], [31]). Let (Ω,A,P) be a probability space and A a metrically transitive
random operator with domain Cc(Zd) such that∑

x∈Zd
E(|A0,x|) <∞

and assume that A is almost surely self-adjoint. Then there exists a set Ω̃ ⊆ Ω of full measure
such that for all ω ∈ Ω̃ and all λ ∈ {s ∈ R | F is continuous in s} one has

lim
n→∞

Fωn (λ)

|Λn|
= F (λ)

where the limit F : R→ [0, 1] given by λ 7→ E{〈EA((−∞, λ])δ0, δ0〉} is a distribution function
of a probability measure. Note that here EA(ω)((−∞, λ]) is the spectral projection in the

interval (−∞, λ] of the operator A(ω) and δx ∈ `2(Zd) denotes the element with δx(y) = 1 if
x = y and δx(y) = 0 otherwise.

This theorem and the previous considerations immediately give the following theorem.

Theorem 4.2. Let the probability space (Ω,A,P) and the operator H be the weighted Hamil-
tonian given in Section 2. Set

F : R→ [0, 1], F (λ) := E{〈EH((−∞, λ])δ0, δ0〉}.

Then there exists a set Ω̃ ⊆ Ω of full measure, such that for all ω ∈ Ω̃ the distribution functions
Fωn /|Λn| converge to the distribution function F point-wise at all points of continuity of F .

Proof. By definition the operator H(ω) is self-adjoint for all ω ∈ Ω. Furthermore H has
domain Cc(Zd) andH is metrically transitive by Lemma 3.6. The finiteness of

∑
x∈Zd E(|H0,x|)

follows from∑
x∈Zd

E(|H0,x|) ≤ αE(|a{0}|b{0}) + βE
(∑
x 6=0

|a{0,x}|b{0,x}
)

+
∑
x 6=0

E(|a{0,x}|b{0,x})

≤ 2
∑
x∈Zd

E(|a{0,x}|b{0,x}) ≤ 2(v2 + 1)‖p‖1 <∞,

where v2 is the upper bound for the second moments given in (3.2). Hence, Theorem 4.1
implies the claim of the theorem. �

5 Control of the jumps

The aim of this section is to control the jumps of the limit function given in Corollary 4.2 in
order to obtain uniform convergence of the approximants. In the following we will make use
of Birkhoff’s ergodic theorem in the d-dimensional case, see [16].
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Theorem 5.1. Let Zd act from the left on a probability space (Ω,A,P) by an ergodic and
measure preserving transformation T an let (Λn) be the sequence of cubes given as in (3.12).
Then for any f ∈ L1(P)

lim
n→∞

1

|Λn|
∑
g∈Λn

f(Tgω) =

∫
f(ω)dP(ω)

holds almost surely.

Lemma 5.2. Let (Ω,A,P) be the probability space, H the randomly weighted Hamiltonian
and (Λn) be the sequence of cubes given as in (3.12). Then there exists a set Ω̃ ⊆ Ω of full
measure such that for all ω ∈ Ω̃ and all λ ∈ R we have

lim
n→∞

Tr(χΛnEH(ω)({λ}))
|Λn|

= E{
〈
EH(ω)({λ})δ0, δ0

〉
}.

Proof. Let ω ∈ Ω be fixed. By definition of the trace we have

Tr(χΛnEH(ω)({λ})) =
∑
x∈Zd

〈
χΛnEH(ω)({λ})δx, δx

〉
=
∑
x∈Λn

〈
EH(ω)({λ})δx, δx

〉
. (5.1)

Let Eig(H(ω), λ) denote the eigenspace of H(ω) corresponding to the value λ, which could
possibly be empty if λ is not an eigenvalue. Given γ ∈ Zd, we have ϕ ∈ Eig(H(ω), λ) if and
only if Tγ(ϕ) ∈ Eig(Tγ(H(ω)), λ).

Using this we prove 〈
ETz(H(ω))({λ})δ0, δ0

〉
=
〈
EH(ω)({λ})δz, δz

〉
. (5.2)

Therefore let δ′0 ∈ Eig(Tz(H(ω)), λ) and δ′′0 ∈ Eig(Tz(H(ω)), λ)⊥ such that δ0 = δ′0 +δ′′0 . Then
we obtain〈

ETz(H(ω))({λ})δ0, δ0

〉
=
〈
ETz(H(ω))({λ})δ′0, δ0

〉
+
〈
ETz(H(ω))({λ})δ′′0 , δ0

〉
=
〈
δ′0, δ0

〉
and with the above equivalence we get〈

δ′0, δ0

〉
=
〈
T−z(δ

′
0), T−z(δ0)

〉
=
〈
EH(ω)({λ})T−z(δ′0), T−z(δ0)

〉
+
〈
EH(ω)({λ})T−z(δ′′0), T−z(δ0)

〉
=
〈
EH(ω)({λ})δz, δz

〉
,

which implies (5.2). Applying (5.1), (5.2) and the fact Tx(H(ω)) = H(Tx(ω)) leads to

Tr(χΛnEH(ω)({λ}))
|Λn|

=
1

|Λn|
∑
x∈Λn

〈
EH(Tx(ω))({λ})δ0, δ0

〉
.

