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Abstract—The nonequispaced fast Fourier transform (NFFT)
allows the fast approximate evaluation of trigonometric polyno-
mials with frequencies supported on full box-shaped grids at
arbitrary sampling nodes. Due to the curse of dimensionality,
the total number of frequencies and thus, the total arithmetic
complexity can already be very large for small refinements at
medium dimensions. In this paper, we present an approach for the
fast approximate evaluation of trigonometric polynomials with
frequencies supported on an arbitrary subset of the full grid at
arbitrary sampling nodes, which is based on Taylor expansion
and rank-1 lattice methods. For the special case of symmetric
hyperbolic cross index sets in frequency domain, we present error
estimates and numerical results.

I. INTRODUCTION

We consider the evaluation of trigonometric polynomials
f:T¢:=[0,1)? = C,

fl@)y=>" fie?™® fieC, Iy c Z'N[-N,NJ%, (1)
leln

at arbitrary sampling nodes y, € T¢, £ =0,...,L — 1. For
given Fourier coefficients fl, the direct evaluation of the
trigonometric sums f(y,), £ =0,...,L — 1, takes O(L|Zy]|)
arithmetic operations. Various fast methods for the approxi-
mate evaluation of the trigonometric sums f(y,) were devel-
oped.

In the case, when the frequency index set Zpy is a full
grid, Zy = G% :=Z4N[-N, N)?, the nonequispaced fast
Fourier transform (NFFT, see [1] and references therein) al-
lows the fast approximate evaluation of the trigonometric poly-
nomial f at arbitrary sampling nodes y,, { =0,...,L — 1,
in O(|log€|?L + |G%|log |G%|) arithmetic operations, where
€ is the approximation error. Furthermore, there exist Taylor
based versions (cf. [2], [3]) with an arithmetic complexity of
O(|loge|(L + |G%|1log |G4 ), which use fast Fourier trans-
forms (FFT) for evaluating the trigonometric polynomial f as
well as its derivatives at equispaced nodes and approximate the
trigonometric sum f(y,) by a Taylor expansion at the closest
equispaced node. However, since the cardinality of the full
grid G is |G%| = (2N)?, the total number of arithmetic
operations can already be very large for small refinements N
at medium dimensionality (e.g. d = 3,4, 5).

) For dyadic hyperbolic crosses ﬁﬁ = Ujend |5]1=n éj,
Gy =240 x{y (=271, 277, gl = il + - + il
the nonequispaced hyperbolic cross fast  Fourier

transform [4] allows the fast approximate evaluation of
trigonometric  polynomials with frequencies supported
on the index set Zy = ﬁff at arbitrary sampling nodes
Yy, £=0,...,L—1, with an arithmetic complexity of
(@) (| loge|® L log |HY| + |loge| |HY| + |H%|log | HY )
where |H¢| < C'n?'2" with a constant C' > 0 depending
only on d.

For the more general case of a trigonometric polynomial
f from (1), we present an approach for the fast approxi-
mate evaluation at arbitrary sampling nodes y,. This method
uses one-dimensional FFTs for evaluating the trigonometric
polynomial f and its derivatives at nodes of a rank-1 lattice.
Then, for each sampling node y,, a Taylor expansion of
degree m — 1, m € N, at a closest rank-1 lattice node is
performed. This results in a total arithmetic complexity of
O(m® (L + Mlog M + |Zy|)), where M € N is the size of
the rank-1 lattice.

We consider the special case of symmetric hyperbolic cross
index sets Zy = HY :={j € Z%: r(j) < N} in frequency
domain with refinement N € N, r(j) := Hle max(1, |7:]).
For this case, we show error estimates for the approximation
error of the presented method. Note, that we have the inclusion
ﬁff C szn,l C Flg71+2d, see [5, Lemma 2.1].

In Section II, we give a short overview over Taylor expan-
sion of trigonometric polynomials and define rank-1 lattices.
We show that trigonometric polynomials can be evaluated
at rank-1 lattice nodes using a one-dimensional FFT. The
proposed method is presented in Section III as well as error
estimates for the special case of symmetric hyperbolic cross
index sets Zy = H]‘f,. Results of numerical tests are presented
in Section IV. Finally, we summarize the results in Section V.

