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Abstract. We define the quasi-minimal elements of a set with respect to a convex cone
and characterize them via linear scalarization. Then we attach to a general vector op-
timization problem a dual vector optimization problem with respect to quasi-efficient
solutions and establish new duality results. By considering particular cases of the primal
vector optimization problem we derive vector dual problems with respect to quasi-efficient
solutions for both constrained and unconstrained vector optimization problems and the
corresponding weak, strong and converse duality statements.
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1 Introduction and Preliminaries

In the last years the role played in optimization by different generalizations the interior
of a set, among which let us recall the algebraic interior, also known as the core, the
intrinsic core, the relative interior, the strong quasi-relative interior, the quasi-relative
interior and the quasi interior, became more and more important, due to both theoretical
and practical reasons. Their most common usage was in constructing weaker and weaker
regularity conditions for guaranteeing strong duality or certain formulae (see, for instance,
[4–8, 10, 12–14, 25]), but in recent works like [2, 3, 16, 17, 19, 24] new minimality concepts
for sets were defined by using such generalized interiors, leading to new efficiency notions
as solutions to vector optimization problems.

In this paper we consider and characterize via a linear scalarization the quasi-minimal
elements of a set with respect to a convex cone. The quasi-minimal elements of a set are
defined with respect to a convex cone by making use of its quasi interior. This notion is
weaker than the classical minimality with respect to a cone and is actually a generalization
of the weak minimality, which can be taken into consideration only when the interior of
the ordering cone is nonempty. Then, we attach to a general vector optimization problem

∗Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany, e-mail:
sorin-mihai.grad@mathematik.tu-chemnitz.de. Research supported by DFG (German Research Founda-
tion), project WA 922/1-3.
†Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Str. Mihail Kogălniceanu 1,
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a vector dual problem with respect to quasi-efficient solutions, providing moreover weak,
strong and converse duality statements for this primal-dual pair of vector optimization
problems. Afterwards, we derive similar duality treatments for both constrained and
unconstrained vector optimization problems. Due to the fact that when the interior of a
set is nonempty it coincides with its quasi interior, in case the interior of the ordering cone
is nonempty we rediscover the duality theory with respect to weakly efficient solutions
presented for instance in [10, Section 4.3.4].

The quasi interior of a set was introduced by Schaefer in [22], while the quasi-relative
interior was considered first by Borwein and Lewis in [4]. Both these generalized interiority
notions were involved in different ways in dealing with optimization problems in works like
[2–8,12–17,19,24, 25]. The most common examples of sets with nonempty quasi interiors
and quasi-relative interiors, but with empty interiors and other generalized interiors are
the positive cones of the spaces `p and Lp, with p ≥ 1.

Our investigations are motivated not only by theoretical reasons, but also by the vector
optimization problems where the ordering cones of the image space have empty interiors
met in the literature, for instance in [18] or [1], where one can find a finance model with
m investors trading securities and having identical expectations on the security payoffs
which is modeled as a vector optimization problem whose objective function maps from
a portfolio vector space to an ordered payoff vector space that is Lp(Ω,Σ, P ), with p ≥ 1,
where (Ω,Σ, P ) is an underlying probability space.

The structure of the paper is as follows. In the remainder of this section we establish
the framework of our work and present some preliminary results and notions needed in our
investigations. In the next one we introduce and characterize the quasi-minimal elements
of a set. The third section is dedicated to introducing a vector dual problem with respect
to quasi-efficient solutions to a general vector optimization problem and establishing the
corresponding weak, strong and converse duality results. Then we formulate constrained
and unconstrained vector optimization problems as special cases of the general vector
optimization problem and derive for them vector dual problems with respect to quasi-
efficient solutions, followed by weak, strong and converse duality statements. In the fifth
section we deliver some comparisons between the image sets of the different vector duals
attached to a constrained vector optimization problem. We close the paper with a small
conclusive section, where we also present some ideas for further research.

Let X be a separated locally convex space, X∗ be the topological dual space of X
endowed with the corresponding weak∗ topology and 〈x∗, x〉 = x∗(x) denote the value at
x ∈ X of the linear continuous functional x∗ ∈ X∗.

A cone K ⊆ X is a nonempty set which fulfills λK ⊆ K for all λ ≥ 0. A convex cone is
a cone which is a convex set. A cone K ⊆ X is called nontrivial if K 6= {0} and K 6= X and
pointed if K ∩ (−K) = {0}. The dual cone of K is K∗ = {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0 ∀x ∈ K}.
The projection function PrX : X×Y → X is defined by PrX(x, y) = x for all (x, y) ∈ X×Y .

For a subset U of X, by intU , coreU , clU , linU , dimU , coneU , aff U , linU , δU , sqriU
and riU we denote its interior, algebraic interior, closure, linear hull, dimension, conical
hull, affine hull, linear hull, indicator function, strong quasi-relative interior and, in case
X = Rn, relative interior, respectively. The normal cone associated to the U at x ∈ U is
given by NU (x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 for all y ∈ U}. The quasi interior of U is
the set

qiU = {x ∈ U : cl(cone(U − x)) = X}
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and the quasi-relative interior of U ⊆ X is

qriU = {x ∈ U : cl(cone(U − x)) is a linear subspace of X}.

Some properties of the latter generalized interiority notions follow (cf. [4–6,8]).

Remark 1 Let U ⊆ X be a convex set.

(a) For all x ∈ X, it holds qri{x} = {x}.

(b) One has
intU ⊆ coreU ⊆ qiU ⊆ qriU. (1)

When one of the sets in (1) is nonempty, it coincides with all its supersets within
this chain of inclusions.

(c) If x ∈ U , one has x ∈ qriU if and only if NU (x) is linear subspace of X∗ and,
respectively, x ∈ qiU if and only if NU (x) = {0}.

(d) In case X = Rn, we have that qiU = coreU = intU and qriU = sqriU = riU .

A situation where the interior of a set and all the generalized interiors but the quasi
interior and the quasi-relative interior are empty can be found below.

