
A Parallel Bundle Framework for

Asynchronous Subspace Optimisation of

Nonsmooth Convex Functions

F. Fischer, C. Helmberg

Preprint 2013-8

Preprintreihe der Fakultät für Mathematik
ISSN 1614-8835

Impressum:
Herausgeber:
Der Dekan der
Fakultät für Mathematik
an der Technischen Universität Chemnitz
Sitz:
Reichenhainer Straße 39
09126 Chemnitz
Postanschrift:
09107 Chemnitz
Telefon: (0371) 531-22000
Telefax: (0371) 531-22009
E-Mail: dekanat@mathematik.tu-chemnitz.de
Internet:
http://www.tu-chemnitz.de/mathematik/
ISSN 1614-8835 (Print)

A Parallel Bundle Framework for
Asynchronous Subspace Optimisation of

Nonsmooth Convex Functions

Frank Fischer∗ Christoph Helmberg∗

2nd July 2013

An algorithmic framework is presented for optimising general convex functions
by non synchronised parallel processes. Each process greedily picks a suitable
adaptive subset of coordinates and runs a bundle method on a corresponding
restricted problem stopping whenever a descent step is encountered or predicted
decrease is reduced sufficiently. No prior knowledge on the dependencies between
variables is assumed. Instead, dependency information is collected automatically
by analysing aggregate subgradient properties required for ensuring convergence.
Within this framework three strategies are discussed for supporting varying scen-
arios of structural independence: a single convex function, the sum of partially
separable convex functions, and a scenario tuned to problem decomposition
by Lagrangian relaxation of packing type constraints. The theoretical frame-
work presented here generalises a practical method proposed by the authors
for Lagrangian relaxation of large scale packing problems and simplifies the
analysis.
Keywords: bundle methods, parallel programming, convex optimisation
MSC 2010: 90C06; 65Y05, 90C25, 65K05

1 Introduction

Let f : RM → R, M = {1, . . . ,m} be a non-smooth, convex function specified via a first
order oracle, i. e., given a point y ∈ RM the oracle returns the function value f(y) and a
subgradient g ∈ ∂f(y) at y. We consider the optimisation problem

minimise f(y), (P)

subject to y ∈ RM .

Bundle methods are an established tool for solving such optimisation problems [1, 6]. In a
nutshell, they collect subgradient information from the set

W := conv
{

(l, g) : l = f(y)− 〈g, y〉, g ∈ ∂f(y), y ∈ RM
}
,

∗Fakultät für Mathematik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany. {frank.fischer,
helmberg}@mathematik.tu-chemnitz.de

1

and, based on this, they determine, in minimal form, an appropriate aggregate w̄ = (l̄, ḡ) ∈
W giving rise to a cutting plane model consisting of a single affine minorant

f̂w̄(y) := l̄ + 〈ḡ, y〉 ≤ f(y) ∀ y ∈ RM .

With respect to a current centre of stability ŷ a next candidate is determined by

ȳ = arg min{f̂w̄(y) + u
2‖y − ŷ‖

2 : y ∈ RM} = ŷ − 1
u ḡ,

where the (here fixed) weight u > 0 penalises the distance to ŷ. The actual progress
f(ŷ)− f(ȳ) is then compared to the predicted decrease

∆(w̄, ŷ) :=f(ŷ)− f̂w̄(ȳ) = f(ŷ)− f̂w̄(ŷ) +
1

u
‖ḡ‖2 ≥ 0.

If the actual progress achieves a fraction of at least ρ ∈ (0, 1) relative to this predicted
decrease, the method performs a descent step by setting ŷ ← ȳ. Otherwise, in a null step,
ŷ remains unchanged, but the new subgradient information is used to update w̄ so as to
ensure a significant reduction in ∆(w̄, ŷ). Our method relies heavily on the following result.

Theorem 1. (e. g., Theorem 9.15 in [1]) Let ŷk and ∆k denote the centre and predicted
decrease in iteration k of the bundle method, then f(ŷk)→ inf f . Moreover, if the method
generates a finite number of descent steps with ŷk0 = ŷk for k ≥ k0 then ŷk0 minimises f
and the sequence (∆k)k>k0 is monotonically decreasing to 0.

The parallel bundle method proposed here extends and simplifies the analysis of the parallel
bundle approach for Lagrangian relaxation presented in [2]. It consists of a main routine
(Algorithm 1) that initialises and manages access to global data and maintains a number
NΠ ∈ {1, . . . , |M |} of parallel processes performing the actual optimisation independently
and asynchronously. To provide a brief sketch of the main idea, the global data includes
an access index σ ∈ N0, the current centre ŷ〈σ〉, the aggregate w̄〈σ〉, the corresponding
predicted decrease ∆〈σ〉 := ∆(w̄〈σ〉, ŷ〈σ〉), as well as some automatically updated dependency
(S〈σ〉) and blocking information (B〈σ〉) to be explained later. Each parallel process π started
by the main routine performs the following three steps.
1. Subspace selection. Securing exclusive access to the global data at some access

index π = σ, process π tries to reserve an unblocked subset of coordinates J (π) ⊆ M
defining an affine subspace

L(J (π), ŷ〈π〉) := ŷ〈π〉 + span{ej : j ∈ J (π)} = {y ∈ RM : yM\J(π) = ŷ
〈π〉
M\J(π)},

so that, according to current dependency information, optimising f over L(J (π), ŷ〈π〉)
promises a significant share of ∆〈π〉. This will always be possible for at least one process. If
this fails due to blocking conditions, π frees access again and stops immediately without
having modified any data (a new process may be restarted once the global data is changed
in the third step by some other active process). If successful, it marks the coordinates J (π)

as blocked in the global data, retrieves all information needed for setting up an independent
convex subproblem aimed at, but not necessarily identical to, optimising f over L(J (π), ŷ〈π〉),
increases the access index σ and frees global access.
2. Subspace optimisation. Process π forms the subproblem and optimises it by a

separate bundle method. This is done without any global interaction. It stops (in finite
time) if the progress on the subproblem guarantees a descent step for f with respect to the

2

global situation encountered initially by π at access counter π, or it stops if the reduction
in predicted decrease on the subproblem enables π to update the global aggregate so as
to significantly reduce the global predicted decrease encountered at π. In hindsight these
properties may fail to hold if the initial dependency information turns out to be incorrect,
which must be checked in the next step.
3. Subspace update. This final step of process π starts by securing exclusive access to

the global data, granted at some access index π̄ = σ > π, and checks whether the solution
computed for the subproblem matches expectations in view of the new global situation. If
this is not the case, additional tests ensure that this is either due to intermediate changes
in the relevant global data, or that it results in adaptations of the dependency information.
The process modifies the global data accordingly, frees its own blocked subspace, increases
the access index σ, and checks whether the new global data satisfies a global termination
criterion (by the usual lack of progress criterion ∆〈π̄+1〉 ≤ ε(|f(ŷ〈π̄+1〉)|+ 1) for some fixed
ε > 0). In case of global termination, all processes are stopped immediately and the
algorithm ends. Otherwise π frees exclusive access and only stops itself (alternatively, the
process may be restarted with step one).

Two main challenges are associated with the proposed algorithmic framework. The first
consists in establishing weak requirements on the properties of subproblems, the automatic
generation of dependency information and blocking requirements that still allow to ensure
convergence of this non synchronised approach. After an introductory discussion of some
notational issues associated with the parallel mechanism in Section 2 this is fully addressed
in Section 3. The second challenge consists in describing appropriate subproblems and
automatic dependency generation schemes for practical problem classes of f that promise
computational advantages of this parallel approach by being able to locate and exploit
small independent subspaces allowing for partial evaluations. For this we will consider
three different scenarios of increasing complexity and increasing potential for practical
efficiency. First, we discuss a simple model for general convex functions in Section 4. Next,
Section 5 considers optimising the sum of partially separable convex functions, where for
each subfunction the set of variables influencing it is supposed to be small and known.
Finally, Section 6 proposes a more involved algorithmic approach intended for large scale
models, where we now assume that the influence of variables on the subfunctions has yet
to be detected. This last approach is motivated by Lagrangian relaxation of packing type
constraints. A description of a practical implementation of the approach of the last section
as well as computational results on (artificial but realistic) train timetabling problems can
be found in [2].
Literature review. We give a short overview over existing parallelisation approaches

for convex optimisation, also see [2]. The most straight forward approach is to exploit a
separable objective function f(y) =

∑
r∈R fr(y), which appears generically in Lagrangian

relaxation, e. g. [3, 7, 8], and evaluate each function fr in an isolated parallel process, see,
e. g., [9] for an example within a bundle algorithm.

Another approach are variable transformation algorithms [4, 11]. Similar to our approach,
these algorithms select a set of subspaces and compute new candidates on each of the sub-
spaces. Unlike our approach, however, they compute a new global iterate in a synchronised
step as a combination of the subspace candidates.
Incremental subgradient methods may also be developed into an asynchronous parallel

scheme. These methods change y according to the directions specified by the single
subfunctions fr in turn. In [10] this is extended to a fully asynchronous approach that only
requires that the number of iterations between two evaluations of the same subfunction is
bounded by a constant and each subfunction is evaluated asymptotically the same number

3

Algorithm 1: ParallelBundle
Input : Problem (P), parameters
• τ1 ∈ (0, 1), ε > 0
• NΠ ∈ {1, . . . , |M |}

Output : Approximate solution y ∈ RM
// Initialisation
set σ ← 0, ŷ〈0〉 ← 0, B〈0〉 ← ∅
set w̄〈0〉 = (l̄〈0〉, ḡ〈0〉) an initial minorant // requires a first evaluation
set ∆〈0〉 ← ∆(w̄〈0〉, ŷ〈0〉)

set S〈0〉 ← ∅ (or use some pre-specified dependencies)
1 if ∆〈0〉 ≤ ε(|f(ŷ〈0〉)|+ 1) then

then do not start any process
set y ← ŷ〈0〉

return
// Main loop
while Less than NΠ processes are running do

Start a new process π = (π, π̄)← (−1,−1).
Each process π performs the following steps independently

2 Subspace selection
Secure exclusive access to global data π ← σ
if SelectSubspace(π) = FALSE then

// Step is unsuccessful
Free exclusive access to global data
STOP this process

3 (w̄〈π+1〉, ŷ〈π+1〉, S〈π+1〉,∆〈π+1〉)← (w̄〈π〉, ŷ〈π〉, S〈π〉,∆〈π〉)

4 B〈π+1〉 ← B〈π〉 ∪ J (π)

π̄ ←∞, σ ← π + 1
Free exclusive access to global data

Subspace optimisation
Solve a subspace problem on J (π) yielding ȳ(π) and w̄(π)

5 Subspace update
Secure exclusive access to global data
π̄ ← σ

// Set (w̄〈π̄+1〉, ŷ〈π̄+1〉, S〈π̄+1〉) to the values computed.
6 UpdateSubspace(π, ȳ(π), w̄(π))

compute ∆〈π̄+1〉

7 B〈π̄+1〉 ← B〈π̄〉 \ J (π)

σ ← π̄ + 1

8 if ∆〈π̄+1〉 ≤ ε(|f(ŷ〈π̄+1〉)|+ 1) then
set y ← ŷ〈σ〉

TERMINATE all processes and STOP.
Free exclusive access to global data
STOP this process π.