II. PREREQUISITE
A. Taylor expansion

We approximate a function f : T¢ — C by

D*f(a
f(x) = sp(x) = f(a) + 1<2:< %(:{: —a)®,
<|s|<m
where m € N, D3 f .= %32% T = (xl,...,xd)T,
s:=(s1,...,84) ENE, |s|:=|s1| +...+]|sa], D°f :=f,
sli=s1!- ... 54!, x5 = x5 - - g, For a



trigonometric  polynomial ~ f from (1), we have
*f(®) = ez, (—2mil)° fi e~2m2 and thus,
= % ezl
leTn
+ Y @—a) Z (—2ril)® f,e~2mila (2)
1<|s|<m IeIn
B. Rank-1 lattice
Definition 1I.1 (rank-1 lattice).  Let M €N,
zc€Z% We define the rank-1 lattice A(z,M) C T¢
of size M  with generating vector z € 7% by
Az, M) := {x}, == ((kz) mod M)/M} " O
Definition 1.2 (mesh  norm). Let the metric

w(x,y) == mingega |€ — y + k|l be given for x,y € T
We deﬁne the mesh norm & of an arbitrary point set
M—-1 d
= CT*by §:=2 , O
=A{zr}io Y max min, (T, ).

For an arbitrary point set X C T? of size | X| = M, we have
o> 1/{'/ M, see e.g. [6, Lemma 3.1]. The following Lemma
shows the existence of a rank-1 lattice A(z, M) of size M,
such that the mesh norm § < Cy/ /M, where Cy > 1 is a
constant depending only on d, i.e. we have § ~ 1/v/M.

Lemma II.3. Let be N, b>3. Then, there exists a
rank-1 lattice A(z, M) of size M = b(b+ 1) for d =2 and
bl 2951 < M < be - 24-2) for 4 > 3 with generating
vector z € 7%, such that the mesh norm § < Cy / /M, where
Cq > 1 is a constant depending only on d.

Proof: In the case d = 2, we choose the rank-1 lattice size
M :=b-(b+1) and the generating vector z := (b,b+1)T.
Since b and b+ 1 are relative prime to each other, there
exists a bijective mapping between the rank-1 lattice nodes
xy = (kz mod M)/M, k=0,...,M —1, and the grid
(j1/(b+1),j2/b)T, j1 = 0,...,bandj2 = O,...,b— 1. Ob-
viously, the mesh norm § = 1/b < %/\/M
In the case d =3, we set v; :=2b+1 and vy := 2b.
Due to Bertrand’s postulate there exists a prime num-
ber p3 € N, b < p3 < 2b. We choose vs € {ps3,...,va — 1},
such that wvs is relative prime to v; and vy. We set
the rank-1 lattice size M :=w;-vs-vs and the generat-
ing vector z:= (M/vy, M /vy, M/v3)T. Then, the mesh
norm & < 1/vg < 1/b<2/3/M and the rank-1 lattice size
M= (2b+1)-2b-v3>(26+1)-2b-b>b>- 22
In the case d>4, we set v;:=b-29"24+1 and
vg :=0b-2972. We apply Bertrand’s postulate d — 2 times
and choose ws,...,vq, such that vy,...,vy are relative
prime to each other and vs > ... > vy > b. We choose the
rank-1 lattice size M := Hle vy and the generating vector
= (M/vy,...,M/vg)". This yields that the mesh norm
§ <1/vg <1/b<292/3/M and the rank-1 lattice size
M > (2972b+ 1) - 202p - [T, (24 D) > b - 25 1

C. Evaluation at rank-1 lattice nodes (rank-1 lattice FFT)

We consider the evaluation of a trigonometric polyno-
mial g:T? — C supported on the frequency index set

In CZEN[=N,N|%, g(z) == D ieTn gre 2 g, € C, at
rank-1 lattice nodes x) € A(z, M). As presented in [5], we
have

M-1
~ — 7r1k
glxr) = g(kz/M) = > g | e
7=0 leln

lz=j(modM)

and the outer sum is a one-dimensional discrete Fourier
transform of length M. Using a one-dimensional FFT, the
trigonometric polynomial g can be evaluated at all rank-1
lattice nodes in O(M log M + |Zy|) arithmetic operations.

Setting the Fourier coefficients §; := (—2mil)*® fl, where
fl are the Fourier coefficients of a trigonometric polyno-
mial f from (1), yields g(xy) = D*f(x)). Thus, for fixed
s € N4, the mixed derivatives D*f(z) of the trigonometric
polynomial f can be evaluated at all rank-1 lattice nodes
xr, k=0,....M—1, in O(MlogM + |Zy|) arithmetic
operations.