Example 1 Let p = 2 and consider the real Banach space `2 = `2(N) of the real sequences
(xn)n∈N such that

∑∞
n=1 |xn|2 < +∞ equipped with the norm || · || : `2 → R, ||x|| =(∑∞

n=1 |xn|2
)1/2

for all x = (xn)n∈N ∈ `2, where `2+ = {(xn)n∈N ∈ `2 : xn ≥ 0 ∀n ∈ N} is
the positive cone of `2. Then int(`2+) = core(`2+) = sqri(`2+) = ∅, but qi(`2+) = qri(`2+) =
{(xn)n∈N ∈ `2 : xn > 0 ∀n ∈ N}.

In a separable Banach space the quasi interior of any nonempty convex set not con-
tained in a hyperplane is nonempty (cf. [20]) and the quasi-relative interior of any nonempty
convex set is nonempty (cf. [4]). These properties are no longer valid in general if the space
is not separable.

Now let us give some properties of the quasi interior of a cone.

Remark 2 Let K ⊆ X be a convex cone.

(a) If K is also pointed, then 0 6∈ qiK.

(b) One has qiK +K = qiK.

(c) The set qiK ∪ {0} is a cone, too.

(d) If K is also closed, then qiK∗ = {x∗ ∈ K∗ : 〈x∗, x〉 > 0 ∀x ∈ K \ {0}}, a set usually
denoted by K∗0 and known as the quasi interior of the dual cone of K.

The following statements present some useful properties of the quasi-relative interior
of a convex set (see, for example [8]).

Proposition 1 Let U and V be convex subsets X. Then the following statements hold

(a) qriU + qriV ⊆ qri(U + V );
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(b) qriU × qriV = qri(U × V );

(c) qri(U − x) = (qriU)− x for all x ∈ X;

(d) qri(αU) = α(qriU) for all α ∈ R \ {0};

(e) λ qriU + (1− λ)U ⊆ qriU for all λ ∈ (0, 1] whence qriU is a convex set;

(f) qri(qriU) = qriU ;

(g) if U is affine then qriU = U ;

(h) if qriU 6= ∅ then cl qriU = clU and cl cone qriU = cl coneU ;

(i) if U ⊆ V then qiU ⊆ qiV ; moreover when aff U = aff V then qriU ⊆ qriV ;

(j) qri(qriU − qriV ) = qriU − qriV .

In the literature there exists some separation theorems for convex sets by mean of
quasi-relative interior (see [5]). We will use in our investigations the following one, which
is [8, Theorem 2.7].

Theorem 2 Let U be a nonempty convex subset of X and x ∈ U . If x 6∈ qri(U) then
there exists x∗ ∈ X∗ \ {0} such that 〈x∗, y〉 ≤ 〈x∗, x〉 for all y ∈ U .

We also need the following classical separation statement due to Tuckey.

Theorem 3 Let U and V be nonempty convex subsets of the locally convex space X, one
compact and the other closed. Then U ∩V = ∅ if and only if there exists an x∗ ∈ X∗ \ {0}
such that supx∈U 〈x∗, x〉 < supx∈V 〈x∗, x〉.

For a convex cone K ⊆ X, one can introduce the partial ordering relation “5K” defined
by x 5K y if y− x ∈ K, where x, y ∈ K. Denote also x ≤K y if x 5K y and x 6= y. When
qiK 6= ∅ we denote x <K y if y − x ∈ qiK, extending the notation usually considered in
the literature for the case intK 6= ∅.

If K 6= {0}, a greatest element with respect to “5K” which does not belong to X
denoted by ∞K is attached to X, and let X• = X ∪{∞K}. Then for any x ∈ X• one has
x 5K ∞K and we consider on X• the operations x+∞K =∞K + x =∞K for all x ∈ X
and t · ∞K =∞K for all t ≥ 0. Moreover, consider by convention 〈v∗,∞K〉 = +∞ for all
v∗ ∈ K∗.

In what follows we consider some notions which extend the classical monotonicity to
functions defined on partially ordered spaces.

Definition 1 Let the space X be partially ordered by the convex cone K, a nonempty
set U ⊆ X and f : X → R a given function.

(i) If f(x) ≤ f(y) for all x, y ∈ U such that x 5K y the function f is called K-increasing
on U .

(ii) If f(x) < f(y) for all x, y ∈ U such that x ≤K y the function f is called strongly
K-increasing on U .
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(iii) If f is K-increasing on U , qiK 6= ∅ and for all x, y ∈ U fulfilling x <K y follows
f(x) < f(y) the function f is called strictly K-increasing on U .

(iv) When U = X we call these classes of functions simply K-increasing, strongly K-
increasing and strictly K-increasing, respectively.

Remark 3 In Definition 1(iii) we extend the notion of strictly K-increasing on U func-
tions given so far in the literature for the case intK 6= ∅ (or coreK 6= ∅).

Let us illustrate this definition with the following example (see [10]).

Example 2 Let x∗ ∈ X∗. If x∗ ∈ K∗, then for all x1, x2 ∈ X such that x1 5K x2 we have
that 〈x∗, x2 − x1〉 ≥ 0. Therefore 〈x∗, x1〉 ≤ 〈x∗, x2〉 and this means that the elements of
K∗ are actually K-increasing functions.

If x∗ ∈ K∗0, then for all x1, x2 ∈ X such that x1 ≤K x2 it holds 〈x∗, x2−x1〉 > 0. This
means by definition that the elements of K∗0 are strongly K-increasing functions on X.

If K ⊆ X is a convex closed cone, qiK 6= ∅, then via Remark 2(d) qiK = {x ∈ X :
〈x∗, x〉 > 0 ∀x∗ ∈ K∗ \ {0}} and thus every x∗ ∈ K∗ \ {0} is strictly K-increasing on X.