4

of times (which is also the case in the “synchronised” approaches mentioned above).
In contrast to these approaches, our method has no explicit synchronisation or regular-

isation mechanism (e. g., our approach does no intermediate steepest-descent-like steps)
and has, in the case of a separable objective function, no restriction on the number and
frequency of evaluations of the single subfunctions. Indeed, the number of evaluations
may differ significantly and this may be a main source of computational efficiency. Our
framework ensures convergence via an automatic dependency detection mechanism between
subspaces.

2 The Parallel Framework

In this section we recall from [2] how parallelism works in the proposed method and how
we denote the different parallel subprocesses and their associated “local” data as well as the
shared “global” data. For each process the only interaction with, and particularly the only
change of, global data happens in the first and the third step. As in any parallel framework,
simultaneous writing (or reading and writing) to the (shared) global data from more than
one parallel subprocess must be forbidden using some locking mechanism. Because of this
there is a unique sequence of the interactions of the processes with the global data. Thus
we can assign each state of the global data a unique index σ ∈ N0. Each global object will
be denoted by a superscript σ in angle braces 〈σ〉.
Let π be a process. Because of the uniqueness of the global index we can equip π with

the two special index markers π and π̄ that correspond to the global index when π executes
its subspace selection resp. update step.

For the analysis it will be convenient to arrange the processes in different groups for each
global index σ ∈ N0 ∪ {∞}:

Π〈σ〉 := {π = (π, π̄) : π < π̄ and π < σ},
Π̄〈σ〉 := {π = (π, π̄) : π < π̄ < σ},
Π〈σ〉 := {π = (π, π̄) : π < σ ≤ π̄} = Π〈σ〉 \ Π̄〈σ〉.

The first group Π〈σ〉 collects all processes that have successfully executed the subspace
selection step before the algorithm reached σ, Π̄〈σ〉 singles out all processes that have
executed the subspace update step before σ and the set Π〈σ〉 comprises all processes that are
actively working on or just finishing a subproblem at σ, i. e., these are running in parallel.
Note that the set Π〈∞〉 is precisely the set of all processes that successfully selected a
subspace. Each increment of σ by the algorithm is associated with the addition or deletion
of exactly one process from this set of parallel processes.

Observation 2. (Obs. 5 in [2]) The following relations hold.
(i) Π〈0〉 = ∅,
(ii) for σ′ ∈ N0 there holds Π〈σ

′〉 6= Π〈σ
′+1〉 if and only if |(Π〈σ′〉 \Π〈σ

′+1〉) ∪ (Π〈σ
′+1〉 \

Π〈σ
′〉)| = 1,

(iii) if Π〈σ
′〉 = Π〈σ

′+1〉 then for all σ ≥ σ′ we have Π〈σ〉 = Π〈σ
′〉 and there is no process π

with π = σ or π̄ = σ.
In particular, if Π〈σ〉 6= Π〈σ+1〉 then there is exactly one process π with π = σ or π̄ = σ.

By this observation, the following set collects the markers σ ∈ N0 visited by the algorithm,
Σ := {0} ∪ {σ ∈ N : Π〈σ〉 6= Π〈σ−1〉}.

5

3 The Basic Asynchronous Parallel Bundle Method

The main difficulty in the analysis of the algorithm is due to dependencies between different
subspaces. A subprocess improving the predicted decrease w. r. t. a certain subspace may
worsen the predicted decrease along other directions not contained in the subspace. If
this happens too often, the algorithm may not converge correctly. Therefore the parallel
bundle method automatically collects dependency information between subspaces. For
this, we use a finite, partially ordered set of states (S,�) with a unique maximal element
S̄ ∈ S. The algorithm will change its current dependency state from S to S′ � S if some
bad dependency is detected. The selection of further subspaces and creation of subspace
problems working on these subspaces will be influenced by these states.
As long as the algorithm runs, the main process will start new subprocesses working

on different subspaces, in particular, each process π will select and work on a subset of
coordinates J (π) ⊆M . The purpose of the subspace problem is to either create a descent
step along that subspace or reduce the global predicted decrease sufficiently. So the subspace
must be carefully selected in order to provide sufficient decrease compared with the global
expected progress. Furthermore, two different processes may influence each other if they
work on the same or “strongly related” subspaces. In order to choose subspaces so that the
mutual influence is small, the algorithm manages a set of blocked constraints B that may
not be selected by further parallel subprocesses. Putting all these ingredients together, the
algorithm handles the following global data
1. the global centre ŷ〈σ〉 ∈ RM ,
2. the global aggregated minorant w̄〈σ〉 = (l̄〈σ〉, ḡ〈σ〉) ∈W ,
3. the global dependency state S〈σ〉 ∈ S,
4. the global blocked constraints B〈σ〉 ⊆M satisfying B〈σ〉 =

⋃
π∈Π〈σ〉 J

(π).
We refer to the global expected progress w. r. t. the data at σ by ∆〈σ〉 = ∆(w̄〈σ〉, ŷ〈σ〉).

The first main step of a process π is to select appropriate subspace problems. Formally,
any given current state S〈σ〉, current centre ŷ〈σ〉 and subspace J (π) determine a subspace
problem. Depending on the problem class of f and the corresponding choice of subspace
problems it will be necessary to discern strong and weak forms of dependencies between
subsets of coordinates. Strong forms of dependence of some coordinates J ′ on a given subset
J will require to jointly optimise over J ′ ∪ J whenever J is selected as initial subspace. If it
seems not necessary to include the coordinates together with J but no other process should
modify the values on J ′ while J is optimised over then we speak of weak dependence. In
order to reflect detected or assumed dependencies between subspaces w. r. t. the current
state S, we employ two functions, a weakly dependent subspace function Fd and a strongly
dependent subspace function FD

FX : S× 2M → 2M ,

with
∀S ∈ S : FX(S, ∅) = ∅, (1)

∀S ∈ S, J ⊆M : J ⊆ FX(S, J) (2)
∀S ∈ S, J, J ′ ⊆M : FX(S, J ∪ J ′) = FX(S, J) ∪ FX(S, J ′), (3)

∀S � S′ ∈ S, J ⊆M : FX(S, J) ⊆ FX(S′, J). (4)

We will use the following short notation for the functions w. r. t. state S〈σ〉

F
〈σ〉
D (J) := FD(S〈σ〉, J), F

〈σ〉
d (J) := Fd(S

〈σ〉, J).

6

The subspace selection step will guarantee that for each two processes π 6= η ∈ Π〈σ〉 running
at σ with corresponding subspaces J (π) and J (η) there holds

J (π) = F
〈π〉
D (J) for some J ⊆M,

F
〈π〉
d (J (π)) ∩ J (η) = ∅ = J (π) ∩ F 〈η〉d (J (η)). (5)

Finally, in order to allow different progress measures for subproblems in dependence on the
state, we assume that there is a subspace progress function

∆: S× 2M ×W ×RM → R+,

with
∀S ∈ S, w̄ ∈W, ŷ ∈ RM : ∆(S,M, w̄, ŷ) = ∆(w̄, ŷ). (6)

This function predicts the expected progress to be made by the subspace problem. Only
subspace problems that are guaranteed to satisfy (5) and that have a large predicted
decrease compared with the global predicted decrease will be chosen.

3.1 Subspace Selection

The first step of a process π is the subspace selection step at access index π. The goal is to
select a subspace that predicts a large progress compared to the global predicted decrease.
Formally, the algorithm checks whether for a subspace J ⊆M there holds

∆(S〈π〉, J, w̄〈π〉, ŷ〈π〉) ≥ τ1∆〈π〉 (Sel1)

for some parameter τ1 ∈ (0, 1). Furthermore, all processes running in parallel must satisfy
(5). This is guaranteed by verifying

J ∩ F 〈π〉d (B〈π〉) = ∅ = F
〈π〉
d (J) ∩B〈π〉. (Sel2)

An important property is that it is always possible to select a subspace satisfying (Sel1)
and (Sel2) if no other process is currently running. In particular, if B〈π〉 = ∅, then (6)
implies that J = M satisfies (Sel1), and (Sel2) is satisfied trivially. These observations
motivate the following simple greedy algorithm to select an appropriate subspace. Starting
with an empty subspace J = ∅, we add further variables so that (Sel2) remains valid until
(Sel1) holds. If the set of blocked variables is empty, then this greedy strategy will succeed
eventually by selecting J = M . The subspace selection procedure is shown in Algorithm 2.

Observation 3. If Algorithm 2 returns a subspace ∅ 6= J (π) ⊆M , then J (π) fulfils (Sel1)
and (Sel2). If the algorithm is called without blocked variables, i. e. B〈π〉 = ∅, then the
returned subspace is not empty, i. e. J (π) 6= ∅.

Proof. First observe that the returned subspace will satisfy (Sel1) because of the final test.
Next we prove (Sel2) inductively for J (π) as constructed. The empty subspace J (π) = ∅
satisfies (Sel2) by (1). Furthermore Y is only added to J (π) if F 〈π〉d (Y) ∩ B〈π〉 = ∅ =

F
〈π〉
d (B〈π〉) ∩ Y . Thus by (3) condition (Sel2) remains true when J (π) is increased. In

particular, if B〈π〉 = ∅ then F 〈π〉d (B〈π〉) = ∅, too, so each considered variable will be added.
Finally the set X is reduced in each iteration by at least one variable, so the loop will
terminate after at most |M | iterations. If J (π) = M then (Sel1) will be satisfied because of
property (6). �

7

Algorithm 2: SelectSubspace
Input : global data at π
Output :TRUE if a subspace can be selected
Changes : sets J (π)

X ←M \ F 〈π〉d (B〈π〉), J (π) ← ∅
while J (π) does not satisfy (Sel1) and X 6= ∅ do

1 select j ∈ Arg max{∆(S〈π〉, {j}, w̄〈π〉, ŷ〈π〉) : j ∈ X}
Y ← F

〈π〉
D ({j})

2 if F 〈π〉d (Y) ∩B〈π〉 = ∅ and F 〈π〉d (B〈π〉) ∩ Y = ∅ then
J (π) ← J (π) ∪ Y , X ← X \ Y

else
X ← X \ {j}

if J (π) satisfies (Sel1) then
return TRUE

else
J (π) ← ∅
return FALSE

3.2 Subspace Optimisation and Subspace Update

The concrete structure of the subspace problem is unknown to the main routine. However,
the algorithm underlying the processes π has to guarantee certain conditions on the values
returned in the update of the global data to σ = π̄+ 1. In particular, we make the following
assumption.

Assumption 4.

