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Abstract. In this paper we present different regularity conditions that
equivalently characterize ε-duality gap statements for optimization prob-
lems consisting of minimizing the sum of a function with the precompo-
sition of a cone-increasing function to a vector function. These regularity
conditions are formulated by using epigraphs and ε-subdifferentials. Taking
ε = 0 one can rediscover recent results on stable strong and total duality
and zero duality gap from the literature. Moreover, as byproducts we deliver
ε-optimality conditions and (ε, η)-saddle point statements for the mentioned
type of problems, and ε-Farkas statements involving the sum of a function
with the precomposition of a cone-increasing function to a vector function.
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with another one postcomposed with a linear continuous operator can be
seen as special cases of the sum of a function and the precomposition with
a cone-increasing function of a vector function. Moreover, the optimiza-
tion problem consisting in minimizing a function subject to both geometric
and cone-inequality constraints can be recovered as a special case of the
problem of minimizing the sum of a function and the precomposition with
a cone-increasing function of a vector function, too. Consequently, there
developed a growing interest in investigating the latter problem and its ob-
jective function by means of conjugate optimization, materialized in works
like [2, 4, 5, 7, 11, 13–16] and the references therein. Nevertheless, the men-
tioned problem was approached in [12] from the point of view of approxi-
mation theory, ε-optimality conditions being delivered for it.

In our paper we extend some of the results in [3, 4] by delivering gen-
eral characterizations of ε-duality gap statements for optimization problems
consisting of minimizing the sum of a function with the precomposition of
a cone-increasing function to a vector function by means of epigraphs and
ε-subdifferentials. Taking ε = 0 and adding appropriate convexity and topo-
logical hypotheses to the functions involved, one can rediscover different
results from [2–4], which, further particularized, can lead to recent state-
ments on stable strong and total duality and zero duality gap from papers
like [8–10] and the references therein. Moreover, as byproducts we deliver
ε-optimality conditions and (ε, η)-saddle point statements for the mentioned
type of problems, and ε-Farkas statements involving the sum of a function
with the precomposition of a cone-increasing function to a vector function,
which can easily lead to rediscovering statements from [5,11–13]. In this way
one can say that the results we provide in this paper may be seen as a a kind
of umbrella for different recent results from the literature on optimization
problems involving compositions of functions.

Now let us present the necessary preliminaries (following [2,4,5,7,8,20])
in order to make the paper as self-contained as possible.

Consider two separated locally convex vector spaces X and Y and their
continuous dual spaces X∗ and Y ∗, endowed with the weak∗ topologies
w(X∗, X) and w(Y ∗, Y ) respectively. Some of the following notions and
results as well as most of the statements we deliver in this paper can be
given in the more general framework of linear spaces, but in order to avoid
juggling with spaces we decided to consider only locally convex spaces. Let
the nonempty convex cone C ⊆ Y , i.e. λC ⊆ C for all λ ≥ 0, and its
dual cone C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ C} be given, where we de-
note by 〈y∗, y〉 = y∗(y) the value at y of the continuous linear functional
y∗. On Y we consider the partial ordering “5C” induced by C, defined
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by z 5C y ⇔ y − z ∈ C, z, y ∈ Y . To Y we attach a greatest element
with respect to “5C” denoted by ∞C which does not belong to Y and let
Y • = Y ∪{∞C}. Then for any y ∈ Y • one has y 5C ∞C and we consider on
Y • the following operations: y+∞C =∞C+y =∞C and t∞C =∞C for all
y ∈ Y and all t ≥ 0. Moreover, for y∗ ∈ C∗ we set 〈y∗,∞C〉 = +∞. By clU
we denote the closure of the set U ⊆ X in the corresponding topology. A
set U ⊆ X is said to be closed regarding the set Z ⊆ X if U ∩Z = (clU)∩Z.
We extend this definition as follows, noting that the notion of a ε-closed set
was considered in the literature in different instances that have nothing in
common with our research, see for instance [1, 17].