Nevertheless, we present some notions regarding functions, too. In what follows, for
a function f : X → R we use the classical notations for domain dom f = {x ∈ X :
f(x) < +∞} and epigraph epi f = {(x, r) ∈ X × R : f(x) ≤ r}. The conjugate function
f∗ : X∗ → R is defined by f∗(x∗) = supx∈X{〈x∗, x〉 − f(x)} and the conjugate function
with respect to a nonempty set U ⊆ X f∗U : X∗ → R is defined by f∗U (x∗) = (f+δU )∗(x∗) =
supx∈U{〈x∗, x〉 − f(x)}. Function f is proper if f(x) > −∞ for all x ∈ X and dom f 6= ∅.
If f(x) ∈ R the (convex) subdifferential of f at x is ∂f(x) = {x∗ ∈ X∗ : f(y) − f(x) ≥
〈x∗, y − x〉 ∀y ∈ X}, while if f(x) 6∈ R we take by convention ∂f(x) = ∅. For U ⊆ X we
have for all x ∈ U that ∂δU (x) = NU (x). Between a function and its conjugate there is
the Young-Fenchel inequality f∗(x∗) + f(x) ≥ 〈x∗, x〉 for all x ∈ X and x∗ ∈ X∗. This
inequality is fulfilled as an equality if and only if x∗ ∈ ∂f(x). For a linear continuous
mapping A : X → Y we have its adjoint A∗ : Y ∗ → X∗ given by 〈A∗y∗, x〉 = 〈y∗, Ax〉 for
any (x, y∗) ∈ X × Y ∗.

A vector function F : X → Y • is said to be proper if its domain domF = {x ∈ X :
F (x) ∈ Y } is nonempty. It is K-convex if F (tx + (1 − t)y) 5K tF (x) + (1 − t)F (y) for
all x, y ∈ X and all t ∈ [0, 1]. The vector function F is said to be K-epi-closed if K is
closed and its K-epigraph epiK F = {(x, y) ∈ X × Y : y ∈ F (x) + K} is closed, and it
is called K-semicontinuous if for every x ∈ X, each neighborhood W of zero in Y and
for any b ∈ Y satisfying b 5K F (x), there exists a neighborhood U of x in X such that
F (U) ⊆ b+W + Y ∪ {+∞K}.

For v∗ ∈ K∗ the function (v∗F ) : X → R is defined by (v∗F )(x) = 〈v∗, F (x)〉, x ∈ X.
If F is K-lower semicontinuous then (v∗F ) is lower semicontinuous whenever v∗ ∈ K∗\{0}
and if K is closed, then every K- lower semicontinuous vector function is also K-epi-closed,
but not all K-epi-closed vector functions are K-lower semicontinuous, as [9, Example 1]
shows.

2 Quasi-efficient solutions

Let V be a separated locally convex vector space partially ordered by the pointed convex
cone K ⊆ V with a nonempty quasi interior, and U ⊆ V a nonempty convex set.
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Definition 2 An element x ∈ U is said to be a quasi-minimal element of U (regarding
the partial ordering induced by K) if (x− qiK) ∩ U = ∅.

Remark 4 Quasi-minimal elements were also considered in works like [16, 19, 24], being
usually called quasi-weakly minimal elements. However, we opted for the simpler name
presented in Definition 2, even if it is used in the literature also for other types of minimal
elements (see, for instance, [21]). However, if the conjecture presented below, namely that
U+qiK = qi(U+K) always holds, turns out to be valid, we believe that the quasi-minimal
elements should be actually called weakly minimal. Note also that in [2,3,19] one can find
quasi-relative minimal elements.

Analogously one can define quasi-maximal elements of U (regarding the partial order-
ing induced by K), which are defined if (x+ qiK) ∩ U = ∅.

We denote by QMin(U,K) and QMax(U,K) the sets of all quasi-minimal and quasi-
maximal elements of the set U (regarding the partial ordering induced by K), respectively.
One can prove that QMin(U,−K) = −QMin(−U,K) = QMax(U,K).

Recall that an element x ∈ U is said to be a minimal element of U (regarding the
partial ordering induced by K) if there is no x ∈ U satisfying x ≤K x. The set of all
minimal elements of U is denoted by Min(U,K) and it is called the minimal set of U
(regarding the partial ordering defined by K)

The relation (x − qiK) ∩ U = ∅ in Definition 2 can be equivalently rewritten as
(U − x) ∩ (− qiK) = ∅. Whenever the cone K is nontrivial we notice that if we consider
as ordering cone K̂ = qiK ∪ {0}, then x ∈ QMin(U,K) if and only if (x− K̂) ∩ U = {x},
or, equivalently, x ∈ Min(U, K̂).

If K 6= V , any minimal element of U is also quasi-minimal since (x −K) ∩ U = {x}
implies via Remark 2(a) that (x− qiK) ∩ U = ∅. If K = V then QMin(U,K) = ∅.

Note that in case coreK 6= ∅ (or intK 6= ∅) the following investigations rediscover
results from [10, Section 2.4.2, Section 2.4.4 and Section 4.3.4], thus they can be seen as
generalizations of the latter.

Lemma 4 It holds QMin(U,K) ⊆ QMin(U +K,K).

Proof. Let us consider an x ∈ QMin(U,K) assumed not to be a quasi-minimal element
of the set U +K. Then there is an element x ∈ (x− qiK) ∩ (U +K) 6= ∅ and there is an
u ∈ U with x− x ∈ qiK and x− u ∈ K. Consequently, by using Remark 2(b) we obtain
that x − u ∈ qiK + K = qiK, or alternatively u ∈ (x − qiK) ∩ U . Hence, x is not a
quasi-minimal element of the set U , and the conclusion follows by contradiction. �

Remark 5 In Definition 2 and Lemma 4 is not necessary to assume that U is convex.

Proposition 5 One has that qi(U + qiK) = U + qiK ⊆ qi(U +K).

Proof. From Remark 2(a) we have that qi(U + qiK) ⊆ qi(U +K) and obviously qi(U +
qiK) ⊆ U + qiK. The only implication left to be prove is U + qiK ⊆ qi(U + qiK).

