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Abstract. Alloy-type potentials on the lattice Zd give rise to a correlated
random field. Depending on the regularity properties of the conditional distribu-
tions (or conditional densities — if they exist) standard methods developed for
the i.i.d. Anderson model can be applied or not. This refers to Wegner estimates,
fractional moment bounds, Minami estimates, and other estimates obtained
by averaging procedures. In [5] we studied a (quite large) class of alloy-type
potentials on the lattice Z and showed that certain conditional probabilities
exhibit a bad behavior. Consequently, a regularity condition spelled out in [1]
is not satisfied in this case. We revisit in this note the question of regularity
properties of the conditional distribution of the potential values and discuss
certain consequences for the recent preprint [4].
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1. Discrete alloy type model and purpose of [5]

We consider for each k ∈ Zd the probability space (Ωk,B, µk), where Ωk = R,
B is the Borel sigma algebra on R and µk : B → [0, 1] a probability measure. For
each Λ ⊂ Zd we introduce the product probability space (ΩΛ,AΛ,PΛ), where
ΩΛ :=×k∈Λ Ωk, AΛ :=

⊗
k∈Λ B and PΛ :=

⊗
k∈Λ µk. We will use the abbreviation

Ω := ΩZd , A := AZd , P := PZd , Zdm := Zd\{m}, Ω⊥m = ΩZd\{m} and A⊥m = AZd\{m}.
Elements of Ω are multidimensional sequences and will be denoted by ω = (ωk)k∈Zd .
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The expectation with respect to the probability measure P will be denoted by E.
Projection maps are defined as follows:

πk : Ω→ Ωk, πk(ω) = ωk,

and
π⊥k : Ω→ ΩZd\{k}, π⊥k (ω) = (ωj)j∈Zd

k
.

Let u : Zd → R be a summable sequence. We consider the random field given by
the discrete alloy-type potential

Vω : Zd → R, Vω(x) =
∑
k∈Zd

ωku(x− k). (1)

This function is certainly well defined if there is a compact subset K ⊂ R such that
the support of all µk is contained in K. This class of models (and its reformulation
as a correlated random field) has been first considered in [7].

Such random fields V may be considered as the potential of a random Schröding-
er operator. In the special case u = δ0 it is a field of independent random variables.
If in addition all µk coincide, we are in fact dealing with the potential of the well
known Anderson model. For this type of discrete random Schrödinger operators a
variety of results concerning some form of averaging of spectral quantities have
been derived. Instances of such results are: Wegner estimates, fractional moment
bounds, Minami estimates, and generalizations thereof. A natural question is,
whether these results extend to the case that u is more complicated than δ0. This
induces correlations (or at least dependence) between values of the potential V at
different sites x, y ∈ Zd.

In this note, we consider a field of random variables

ηx : Ω→ R, x ∈ Zd. (2)

The collection (ηk)k∈Zd will be denoted by

η := (ηk)k∈Zd : Ω→ Ω.

Of particular interest is the case where η is given by a linear transformation of
the i.i.d. random field ω, i.e.

η(ω) = Aω, (3)

where A : Ω → Ω is a bounded (with respect to the `∞-norm) linear operator.
In the case where A := (ai,j)i,j∈Zd has the Toeplitz structure ai,j = u(i− j), we
obtain the discrete alloy-type model

ηx : Ω→ R, ηx(ω) =
∑
k∈Zd

ωku(x− k), x ∈ Zd. (4)

It is possible to formulate sufficiently strong regularity assumptions on the con-
ditional distribution of the individual random variables ηx (conditioned on all
other random variables ηy, y ∈ Zdx) such that the methods developed for the i.i.d.
model apply to the correlated one as well. Instances of such a condition can be
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found in [3] or [1]. In [5] we have identified a (quite large class) of discrete alloy
type potentials for which the regularity conditions of [1] do not apply. In fact, we
conjecture, that for no potential (1) with compactly supported u and uniformly
bounded random variables ηx : Ω→ R, x ∈ Zd, the regularity conditions of [1] will
hold.