Definition 1.1 Let ε ≥ 0. A set U ⊆ X × Y is said to be (0, ε)-closed
regarding the set Z ⊆ X × Y if (clU) ∩ Z ⊆ (U ∩ Z)− (0, ε).

For a function f : X → R we have its domain and epigraph defined by
dom f = {x ∈ X : f(x) < +∞} and epi f = {(x, r) ∈ X × R : f(x) ≤
r}, respectively. We say that f is proper if f(x) > −∞ for all x ∈ X
and dom f 6= ∅. The lower semicontinuous envelope of f is the function
cl f : X → R, whose epigraph is cl epi f . The (classical/convex/Fenchel-
Moreau) conjugate function of f is the function f∗ : X∗ → R, given by
f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ X}. The function f : X → R and its
conjugate fulfill the Fenchel-Young inequality, namely f∗(x∗)+f(x) ≥ 〈x∗, x〉
for all x ∈ X and all x∗ ∈ X∗. Let f : X → R, x ∈ X with f(x) ∈ R
and ε ≥ 0. The set ∂εf(x) = {x∗ ∈ X∗ : f(u) − f(x) + ε ≥ 〈x∗, u − x〉
∀u ∈ X} is called the ε-subdifferential of f at x. When f(x) /∈ R we take
by convention ∂εf(x) = ∅. The set R(∂εf) = {x∗ ∈ X∗ : ∃x ∈ X s.t.
x∗ ∈ ∂εf(x)} is called the range of the ε-subdifferential of the function f .
Given a proper function f : X → R, for all ε ≥ 0, x ∈ X and x∗ ∈ X∗

one has x∗ ∈ ∂εf(x) ⇔ f∗(x∗) + f(x) ≤ 〈x∗, x〉 + ε. For ε = 0, the ε-
subdifferential of f becomes the classical (convex) subdifferential, denoted
∂f . A function f : X → R is said to be lower semicontinuous regarding
the set Z ⊆ X if epi f ∩ (Z × R) = (cl epi f) ∩ (Z × R), i.e. epi f is closed
regarding Z × R. Given two proper functions f , g : X → R, their infimal
convolution is f�g : X → R, f�g(a) = inf{f(x) + g(a − x) : x ∈ X},
and it is called exact at some a ∈ X when there is an x ∈ X such that
f�g(a) = f(x) + g(a− x).

There are notions given for functions with extended real values that can
be formulated also for vector functions as follows. We say that h : X → Y •

is proper if its domain domh = {x ∈ X : h(x) ∈ Y } is nonempty and,
respectively, C-convex if h(tx+(1−t)y) 5C th(x)+(1−t)h(y) for all x, y ∈ X
and all t ∈ [0, 1]. For λ ∈ C∗, we define (λh) : X → R, (λh)(x) = 〈λ, h(x)〉
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for all x ∈ X. When C is closed, we say that h is C-epi-closed if its epigraph
epiC h = {(x, y) ∈ X × Y : y ∈ h(x) +C} is closed. A function g : Y → R is
called C-increasing if for x, y ∈ Y such that y 5C x, it follows g(y) ≤ g(x).

Let f : X → R be a proper function, g : Y → R be a proper function,
which is also C-increasing and h : X → Y • a proper vector function fulfilling
dom g ∩ (h(dom f) + C) 6= ∅. Unless otherwise stated, these hypotheses
remain valid through the entire paper. Consider the optimization problem

(PC) inf
x∈X

[f(x) + (g ◦ h)(x)],

and, for x∗ ∈ X∗, the linearly perturbed optimization problem

(PCx∗) inf
x∈X

[f(x) + (g ◦ h)(x)− 〈x∗, x〉] .

To (PCx∗) one can assign several dual problems. We attach to it two Fenchel-
Lagrange-type duals. If f and (λh) are taken together one gets

(DC
x∗

) sup
λ∈C∗
{−g∗(λ)− (f + (λh))∗(x∗)},

while if f and (λh) are separated, we have the following dual

(DC
x∗) sup

λ∈C∗
β∈X∗

{−g∗(λ)− f∗(β)− (λh)∗(x∗ − β)}.