Let us consider an element a ∈ U + qiK, so there exist u ∈ U and k ∈ qiK such that
a = u + k. But qiK − k ⊆ qiK − k + (U − u) = U + qiK − a. From here follows that
cone(qiK−k) ⊆ cone(U+qiK−a) and moreover cl cone(qiK−k) ⊆ cl cone(U+qiK−a).
But k ∈ qiK = qi(qiK) and so we have that cl cone(qiK − k) = V . Consequently, as
a ∈ U + qiK follows that a ∈ qi(U + qiK). �
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If A and B are convex subsets of V , recall that int(A+B) = A+intB and core(A+B) =
A + coreB (cf. [23]). Moreover, in all the situations known to us where qiB 6= ∅ unlike
the interior or algebraic interior of B, it holds A + qiB = qi(A + B) for all the convex
sets A ⊆ V . Consequently, we assume further for the sets U and K dealt with in this
section that it holds U + qiK = qi(U +K) and we maintain this additional hypothesis for
their counterparts in the rest of the paper. Moreover, we conjecture that in general when
A,B ⊆ V are convex sets with qiB 6= ∅, it holds A+ qiB = qi(A+B).

Next we formulate some necessary and sufficient characterizations via linear scalariza-
tions of the quasi-minimal elements of the set U with respect to K.

Theorem 6 If x ∈ QMin(U,K) then there exists x∗ ∈ K∗\{0} such that 〈x∗, x〉 ≤ 〈x∗, x〉,
for all x ∈ U .

Proof. From x ∈ QMin(U,K) it follows that u 6∈ x−qiK for all u ∈ U . So, x 6∈ u+qiK
for all u ∈ U . Thus x 6∈ U + qiK = qi(U + K). From Proposition 5 follows that
qi(U +K) 6= ∅ and so qri(U +K) = qi(U +K). As x ∈ U +K but x 6∈ qri(U +K) we can
apply Theorem 2. Consequently, there exists x∗ ∈ X∗ \ {0} such that

〈x∗, x+ k〉 ≤ 〈x∗, x〉 for all x ∈ U and k ∈ K. (2)

Let k ∈ K \ {0} such that 〈x∗, k〉 > 0 and k = αk. For α > 0 we obtain a contradiction
because the left hand side of (2) is unbounded from above for α → +∞. Consequently,
〈x∗, k〉 ≤ 0 for all k ∈ K \ {0} which means that x∗ ∈ −K∗. Taking k = 0 and setting
x∗ = −x∗ ∈ K∗ we obtain 〈x∗, x〉 ≤ 〈x∗, x〉 for all x ∈ U . �

Lemma 7 Let a function f : V → R which is strictly K- increasing on U . If there is an
element x ∈ U fulfilling f(x) ≤ f(x) for all x ∈ U , then x ∈ QMin(U,K).

Proof. If x 6∈ QMin(U,K), then there exists x ∈ (x−qiK)∩U . This implies f(x) < f(x),
which contradicts the assumption. �

Further let K be also closed. The following theorem is a straightforward conclusion of
Lemma 7 and Example 2.

Theorem 8 If there exist x∗ ∈ K∗ \ {0} and x ∈ U such that for all x ∈ U it holds
〈x∗, x〉 ≤ 〈x∗, x〉, then x ∈ QMin(U,K).

From Theorem 6 and Theorem 8 we obtain an equivalent characterization via linear
scalarization for the quasi-minimal elements of U with respect to K.

Corollary 9 Let x ∈ U . Then x ∈ QMin(U,K) if and only if there exists x∗ ∈ K∗ \ {0}
satisfying 〈x∗, x〉 ≤ 〈x∗, x〉 for all x ∈ U .

3 General duality results

We consider the vector optimization problem

(PV Gq) QMin
x∈X

F (x),
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where F : X → V • is a proper and K-convex function with domF = {x ∈ X : F (x) 6= ∅}
and we are interested in determining the quasi-minimal elements of F (domF ) with respect
to K. We also assume that F (domF )+qiK = qi(F (domF )+K) and K is a closed convex
cone.

Definition 3 An element x ∈ X is called quasi-efficient solution to the vector optimiza-
tion problem (PV Gq) if x ∈ domF and F (x) ∈ QMin(F (domF ),K).

As mentioned in the first section, problems where the quasi-efficient solutions of vector
optimization problems can play an important role because the ordering cones of the image
spaces have empty interiors, but nonempty quasi interiors, can be found for instance in
finance mathematics (see [1, 18]).

Using the vector perturbation function Φ : X ×Y → V • which fulfills 0 ∈ PrY (dom Φ)
and Φ(x, 0) = F (x) for all x ∈ X, the primal vector optimization problem introduced
above can be reformulated as

(PV Gq) QMin
x∈X

Φ(x, 0).

To (PV Gq) we attach the following vector dual problem with respect to quasi-efficient
solutions

(DVGq) QMax
(v∗,y∗,v)∈BGq

hGq (v∗, y∗, v)

where

BGq = {(v∗, y∗, v) ∈ (K∗ \ {0})× Y ∗ × V : 〈v∗, v〉 ≤ −(v∗Φ)∗(0,−y∗)}

and
hGq (v∗, y∗, v) = v.

Definition 4 An element (v∗, y∗, v) ∈ BGq is called quasi-efficient solution to the vec-

tor dual optimization problem (DVGq) if (v∗, y∗, v) ∈ domhGq and hGq (v∗, y∗, v) = v ∈
QMax(hGq (dom hGq ),K).

Next we formulate the weak and strong duality theorems.

Theorem 10 There are no x ∈ X and (v∗, y∗, v) ∈ BGq such that F (x) <K hGq (v∗, y∗, v).

Proof. We assume the contrary, namely that there exist x ∈ X and (v∗, y∗, v) ∈ BGq
such that F (x) <K hGq (v∗, y∗, v) = v. Then it holds x ∈ domF and 〈v∗, v〉 > 〈v∗, F (x)〉.
On the other hand 〈v∗, v〉 ≤ −(v∗Φ)∗(0,−y∗) ≤ (v∗F )(x), so we obtained the desired
contradiction. �

Remark 6 F needs not be K-convex and K-closed in order to formulate the vector dual
problem and for proving the weak duality statement.