One clarification is in order. While the regularity condition of [1] is formulated
in terms of conditional distributions we have studied in [5] certain conditional
probabilities. Our results in [5] show intuitively that the regularity condition
of [1] are not satisfied. Nevertheless, we revisit here the same topic, calculate
for a certain class of random fields η : Ω → Ω the quantity appearing in the
regularity condition of [1] and thereby show that regularity assumptions and thus
the fractional moment results of [1] do not apply to this class.

The same class of examples shows that several statements in Section 3 of [4]
are not correct.

2. Conditional distributions and modulus of continuity

Let m ∈ Zd. We introduce the random variable

η⊥m : (Ω,A)→ (Ω⊥m,A⊥m), η⊥m(ω) = π⊥m(η(ω)) = (ηk(ω))k 6=m.

We denote by Pη⊥m : A⊥m → [0, 1] the push-forward measure of P, i.e. Pη⊥m(B) :=

P({ω ∈ Ω: η⊥m(ω) ∈ B}). For m ∈ Zd, a ∈ R and ε > 0 let

Y ε,a
m := P

(
ηm ∈ [a, a+ ε] | η⊥m

)
:= E

(
1ηm∈[a,a+ε] | η⊥m

)
.

A conditional expectation Y ε,a
m = E(1{ηm∈[a,a+ε]} | η⊥m) is a random variable

Y ε,a
m : Ω→ [0, 1] with the property that

(i) Y ε,a
m is F -measurable, where F = σ(η⊥m), and that

(ii) for all A ∈ F we have E(1{ηm∈[a,a+ε]}1A) = E(Y ε,a
m 1A) .

There may exist several functions Y ε,a
m which satisfy conditions (i) and (ii). They

are called versions of E(1{ηm∈[a,a+ε]} | η⊥m). Two such versions Y ε,a
m and Ỹ ε,a

m

coincide P-almost everywhere. For convenience, for each a ∈ R and ε > 0 we fix
one version Y ε,a

m of the conditional expectation. Since Y ε,a
m is F -measurable, the

factorization lemma tells us that (for each a, ε) there is a measurable function
gε,am : (Ω⊥m,A⊥m)→ (R,B(R)) such that Y ε,a

m = g ◦ η⊥m, i.e. for all ω ∈ Ω we have

Y ε,a
m (ω) = gε,am (η⊥m(ω)). (5)

We introduce several quantities used in the literature to describe the regularity
of (the conditional distribution) of the random fields ωk and ηk, k ∈ Zd. For
k ∈ Zd we denote by Sk : [0,∞)→ [0, 1],

Sk(ε) := sup
a∈R

µk([a, a+ ε]) = sup
a∈R

P({ω ∈ Ω: πk(ω) ∈ [a, a+ ε]})
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the global modulus of continuity or the concentration function of the measure µk.
For Λ ⊂ Zd and ε > 0 we define

ŜΛ(ε) := sup
m∈Λ

sup
a∈R

ess sup
η⊥m∈Ω⊥

m

gε,am (η⊥m).

Here, the essential supremum refers to the measure Pη⊥m , that is,

ess sup
η⊥m∈Ω⊥

m

gε,am (η⊥m) = inf
{
b ∈ R : Pη⊥m

(
{η⊥m ∈ Ω⊥m : gε,am (η⊥m) > b}

)
= 0
}
.

Denote by S̃m the conditional global modulus of continuity or the conditional
concentration function of the distribution of ηm, i.e.

S̃εm : Ω→ [0, 1], S̃εm = sup
a∈R

Y ε,a
m .