We denote by v(PC) the optimal objective value of the optimization problem

(PC). Note that v(DC
x∗) ≤ v(DC

x∗) ≤ v(PCx∗) for all x∗ ∈ X∗. When x∗ = 0

these duals to (PC) are denoted simply by (DC) and (DC), respectively.
For (PC) and its duals one always has weak duality, i.e. v(PC) ≥ v(DC),
respectively, v(PC) ≥ v(DC). When v(PC) = v(DC) we say that there is
zero duality gap for (PC) and (DC) and if (DC) has moreover an optimal
solution, the situation is called strong duality. If v(PC) − v(DC) ≤ ε, with
ε ≥ 0, we have an ε-duality gap for (PC) and (DC). If one of these situations
holds for (PCx∗) and (DC

x∗) for all x∗ ∈ X∗, it will be called stable. In the
following we write min(max) instead of inf(sup) when the corresponding
infimum (supremum) is attained.

Remark 1 Consider an arbitrary x∗ ∈ X∗. By using the Fenchel-Young
inequality one can show that for all λ ∈ C∗ and for all β ∈ X∗ the inequalities

(f + g ◦ h)∗(x∗) ≤ g∗(λ) + (f + (λh))∗(x∗) ≤ g∗(λ) + f∗(β) + (λh)∗(x∗ − β)
(1.1)

are always fulfilled. Under some additional hypotheses (see for instance [4])
the existence of some λ ∈ C∗ and β ∈ X∗ for which the inequalities in (1.1)
are fulfilled as equalities is secured.
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2 ε-duality gap statements using epigraphs

Let ε ≥ 0. Consider the regularity conditions
(RC)∣∣∣∣∣ {(x

∗, 0, r) : (x∗, r) ∈ epi(f + g ◦ h)∗} ⊆ [{0} × epi(g∗) +
⋃

λ∈C∗
{(a,−λ, r) :

(a, r) ∈ epi((f + (λh))∗)}] ∩ (X∗ × {0} × R)− (0, 0, ε)

and
(RC)∣∣∣∣∣∣∣

{(x∗, 0, r) : (x∗, r) ∈ epi(f + g ◦ h)∗} ⊆ [{0} × epi(g∗) + {(x∗, 0, r) :
(x∗, r) ∈ epi(f∗)}+

⋃
λ∈C∗
{(a,−λ, r) : (a, r) ∈ epi((λh)∗)}]∩

(X∗ × {0} × R)− (0, 0, ε)

They are inspired by the closedness type regularity conditions from [4], but
unlike there, we do not use convexity and topological hypotheses for most
of the proven statements. However, adding such hypotheses one can give
proper generalizations of some results from [4,8] extended in this section by
making use of the notion of a set which is (0, ε)-closed regarding another
set. In order not to overcomplicate the paper we will not give these results,
leaving most of our statements of algebraical nature.

Theorem 2.1 The condition (RC) is fulfilled if and only if for any x∗ ∈ X∗
there exists a λ ∈ C∗ such that

(f + g ◦ h)∗(x∗) ≥ g∗(λ) + (f + (λh))∗(x∗)− ε. (2.1)

Proof. “⇒” Let x∗ ∈ X∗. If (f+g ◦h)∗(x∗) = +∞, (2.1) holds. Otherwise,
(x∗, (f+g◦h)∗(x∗)) ∈ epi((f+g◦h)∗). From (RC) we have that (x∗, 0, (f+
g ◦h)∗(x∗)) ∈ [{0}× epi(g∗)+∪λ∈C∗{(a,−λ, r) : (a, r) ∈ epi((f +(λh))∗)}]∩
(X∗×{0}×R)− (0, 0, ε). Therefore there exist some λ ∈ C∗ and η ≥ 0 such
that

(x∗, 0, (f + g ◦ h)∗(x∗)) = (0, λ, g∗(λ)) + (x∗,−λ, (f + (λh))∗(x∗))

+(0, 0, η)− (0, 0, ε).