(i) Any process π ∈ Π̄〈∞〉 satisfies

S〈π̄〉 � S〈π̄+1〉, (Inv1)

f(ŷ〈π̄〉) ≥ f(ŷ〈π̄+1〉). (Inv2)

(ii) There exist constants τ2, τ3 ∈ (0, 1) so that either there is an infinite number of
processes π ∈ Π̄〈∞〉 satisfying

f(ŷ〈π〉)− f(ŷ〈π̄+1〉) ≥ τ2∆〈π〉, (Upd1)

or there is a σ1 ∈ Σ so that each process π ∈ Π̄〈∞〉 with π̄ ≥ σ1 satisfies

ŷ〈σ1〉 = ŷ〈π〉 = ŷ〈π̄+1〉 and ∆〈π̄+1〉 ≤ τ3∆〈π〉. (Upd2)

If condition (Upd1) holds then the process performed a descent step with a sufficiently
large decrease in the objective value (compared with the global expected progress when
π started). In contrast, (Upd2) guarantees that the global predicted decrease has been
reduced significantly without causing a descent step.

8

3.3 Convergence Analysis

Throughout we assume that the algorithm underlying the processes satisfies Assumption 4.
The parallel bundle algorithm (Algorithm 1) is called with the problem to be solved and
the parameters τ1, ε and u. In addition, the parameter NΠ is passed to the algorithm that
specifies the maximal number of processes that should be started in parallel. Because each
process works on a non-empty subspace and the subspaces of parallel processes are disjoint,
the number of parallel processes is bounded by the number of variables, i. e., |M |. But
in practice one would like to restrict the number of parallel processes to the number of
processors available on the hardware platform to be used.

We start with a simple but important observation, which is fundamental for the conver-
gence analysis.

Observation 5. The following relations hold.
(i) For all σ ∈ Σ: B〈σ〉 =

⋃
π∈Π〈σ〉 J

(π).
(ii) For all σ ∈ Σ: S〈σ〉 � S〈σ+1〉.
(iii) For all σ ∈ Σ: f(ŷ〈σ〉) ≥ f(ŷ〈σ+1〉).
(iv) There is a σ0 ∈ Σ so that S〈σ〉 = S〈σ0〉 for all σ ∈ Σ with σ ≥ σ0.

Proof. The proof works by induction on σ. For σ = 0 we have B〈σ〉 = ∅ and Π〈σ〉 = ∅, so
the relation holds trivially. Now suppose σ + 1 ∈ Σ and the claim holds for σ ∈ Σ. By
definition, σ + 1 ∈ Σ implies Π〈σ〉 6= Π〈σ+1〉, so Observation 2 asserts the existence of a
unique η ∈ (Π〈σ〉 \Π〈σ+1〉) ∪ (Π〈σ+1〉 \Π〈σ〉) and this η either satisfies η = σ or η̄ = σ.
If η = σ we have Π〈σ〉 = Π〈σ+1〉 \ {η} and process η executes a successful subspace

selection step (Algorithm 2) at σ. Thus the process executes A1.4 implying B〈σ+1〉 =
B〈σ〉 ∪ J (η) as well as S〈σ+1〉 = S〈σ〉 and ŷ〈σ〉 = ŷ〈σ+1〉 and the claim holds. If η̄ = σ
we have Π〈σ+1〉 = Π〈σ〉 \ {η} and process η executes line A1.7 at σ. The latter implies
B〈σ+1〉 = B〈σ〉 \ J (η). Furthermore condition (Inv1) implies S〈σ〉 � S〈σ+1〉 and (Inv2)
implies f(ŷ〈σ〉) ≥ f(ŷ〈σ+1〉).

The last statement follows from the second and the fact that S is a finite set. �

The (due to the finiteness of S) trivial fact that after a finite number of global updates the
dependency information encoded in S〈σ〉 does not change anymore, will be vital for the
convergence analysis. Indeed, constant dependency information will imply that no new
dependencies are encountered that endanger convergence.

Observation 6. Let σ ∈ Σ and π, η ∈ Π〈σ〉. Then (5) holds for π and η.

Proof. This follows from test A2.2, Observation 5 and properties (3) and (4). �

The next result characterises the situation when the algorithm terminates. In particular,
the global algorithm is guaranteed to keep at least one running process as long as the
termination criterion is not satisfied.

Observation 7. For each σ ∈ Σ the following statements are equivalent:
(i) σ = max Σ,
(ii) Π〈σ〉 = Π〈σ+1〉,
(iii) the algorithm terminated with σ being the last global index,
(iv) ∆〈σ〉 ≤ ε(|f(ŷ〈σ〉)|+ 1) and ∆〈σ

′〉 > ε(|f(ŷ〈σ
′〉)|+ 1) for all σ′ < σ.

In particular, max Σ = ∞ if and only if the algorithm does not terminate and ∆〈σ〉 >
ε(|f(ŷ〈σ〉)|+ 1) for all σ ∈ N0 = Σ.

9

Proof. We prove this by induction on σ assuming that the equivalence holds for smaller
global indexes.

(i) ⇐⇒ (ii): This follows by definition of Σ and Observation 2.

(iii) ⇒ (iv): If σ = 0 then the algorithm must have been terminated in line A1.1, thus (iv)
follows. If σ > 0 then by induction ∆〈σ

′〉 > ε(|f(ŷ〈σ
′〉)|+1) for each σ′ < σ (otherwise

σ′ had been the last global index). The only possibility to terminate the algorithm is
that the test in line A1.8 succeeds for some process π with π̄ = σ − 1.

(iv) ⇒ (iii): (iv) implies that either σ = 0 or σ > 0 and (w̄〈σ−1〉, ŷ〈σ−1〉) 6= (w̄〈σ〉, ŷ〈σ〉). In
the first case the termination test in A1.1 succeeds and the algorithm terminates
right after the initialisation step. In the second case there must be a process π
with π̄ = σ − 1 setting the values for σ = π̄ + 1 in A1.6 (because if π = σ − 1 the
process would execute line A1.3 and (w̄〈σ−1〉, ŷ〈σ−1〉) = (w̄〈σ〉, ŷ〈σ〉)). Consequently
the termination test in line A1.8 will succeed and the algorithm will be terminated.

(iii) ⇒ (ii): If the algorithm terminates with last global index σ then no process will ever
execute a subspace selection step or an update step at some later index σ′ ≥ σ, hence
Π〈σ〉 = Π〈σ+1〉 by Observation 2.

(ii) ⇒ (iii): (ii) implies that no process ever executes a successful subspace selection step
or an update step at some index σ′ ≥ σ. Assume that the algorithm has not been
terminated with last global index σ. We consider two cases. First if ∃π ∈ Π〈σ〉 6= ∅
then at least one process is still running at σ. Because each subspace optimisation
is finite by assumption this process will eventually execute its update step at π̄ ≥ σ
and would increase σ, a contradiction. Now assume Π〈σ〉 = ∅. In particular this is
the case if σ = 0. Then Observation 5 implies B〈σ〉 = ∅. The algorithm will therefore
try to start a new process π at π = σ and because of Observation 3 this step will be
successful. This causes again σ to be increased, a contradiction. �

Next we show that under Assumption 4 the algorithm always drives the predicted decrease
to zero on an appropriate subsequence whenever f is bounded from below.

Lemma 8. Suppose an infinite number of processes satisfies (Upd1) and f is bounded from
below. Let Σdc := {π : π satisfies (Upd1)}. Then lim infσ∈Σdc ∆〈σ〉 = 0.

Proof. By Observation 5 the sequence (f(ŷ〈σ〉))σ∈Σ is non-increasing and because f is
bounded from below the sequence f(ŷ〈π〉)− f(ŷ〈π̄+1〉) converges to zero. Hence condition
(Upd1) implies that ∆〈π〉 converges to zero, too. �

Lemma 9. Assume |Σ| = ∞ and there is only a finite number of descent steps, i. e. of
processes satisfying (Upd1), and ε = 0, then limσ∈Σ ∆〈σ〉 = 0.

Proof. Because there is only a finite number or processes satisfying (Upd1), Assumption 4
ensures that there exists a σ1 ∈ Σ so that each process π with π̄ ≥ σ1 satisfies (Upd2).
Define for σ ∈ Σ

∆̂〈σ〉 := max
(
{∆〈σ〉} ∪ {∆〈π〉 : π ∈ Π〈σ〉}

)
,

and
ν(σ) := max

(
{σ +NΠ + 1} ∪ {π̄ + 1: π ∈ Π〈σ+NΠ+1〉}

)
.

We will show that for all σ ≥ σ1 there holds

10

a) ∆̂〈σ〉 ≥ ∆̂〈σ+1〉,

b) τ3 · ∆̂〈σ〉 > ∆〈π̄+1〉 for all processes π with π̄ ≥ σ,

c) τ3 · ∆̂〈σ〉 > ∆̂〈ν(σ)〉.

Note that a) and c) imply 0 ≤ ∆〈σ〉 ≤ ∆̂〈σ〉 → 0.
First we show a). For this let π be the process with σ ∈ {π, π̄}. If σ = π then

Π〈σ+1〉 = Π〈σ〉 ∪ {π} and ∆̂〈σ〉 = ∆̂〈σ+1〉 = ∆〈π〉 because no relevant global data changed in
A1.3, so ∆̂〈σ〉 = ∆̂〈σ+1〉. Now assume σ = π̄, then Π〈σ+1〉 = Π〈σ〉 \ {π}. Because π̄ ≥ σ1 we
know that π satisfies (Upd2). Consequently the update A1.6 implies ∆〈σ+1〉 = ∆〈π̄+1〉 <
τ3 ·∆〈π〉 ≤ τ3 · ∆̂〈σ〉, so ∆̂〈σ+1〉 ≤ ∆̂〈σ〉.
In order to prove b), observe that either π ∈ Π〈σ〉, so ∆〈π̄+1〉 < τ3 ·∆〈π〉 ≤ τ3 · ∆̂〈σ〉, or

π ≥ σ, implying by a) ∆〈π̄+1〉 < τ3 ·∆〈π〉 ≤ τ3 · ∆̂〈π〉 ≤ τ3 · ∆̂〈σ〉.
Finally we show c). Note, for η ∈ Π〈ν(σ)〉 there holds η ≥ σ +NΠ + 1, because otherwise

we had η ∈ Π〈σ+NΠ+1〉, hence η̄ + 1 ≤ ν(σ) contradicting η ∈ Π〈ν(σ)〉. This implies
∆̂〈ν(σ)〉 = ∆〈γ〉 for some γ ≥ σ +NΠ + 1. Let

π = arg max
π∈Π̄〈γ〉

{π̄ : ∆〈π̄+1〉 = ∆〈γ〉}.

Then we have π̄ ≥ σ, because otherwise π̄ < σ was the last update before γ and so
there would exist processes πi 6= π, i ∈ {0, . . . , NΠ} with πi = σ + i. Consequently

∆̂〈ν(σ)〉 = ∆〈π̄+1〉 π̄≥σ< τ3 · ∆̂〈σ〉 by b). �

Note that the sequence of global predicted decrease (∆〈σ〉)σ≥σ′ does not necessarily converge
monotonically to zero for any σ′ ∈ N. However, replacing (Upd2) by

ŷ〈π̄〉 = ŷ〈π̄+1〉 and ∆〈π̄+1〉 ≤ τ3 ·∆〈π̄〉, (Upd2’)

for dependency detection, one gets a non-increasing sequence.