For the strong duality we consider the following regularity conditions (cf. [10]). First,
a classical condition

8



(RCV 1) ∃x′ ∈ X such that (x′, 0) ∈ dom Φ and Φ(x′, ·) is continuous at 0;

then the most general one that works when X and Y are Fréchet spaces

(RCV 2) X and Y are Fréchet spaces, Φ is K- lower semicontinuous and
0 ∈ sqri(PrY (dom Φ));

followed by the one good in finite dimensional cases

(RCV 3) dim(lin(PrY (dom Φ))) < +∞ and 0 ∈ ri(PrY (dom Φ));

and the closedness type regularity condition

(RCV 4) Φ is K-lower semicontinuous and PrX∗×R(epi(v∗Φ)∗) is closed in
the topology w(X∗, X)× R for all v∗ ∈ K∗ \ {0}.

Theorem 11 Assume that one of the regularity conditions (RCV i), i ∈ {1, . . . , 4}, is
fulfilled. If x ∈ X is a quasi-efficient solution to (PV Gq), then there exists (v∗, y∗, v) a
quasi-efficient solution to (DVGq) such that F (x) = hGq (v∗, y∗, v) = v.

Proof. Since x ∈ X is a quasi-efficient solution to (PV Gq) then x ∈ domF and F (x) ∈
QMin(F (domF ),K). By Corollary 9 there exists v∗ ∈ K∗ \ {0} which satisfies

〈v∗, F (x)〉 = min
x∈X
〈v∗, F (x)〉 = min

x∈X
(v∗Φ)(x, 0).

Applying [10, Theorem 3.2.1 or Theorem 3.2.3] one gets that there exists y∗ ∈ Y ∗ such
that

〈v∗, F (x)〉 = inf
x∈X

(v∗Φ)(x, 0) = sup
y∗∈Y ∗

{−(v∗Φ)∗(0,−y∗)} = −(v∗Φ)∗(0,−y∗).

For v = F (x) one has (v∗, y∗, v) ∈ BGq . From Theorem 10 one has that (v∗, y∗, v) is a
quasi-efficient solution to (DVGq). �

Remark 7 Instead of the mentioned regularity conditions, for achieving strong dual-
ity it is enough to assume that for all v∗ ∈ K∗ \ {0} the scalar optimization problem
infx∈X(v∗Φ)(x, 0) is stable.

Next, we give a preliminary result for the converse duality statement, followed by the
mentioned assertion itself.

Theorem 12 Assume that one of the regularity conditions (RCV i), i ∈ {1, . . . , 4}, is
fulfilled. Then V \ cl(F (domF ) +K) ⊆ core(hGq (BGq )).

Proof. Consider v be an arbitrary element in V \ cl(F (domF ) + K). Since the set
cl(F (domF ) +K) ⊆ V is convex and closed, by Theorem 3 there exists v∗ ∈ K∗ \{0} and
α ∈ R such that

〈v∗, v〉 < α < 〈v∗, v〉, for all v ∈ cl(F (domF ) +K).

Thus 〈v∗, v〉 < α ≤ infx∈X(v∗F )(x) = infx∈X(v∗Φ)(x, 0) and there exists y∗ ∈ Y ∗ such
that infx∈X(v∗Φ)(x, 0) = −(v∗Φ)∗(0,−y∗), so 〈v∗, v〉 < −(v∗Φ)∗(0,−y∗). Obviously v∗ ∈
hGq (BGq ). The rest of the proof follows the lines of [10, Theorem 4.3.3]. �

9



Theorem 13 Assume that one of the regularity conditions (RCV i), i ∈ {1, . . . , 4}, is
fulfilled and that the set F (domF ) + K is closed. Then for every quasi-efficient solution
(v∗, y∗, v) to (DVGq) one has that v is a quasi-minimal element of the set F (domF ) +K.

Proof. We assume that v 6∈ F (domF ) + K. From Theorem 12 follows that v ∈
core(hGq (BGq )). From here follows that there exists a λ > 0 such that vλ = v + λk >K v

and vλ ∈ hGq (BGq ). This contradicts the fact that (v∗, y∗, v) is a quasi-efficient solution to
(DVGq). Supposing that v is not a quasi-minimal element of F (domF ) + K, it follows
that there exist x ∈ domF and k ∈ K satisfying v >K F (x) + k =K F (x), but this
contradicts Theorem 10. �

Remark 8 In Theorem 12 and Theorem 13, the regularity conditions (RCV i), i ∈
{1, . . . , 4}, can be replaced with the weaker assumption that for all v∗ ∈ K∗ \ {0} the
problem infx∈X〈v∗, F (x)〉 is normal (see [10, Theorem 4.3.3]).

4 Duality results for particular classes of problems

4.1 Constrained vector optimization problems

Let us consider the same framework as in the previous section. Let also Y be partially
ordered by the nonempty convex cone C ⊆ Y . Moreover, we consider the nonempty
convex set S ⊆ X, the proper K- convex function f : X → V • and the proper C−
convex function g : X → Y • fulfilling dom f ∩ S ∩ g−1(C) 6= ∅. Assume again that
f(dom f ∩ A) + qiK = qi(f(dom f ∩ A) + K) and K is a closed convex cone. The pri-
mal vector optimization problem with geometric and cone constraints that we work with is

(PV C
q ) QMin

x∈A
f(x),

where
A =

{
x ∈ S : g(x) ∈ −C

}
.

This problem can be seen as a special case of (PV Gq). We construct different vector
dual problems to (PV C

q ) with respect to quasi-efficient solutions, by considering different
vector perturbation functions. Then we formulate weak, strong and converse duality.
Later, in Section 5, we will investigate the connections between the image sets of these
problems.

First we consider the Lagrange vector type perturbation function ΦV
CL

: X × Y → V •

given by

ΦV
CL

(x, y) =

{
f(x), x ∈ S, g(x) ∈ y − C,
∞K , otherwise.