Since we are taking here a supremum over a uncountable family of intervals,
it is not clear whether the resulting function is still measurable. In fact, this
depends on how we chose the versions of the conditional expectation (for each
of the uncountable many a ∈ R). We show in Appendix A that a choice of
versions, which ensures that S̃εm is F -measurable, exists. In this case we denote
by gεm : Ω⊥m → (R,B(R)) the measurable function which comes up with the
factorization lemma and satisfies S̃εm = gεm ◦ η⊥m, and define

S̃Λ(ε) := sup
m∈Λ

ess sup
(ηk)k 6=m

gεm,

where the essential supremum again refers to the measure Pη⊥m .

3. First example: A stationary field

In this first example we consider a random field η = (ηk)k∈Z given by Eq. (4),
where d = 1, and suppu = {0, 1} with u(0) = 1 and u(1) = t for some |t| ≤ 1.
Moreover, we assume that µk equals the uniform distribution on [0, 1] for all k ∈ Z.
Thus we have

ηx = πx + tπx−1, x ∈ Zd.
First we cite a special case of [5, Lemma 3.1].

Lemma 3.1 ([5]). Let t ∈ (0, 1]. Then we have for all ε > 0

P
(
η0 ∈ [1 + t− ε, 1 + t] | η−1, η1 ∈ [1 + t− εt/2, 1 + t]

)
= 1. (6)

Let t ∈ [−1, 0). Then we have for all ε > 0

P
(
η0 ∈ [t, t+ ε] | η−1, η1 ∈ [1− ε|t|/2, 1]

)
= 1.

The first part of the lemma can be illustrated as follows. The variables ηk take
values up to 1+ t. So if we condition on the event that η−1 and η1 are close to 1+ t,
then ω−1, ω0, ω1 and ω2 have to be close to 1. As a consequence, η0 = ω0 + tω1 is
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close to 1 + t. The second part of the lemma follows a similar reasoning. We will
apply formula (6) in the multiplied form

P
(
η0 ∈ [1+t−ε, 1+t], η−1, η1 ∈ [1+t−εt/2, 1+t]

)
= P

(
η−1, η1 ∈ [1+t−εt/2, 1+t]

)
for the proof of

Theorem 3.2. Let ε > 0 and

a =

{
1 + t− ε if t > 0,

t if t < 0.

Then
ess sup
η⊥0 ∈Ω⊥

0

gε,a0 = 1.

Proof. Assume the converse, i.e. b := ess supη⊥0 g
ε,a
0 < 1. By definition of the

conditional expectation we have for all B ∈ σ(η⊥0 ) that

E
(
1B1{η0∈[a,a+ε]}

)
= E

(
1BY

ε,a
0

)
. (7)

We choose

B =

{
{ω ∈ Ω: η−1, η1 ∈ [1 + t− εt/2, 1 + t]} if t > 0,

{ω ∈ Ω: η−1, η1 ∈ [1− ε|t|/2, 1]} if t < 0,

which is σ(η⊥0 )-measurable. For the left hand side of Eq. (7) we have by Lemma 3.1
P(B ∩ {η0 ∈ [a, a+ ε]}) = 1 · P(B). For the right hand side of Eq. (7) we use the
factorized version (5) of Y ε,a

0 and obtain by substitution

E
(
1BY

ε,a
0

)
=

∫
Ω⊥

0

1B′(η⊥0 )gε,a0 (η⊥0 )dPη⊥0 (η⊥0 ),

where

B′ =

{
{η⊥0 ∈ Ω⊥0 : η−1, η1 ∈ [1− t− εt/2, 1 + t]} if t > 0,

{η⊥0 ∈ Ω⊥0 : η−1, η1 ∈ [1− δ|t|/2, 1]} if t < 0.

Since b < 1 by our assumption we obtain E(1BY
ε,a

0 ) ≤ bPη⊥0 (B′) = bP(B) < P(B).

This is a contradiction to Eq. (7). �

Corollary 3.3. For any Λ ⊂ Z and any ε > 0 we have

ŜΛ(ε) = sup
m∈Λ

sup
a∈R

ess sup
η⊥0 ∈Ω⊥

0

gε,am (η⊥0 ) = 1.