Thus we get (f + g ◦ h)∗(x∗) ≥ g∗(λ) + (f + (λh))∗(x∗)− ε.
“⇐” Let (x∗, r) ∈ epi(f + g ◦ h)∗. This means that (f + g ◦ h)∗(x∗) ≤ r.

From (2.1) there exists λ ∈ C∗ such that g∗(λ) + (f + (λh))∗(x∗) − ε ≤ r,
thus (f + (λh))∗(x∗) ≤ r + ε − g∗(λ). But (x∗, 0, r) = (0, λ, g∗(λ) − ε) +
(x∗,−λ, r − g∗(λ) + ε), where the first term in the right-hand side belongs
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to {0} × epi(g∗) − (0, 0, ε) and the second to ∪λ∈C∗{(a,−λ, r) : (a, r) ∈
epi((f+(λh))∗)}. Consequently (x∗, 0, r) ∈ [{0}×epi(g∗)+∪λ∈C∗{(a,−λ, r) :
(a, r) ∈ epi((f + (λh))∗)}] ∩ (X∗ × {0} × R) − (0, 0, ε). Therefore, (RC) is
fulfilled. �

Remark 2 In the left-hand side of (2.1) one can easily recognize −v(PC
x∗

).

The quantity in the right-hand side of (2.1) is not necessarily −v(DC
x∗

)− ε,
as the supremum in (DC

x∗
) is not shown to be attained at λ. Though, (2.1)

implies v(PC
x∗

) ≤ v(DC
x∗

) + ε, which actually means that for (PC
x∗

) and (DC
x∗

)
there is ε-duality gap. Thus, (RC) yields that there is stable ε-duality gap
for (PC) and (DC). Note also that the λ ∈ C∗ obtained in Theorem 2.1 is
an ε-optimal solution of (DC

x∗
).

For ε = 0 we obtain the following consequence of Theorem 2.1.

Corollary 2.2 The regularity condition∣∣∣∣∣ {(x
∗, 0, r) : (x∗, r) ∈ epi(f + g ◦ h)∗} = [{0} × epi(g∗) +

⋃
λ∈C∗
{(a,−λ, r) :

(a, r) ∈ epi((f + (λh))∗)}] ∩ (X∗ × {0} × R)
(2.2)

is fulfilled if and only if for any x∗ ∈ X∗ it holds

(f + g ◦ h)∗(x∗) = min
λ∈C∗

[g∗(λ) + (f + (λh))∗(x∗)].

Proof. Because of (1.1), the right-hand side of (2.2) is included in the
left-hand one, thus we get that (RC) turns in case ε = 0 into an equality.
Further, using again (1.1) it follows that in case ε = 0 (2.1) turns into an
equality, too, where the infimum regarding λ ∈ C∗ of the sum in the right-
hand side is attained at the λ ∈ C∗ obtained in Theorem 2.1. �

Adding to Corollary 2.2 the necessary convexity and topological hypothe-
ses one can rediscover [4, Theorem 3.3a)] as follows.

Corollary 2.3 Let f : X → R be a proper convex lower semicontinuous
function, g : Y → R a proper convex lower semicontinuous function which
is also C-increasing and h : X → Y • a proper C-convex C-epi-closed vector
function. The regularity condition∣∣∣∣∣ {0} × epi(g∗) +

⋃
λ∈C∗
{(a,−λ, r) : (a, r) ∈ epi((f + (λh))∗)}

is closed regarding the subspace X∗ × {0} × R

6



is fulfilled if and only if for any x∗ ∈ X∗ one has

(f + g ◦ h)∗(x∗) = min
λ∈C∗
{g∗(λ) + (f + (λh))∗(x∗)}.

If we take x∗ = 0 we obtain from Theorem 2.1 the following result.