Let v∗ ∈ K∗ \ {0}, y∗ ∈ Y ∗, u ∈ S and v ∈ V . For assigning to (PV C
q ) a vec-

tor dual problem which is a special case of (DVGq) for ΦV
CL

we need to have 〈v∗, v〉 ≤
−(v∗ΦV

CL
)∗(0,−y∗). This can be equivalently rewritten as 〈v∗, v〉 ≤ −((v∗f) + (y∗g) +

δS)∗(0,−y∗) and y∗ ∈ C∗. By using the definition of the conjugate function this relation
is equivalent with 〈v∗, v〉 ≤ infu∈S{(v∗f)(u) + (y∗g)(u)} and y∗ ∈ C∗. Thus from (DVGq)
we obtain the Lagrange type vector dual problem to (PV C

q ) with respect to quasi-efficient
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solutions

(DV CL
q ) QMax

(v∗,y∗,v)∈BCL
q

hCL
q (v∗, y∗, v),

where

BCL
q = {(v∗, y∗, v) ∈ (K∗ \ {0})× C∗ × V : 〈v∗, v〉 ≤ inf

u∈S
{(v∗f)(u) + (y∗g)(u)}}

and
hCL
q (v∗, y∗, v) = v.

For the strong duality we consider the following regularity conditions

(RCV 1
CL

) ∃x′ ∈ dom f ∩ S such that g(x′) ∈ − intC;

(RCV 2
CL

) X and Y are Fréchet spaces, S is closed, f is K- lower

semicontinuous, g is C−epi closed and
0 ∈ sqri(g(dom f ∩ S ∩ dom g) + C);

(RCV 3
CL

) dim
(

lin(g(dom f ∩ S ∩ dom g) + C)
)
< +∞ and

0 ∈ ri(g(dom f ∩ S ∩ dom g) + C);

and

(RCV 4
CL

) S is closed, f is K-lower semicontinuous, g is C−epi closed and⋃
y∗∈C∗

epi((v∗f) + (y∗g) + δS)∗ is closed in the topology

w(X∗, X)× R for all v∗ ∈ K∗0.

Then the weak, strong and converse duality results follow.

Theorem 14 (a) There are no x ∈ X and (v∗, y∗, v) ∈ BCL
q such that f(x) <K hCL

q (v∗,
y∗, v).

(b) Assume that one of the regularity conditions (RCV i
CL

), i ∈ {1, 2, 3, 4}, is fulfilled. If

x ∈ X is a quasi-efficient solution to (PV C
q ), then there exists (v∗, y∗, v) a quasi-

efficient solution to (DV CL
q ) such that f(x) = hCL

q (v∗, y∗, v) = v.

(c) Assume that one of the regularity conditions (RCV i
CL

), i ∈ {1, 2, 3, 4}, is fulfilled, and
the set f(dom f ∩A)+K is closed. Then for every quasi-efficient solution (v∗, y∗, v)
to (DVGCL

q ) one has that v is a quasi-minimal element of the set f(dom f ∩A)+K.

Another vector perturbation function we consider is the Fenchel-Lagrange type vector
perturbation function ΦV

FL : X ×X × Y → V • given by

ΦV
CFL

(x, t, y) =

{
f(x+ t), x ∈ S, g(x) ∈ y − C
∞K , otherwise.

Let v∗ ∈ K∗ \ {0}, y∗ ∈ C∗, t∗ ∈ X∗, u ∈ S and v ∈ V . For having a new dual
which is a special case of (DVGq) for ΦV

CFL
we need to have 〈v∗, v〉 ≤ −(v∗ΦV

CFL
)∗(0, t∗).

This can be equivalently rewritten as 〈v∗, v〉 ≤ 〈t∗, u〉− (v∗f)∗(t∗)− (y∗g)(u) and y∗ ∈ C∗.
By using the definition of the conjugate function this relation is equivalent with 〈v∗, v〉 ≤
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−(v∗f)∗(t∗) − (y∗g)∗S(−t∗) and y∗ ∈ C∗. Thus from (DVGq) we obtain the Fenchel-
Lagrange type vector dual problem to (PV C

q ) with respect to quasi-efficient solutions

(DV CFL
q ) QMax

(v∗,t∗,y∗,v)∈BCFL
q

hCFL
q (v∗, t∗, y∗, v),

where

BCFL
q = {(v∗, t∗, y∗, v) ∈ (K∗ \ {0})×X∗×C∗×V : 〈v∗, v〉 ≤ −(v∗f)∗(t∗)− (y∗g)∗S(−t∗)}

and
hCFL
q (v∗, t∗, y∗, v) = v.

Next we consider the following regularity conditions

(RCV 1
CFL

) ∃x′ ∈ dom f ∩ S such that f is continuous at x′ and g(x′) ∈ − intC;

(RCV 2
CFL

) X and Y are Fréchet spaces, S is closed, f is K-lower semicontinuous,

g is C−epi closed and 0 ∈ sqri(dom f × C − epi−C(−g) ∩ (S × Y ));

(RCV 3
CFL

) dim(lin(dom f × C − epi−C(−g) ∩ (S × Y ))) < +∞ and

0 ∈ ri(dom f × C − epi−C(−g) ∩ (S × Y ));

and, respectively,

(RCV 4
CFL

) S is closed, f is K-lower semicontinuous, g is C−epi closed and

epi(v∗f)∗ +
⋃

y∗∈C∗
epi((y∗g) + δS)∗ is closed in the topology

w(X∗, X)× R for every v∗ ∈ K∗0.

Then the weak, strong and converse duality results follow from the general case.

Theorem 15 (a) There are no x ∈ X and (v∗, t∗, y∗, v) ∈ BCFL
q such that f(x) <K

hCFL
q (v∗, t∗, y∗, v).

(b) Assume that one of the regularity conditions (RCV i
CFL

), i ∈ {1, . . . , 4}, is fulfilled.

If x ∈ X is a quasi-efficient solution to (PV C
q ), then there exists (v∗, t

∗
, y∗, v) a

quasi-efficient solution to (DV CFL
q ) such that f(x) = hCFL

q (v∗, t
∗
, y∗, v) = v.

(c) Assume that one of the regularity conditions (RCV i
CFL

), i ∈ {1, . . . , 4}, is fulfilled
and the set f(dom f ∩ A) + K is closed. Then for every quasi-efficient solution
(v∗, t

∗
, y∗, v) to (DVGCFL

q ) one has that v is a quasi-minimal element of the set
f(dom f ∩ A) +K.