Observation 10. Assume |Σ| =∞ and there is only a finite number of processes satisfying
(Upd1) with ε = 0, and suppose, starting from some σ1 ∈ Σ, each subprocess π ∈ Π̄〈∞〉

with π̄ ≥ σ1 guarantees (Upd2’) instead of (Upd2). Then the sequence (∆〈σ〉)σ≥σ1 is
non-increasing and limσ≥σ1 ∆〈σ〉 = 0.

Proof. Given a σ1 ∈ Σ so that all processes π with π̄ ≥ σ1 satisfy (Upd2’), in particular
∆〈π̄+1〉 ≤ τ3∆〈π̄〉. Let σ ≥ σ1 and let π be the process with σ ∈ {π, π̄}. If σ = π then
∆〈σ+1〉 = ∆〈σ〉 because no relevant global data is changed. Otherwise ∆〈σ+1〉 = ∆〈π̄+1〉 ≤
τ3∆〈π̄〉 = τ3∆〈σ〉. This proves that (∆〈σ〉)σ≥σ1 is non-increasing. In particular, ∆〈π̄+1〉 ≤
τ3∆〈π̄〉 ≤ τ3∆〈π〉, so (Upd2) also holds for all these processes, proving limσ≥σ1 ∆〈σ〉 = 0 by
Lemma 9. �

Corollary 11. If f is bounded from below and ε = 0, the predicted decrease ∆〈σ〉 =
f(ŷ〈σ〉)− f̂w̄〈σ〉(ŷ〈σ〉) + 1

u‖ḡ
〈σ〉‖2 goes to zero on the subsequence Σ∗ ⊆ Σ with

Σ∗ :=

{
Σ, if |Σdc| <∞,
Σdc, otherwise,

where Σdc is the sequence of descent steps according to Lemma 8. In particular, both terms
f(ŷ〈σ〉)− f̂w̄〈σ〉(ŷ〈σ〉) and ‖ḡ〈σ〉‖ go to zero, for the subsequence Σ∗.

11

Proof. Depending on whether an infinite number of descent steps occurs or not, the
claim follows either from Lemma 8 or Lemma 9 (or Observation 7 for |Σ| <∞). The last
statement follows from the fact f(ŷ〈σ〉)− f̂w̄〈σ〉(ŷ〈σ〉) ≥ 0 and ‖ḡ〈σ〉‖ ≥ 0. �

Theorem 12. Suppose the set of optimisers Arg min f is nonempty and bounded. If Σ is
finite, ŷ〈max Σ〉 is an optimal solution of (P). Otherwise the sequence (ŷ〈σ〉)σ∈Σ has at least
one cluster point and each cluster point is an optimal solution of (P).

Proof. The finite case follows from Observation 7, so assume |Σ| = ∞. Let f∗ :=
min{f(y) : y ∈ RM}. The boundedness of the level set {y : f(y) ≤ f∗} implies the
boundedness of all level sets, particularly of the set S := {y : f(y) ≤ f(ŷ〈0〉)}. Because
(f(ŷ〈σ〉))σ is non-increasing, see Observation 5, we have ŷ〈σ〉 ∈ S for all σ ∈ Σ and therefore
the sequence (ŷ〈σ〉)σ is bounded, so it has at least one cluster point. Let y∗ be a cluster
point of (ŷ〈σ〉)σ. So there is a subsequence (ŷ〈σ〉)σ∈Σ′ → y∗ for some Σ′ with

Σ′ ⊆

{
Σ, if |Σdc| <∞,
Σdc, otherwise.

Let y ∈ RM be an arbitrary point. Then by continuity of f we get

f(y) ≥ f̂w̄〈σ〉(y) = f(ŷ〈σ〉)︸ ︷︷ ︸
Σ′→f(y∗)

− 〈ḡ〈σ〉, y − ŷ〈σ〉〉︸ ︷︷ ︸
Σ′→0 by Corollary 11

Σ′→ f(y∗),

proving that f(y∗) is indeed a minimum of f . �

4 A Simple Subproblem for General Convex Functions

In this section we describe a simple algorithmic approach for setting up proper subspace
problems for the processes so that Assumption 4 can be guaranteed. This approach, however,
will in general not be useful in practice, because solving the subspace problem requires
the same computational effort as the global problem. It merely serves as a first example
for a fully workable asynchronous parallel bundle method. In the next sections we will
present other variants that exploit structural properties of the objective function in order
to construct more efficient subspace problems.

The most straight forward subspace problem for a process π working on an affine subspace
indexed by J (π) ⊆M is

minimise f(y),

subject to y ∈ L(π),
(Subπs)

i. e., we just restrict the optimisation to the affine subspace L(π) = L(J (π), ŷ〈π〉). Given a
centre ŷ(π) ∈ L(π) and an aggregated minorant w̄(π) = (l̄(π), ḡ(π)) ∈ W , the candidate of
this subspace problem is given by

ȳ(π) = arg min
{
f̂w̄(π)(y) +

u

2
‖y − ŷ(π)‖2 : y ∈ L(π)

}
and so the expected progress can be worked out to be

∆(π)
s (w̄(π), ŷ(π)) = f(ŷ(π))− f̂w̄(π)(ȳ(π)) = f(ŷ(π))− l̄(π) − 〈ḡ(π), ŷ(π)〉+

1

u
‖ḡ(π)

J(π)‖2.

12

In particular, for ŷ(π) ∈ L(π) and each w̄ ∈W there holds

∆(w̄, ŷ(π)) = ∆(π)
s (w̄, ŷ(π)) +

1

u
‖ḡ(π)

M\J(π)‖2. (7)

A bundle method solving (Subπs) will eventually drive ∆
(π)
s (w̄(π), ŷ(π)) to zero, but this

only helps to reduce the global progress ∆(w̄(π), ŷ(π)) if the last term does not grow too
much. Thus, we will use this last term to detect strong subspace dependencies, which we
store in an adaptive dependency digraph G = (M,E) on node set M with directed edges
E ⊆ {(i, j) : i, j ∈M, i 6= j}. The meaning of an edge (j, j′) ∈ E is as follows. If a process
tries to select j for inclusion into J (π) in A2.1, the subspace is presumed to depend strongly
on the variable j′, so it must include j′ as well. Thus, a dependency digraph defines a
strongly dependent subspace function F gra

D . In particular, let

Sgra := {E ⊆M2 : ∀ j ∈M, (j, j) /∈ E}
and with S = E ∈ Sgra

F gra
D (S, J) := J ∪ {j′ ∈M : ∃ j ∈ J, (j, j′) ∈ S}.

It is easy to check that (Sgra,�), where S � S′ if and only if S ⊆ S′, is a valid set of states
with the complete digraph yielding the unique maximal element S̄gra ∈ Sgra, and that F gra

D

satisfies the requirements for dependent subspace functions.
We will use the dependency graph based function F gra

D together with the states Sgra to
track these dependencies. We do not use any weak dependencies, i. e. if a subspace J is
selected, no other variables have to be kept fixed. So the following states and functions are
used,

Ss := Sgra, F s
D(S, J) := F gra

D (S, J), F s
d(S, J) := J, ∆s(S, J, w̄, ŷ) := ∆(π)

s (w̄, ŷ).

Obviously F s
d satisfies the conditions for weakly dependent subspace functions.

Algorithm 2 determines J (π) w. r. t. these dependency functions in the subspace selection
step and so condition (Sel1) guarantees

∆(π)
s (w̄〈π〉, ŷ〈π〉) ≥ τ1∆〈π〉.

The subspace problem is solved by a bundle method with centre ŷ(π) = ŷ〈π〉, descent
parameter %2 ∈ (0, 1) and a termination parameter %1 ∈ (0, 1) until the aggregate minorant
w̄(π) ∈W and the candidate ȳ(π) ∈ L(π) either satisfy

∆(π)
s (w̄(π), ŷ(π)) ≥ %1∆(π)

s (w̄〈π〉, ŷ〈π〉) and f(ŷ〈π〉)− f(ȳ(π)) ≥ %2∆(π)
s (w̄(π), ŷ(π)), (Upd1s)

or
∆(π)

s (w̄(π), ŷ(π)) < %1∆(π)
s (w̄〈π〉, ŷ〈π〉). (Upd2s)

By Theorem 1 the bundle process ensures that one of the two criteria is met in finite time.
Let ȳ(π) ∈ L(π) be the last candidate point of the bundle method. With this the process
runs Algorithm 3 to update the global data to index σ = π̄ + 1 as described next.
We investigate the case that the subprocess stopped because of (Upd2s). In view of

(7), condition (Upd2) might not hold if 1
u‖ḡ

〈π̄+1〉
M\J(π)‖2 > 1

u‖ḡ
〈π〉
M\J(π)‖2. If this happens, the

subprocess presumes to have detected a new strong dependency between J (π) and M \ J (π).
In fact, the process checks if the following condition holds for some %3 ∈ (0, 1− %1),

1

u
‖ḡ〈π̄+1〉
M\J(π)‖2 −

1

u
‖ḡ〈π〉
M\J(π)‖2 > %3∆(π)

s (w̄〈π〉, ŷ〈π〉). (Deps)

13

If this condition holds then the improvement in global progress is small compared to the
gain generated by the subspace optimisation. In this case we increase the dependency graph
by choosing an edge

(j, j′) ∈ Arg max
{

(ḡ
〈π̄+1〉
̂)2 − (ḡ

〈π〉
̂)2 : (̃, ̂) ∈ (J (π) × (M \ J (π))) \ S〈π̄〉

}
, (8)

and set S〈π̄+1〉 := S〈π̄〉 ∪ {(j, j′)}. Note that this implies S〈π̄+1〉 � S〈π̄〉 (see below).

Algorithm 3: UpdateSubspaces

Input : π, final candidate ȳ(π) ∈ L(π), aggregate minorant w̄(π) ∈W
Changes : global data at π̄ + 1
if π stopped because of (Upd1s) then

w̄〈π̄+1〉 ← w̄(π)

ŷ〈π̄+1〉 ∈ Arg min
{
f(y) : y ∈ {ŷ〈π̄〉, ȳ(π), ŷ〈π̄〉 + (ȳ(π) − ŷ〈π〉)}

}
S〈π̄+1〉 ← S〈π̄〉

else // π stopped because of (Upd2s)
w̄〈π̄+1〉 ← w̄(π), ŷ〈π̄+1〉 ← ŷ〈π̄〉

if (Deps) holds then S〈π̄+1〉 ← S〈π̄〉 ∪ {(j, j′)} with (j, j′) be defined in (8)
else S〈π̄+1〉 ← S〈π̄〉

It remains to verify validity of Assumption 4. Conditions (Inv1) and (Inv2) are clearly
fulfilled, so we check that the subproblem satisfies (Upd1) and (Upd2).

Lemma 13. For τ2 ∈ (0, %2%1τ1] and τ3 ∈ [1− τ1(1− %1 − %3), 1) there hold:

(i) If a subprocess π terminates with (Upd1s) then it satisfies (Upd1).