Finally we use Lemma 3.3 and Theorem 5.1 to obtain the existence of a set Ω̃ ⊆ Ω of measure
one such that for each ω ∈ Ω̃ we have

lim
n→∞

Tr(χΛnEH(ω)({λ}))
|Λn|

=

∫
Ω

〈
EH(ω)({λ})δ0, δ0

〉
dP(ω)

which was to prove. �
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The following fact is taken from [25]

Lemma 5.3. Let r > 0, Λ ⊆ Zd and U ⊆ `2(Λ) be given and denote by Ur the subspace of U
consisting of all functions which vanish on ∂r(Λ). Then

0 ≤ dim(U)− dim(Ur) ≤ |∂r(Λ)|.

Proof. Let P : U → `2(∂r(Λ)) be the natural projection with (Pϕ)(x) = ϕ(x) for all x ∈
∂r(Λ). Then we have

0 ≤ dim(U)− dim(kerP ) = dim(ranP ) ≤ |∂r(Λ)|,

which proves the claim as kerP = Ur. �

For given ω ∈ Ω, R ∈ N and Q ⊆ Zd finite, let L(ω)(R,Q) denote the number of e ∈ E
with be(ω) = 1 which are of length not less than R and incident to some vertex in Q, i.e.

L(ω)(R,Q) :=
∣∣{{x, y} ∈ E | b{x,y}(ω) = 1, d(x, y) ≥ R and {x, y} ∩Q 6= ∅

}∣∣ . (5.3)

Let (Λn) be the sequence of cubes given as in (3.12). We chose a function R : N→ N such
that

lim
n→∞

R(n) =∞ and lim
n→∞

|∂R(n)Λn|
|Λn|

= 0 (5.4)

and set
L(ω)
n := L(ω)(R(n),Λn). (5.5)

Beside this we set for R ≥ 0
εR :=

∑
x∈Zd,d(0,x)≥R

p(x)

and for n ∈ N0

ε(n) := εR(n) as well as δ(n) := (2n+ 1)−d/4. (5.6)

Note as p ∈ `1(Zd) we have by the definition of R(n) that

lim
n→∞

ε(n) = lim
n→∞

δ(n) = 0.

The next result estimates the probability that the number of long edges is large.

Lemma 5.4. Let (Ω,A,P) be given as above. Then the following holds:

(a) There exist constants R0 ∈ N and δ̄ > 0 such that for all 0 < δ < δ̄, all R ≥ R0 and all
finite Q ⊆ Zd

P
(
L(ω)(R,Q) ≥ |Q|(εR + δ)

)
≤ exp

(
−δ

2|Q|
4

)
.

(b) Let R : N→ N be as in (5.4) and L
(ω)
n = L(ω)(R(n),Λn). Then there exists a set Ω̃ ⊆ Ω

of full measure such that for each ω ∈ Ω̃ there exists n0(ω) with

L(ω)
n ≤ |Λn|(ε(n) + δ(n)) (n ≥ n0(ω)).
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Proof. The proof of part (a) is to be found in [33]. It is basically an application of a Bernstein
inequality. Let us prove part (b). Therefore consider the events

An :=
{
ω ∈ Ω | L(ω)

n ≥ |Λn|(ε(n) + δ(n))
}
.

Then part (a) shows that for n large enough we have

P(An) ≤ exp
(
−δ(n)2|Λn|/4

)
= exp

(
−(2n+ 1)d/2/4

)
,

which clearly gives
∑

n∈N P(An) <∞. By the Lemma of Borel Cantelli we have

P
(

lim sup
n→∞

An

)
= 0

which implies the claim of part (b). �

We use Lemmas 5.2, 5.3 and 5.4 to obtain a result similar to Lemma 6.2 in [25]

Theorem 5.5. Let (Ω,A,P) be the probability space, H the randomly weighted Hamiltonian,

(Λn) be the sequence of cubes and ρ
(ω)
n the measures associated to the eigenvalue counting

functions given as before. Then there exists a set Ω̃ ⊆ Ω of full measure such that for all
ω ∈ Ω̃ and all λ ∈ R we have

lim
n→∞

ρ
(ω)
n ({λ})
|Λn|

= E{〈EH({λ})δ0, δ0〉}.