ITII. NFFT BASED ON TAYLOR EXPANSION AND RANK-1
LATTICE FFT

We approximately evaluate a trigonometric polyno-
mial f from (1) at arbitrary sampling nodes y, € T,
£=0,...,L—1, using a Taylor expansion at a closest rank-1
lattice node @y, € A(z, M) for each sampling node y,. For
evaluating the trigonometric polynomial f and its derivatives

at all rank-1 lattice nodes xy € A(z, M), k=0,...,M — 1,
one-dimensional FFTs are used.
A. Method

Let a frequency index set Zy C Z9N[—N,N]¢ and

a rank-1 lattice A(z, M) of size M be given. We re-
place the expansion point a in (2) by a closest rank-1
lattice node @y = argming, cp(z a) #(T, Tx), and ob-
tain an approximation for the trigonometric polynomial

f(®) =Y ez, fy e~ 2= by the Taylor expansion
_ Z f e 2mila
leTn
+ Y w_w‘“' 3 (~2mil)® fre 2w (3)
1<|s|<m 1Ty

Assuming that a closest rank-1 lattice node xjs is known
for each sampling node y,, the Taylor expansion s,, in (3)
can be calculated in O (m®(L + M log M + |Zy|)) arithmetic
operations for all sampling nodes y,, £ =0,...,L — 1.

For symmetric hyperbolic cross index sets Zy = HY,
N eN, N > 2, we have \H]‘f,| < C’HNlogd_lN for N > 2
with a constant Cg > 0, see e.g. [7]. Choosing the rank-1
lattice size M ~ |H% |, we obtain an arithmetic complexity of

(@] (md(L + Nlog® N))
B. Error estimates for symmetric hyperbolic cross index sets

In this section, we establish error bounds for the approxi-
mation of a trigonometric polynomial f from (1) by a Taylor
expansion s,, from (3) for symmetric hyperbolic cross index
sets Iy = HE.



Theorem  IIL.1. Let a trigonometric  polynomial
f:T¢—=C supported on the frequency index set Iy,
f@) = er, fre e, fieC, NeN be given
Furthermore, let A(z, M ) be a rank-1 lattice with
mesh norm 6. Then, for the approximation of the
trigonometric po]ynom1a1 f by a truncated Taylor series

sm(T) = D[4/ L2 S,w’“') (x — x)r)® of degree m — 1 from
(3), where m € N and @), = arg ming, ¢, ) #(T, Tk), the
remainder R,,(x) := f(x) — sm(x) is bounded by

| R ()| < C(m,d) 6N 3" | fi| r(1)*,

leln

where C(m,d) > 1 is a constant depending only on m and d,
a > 0 is the smoothness parameter, (x)y = max(0, x).

Proof: Let &(t) := xp +t(x — xy), t € [0,1]. The re-
mainder R,,(x) can be written (cf. [8, Ch. 1]) in the form

o) f -

:I:k/)s

ym—t Z D f Tdt.

Then,
| Ry ()|
< m/ 1—tmlz\ps ‘udt
ls|=
|(x wk/) |
< 3
< max Y DUfED)
|s|=m
— o e i —2mit(e) ||(@ — ®)?|
tren[guﬁ] Z( 2ril)® fi e o .
|s|=m I€INn

Since pu(x,xy ) < 6, we get

|Rm ()]

(é)‘s‘ (&)
< 2 ) l —27il (&(t)
< max D > I(=2mil)*| |fil fe |

|s|=m leln
mgm £ ‘ll|51""'|ld|3d
< 76 Z | /1] Z Y
leTn |s|=m )

Introducing weights r(1)*, « > 0, we obtain

| ()]
mgm £ ‘ll|51 ""'|ld|5d
< 70 Z|fl\7“(l) ZW
leln |s|=m )
mem a ’I“(l )Sl S T(ld)sd
S ) Z|fl\rl Z ! s
leln |s|=m ’
< 7" (Z |l 7“(0“)
leZn
max r(l)n Y r(lg)
leln |s|=m s!
S LT DR
leZn |s|=m

, it follows that

S, m

leTn

Since [{s € N{: |s| =m}| < m+1
@) < e DA

Corollary IIL.2. Let a hyperbolic cross index set Iy = H ]‘f,,
NeN, N>2, and a rank-1 lattice A(z,M) of size
M = CLNlogd_1 N ~ |H]‘f,| for some constant Ct, > 1 be
given, where the generating vector z is chosen as in the proof
of Lemma I1.3. Then,

| R ()]
< C(m,d) (Cy)"M~™/4 N

= Al

leHE,

> lAlr

leHY

N(m—a)y
(N log?~* N)ym/d

= C(m,d)

is valid for all smoothness parameters o > 0, where Cy > 1 is
the constant from Lemma I1.3 and C(m,d) > 0 is a constant
depending only on m and d.