Proof. Follows from translation invariance and Theorem 3.2. �

Corollary 3.4. Assume that S̃εm = supa∈R Y
ε,a
m is measurable. Then, for any

Λ ⊂ Z and any ε > 0 we have

S̃Λ(ε) := sup
m∈Λ

ess sup
η⊥0 ∈Ω⊥

0

gεm(η⊥0 ) = 1.
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Proof. Pointwise we have gε0(η⊥0 ) ≥ gε,a0 (η⊥0 ). If we take first the essential supremum
with respect to η⊥0 and then supremum with respect to a on both sides, we obtain
using Theorem 3.2

ess sup
η⊥0 ∈Ω⊥

0

gε0(η⊥0 ) ≥ 1.

The result now follows by translation invariance. �

Remark 3.5. As mentioned before Lemma 3.1 is a special case of [5, Lemma 3.1].
The latter lemma applies to discrete alloy type potentials with d = 1, suppu =
{0, . . . , n− 1}, and bounded random i.i.d. random variables ωk, k ∈ Zd. Hence,
the conclusions of Theorem 3.2, Corollary 3.3 and Corollary 3.4 can be extended
to such models as well.

Remark 3.6 (Invertibility properties). If |t| < 1 then the Neumann series shows
that the matrix A = (ai,j)i,j∈Z with ai,j = u(i− j), in matrix representation

A =



. . .

. . . 1
t 1

t 1
. . . . . .

 ,

is invertible with bounded inverse. Also, the Fourier transform û : [0, 2π [→ C,
û(θ) :=

∑
k∈Z u(k)e−ik·θ does not vanish on [0, 2π). Such conditions have been

sucessfully used, e.g., in [7, 6].

Remark 3.7 (Implications for [4]). Corollary 3.4 exhibits an example of a discrete
alloy type potential satisfying conditions (S), (H), (R), (D), and (I) of [4], but not
condition (R̃). Thus the final sentence of §3.1 in [4] is not correct. In particular,
Corollary 3.4 provides a counter-example to Lemma 3.1 of [4].

4. Second example: A non-stationary field

Here we consider an even simple example where all relevant calculations deduce
to simple two-dimensional integrals. The induced sequence of random variables
is not stationary but the relevant phenomenon is seen clearly in this case. It
provides a simple counterexample to Lemma 3.1 in [4].

The specific random variables ηk : Ω → R, k ∈ Zd, we want to study in this
second example are given by

ηe1 = π0 + πe1 , ηk = πk for all k ∈ Zd \ {e1},

where e1 = (1, 0, . . . , 0)T ∈ Zd denotes the unit vector with respect to the first
coordinate. Thus they are defined as in Eq. (3) with a suitable linear operator
A : Ω→ Ω.
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4.1. Preliminary estimates. Let [a, b] and [c, d] denote two compact intervals.
Since the random variables πk, k ∈ Zd, are independent we have

P(π0 ∈ [a, b], πe1 ∈ [c, d]) =

∫
[a,b]

µ0(dx)

∫
[c,d]

µe1(dy)

and

P(η0 ∈ [a, b], ηe1 ∈ [c, d]) = P(π0 ∈ [a, b], πe1 ∈ [c− π0, d− π0])

=

∫
[a,b]

µ0(dx)

∫
[c−x,d−x]

µe1(dy).

Thus certain probabilities in the infinite product space reduce to two-dimensional
integrals. If µ0 and µe1 are the uniform distribution on [0, 1], we have for all
ε ∈ [0, 1]

P(η0 ∈ [0, ε], ηe1 ∈ [0, ε]) =

∫ ε

0

dx

∫ ε−x

−x
1[0,1](y)dy =

∫ ε

0

dx

∫ ε−x

0

dy

=

∫ ε

0

dx(ε− x) = ε2 − 1

2
ε2 =

1

2
ε2. (8)

For the global modulus of continuity of the measure µ0 we have

S0 : [0,∞)→ [0, 1], S0(ε) = min(ε, 1).