(ii) If there is only a finite number of processes satisfying (Upd1), then there is a σ1 ∈ Σ
so that each process π with π̄ ≥ σ1 satisfies (Upd2).

Proof. We start with (i). By (Upd1s) there holds with the subspace selection condition
(Sel1)

f(ŷ〈π〉)− f(ȳ(π)) ≥ %2∆(π)
s (w̄(π), ŷ〈π〉) ≥ %2%1∆(π)

s (w̄〈π〉, ŷ〈π〉) ≥ %2%1τ1∆〈π〉 ≥ τ2∆〈π〉.

The choice of ŷ〈π̄+1〉 in this case implies f(ŷ〈π̄+1〉) ≤ min{f(ŷ〈π̄〉), f(ȳ(π))}, so (Upd1) holds.
Now consider (ii). If Σ is finite, σ1 = max Σ is a valid choice. If |Σ| =∞ and there are

only finitely many descent steps, there is a σd ∈ Σ with ŷ〈σ〉 = ŷ〈σd〉 for all σ ≥ σd. Let σ0

be the index defined in Observation 5. We show that σ1 = 1 + max{σ0} ∪ {π̄ : π ∈ Π〈σd〉}
satisfies the requirements. By (i) and the choice of σ1 a process π with π̄ ≥ σ1 satisfies
ŷ〈σ1〉 = ŷ〈π〉 = ŷ〈π̄+1〉 and stopped because of (Upd2s) without satisfying (Deps). Then
with (7) it follows

∆〈π〉 −∆〈π̄+1〉 =
(

∆(π)
s (w̄〈π〉, ŷ〈π〉)−∆(π)

s (w̄〈π̄+1〉, ŷ〈π̄+1〉)
)

+
1

u

(
‖ḡ〈π〉
M\J(π)‖2 − ‖ḡ

〈π̄+1〉
M\J(π)‖2

)

≥ (1− %1 − %3)∆(π)
s (w̄〈π〉, ŷ〈π〉) ≥ τ1(1− %1 − %3)∆〈π〉,

and consequently

∆〈π̄+1〉 ≤ (1− τ1(1− %1 − %3))∆〈π〉 ≤ τ3∆〈π〉. �

14

5 Partially Separable Functions

The main drawback of the simple subspace problem presented in the previous section is
that solving a subspace problem requires the same computational effort as optimising over
the whole space (only the steps are restricted to the subspace, but the function evaluations
remain the same). In particular, each process π working on a subspace J (π) still has to
call the same oracle of f at its candidates. From a practical point of view one would only
expect a gain from the parallel algorithm if the computations and evaluations associated
with the subspace problems are significantly easier than the computations for the whole
problem. This seems only to be possible, if the objective function f has a special structure.

In this section we develop an alternative subspace problem that exploits the structure of
a “partially separable” objective function. In particular, given a finite set R and subspaces
Jr ⊂M , r ∈ R, we assume that f has the form

f(y) :=
∑
r∈R

fr(y),

where fr : RM → R are convex functions with the property

fr(y) = fr(y
′) for all y, y′ with yJr = y′Jr , r ∈ R.

In other words, a function fr only depends on the variables yj with j ∈ Jr, and there holds

∀ y ∈ RM , ∀ g ∈ ∂fr(y) : gM\Jr = 0.

The subdifferential of f at y ∈ RM has the form ∂f(y) =
∑

r∈R ∂fr(y). With

Wr = conv
{

(lr, gr) : lr = fr(y)− 〈gr, y〉, gr ∈ ∂fr(y), y ∈ RM
}
,

each minorant is defined by w = (wr)r∈R = (lr, gr)r∈R ∈W =×r∈RWr with

f̂w(y) =
∑
r∈R

f̂wr,r(y) = l + 〈g, y〉,

f̂wr,r(y) = lr + 〈gr, y〉,

being the affine minorant of f (in slight abuse of notation we will regard w = (l, g) ∈ R×RM
also as an element ofW). An immediate consequence is that the subspace problem associated
with a subspace J (π) ⊆M depends only on the functions fr, r ∈ R, with Jr ∩ J (π) 6= ∅. We
define for a subspace J ⊆M

RJ := {r ∈ R : Jr ∩ J 6= ∅}, J̄ :=
⋃
r∈RJ

Jr \ J,

and for a process π selecting coordinates J (π)

R(π) := RJ(π) , J̄ (π) :=
⋃

r∈R(π)

Jr \ J (π), (9)

then for a given centre ŷ ∈ RM there holds

min
{
f(y) : y ∈ L(J (π), ŷ)

}
= min

{
fR(π)(y) : y ∈ L(J (π), ŷ)

}
+ fR\R(π)(ŷ).

15

Hence, in order to optimise on a subspace J (π), a process only has to evaluate the functions
fr with r ∈ R(π), which is significantly easier than the evaluation of f if |R(π)| � |R|.
These considerations motivate the following choice of a subspace problem.

minimise f (π)(y) :=
∑

r∈R(π)

fr(y),

subject to y ∈ L(π),

(Subπp)

with L(π) = L(J (π), ŷ〈π〉). The set of minorants is given by W (π) =×r∈R(π) Wr. A
centre point ŷ(π) ∈ L(π) and an aggregated minorant w̄(π) = (l̄(π), ḡ(π)) ∈W (π) define the
candidate

ȳ(π) = arg min
{
f̂

(π)

w̄(π)(y) +
u

2
‖y − ŷ(π)‖2 : y ∈ L(π)

}
,

where
f̂

(π)

w̄(π)(y) =
∑

r∈R(π)

f̂
w̄

(π)
r ,r

(y).

The expected subspace progress in this case for w̄(π) ∈W (π) and ŷ(π) ∈ L(π) can be worked
out to be

∆(π)
p (w̄(π), ŷ(π)) = f (π)(ŷ(π))− f̂ (π)

w̄(π)(ȳ
(π))

= f (π)(ŷ(π))−
∑

r∈R(π)

(
l̄(π)
r + 〈ḡ(π)

r , ŷ(π)〉
)

+
1

u
‖ḡ(π)

J(π)‖2.

In particular, for w̄ = (l̄, ḡ) = (w̄r)r∈R = (l̄r, ḡr)r∈R ∈W there holds

∆(w̄, ŷ) = ∆(π)
p (w̄R(π) , ŷ) + ∆̄(π)

p (w̄R\R(π) , ŷ) +
1

u
‖ḡJ̄(π)‖2, (10)

where

∆̄(π)
p (w̄R\R(π) , ŷ) =

∑
r∈R\R(π)

(
fr(ŷ)− f̂w̄r,r(ŷ)

)
+

1

u
‖ḡM\(J(π)∪J̄(π))‖

2.

In fact, this decomposes the global expected progress ∆(w̄, ŷ) into three parts, the first
only depending on ŷJ(π)∪J̄(π) and w̄R(π) , the second not depending on ŷJ(π) and w̄R(π) , and
only the last term depending on complete w̄ = (l̄, ḡ) ∈W .

Observation 14. Let y, y′ ∈ RM and w ∈W .

(i) If yJ(π)∪J̄(π) = y′
J(π)∪J̄(π) then f (π)(y) = f (π)(y′) and ∆

(π)
p (wR(π) , y) = ∆

(π)
p (wR(π) , y′).

(ii) If yM\J(π) = y′
M\J(π) then fr(y) = fr(y

′), r ∈ R \ R(π), and ∆̄
(π)
p (wM\R(π) , y) =

∆̄
(π)
p (wM\R(π) , y′).

Proof. Direct computation while exploiting that for each r ∈ R \R(π) the function fr does
not depend on yJ(π) by definition (9) of R(π). �

If, on the one hand, y, y′ ∈ L(π) then yM\J(π) = y′
M\J(π) , i. e. the subspace L(π) does not

influence the term ∆̄
(π)
p . On the other hand, the first term ∆

(π)
p only depends on the

variables J (π) ∪ J̄ (π), hence, progress made by the subspace problem (Subπp) is directly

16

reflected in the term ∆
(π)
p if the components J̄ (π) are kept fix. This motivates the following

weakly dependent subspace function (it satisfies conditions (1)–(4))

F p
d (S, J) = J ∪ J̄ .

As in Section 4, we use the dependency digraph based strongly dependent subspace function
and ∆

(π)
p for the subspace progress function

Sp := Sgra, F p
D(S, J) := F gra

D (S, J)

and

∆p(S, J, w̄, ŷ) :=
∑
r∈RJ

(
fr(ŷ)− f̂w̄r,r(ŷ)

)
+

1

u
‖ḡJ‖2.

Employed within a successful subspace selection step of Algorithm 2 for π this yields

∆p(S〈π〉, J (π), w̄〈π〉, ŷ〈π〉) = ∆(π)
p (w̄

〈π〉
R(π) , ŷ

〈π〉) ≥ τ1∆〈π〉

and ensures a “disjointness” of parallel subspace problems.

Observation 15. Let σ ∈ Σ and π, η ∈ Π〈σ〉, π 6= η, be two parallel processes. Then
R(π) ∩R(η) = ∅.

Proof. Assume there exists an r ∈ R(π) ∩R(η). By definition there must be a j ∈ J (π) ∩Jr.
Furthermore r ∈ R(η) implies Jr ⊆ J (η) ∪ J̄ (η), hence j ∈ J (η) ∪ J̄ (η) = F p

d (S, J (η)). This is
a contradiction to (5), which holds by Observation 6. �

For subspace optimisation and subspace update we follow the same steps as in Section 4.
The subspace problem is solved by a bundle method with descent parameter %2 ∈ (0, 1)
and termination parameter %1 ∈ (0, 1) until the aggregate minorant w̄(π) ∈W (π) and the
candidate ȳ(π) ∈ L(π) satisfy

∆(π)
p (w̄(π), ŷ〈π〉) ≥ %1∆(π)

p (w̄
〈π〉
R(π) , ŷ

〈π〉) and f (π)(ŷ〈π〉)− f (π)(ȳ(π)) ≥ %2∆(π)
p (w̄(π), ŷ〈π〉),

(Upd1p)
or

∆(π)
p (w̄(π), ŷ〈π〉) < %1∆(π)

p (w̄
〈π〉
R(π) , ŷ

〈π〉). (Upd2p)

Observation 14 and (10) indicate that the critical term, which may cause an increase in the
global progress even if ∆

(π)
p is reduced, is the last of (10). Therefore, the subprocess will

use the following dependency test for some %3 ∈ (0, 1− %1)

1

u
‖ḡ〈π̄+1〉
J̄(π) ‖2 −

1

u
‖ḡ〈π̄〉
J̄(π)‖2 > %3∆(π)

p (w̄
〈π〉
R(π) , ŷ

〈π〉). (Depp)

Note that in contrast to (Deps) we compare the new values at π̄ + 1 with the values at
π̄ and not at π. This will allow for stronger convergence results. If condition (Depp) is
fulfilled, then the dependency graph is enlarged by adding an edge

(j, j′) ∈ Arg max
{

(ḡ
〈π̄+1〉
̂)2 − (ḡ

〈π̄〉
̂)2 : (̃, ̂) ∈ (J (π) × J̄ (π)) \ S〈π̄〉

}
(11)

and S〈π̄+1〉 := S〈π̄〉 ∪ {(j, j′)}. Putting all together, the update algorithm for the partially
separable subspace problems is displayed in Algorithm 4.
In order to prove Assumption 4 we first observe that the centre does not change on

J (π) ∪ J̄ (π) as long as π runs and changes in J (π) at most when π finishes.