4.2 Unconstrained vector optimization problems

Using the same framework as in Section 3, we consider the proper K- convex vector
functions f : X → V • and h : Y → V • and A : X → Y a linear continuous mapping
such that dom f ∩ A−1(domh) 6= ∅. Assume again that dom f ∩ A−1(domh) + qiK =
qi(dom f ∩ A−1(domh) + K) and K is a closed convex cone. The primal unconstrained
vector optimization problem
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(PV A
q ) Min

x∈X
[f(x) + h(Ax)]

is a special case of (PV Gq) where F = f + h ◦A.
We consider the vector perturbation function ΦA

q : X×Y → V • defined by ΦA
q (x, y) =

f(x) + h(Ax + y). Using this perturbation function we obtain the vector dual to (PV A
q )

given by

(DV A
q ) QMax

(v∗,y∗,v)∈BAq
hAq (v∗, y∗, v)

where

BAq = {(v∗, y∗, v) ∈ (K∗ \ {0})× Y ∗ × V : 〈v∗, v〉 ≤ −(v∗f)∗(−A∗y∗) + (v∗h)∗(y∗)}

and
hAq (v∗, y∗, v) = v.

For the primal vector (PV A
q ) and the vector dual (DV A

q ) we have the weak, strong
and converse duality statements, that follow from the general case. To guarantee strong
duality we have the regularity conditions

(RCV 1
A) ∃x′ ∈ dom f ∩A−1(domh) such that h is continuous at Ax′;

(RC2
A) X and Y are Fréchet spaces, f and h are C−lower semicontinuous and

0 ∈ sqri(domh−A(dom f));

(RC3
A) dim(lin(domh−A(dom f))) < +∞ and ri(A(dom f)) ∩ ri(domh) 6= ∅;

and, respectively,

(RC4
A) f and h are C−lower semicontinuous and epi(v∗f)∗ + (A∗ × idR)

(epi(v∗h)∗) is closed in the topology w(X∗, X)× R, for all v∗ ∈ K∗0;

where (A∗ × idR)(epi(v∗h)∗) = {(x∗, r) ∈ X∗ × R : ∃y∗ ∈ Y ∗ such that A∗y∗ = x∗ and
(y∗, r) ∈ epi(v∗h)∗}.

Theorem 16 (a) There are no x ∈ X and (v∗, y∗, v) ∈ BAq such that f(x) + h(Ax) <K
hAq (v∗, y∗, v).

(b) Assume that one of the regularity conditions (RCV i
A), i ∈ {1, . . . , 4}, is fulfilled. If

x ∈ X is a quasi-efficient solution to (PV A
q ), then there exists (v∗, y∗, v) a quasi-

efficient solution to (DV A
q ) such that f(x) + h(Ax) = hAq (v∗, y∗, v) = v.

(c) Assume that one of the regularity conditions (RCV i
A), i ∈ {1, . . . , 4}, is fulfilled and

the set dom f ∩ A−1(domh) + K is closed. Then for every quasi-efficient solution
(v∗, y∗, v) to (DVGAq ) one has that v is a quasi-minimal element of the set dom f ∩
A−1(domh) +K.

Back to (PV C
q ), seeing it as an unconstrained vector optimization problem, we can

attach to it a vector dual problem generated by (DVGq) by considering the Fenchel type
vector perturbation function

ΦV
CF

: X × Y → V •, ΦV
CF

(x, y) =

{
f(x+ y), x ∈ A,
∞K , otherwise.
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Assume again that f(dom f ∩ A) + qiK = qi(f(dom f ∩ A) + K) and K is a closed
convex cone.

Let v∗ ∈ K∗ \{0}, t∗ ∈ X∗, u ∈ S and v ∈ V . For having a new dual which is a special
case of (DVGq) for ΦV

CF
we have that 〈v∗, v〉 ≤ −(v∗ΦV

CF
)∗(0, t∗). This can be equivalently

rewritten as 〈v∗, v〉 ≤ 〈t∗, u〉 − (v∗f)∗(t∗). By using the definition of the support function
this relation is equivalent with 〈v∗, v〉 ≤ −(v∗f)∗(t∗)−σA(−t∗). Thus from (DVGq) we ob-
tain the Fenchel type vector dual problem to (PV C

q ) with respect to quasi-efficient solutions

(DV CF
q ) QMax

(v∗,t∗,v)∈BCF
q

hCF
q (v∗, t∗, v),

where

BCF
q = {(v∗, t∗, v) ∈ (K∗ \ {0})×X∗ × V : 〈v∗, v〉 ≤ −(v∗f)∗(t∗)− σA(−t∗)}

and
hCF
q (v∗, t∗, v) = v.

From Theorem 16 one can quickly obtain the weak, strong and converse duality state-
ments for (PV C

q ) and (DV CF
q ), too.

5 Comparisons between duals

In this section we compare the image sets of some of the vector duals attached to (PV C
q )

via the Lagrange, Fenchel and Fenchel-Lagrange type vector perturbation functions, re-
spectively.

Proposition 17 One has that hCFL
q (BCFL

q ) ⊆ hCL
q (BCL

q ).

Proof. Let (v∗, t∗, y∗, v) ∈ BCFL
q be an arbitrary element. Using [10, Proposition 3.1.5]

we obtain that 〈v∗, v〉 ≤ −(v∗f)∗(t∗)−(y∗g)∗S(−t∗) ≤ infu∈S{(v∗f)(u)+((y∗g)+δS)(u)} =
infu∈S{(v∗f)(u) + (y∗g)(u)} and consequently, v = hCFL

q (v∗, y∗, v) ∈ hCL
q (BCL

q ). �

Remark 9 A situation when the inclusion in Proposition 17 is not fulfilled as equality
can be found in [11, Example 2.2].

Proposition 18 One has that hCFL
q (BCFL

q ) ⊆ hCF
q (BCF

q ).

Proof. Let (v∗, t∗, y∗, v) ∈ BCFL
q be an arbitrary element. Using [10, Proposition 3.1.6] we

obtain that 〈v∗, v〉 ≤ −(v∗f)∗(t∗)−(y∗g)∗S(−t∗) ≤ −(v∗f)∗(t∗)−σA(−t∗) and consequently,
v = hCFL

q (v∗, y∗, v) ∈ hCF
q (BCF

q ). �

Remark 10 A situation when the inclusion in Proposition 18 is not fulfilled as equality
can be found in [11, Example 2.1].