Proof. Let Ω̃ ⊆ Ω be a set of full measure such that the results of Lemma 5.2 and of Lemma
5.4 (b) hold for all ω ∈ Ω̃. We fix some ω ∈ Ω̃ and λ ∈ R. With the function R : N→ N given
in (5.4) we set

V (ω)
n :=

{
v ∈ `2(Zd) | (H(ω)− λ)v = 0 and supp v ⊆ Λn−R(n)

}
, D(ω)

n := dimV (ω)
n .

Note that V
(ω)
n consists of the elements iΛnv, where v ∈ `2(Λn) satisfying v ≡ 0 on Λn \

Λn−R(n),

(pΛnH(ω)iΛn − λ)v = 0 and
∑

y∈Λn−R(n)

(Hx,y(ω)− λδx(y))v(y) = 0 (5.7)

for all x ∈ Λc
n with x

ω∼ Λn−R(n).
We consider the following difference

|ρ(ω)
n ({λ})− Tr(χΛnEH(ω))| ≤ |ρ(ω)

n ({λ})−D(ω)
n |+ |D(ω)

n − Tr(χΛnEH(ω))| (5.8)

and treat the two summands on the right hand side separately. Let us estimate the first one.
Consider therefore the sets

U (ω)
n :=

{
u ∈ `2(Λn) | (pΛnH(ω)iΛn − λ)u = 0

}
and

U
(ω)
n,R =

{
u ∈ Un | u ≡ 0 on Λn \ Λn−R(n)

}
.
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Then clearly, ρ
(ω)
n ({λ}) = dim(U

(ω)
n ) ≥ dim(V

(ω)
n ) and

dim(U
(ω)
n,R)− dim(V (ω)

n ) ≤ |{y ∈ Λc
n | y

ω∼ Λn−R(n)}| ≤ L(ω)(R(n),Λn) = L(ω)
n , (5.9)

where we used the definition (5.3). The application of Lemma 5.3 gives

0 ≤ ρ(ω)
n ({λ})−D(ω)

n = dim(U (ω)
n )− dim(V (ω)

n ) ≤ dim(U (ω)
n )− dim(U

(ω)
n,R) + L(ω)

n

≤ |∂R(n)Λn|+ L(ω)
n . (5.10)

Now we estimate the second summand in (5.8). Therefore let v1, . . . , vD(ω)
n

be an orthonormal

basis (ONB) of V
(ω)
n and let ṽi, i ∈ I be an ONB of the orthogonal complement of V

(ω)
n in the

space Eig(H(ω), λ). Furthermore let v̄j , j ∈ J be an ONB of Eig(H(ω), λ)⊥. Then we have

Tr(χΛnEω({λ})) =

D
(ω)
n∑
i=1

〈χΛnEω({λ})vi, vi〉+
∑
i∈I
〈χΛnEω({λ})ṽi, ṽi〉+

∑
i∈J
〈χΛnEω({λ})v̄i, v̄i〉

=

D
(ω)
n∑
i=1

〈vi, vi〉+
∑
i∈I
〈χΛn ṽi, χΛn ṽi〉

which gives D
(ω)
n ≤ Tr(χΛnEω({λ})). Now let ui, i ∈ I be an ONB of

Ū (ω)
n := ran(χΛnEω({λ}))

and ũj , j ∈ J be an ONB of (Ū
(ω)
n )⊥. Then, using Cauchy Schwarz inequality, we obtain

〈χΛnEω({λ})ui, ui〉 ≤ ‖χΛnEω({λ})ui‖‖ui‖ ≤ 1 and 〈χΛnEω({λ})ũj , ũj〉 = 0

for all i ∈ I and all j ∈ J . This gives

D(ω)
n ≤ Tr(χΛnEω({λ})) =

∑
i∈I
〈χΛnEω({λ})ui, ui〉+

∑
j∈J
〈χΛnEω({λ})ũj , ũj〉 ≤ dim(Ū (ω)

n ).