17

Algorithm 4: UpdateSubspacep

Input : π, final candidate ȳ(π) ∈ L(π), aggregate minorant w̄(π) ∈W (π)

Changes : global data at π̄ + 1
if π stopped because of (Upd1p) then

(w̄
〈π̄+1〉
R(π) , w̄

〈π̄+1〉
R\R(π))← (w̄(π), w̄

〈π̄〉
R\R(π))

ŷ〈π̄+1〉 ← ŷ〈π̄〉 + (ȳ(π) − ŷ〈π〉)
S〈π̄+1〉 ← S〈π̄〉

else // π stopped because of (Upd2p)
(w̄
〈π̄+1〉
R(π) , w̄

〈π̄+1〉
R\R(π))← (w̄(π), w̄

〈π̄〉
R\R(π))

ŷ〈π̄+1〉 ← ŷ〈π̄〉

if (Depp) holds then S〈π̄+1〉 ← S〈π̄〉 ∪ {(j, j′)} with (j, j′) defined in (11)
else S〈π̄+1〉 ← S〈π̄〉

Corollary 16. Let π ∈ Π̄〈∞〉, then ŷ〈π〉j = ŷ
〈π̄〉
j for all j ∈ J (π) ∪ J̄ (π) and ŷ〈π̄〉j = ŷ

〈π̄+1〉
j for

all j /∈ J (π).

Proof. The first statement relies on the subspace selection in conjunction with the update of
the centre in Algorithm 4. Assume, for contradiction, ŷ〈π〉j 6= ŷ

〈π̄〉
j for some j ∈ J (π)∪ J̄ (π) =

F
〈π〉
d (J (π)). Then there must be a process η with π < η̄ < π̄ and ŷ〈η̄〉j 6= ŷ

〈η̄+1〉
j . However, in

all cases ŷ〈η̄〉j′ = ŷ
〈η̄+1〉
j′ for j′ /∈ J (η), hence j ∈ J (η). This implies j ∈ J (η) ∩ F 〈π〉d (J (π)) 6= ∅,

contradicting (5) by Observation 6 because π, η ∈ Π〈η̄〉.
For the second statement it suffices to observe that ŷ(π) ∈ L(π), so for j /∈ J (π) it is

ŷ
(π)
j = ŷ

〈π〉
j and ŷ〈π̄+1〉

j = ŷ
〈π̄〉
j + (ŷ

(π)
j − ŷ〈π〉j) = ŷ

〈π̄〉
j . �

Condition (Inv1) is clearly fulfilled, so it remains to check (Inv2) and (Upd1)–(Upd2) in
order to ensure validity of Algorithm 4.

Lemma 17. For τ2 ∈ (0, %2%1τ1] and τ3 ∈ [1− τ1(1− %1 − %3), 1) there hold:

(i) If a subprocess π terminates with (Upd1p) then it satisfies (Upd1).

(ii) If there is only a finite number of processes satisfying (Upd1), then there is a σ1 ∈ Σ
so that each process π with π̄ ≥ σ1 satisfies (Upd2) and (Upd2’).

(iii) All processes satisfy (Inv2).

Proof. By Corollary 16 we know ŷ
〈π̄〉
J(π)∪J̄(π) = ŷ

〈π〉
J(π)∪J̄(π) and ŷ

〈π̄+1〉
M\J(π) = ŷ

〈π̄〉
M\J(π) . First

assume that π stops with (Upd1p). Observation 14 implies f (π)(ŷ〈π̄〉) = f (π)(ŷ〈π〉) and

18

fr(ŷ
〈π̄〉) = fr(ŷ

〈π̄+1〉) for all r ∈ R \R(π). Consequently

f(ŷ〈π̄〉)− f(ŷ〈π̄+1〉) =
∑

r∈R(π)

(
fr(ŷ

〈π̄〉)− fr(ŷ〈π̄+1〉)
)

+
∑

r∈R\R(π)

(
fr(ŷ

〈π̄〉)− fr(ŷ〈π̄+1〉)
)

=
∑

r∈R(π)

(
fr(ŷ

〈π〉)− fr(ŷ〈π̄+1〉)
)

= f (π)(ŷ〈π〉)− f (π)(ŷ〈π̄+1〉) = f (π)(ŷ〈π〉)− f (π)(ȳ(π))

(Upd1p)

≥ %2∆(π)
p (w̄(π), ŷ〈π〉)

(Upd1p)

≥ %2%1∆(π)
p (w̄

〈π〉
R(π) , ŷ

〈π〉)

(Sel1)

≥ %2%1τ1∆〈π〉 ≥ τ2∆〈π〉 ≥ 0.

This proves (Inv2) as well as (Upd1) in this case.
Now assume that |Σ| = ∞ (otherwise σ1 = max Σ is a valid choice) and there is only

a finite number of processes satisfying (Upd1). Then by Observation 5 there is a σ0 ∈ Σ
so that S〈σ〉 = S〈σ0〉 for all σ ≥ σ0. Putting both together, there is a σ′ ≥ σ0 so that
ŷ〈σ〉 = ŷ〈σ

′〉 for all σ ≥ σ′. Set σ′′ := max{π̄ + 1: π ∈ Π〈σ
′〉}. Then for each π with π̄ ≥ σ′′

we have π ≥ σ′.
We use the following short notation for any process π and σ ∈ Σ

∆〈σ〉π := ∆(π)
p (w̄

〈σ〉
R(π) , ŷ

〈σ〉), ∆̄〈σ〉π := ∆̄(π)
p (w̄

〈σ〉
R\R(π) , ŷ

〈σ〉).

Let π be an arbitrary process with π̄ ≥ σ′′. Then π satisfies ∆
〈π̄+1〉
π

(Upd2p)
< %1∆

〈π〉
π and (Depp)

does not hold, hence by (10) and Observation 14

∆〈π̄〉 −∆〈π̄+1〉 = (∆〈π̄〉π −∆〈π̄+1〉
π) + (∆̄〈π̄〉π − ∆̄〈π̄+1〉

π) +
1

u

(
‖ḡ〈π̄〉
J̄(π)‖2 − ‖ḡ

〈π̄+1〉
J̄(π) ‖2

)
= (∆〈π〉π −∆〈π̄+1〉

π) +
1

u

(
‖ḡ〈π̄〉
J̄(π)‖2 − ‖ḡ

〈π̄+1〉
J̄(π) ‖2

)
≥ (1− %1 − %3)∆〈π〉π

≥ τ1(1− %1 − %3)︸ ︷︷ ︸
=:τ∈(0,1)

∆〈π〉 ≥ 0. (12)

This proves ∆〈π̄〉 ≥ ∆〈π̄+1〉, hence (∆〈σ〉)σ≥σ′′ is a decreasing sequence. Let σ1 := max{π̄ +
1: π ∈ Π〈σ

′′〉}, then π ≥ σ′′ for all π with π̄ ≥ σ1. Consequently, relation (12) implies for
each process π with π̄ ≥ σ1

∆〈π̄〉 −∆〈π̄+1〉 ≥ τ∆〈π〉 ≥ τ∆〈π̄〉

and so
∆〈π̄+1〉 ≤ (1− τ)∆〈π̄〉 ≤ τ3∆〈π̄〉.

This shows that (Upd2) and (Upd2’) hold. �

Remark 18. Note that the main algorithm requires the objective value in the current
centre f(ŷ〈σ〉) in order to compute ∆〈σ〉 = f(ŷ〈σ〉)− l̄〈σ〉 − 〈ḡ〈σ〉, ŷ〈σ〉〉+ 1

u‖ḡ
〈σ〉‖2. However,

there is no need to recompute the value if the centre is changed by a process π from ŷ〈π̄〉 to
ŷ〈π̄+1〉. This follows from the proof of Observation 5, which shows that fr(ŷ〈π̄〉) = fr(ŷ

〈π̄+1〉)
for all r ∈ R\R(π) and fr(ȳ(π)) = fr(ŷ

〈π̄+1〉) for all r ∈ R(π), i. e. the latter values equal the
values computed by π on its subspace. Therefore no additional evaluation of f is required
apart from the evaluations within a subprocess.

19

6 Lazy Separable Functions

In this section we generalise the subspace problem for partially separable functions presented
in Section 5. As described there, we can only hope for a significant reduction in the overall
number of oracle calls if the subproblems couple only few functions fr, r ∈ R, i. e. if for
a given subspace J ⊆M we have |RJ | � |R|. In practice, e. g. in Lagrangian relaxation,
we frequently encounter functions fr with large sets Jr ⊆M while the actual solution just
depends on a few of the coordinates in Jr. The following example serves as the central
motivation for the approach presented in this section and requires the following notation.
For J ⊆M and y ∈ RM we denote by y|J the vector with values [y|J]i = yi for i ∈ J and
[y|J]i = 0 for i ∈M \ J .

Example 19. Consider Lagrangian relaxation decoupling a problem of the form

max

{∑
r∈R

cTr xr :
∑
r∈R

Arxr ≤ b, xr ∈ Xr, r ∈ R

}

with compact Xr ⊆ Rnr+ , Ar ∈ RM×nr+ for r ∈ R and b ∈ RM . Introducing Lagrange
multipliers y ∈ RM+ (see, e. g., [5] for an extension of bundle methods to sign constraints)
for the linear coupling constraints, the dual problem reads

min
y∈RM+

f(y) = bT y +
∑
r∈R

fr(y) with fr(y) = max
xr∈Xr

(cTr xr − yTArxr), r ∈ R,

and for r ∈ R the sets Jr are determined by Jr := {i ∈ M : [Ar]i,• = 0}. Suppose now
fr is evaluated at some ŷ ≥ 0 with support J = {i ∈ M : ŷi 6= 0} yielding an optimiser
x̂r influenced by J ′r := {i ∈ Jr : [Arx̂r]i 6= 0 ∨ i ∈ J}. Then it can be checked that x̂r
is optimal for any other ŷ′ ≥ 0 with ŷ′J ′r = ŷJ ′r , so arbitrary changes in Jr \ J ′r do not
require reevaluations of fr. In fact, there is no need to consider values of an ŷ′ outside of
J ′r even in the case of ŷ′J ′r 6= ŷJ ′r as long as f(ŷ′|J ′r

) is attained for an optimiser x̂′r satisfying
{i ∈ Jr : [Arx̂

′
r]i 6= 0} ⊆ J ′r. If this fails to hold then a correct evaluation may next be

attempted by simply enlarging J ′r by the support of the new gradient Arx̂′r. However, any
strict enlargement requires another evaluation with respect to the enlarged support which
may entail yet another enlargement till a new stable support J ′′r ⊆ Jr is found for ŷ′.