Proof: From Lemma II.3, we obtain that the mesh norm
§<CyM—14, Applymg Theorem III.1 and defining the
constant C(m, d) := C(m, d) (Cd /v CL) yields the result.

|

Remark IIL.3. If we choose the smoothness parameter
o> % m, Corollary II1.2 guarantees a decreasing relative
error |R,,(x)|/ (ZleH% 1] r(l)a> for increasing refine-
ment N.
Setting the smoothness parameter o := m yields
|Rin ()] < C(m,d) (N log™t N)™™/4 3" | fy| r(l
leHY

)m,. D

IV. NUMERICAL RESULTS

The Taylor expansion s,, in (3) was implemented in MAT-
LAB for trigonometric polynomials f from (1) as described
in Section III-A.

For symmetric hyperbolic cross index sets Zy = Hj‘f,, nu-
merical tests were performed. The generating vector z of
each rank-1 lattice A(z, M) was chosen as in the proof
of Lemma II.3. The maximum relative approximation error
B i= maxy,cy [Bu@ol/ (Sieny 1Al 70)°)
mined using L = 100000 uniformly random sampling nodes

Y, € T4 Y = {y, )}

A. Decreasing error E,, for increasing rank-1 lattice size M

was deter-

In this test case, we uniformly randomly chose the Fourier
coefficients f; € (0,1]/r(1)*, 1 € Iy = H%. All tests were
repeated five times using different Fourier coefficients fl and
sampling nodes y,. Then, the average error of these five test
runs was used.

We set the rank-1 lattice size M := o - 2|H¢/| with a factor
o> % Due to Corollary II1.2, the error E,, should decrease at
least like ~ o~/ for increasing factor o. In tests performed
for the cases d =2,...,5 and m = 2,...,6, this behaviour
could be observed. Figure 1 shows the error Ej for increasing
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Fig. 1.  Approximation error Ey for increasing values of factor ¢ with
rank-1 lattice size M = o 2|H ]‘f,\ for Taylor expansions s, of degree m — 1,
m = 3,6, in the cases d = 4, 5.
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Fig. 2. Approximation error E,, for increasing hyperbolic cross refinements
N with rank-1 lattice size M =~ 2|H]‘%]\ for Taylor expansions s, of
degreem — 1,m = 2, ..., 6, and theoretical bounds ~ (N log?—1 N)—m/d
(solid lines without symbols) in the cases d = 4, 5.

values of factor ¢ for refinements N = 10,20,40 and m = 3,6
in the four- and five-dimensional case as well as the lines
~ me/d_

B. Decreasing error E,, for increasing refinement N of the
symmetric hyperbolic cross index set Iy = Hj'\l,

In order to obtain a large error FE,,, the Fourier
coefficients f;, e H 4 were set to zero except

fx10.07 =1, fo+1,0...07 =1, ..., f(o,.,.,o,j:l)T =1

and  fano,...007 = 1/N™, fo+no,.07 =1/N", ...,
f(o,...,o,iN T =1/N"™._ We set the rank-1 lattice size
M =~ 2|Hg|. Test cases included Taylor expansion degrees
m—1, m=2,...,6, and refinements up to N = 10* for
d=2,up to N=10% for d=3 and up to N =800 for
d=4,5. Remark II.3 states, that the error FE,, should
decrease at least like ~ (Nlog? ™' N)="/¢ In the results
of the performed tests, a decrease of ~ (N log? ™t N)=m/d
could be observed. Figure 2 shows the results for the cases
d=4,5.

V. CONCLUSION

Based on rank-1 lattice methods and Taylor expansion, we
presented a method for the fast approximate evaluation of
trigonometric polynomials f with frequencies supported on ar-
bitrary index sets Zy C Z% N[N, N]¢ at arbitrary sampling
nodes y, € T, ¢ =0,...,L — 1.

In the case of symmetric hyperbolic cross index
sets Iy = Hj‘f, with refinement N, we showed condi-
tions which guarantee a decreasing approximation error
|Rm(x)|/ (ZleH]dV |1l r(l)o‘) for increasing refinement N.
In particular for smoothness parameter o« = m, a rank-1 lattice
A(z, M) of size M ~ |H%| exists, such that the approxima-
tion error decreases at least like ~ (N log?~' N)="/d for
increasing refinement N. For such a rank-1 lattice of size
M ~ |H¢%|, the total arithmetic complexity of the presented
method is O(meL +m® N log® N).

The results of the numerical tests confirmed the theoretical
upper bounds.
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