Under certain hypotheses, the image sets of the vector duals attached to (PV C
q ) in the

precious section coincide.

Theorem 19 If one of the following conditions

14



(a) there exists x′ ∈ dom f ∩ S ∩ dom g such that f is continuous at x′;

(b) for X and Z Fréchet spaces, S closed and g C−epi closed one has 0 ∈ sqri((dom g∩
S)− dom f);

(c) if lin((dom g ∩ S)− dom f) < +∞ one has 0 ∈ ri((dom g ∩ S)− dom f);

is fulfilled, then hCFL
q (BCFL

q ) = hCL
q (BCL

q ).

Proof. Knowing Proposition 17, we have to prove only that for v ∈ hCL
q (BCL

q ) we have

that v ∈ hCFL
q (BCFL

q ). Let v ∈ hCL
q (BCL

q ), v∗ ∈ K∗\{0} and y∗ ∈ C∗ such that (v∗, y∗, v) ∈
BCL
q . This is equivalent with 〈v∗, v〉 ≤ infu∈S{(v∗f)(u) + (y∗g)(u)} = infu∈S{(v∗f)(u) +

((y∗g)+δS)(u)}. But dom((y∗g)+δS) = S∩dom g and from [10, Theorem 3.2.6] follows that
there exists t

∗ ∈ X∗ fulfilling infu∈S{(v∗f)(u)+((y∗g)+δS)(u)} = supt∗∈X∗{−(v∗f)∗(t∗)−
(y∗g)∗S(−t∗)} = −(v∗f)∗(t

∗
) − (y∗g)∗S(−t∗). Consequently, (v∗, t

∗
, y∗, v) ∈ BCFL

q and v ∈
hCFL
q (BCFL

q ). �

Theorem 20 If one of the following conditions

(a) there exists x′ ∈ dom f ∩ S ∩ dom g such that g(x′) ∈ − intC;

(b) for X and Z Fréchet spaces, S closed and g C−epi closed one has 0 ∈ sqri(g(dom g∩
S) + C);

(c) if lin(g(dom g ∩ S) + C) < +∞ one has 0 ∈ ri(g(dom g ∩ S) + C);

is fulfilled, then hCFL
q (BCFL

q ) = hCF
q (BCF

q ).

Proof. From Proposition 18 we have to prove only that for v ∈ hCF
q (BCF

q ) we have

that v ∈ hCFL
q (BCFL

q ). Let v ∈ hCF
q (BCF

q ), v∗ ∈ K∗ \ {0} and t∗ ∈ X∗ such that

(v∗, t∗, v) ∈ BCF
q . This is equivalent with 〈v∗, v〉 ≤ −(v∗f)∗(t∗) − σA(−t∗). But from [10,

Theorem 3.2.9] we have that there exists y∗ ∈ C∗ such that σA(−t∗) = − infu∈A〈t∗, u〉 =
− supy∗∈C∗ infu∈A{〈t∗, u〉 + (y∗g)(u)} = − infu∈S{〈t∗, u〉 + (y∗g)(u)} = (y∗g)∗S(−t∗) and

then we have 〈v∗, v〉 ≤ −(v∗f)∗(t∗)−(y∗g)∗S(−t∗). Consequently, (v∗, t∗, y∗, v) ∈ BCFL
q and

v ∈ hCFL
q (BCFL

q ). �

To guarantee the coincidence of the image sets of the vector duals with respect to
quasi-efficient solutions we attached to (PV C

q ) one can combine the last two theorems, or,
taking advantage of Proposition 17, Proposition 18 and Theorem 15, can formulate the
following conclusion.

Corollary 21 If one of the regularity conditions (RCV i
CFL

), i ∈ {1, . . . , 4}, is fulfilled,
then

hCFL
q (BCFL

q ) = hCF
q (BCF

q ) = hCL
q (BCL

q ).

If additionally, f(dom(f ∩ A)) +K is closed, then one has

QMin(f(dom f ∩ A),K) ⊆ QMax(hCFL
q (BCFL

q ),K) = QMax(hCL
q (BCL

q ),K)

= QMax(hCF
q (BCF

q ),K) ⊆ QMin(f(dom f ∩ A) +K,K).
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6 Conclusions and further challenges

We have considered and characterized via linear scalarization the quasi-minimal elements
of a set with respect to a convex cone with nonempty quasi interior and possibly empty
interior. The notion of quasi-minimality is weaker than the classical minimality with
respect to a cone and is actually a generalization of the weak minimality, which can be
taken into consideration only when the interior of the ordering cone is nonempty. In order
to characterize the quasi-minimal elements of a convex set U with respect to the convex
cone K via a linear scalarization we assumed that the quasi interior of U+K coincides with
the Minkowski sum of U and the quasi interior of K. We could only show that the first
mentioned set always contains the second one, but the mentioned equality is valid when
the interior of K is nonempty and also for all the examples we checked, so even if it does
not hold in general, we have still provided a generalization of the similar investigations
concerning weakly minimal elements.

Then, we attached to a general vector optimization problem a vector dual problem with
respect to quasi-efficient solutions, providing moreover the corresponding weak, strong and
converse duality statements. Similar duality treatments were derived then for both general
unconstrained and constrained vector optimization problems. To the latter we attached
three different vector duals with respect to quasi-efficient solutions, by making use of three
different perturbation functions and we have also compared their image sets, providing
sufficient conditions for their coincidence.

For future research, we plan to investigate further whether the assumption we consid-
ered does hold in general or not. Moreover, we intend to extend other properties of weakly
minimal elements to quasi-minimal elements and to investigate other possible similar ex-
tensions in this direction, for instance of other types of vector duality. Nevertheless, we
intend to see how similar duality results can be obtained for other types of generalized
minimality notions.
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[6] R.I. Boţ, E.R. Csetnek, Regularity conditions via generalized interiority notions in
convex optimization: new achievements and their relation to some classical state-
ments, Optimization 61(1), 35–65, 2012.
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