For each r ∈ R the algorithm will maintain an active subspace J 〈σ〉r ⊆ Jr, σ ∈ Σ, which
collects the indexes of Jr that have shown some influence on the evaluation of fr. The next
definition may be interpreted as formulating structural requirements on fr that allow the
algorithm to automatically adapt the active subspaces.

Definition 20. Given r ∈ R, a point ŷ ∈ RM , a minorant w̄r = (l̄r, ḡr) ∈ Wr and a set
J ′r ⊆ Jr, the triple (ŷ, w̄r, J

′
r) is called consistent for r if

fr(y) = fr(ŷ|J) for all y|J = ŷ|J , y ∈ RM , J ′r ⊆ J ⊆ Jr and (ḡr)M\J ′r = 0. (C)

We say the (global) data at σ is consistent if (ŷ〈σ〉, w̄
〈σ〉
r , J

〈σ〉
r) is consistent for each r ∈ R.

By definition of Jr, any triple (ŷ, wr, Jr) is consistent for r. Algorithmically it is not
possible to check consistency of subsets of Jr without additional structural knowledge.
Therefore the algorithm assumes for each r ∈ R the availability of a consistency oracle
Cr : RM ×Wr × 2M → 2Jr returning an index set J = Cr(ŷ, wr, J

′
r) with J ′r ⊆ J so that

(ŷ, wr, J) is consistent for r (J = Jr is always a feasible choice).

20

Remark 21. For the packing type application described in Example 19 a consistency
oracle Cr(ŷ, wr, J

′
r) can be implemented quite efficiently. Due to the nonnegativity of all

quantities involved, i. e. ŷ ≥ 0, Xr ⊆ Rnr+ , Ar ∈ RM×nr+ , it suffices to find an index set J
with J ′r ⊆ J ⊂ Jr for which an optimiser x̂r exists with [Arx̂r]M\J = 0. Therefore starting
with J ← J ′r and iterating the process of finding x̂r ∈ Arg maxxr∈Xr(c

T
r xr − ŷT|JArxr),

stopping if J ′ ← {i ∈M : [Arx̂r]i 6= 0} satisfies J ′ ⊆ J , else repeating this with J ← J ∪ J ′,
provides a valid J .

Consistency is maintained if only the subspace J ′r is enlarged.

Observation 22. Given r ∈ R, ŷ ∈ RM , wr ∈ Wr and sets J ′r ⊆ J ′′r ⊆ Jr, suppose
(ŷ, wr, J

′
r) is consistent. Then (ŷ, wr, J

′′
r) is consistent, too.

Proof. Obvious. �

The algorithmic approach follows the same steps as for partially separable functions, but
this time we set up the subspace problem w. r. t. the assumption that the functions fr only
depend on the variables y

J
〈π〉
r

. In order to emphasise this difference in the objects related to
a process π we now use a superscript [π] in brackets. In particular, let J [π] be the subspace
associated with a process π, then we define

J [π]
r := J 〈π〉r ∩ J [π], J̄r

[π]
:= J 〈π〉r \ J [π],

J̄ [π] :=
⋃

r∈R[π]

J̄r
[π]
, R[π] :=

{
r ∈ R : J 〈π〉r ∩ J [π] 6= ∅

}
(13)

f [π]
r (y) := fr(y|J〈π〉r

), f [π](y) :=
∑
r∈R[π]

f [π]
r (y).

Using these notations the subspace problem associated with process π reads

minimise f [π](y)

subject to y ∈ L[π] := L(J [π], ŷ〈π〉).
(Subπx)

A centre point ŷ[π] ∈ L[π] and an aggregated minorant w̄[π] = (l̄[π], ḡ[π]) ∈ W [π] :=

×r∈R[π] Wr define the candidate

ȳ[π] = arg min
{
f̂

[π]

w̄[π](y) +
u

2
‖y − ŷ[π]‖2 : y ∈ L[π]

}
,

where
f̂

[π]

w̄[π](y) =
∑
r∈R[π]

f̂
w̄

[π]
r ,r

(y|J〈π〉r
).

This gives rise to the expected progress

∆[π](w̄[π], ŷ[π]) = f [π](ŷ[π])− f̂ [π]

w̄[π](ȳ
[π])

=
∑
r∈R[π]

(
f [π]
r (ŷ[π])− l̄[π]

r + 〈(ḡ[π]
r)

J
〈π〉
r
, ŷ

[π]

J
〈π〉
r

〉
)

+
1

u

∥∥∥∥ ∑
r∈R[π]

(ḡ[π]
r)|J [π]

r

∥∥∥∥2

.

Here, consistency is required in order to decompose the global expected progress as before.

21

Observation 23. For π ∈ Π̄〈∞〉, ŷ ∈ RM , w̄ ∈ W with (ŷ, w̄r = (l̄r, ḡr), J
〈π〉
r) consistent

for r ∈ R there holds

∆(w̄, ŷ) = ∆[π](w̄R[π] , ŷ) + ∆̄[π](w̄, ŷ) +
1

u
‖ḡJ̄ [π]‖2, (14)

where

∆̄[π](w̄, ŷ) =
∑
R\R[π]

(
fr(ŷ)− l̄r − 〈ḡr, ŷ〉

)
+

1

u
‖ḡM\(J [π]∪J̄ [π])‖

2.

Proof. By definition we have

∆(w̄, ŷ) = ∆̃ + ∆̄[π](w̄, ŷ) +
1

u
‖ḡJ̄ [π]‖2,

where

∆̃ =
∑
r∈R[π]

(
fr(ŷ)− l̄r − 〈ḡr, ŷ〉

)
+

1

u
‖ḡJ [π]‖2,

so it remains to show that ∆̃ = ∆[π](w̄R[π] , ŷ). The consistency assumption implies
f

[π]
r (ŷ) = fr(ŷ) for all r ∈ R[π], as well as 〈ḡr, ŷ〉 = 〈(ḡr)J〈π〉r

, ŷ
J
〈π〉
r
〉 by ḡr = (ḡr)|J〈π〉r

for all

r ∈ R. Because J [π]
r = J

〈π〉
r ∩ J [π] 6= ∅ ⇐⇒ r ∈ R[π] by definition, there holds

ḡ|J [π] =
∑
r∈R

(ḡr)|J [π] =
∑
r∈R

(ḡr)|J [π]
r

=
∑
r∈R[π]

(ḡr)|J [π]
r
,

completing the proof. �

The set of states and the strongly dependent subspace function are now a combination of the
dependency graph function and the activity sets. In particular, let Sact := {(J ′r)r∈R : J ′r ⊆
Jr, r ∈ R} with S � S′ for S, S′ ∈ Sact if and only if all sets J ′r of S are subsets of
the corresponding sets in S′. Combining this with Sgra we get Sx = Sgra × Sact with
(S1, S2) � (S′1, S

′
2) ⇐⇒ S1 � S′1 ∧ S2 � S′2. Using the consistency oracle, the initial state

is set to S〈0〉 := (∅, (Cr(ŷ〈0〉, w̄〈0〉r , ∅))r∈R). Thus, the global data is consistent for σ = 0.
We denote the activity set of r ∈ R associated with a state S ∈ Sx by Jr(S). The

corresponding strongly dependent subspace function is then

F x
D((S1, S2), J) := F gra

D (S1, J).

The weakly dependent subspace function is defined analogously to Section 5, guaranteeing
that the centre is not changed on J [π] ∪ J̄ [π] by other processes as long as π runs, i. e.

F x
d (S, J) := J ∪ J̄(S),

where
J̄(S) :=

⋃
r∈R(S,J)

Jr(S) \ J, R(S, J) := {r ∈ R : Jr(S) ∩ J 6= ∅}.

Note that, in contrast to F p
d (S, J), the function F x

d (S, J) really depends on the state S.
The expected subspace progress is given by

∆x(S, J, w̄, ŷ) :=
∑

r∈R(S,J)

(
fr(ŷ|Jr(S))− f̂w̄r,r(ŷ|Jr(S))

)
+

1

u

∥∥∥∥ ∑
r∈R(S,J)

(ḡr)|J∩Jr(S)

∥∥∥∥2

.

22

As above one proves that in the case of consistent global data a successful call to Algorithm 2
of process π returns a J [π]

r with

∆x(S〈π〉, J [π], w̄〈π〉, ŷ〈π〉) = ∆[π](w̄
〈π〉
R(π) , ŷ

〈π〉) ≥ τ1∆〈π〉.

Like in the partially separable case we get disjointness of the subfunctions associated with
parallel processes.

Observation 24. Let σ ∈ Σ and π, η ∈ Π〈σ〉, π 6= η, be two parallel processes. Then
R[π] ∩R[η] = ∅.

Proof. Without loss of generality we may assume π < η. Suppose, for contradiction, there
exists an r ∈ R[π] ∩ R[η]. By definition there must be a j ∈ J [π] ∩ J 〈π〉r , and S〈π〉 � S〈η〉

implies J 〈π〉r ⊆ J 〈η〉r . Because r ∈ R[η] we have J
〈η〉
r ⊆ J [η] ∪ J̄ [η], hence

j ∈ J 〈π〉r ⊆ J 〈η〉r ⊆ J [η] ∪ J̄ [η] = F x
d (S〈η〉, J [η]),

so J [π] ∩ F x
d (S〈η〉, J [η]) 6= ∅. This is a contradiction to (5), which holds by Observation 6.�

The subspace process proceeds as in the separable case. The subspace problem is solved by
a bundle method with descent parameter %2 ∈ (0, 1) and termination parameter %1 ∈ (0, 1)
until the aggregate minorant w̄[π] ∈W [π] and the candidate ȳ[π] ∈ L[π] either satisfy

∆[π](w̄[π], ŷ〈π〉) ≥ %1∆[π](w̄
〈π〉
R[π] , ŷ

〈π〉) and f [π](ŷ〈π〉)− f [π](ȳ[π]) ≥ %2∆[π](w̄[π], ŷ〈π〉),

(Upd1x)
or

∆[π](w̄[π], ŷ〈π〉) < %1∆[π](w̄
〈π〉
R[π] , ŷ

〈π〉). (Upd2x)

Observation 23 indicates that the critical term is again the third one of (14), so that the
subprocess will use the following dependency test for some %3 ∈ (0, 1− %1)

1

u
‖ḡ〈π̄+1〉
J̄(π) ‖2 −

1

u
‖ḡ〈π̄〉
J̄(π)‖2 > %3∆[π](w̄

〈π〉
R[π] , ŷ

〈π〉). (Depx)

If condition (Depx) is fulfilled, the dependency graph is enlarged by adding an edge according
to (11).
There is one important difference to the partially separable case. In setting up the

subproblem the contributing functions and their restricted evaluation spaces were determined
under the assumption that for each r ∈ R the relevant parameters of fr were given by
J
〈π〉
r . Before setting the new values we have to make sure, that these assumptions are still

valid. If at π̄ the old sets J 〈π〉r prove to be too small, we dump the results and only make
sure that the state increases strictly in comparison to π. In the case of a descent step all
functions potentially affected by J [π], inside as well as outside of R[π], have to be checked
for their consistency, because (C) concerns the potential influence of all these coordinates
(so those with J [π] ∩ Jr 6= ∅ would suffice). In the case of a null step only the aggregate
may change, so checking for new nonzero coordinates in these suffices to ensure condition
(C). Algorithm 5 implements these aspects in the subspace update.