For any ε ∈ [0, 1] the set B := η−1
e1

([0, ε]) = {ω ∈ Ω | ηe1(ω) ∈ [0, ε]} is measurable,
and we have by definition of the conditional expectation and Eq. (8)

E(1BP(η0 ∈ [0, ε] | η⊥0 )) = E(1BY
ε,0

0 ) = E(1B1{η0∈[0,ε]}) = E(1B (1[0,ε] ◦ η0))

= P(ηe1 ∈ [0, ε], η0 ∈ [0, ε]) =
1

2
ε2. (9)

For κ > 0, ε ∈ [0, 1/κ] and B = η−1
e1

[0, ε] we have

E(1B S0(κε)) = κεP(B) = κεP(ηe1 ∈ [0, ε])

= κεP(π0 ∈ [0, ε], πe1 ∈ [−π0, ε− π0])

= κε

∫ ε

0

dx

∫ ε−x

0

1[0,1](y)dy.

By the calculation of (8) we obtain

E(1B S0(κε)) = κε · 1

2
ε2 =

1

2
κ ε3. (10)

By (10) we have also shown that P(B) = ε2/2 and thus B has positive measure
for all ε ∈ (0, 1].
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4.2. Main inequality. We fix κ ∈ (0,∞) and ε ∈ (0, 1/κ), and compare the two
functions

S0 : [0,∞)→ [0, 1] and S̃ε0 : Ω→ [0, 1].

We have already shown that for ε ∈ (0, 1) the set B has positive measure. By
Eq. (9) and (10) we have

E(1BS̃
ε
0) = E(1B sup

a∈R
Y ε,a

0 ) ≥ E(1BY
ε,0

0 ) =
1

2
ε2

>
1

2
κε3 = E(1B S0(κε)).

Thus we have shown that the two above mentioned functions do not coincide (not
even almost surely).

Appendix A. Measurability of the concentration function

We will use here results on the regular version of the condition a distribution
of a random variable with respect to a sub-σ-algebra. These can be found, e.g.,
in §44 of [2].

Let (Ω,A,P) be a probability space and C ⊂ A a sub-sigma-algebra. Let
X : Ω→ R be a random variable. Let Q : Ω× B(R)→ [0, 1] be a regular version
of the conditional distribution of X with respect to C.

Then for each ε > 0 and a ∈ R

Ω 3 ω 7→ Q(ω, [a, a+ ε])

is C-measurable. Consequently, for each ε > 0

sup
b,δ∈Q,δ∈[0,ε]

Q(ω, [b, b+ δ])

is C-measurable as well. We will show now the following claim:

sup
a∈R

Q(ω, [a, a+ ε]) = sup
b,δ∈Q,δ∈[0,ε]

Q(ω, [b, b+ δ]).

Proof. Fix c ∈ R. Since Q is a regular version of the conditional distribution we
have for all ω ∈ Ω

Q(ω, [c, c+ ε]) = sup
b,δ∈Q,b≥c,δ≥0,b+δ≤c+ε

Q(ω, [b, b+ δ]).

(For an arbitrary version of the conditional distribution we would have this
statement only for almost all ω, with the exceptional set depending on c.) The
last quantity equals

sup
b,δ∈Q,b≥c,δ≥0,b+δ≤c+ε,δ≤ε

Q(ω, [b, b+ δ])
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and is bounded from above by

sup
b,δ∈Q,b≥c,δ≥0,δ≤ε

Q(ω, [b, b+ δ]) ≤ sup
b,δ∈Q,δ≥0,δ≤ε

Q(ω, [b, b+ δ])

≤ sup
b∈Q

Q(ω, [b, b+ ε]) ≤ sup
b∈R

Q(ω, [b, b+ ε]). �
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