(5.11)

where we used dim(Ūn) = |I|. As before we denote by Ū
(ω)
n,R the subset of Ū

(ω)
n consisting of

the elements which vanish outside of Λn−R. Therefore we have

Ū
(ω)
n,R =

{
χΛnv | v ∈ `2(Zd), (H(ω)− λ)v = 0, v ≡ 0 on ∂R(n)Λn

}
. (5.12)

In the next step we define a set ¯̄U
(ω)
n,R ⊇ Ū

(ω)
n,R by dropping conditions in (5.12), in the following

way

¯̄U
(ω)
n,R :=

χΛnv

∣∣∣∣∣v ∈ `2(Zd),
∑
y∈Zd

(Hx,y(ω)− λδx(y))v(y) = 0 for all x ∈ Z(ω)
n , v ≡ 0 on ∂R(n)Λn


=

χΛnv

∣∣∣∣∣v ∈ `2(Zd),
∑
y∈Λn

(Hx,y(ω)− λδx(y))v(y) = 0 for all x ∈ Z(ω)
n , v ≡ 0 on ∂R(n)Λn

,
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where
Z(ω)
n = Λn−R(n) \ {x ∈ Λn−R(n) | x

ω∼ Λc
n}.

Here we used that for all x ∈ Z(ω)
n and y ∈ Λc

n we have Hx,y(ω) = 0.

Comparing this representation of ¯̄U
(ω)
n,R with the representation V

(ω)
n in (5.7), we realize

that they differ in at most 2L
(ω)
n + |∂R(n)Λn| conditions. As each of these conditions may

change the dimension at most by one, we get

dim(Ū
(ω)
n,R) ≤ dim( ¯̄U

(ω)
n,R) ≤ D(ω)

n + 2L(ω)
n + |∂R(n)Λn|. (5.13)

Applying (5.11), Lemma 5.3 and (5.13) gives

0 ≤ Tr(χΛnEω({λ}))−D(ω)
n ≤ dim(Ū (ω)

n )−D(ω)
n ≤ dim(Ū

(ω)
n,R)−D(ω)

n + |∂R(n)Λn|

≤ 2|∂R(n)Λn|+ 2L(ω)
n (5.14)

In the last step we apply Lemma 5.2, then we combine the estimates for the two summands
in (5.8) given in (5.10) and (5.14) and finally use part (b) of Lemma 5.4 to obtain

lim
n→∞

ρ
(ω)
n ({λ})
|Λn|

− E(
〈
EH(ω)({λ})δ0, δ0

〉
) = lim

n→∞

|ρ(ω)
n ({λ})− Tr(χΛnEH(ω))|

|Λn|

≤ lim
n→∞

3|∂R(n)Λn|+ 3L
(ω)
n

|Λn|

≤ 3 lim
n→∞

(
|∂R(n)Λn|
|Λn|

+ ε(n) + δ(n)

)
= 0.

Here we used the definitions of R(n), ε(n) and δ(n) in (5.4) and (5.6). �

Remark 5.6. (a) Let us stress the fact that proof of Theorem 5.5 does not contain any
probabilistic argument. We show the claimed convergence for any fixed choice of λ ∈ R
and ω ∈ Ω̃, where Ω̃ is a set given rather explicitly by Lemmas 5.2 and 5.4.

(b) Furthermore the proof gives an explicit error-term on finite scales. To be precise we
have for any n ∈ N, λ ∈ R and ω ∈ Ω̃

|ρ(ω)
n ({λ})− Tr(χΛnEH(ω))| ≤ 3|∂R(n)Λn|+ 3L(ω)

n

where L
(ω)
n = L(ω)(R(n),Λn) as in (5.9).

The following result is essentially standard and has been used in the present context
already in [25]. It shows that weak convergence of measures plus convergence of the measures
at each point implies uniform convergence.

Lemma 5.7. Let ρ be a probability measure on R and let (ρn) be as sequence of bounded
measures on R which weakly converge to ρ and fulfill

lim
n→∞

ρn({λ}) = ρ({λ})

for all λ ∈ R. Then the distribution functions Fn : R → R, Fn(λ) := ρn((−∞, λ]) converge
with respect to supremum norm to the distribution function F : R→ R, F (λ) := ρ((−∞, λ]).
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The proof of the main theorem, already stated in Section 2 is now basically a combination
of the previous lemmas.

Proof of Theorem 2.1. Let ρ, ρ
(ω)
n : B(R)→ [0, 1] be the measures associated to the distribu-

tion functions F respectively Fωn . Then obviously ρ is a probability measure and the measures

ρ
(ω)
n are bounded. As shown in Corollary 4.2, there exists a set Ω1 ⊆ Ω with P(Ω1) = 1 such

that for all ω ∈ Ω1 the measure ρ is the weak limit of ρ
(ω)
n . Furthermore we have by The-

orem 5.5 a set Ω2 ⊆ Ω with P(Ω2) = 1 such that for all ω ∈ Ω2 and all λ ∈ R one has

ρ
(ω)
n ({λ})→ ρ({λ}). Therefore Lemma 5.7 yields the uniform convergence of the distribution

functions for all ω ∈ Ω1 ∩ Ω2. �
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