As before, the centre cannot change on J [π] ∪ J̄ [π] as long as π runs and may only change
in J [π] when π finishes.

Corollary 25. Let π be a process, then ŷ〈π〉j = ŷ
〈π̄〉
j for all j ∈ J [π] ∪ J̄ [π] and ŷ〈π̄〉j = ŷ

〈π̄+1〉
j

for all j /∈ J [π].

23

Algorithm 5: UpdateSubspacex

Input : π, final candidate ȳ[π] ∈ L[π], aggregate minorant w̄[π] ∈W [π]

Changes : global data at π̄ + 1
if π stopped because of (Upd1x) then

1 ŷ′ ← ŷ〈π̄〉 + (ȳ[π] − ŷ〈π〉)
(w̄′

R[π] , w̄
′
R\R[π])← (w̄[π], w̄

〈π̄〉
R\R[π])

// update consistency information

2 for r ∈ R do J
〈π̄+1〉
r ← Cr(ŷ

′, w̄′, J
〈π̄〉
r)

// no changes in Sgra-part, S〈π̄〉 S〈π̄+1〉

3 if J 〈π̄+1〉
r 6= J

〈π〉
r for some r ∈ R then // update S〈π̄+1〉 � S〈π〉

ŷ〈π̄+1〉 ← ŷ〈π̄〉, w̄〈π̄+1〉 ← w̄〈π̄〉

else
ŷ〈π̄+1〉 ← ŷ′, w̄〈π̄+1〉 ← w̄′

else // π stopped because of (Upd2x)
ŷ〈π̄+1〉 ← ŷ〈π̄〉

4 (w̄′
R[π] , w̄

′
R\R[π])← (w̄[π], w̄

〈π̄〉
R\R[π])

5 if (ḡ′r)j 6= 0 for some r ∈ R[π], j ∈M \ J 〈π〉r then // update S〈π̄+1〉 � S〈π〉

for r ∈ R[π] do J
〈π̄+1〉
r ← J

〈π̄〉
r ∪ {j ∈ Jr \ J 〈π̄〉r : (ḡ′r)j 6= 0}

// no changes in Sgra-part, S〈π̄〉 S〈π̄+1〉

w̄〈π̄+1〉 ← w̄〈π̄〉

else
if (Depx) holds then // update S〈π̄+1〉 � S〈π〉

add (j, j′) as defined in (11) to the Sgra-part of S〈π̄〉 S〈π̄+1〉

else S〈π̄+1〉 ← S〈π̄〉

w̄〈π̄+1〉 ← w̄′

Proof. The proof is analogous to the proof of Corollary 16. �

Observation 26. The global data is consistent for all σ ∈ Σ.

Proof. Initialisation ensures consistency for σ = 0. Inductively, relevant information for
consistency is only changed in Algorithm 5. Observation 22 ensures that active subspaces
may be increased safely if neither centre nor aggregate is changed. In the (Upd2x) branch,
A5.5 ensures that aggregates are only stored if they satisfy consistency, the centre remains
unchanged. In the (Upd1x) branch, consistency is taken care of explicitly by A5.2 (note, Cr
is required to only increase active subspaces) and A5.3, which updates to the new centre
and aggregate only in case of proved consistency. �

Lemma 27. If π stops because of (Upd1x) and S〈π〉 = S〈π̄+1〉, then due to Algorithm 5
there hold

(i) J 〈π〉r = J
〈π̄〉
r = J

〈π̄+1〉
r and (ŷ′, w̄′, J

〈π̄〉
r) is consistent for all r ∈ R,

(ii) f [π]
r (ŷ〈π〉) = fr(ŷ

〈π〉) = fr(ŷ
〈π̄〉), f [π]

r (ȳ[π]) = fr(ȳ
[π]) = fr(ŷ

〈π̄+1〉) for all r ∈ R[π],

(iii) fr(ŷ〈π̄〉) = fr(ŷ
〈π̄+1〉) for all r ∈ R \R[π].

24

Proof. Let π be a process that stops because of (Upd1x). If J
〈π〉
r 6= J

〈π̄+1〉
r for some r ∈ R

then S〈π〉 6= S〈π̄+1〉. Thus J 〈π〉r = J
〈π̄〉
r = J

〈π̄+1〉
r for r ∈ R because the sets J 〈σ〉r only

increase. This implies consistency of (ŷ′, w̄′, J
〈π̄+1〉
r) for r ∈ R by A5.2 and also shows

ŷ〈π̄+1〉 = ŷ′.
By (13) we have J 〈π̄〉r ∩ J [π] = ∅ for r ∈ R \ R[π] and J

〈π〉
r ⊂ J [π] ∪ J̄ [π] for r ∈ R[π].

Corollary 25 ensures ŷ〈π〉
J [π]∪J̄ [π] = ŷ

〈π̄〉
J [π]∪J̄ [π] and ȳ[π] ∈ L(J [π], ŷ〈π〉) so for each r ∈ R \R[π]

we obtain ŷ′
J
〈π〉
r

= ŷ
〈π̄〉
J
〈π〉
r

while for r ∈ R[π] there holds ŷ′
J
〈π〉
r

= ȳ
[π]

J
〈π〉
r

. Now the definition (13)

of f [π]
r , the fact that consistency holds by (i) and Observation 26 prove (ii) and (iii). �

Lemma 28. For τ2 ∈ (0, %2%1τ1] and τ3 ∈ [1− τ1(1− %1 − %3), 1) there hold:

(i) (Inv1) and (Inv2) hold,

(ii) if an infinite number of processes terminates with (Upd1x), then an infinite number
of processes satisfies (Upd1),

(iii) if there is only a finite number of processes satisfying (Upd1x), then there is a σ1 ∈ Σ
so that each process π with π̄ ≥ σ1 satisfies (Upd2),

Proof. First note that (Inv1) holds because Algorithm 5 ensures S〈π̄+1〉 � S〈π̄〉 in all cases.
Furthermore by Observation 5 there is an σ0 ∈ Σ so that S〈σ〉 = S〈σ0〉 for all σ ≥ σ0.
Hence, for any process π with π̄ ≥ σ′ := max{η̄ + 1: η ∈ Π〈σ0〉} we have π ≥ σ0 and so
S〈π〉 = S〈π̄〉 = S〈π̄+1〉.
Let π be a process terminating with (Upd1x). If S〈π〉 6= S〈π̄+1〉 then π does not modify

the centre, so ŷ〈π̄+1〉 = ŷ〈π̄〉 proving (Inv2). Now assume S〈π〉 = S〈π̄+1〉 (particularly this is
the case if π̄ ≥ σ′). Then Lemma 27 implies

f(ŷ〈π̄〉)− f(ŷ〈π̄+1〉) =
∑
r∈R[π]

(
fr(ŷ

〈π̄〉)− fr(ŷ〈π̄+1〉)
)

+
∑

r∈R\R[π]

(
fr(ŷ

〈π̄〉)− fr(ŷ〈π̄+1〉)
)

︸ ︷︷ ︸
=0

=
∑
r∈R[π]

(
f [π]
r (ŷ〈π〉)− f [π]

r (ȳ[π])
)

= f [π](ŷ〈π〉)− f [π](ȳ[π])

(Upd1x)

≥ %2∆[π](w̄[π], ŷ〈π〉)
(Upd1x)

≥ %2%1∆[π](w̄
〈π〉
R[π] , ŷ

〈π〉)

(Sel1)

≥ %2%1τ1∆〈π〉 ≥ τ2∆〈π〉 ≥ 0.

This proves (Inv2) as well as (Upd1) in this case.
Now let π be a process terminating with (Upd2x). In this case ŷ〈π̄+1〉 = ŷ〈π̄〉 proving

(Inv2). Assume that there is only a finite number of processes satisfying (Upd1x). Exactly
like in the proof of Lemma 17 we get a σ1 ∈ Σ so that each process π with π̄ ≥ σ1 stops
with (Upd2x), there holds S〈π〉 = S〈π̄+1〉 and the dependency test (Depx) is not fulfilled.
In particular, J 〈π〉r = J

〈π̄〉
r = J

〈π̄+1〉
r allows to employ Observation 23 and to follow exactly

the same steps as in the proof of Lemma 17. �

Remark 29. Analogously to the partial separable case, there is no need to evaluate f(ŷ〈σ〉)
when the centre is changed because the function values fr(ŷ〈σ〉) that change have already
been computed by the subprocess that sets the new centre.

Acknowledgement. We thank an anonymous referee for suggesting to attempt an
extension of [2] to general convex functions. This work was supported by the Bundesminis-
terium für Bildung und Forschung under grant 05M10OCD. Responsibility for the content
rests with the authors.

25

References

[1] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal. Numerical
Optimization. Springer, 2003.

[2] F. Fischer and C. Helmberg. A parallel bundle method for asynchronous subspace
optimization in Lagrangian relaxation. Preprint 2012-02, Technische Universität
Chemnitz, Fakultät für Mathematik, D-09107 Chemnitz, Germany, 2012.

[3] M. L. Fisher. The Lagrangian relaxation method for solving integer programming
problems. Manage. Sci., 50(12):1861–1871, 2004.

[4] M. Fukushima. Parallel variable transformation in unconstrained optimization. SIAM
J. on Optim., 8(3):658–672, 1998.

[5] C. Helmberg and K. Kiwiel. A spectral bundle method with bounds. Mathematical
Programming, 93:173–194, 2002.

[6] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms
I & II, volume 305, 306 of Grundlehren der mathematischen Wissenschaften. Springer,
Berlin, Heidelberg, 1993.

[7] C. Lemaréchal. Lagrangian relaxation. In M. Jünger and D. Naddef, editors, Com-
putational Combinatorial Optimization, volume 2241 of Lecture Notes in Computer
Science, pages 112–156. Springer Berlin / Heidelberg, 2001.

[8] C. Lemaréchal. The omnipresence of Lagrange. Annals of Operations Research,
153(1):9–27, 2007.

[9] D. Medhi. Parallel bundle-based decomposition for large-scale structured mathematical
programming problems. Ann. Oper. Res., 22(1-4):101–127, 1990.

[10] A. Nedić, D. Bertsekas, and V. Borkar. Distributed asynchronous incremental sub-
gradient methods. In Y. C. Dan Butnariu and S. Reich, editors, Inherently Parallel
Algorithms in Feasibility and Optimization and their Applications, volume 8 of Studies
in Computational Mathematics, pages 381–407. Elsevier, 2001.

[11] C. A. Sagastizábal and M. V. Solodov. Parallel variable distribution for constrained
optimization. Comput. Optim. Appl., 22(1):111–131, 2002.

26