Corollary 2.4 The regularity condition
(RC0)∣∣∣∣∣ {(0, 0, r) : (0, r) ∈ epi(f + g ◦ h)∗} ⊆ [{0} × epi(g∗) +

⋃
λ∈C∗
{(a,−λ, r) :

(a, r) ∈ epi((f + (λh))∗)}] ∩ ({0} × {0} × R)− (0, 0, ε)

is fulfilled if and only if there exists a λ ∈ C∗such that

inf
x∈X

(f(x) + g ◦ h(x)) ≤ −g∗(λ)− (f + (λh))∗(0) + ε. (2.3)

Remark 3 The quantity in the right-hand side of (2.3) is not necessarily
v(DC) + ε, as the supremum in (DC) is not shown to be attained at λ,
while in the left-hand side of (2.3) we have v(PC). Though, (2.3) implies
v(PC) ≤ v(DC) + ε, which actually means that for (PC) and (DC) there is
ε-duality gap and thus (RC0) is a regularity condition that guarantees this
result. Note also that the λ ∈ C∗ obtained in Corollary 2.4 is an ε-optimal
solution of (DC).

Similar results can be obtained for (DC) by using (RC) as follows.

Theorem 2.5 (RC) is fulfilled if and only if for any x∗ ∈ X∗ there exist
some λ ∈ C∗ and β ∈ X∗ such that

(f + g ◦ h)∗(x∗) ≥ g∗(λ) + f∗(β) + (λh)∗(x∗ − β)− ε. (2.4)

Proof. “⇒” Let x∗ ∈ X∗. If (f+g ◦h)∗(x∗) = +∞, (2.4) holds. Otherwise,
(x∗, (f+g◦h)∗(x∗)) ∈ epi((f+g◦h)∗). From (RC) we have that (x∗, 0, (f+g◦
h)∗(x∗)) ∈ [{0}×epi(g∗)+{(x∗, 0, r) : (x∗, r) ∈ epi(f∗)}+∪λ∈C∗{(a,−λ, r) :
(a, r) ∈ epi((λh)∗)}]∩ (X∗×{0}×R)− (0, 0, ε). Therefore there exist some
λ ∈ C∗, β ∈ X∗ and η ≥ 0 such that

(x∗, 0, (f + g ◦ h)∗(x∗)) = (0, λ, g∗(λ)) + (β, 0, f∗(β))+

(x∗ − β,−λ, (λh)∗(x∗ − β)) + (0, 0, η)− (0, 0, ε),

which implies (f + g ◦ h)∗(x∗) ≥ g∗(λ) + f∗(β) + (λh)∗(x∗ − β)− ε.
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“⇐” Let (x∗, r) ∈ epi(f + g ◦ h)∗. This means that (f + g ◦ h)∗(x∗) ≤ r.
From (2.4) there exists λ ∈ C∗ and β ∈ X∗ such that g∗(λ) + f∗(β) +
(λh)∗(x∗ − β) − ε ≤ r, thus (λh)∗(x∗ − β) ≤ r − g∗(λ) − f∗(β) + ε. But
(x∗, 0, r) = (0, λ, g∗(λ)−ε)+(β, 0, f∗(β))+(x∗−β,−λ, r−g∗(λ)−f∗(β)+ε),
where the first term in the right-hand side belongs to {0}×epi(g∗)−(0, 0, ε),
the second to {(a, 0, r) : (a, r) ∈ epi(f∗)} and the third one to ∪λ∈C∗{(a,−λ, r) :
(a, r) ∈ epi((λh)∗)}. Consequently (x∗, 0, r) ∈ [{0} × epi(g∗) + {(x∗, 0, r) :
(x∗, r) ∈ epi(f∗)} + ∪λ∈C∗{(a,−λ, r) : (a, r) ∈ epi((λh)∗)}] ∩ (X∗ × {0} ×
R)− (0, 0, ε). Therefore, (RC) is fulfilled. �

Remark 4 In the left-hand side of (2.4) one can easily recognize −v(PC
x∗

).

The quantity in the right-hand side of (2.4) is not necessarily −v(DC
x∗

)− ε,
as the supremum in (DC

x∗
) is not shown to be attained at λ and β. Though,

(2.4) implies v(PC
x∗

) ≤ v(DC
x∗

) + ε, which actually means that for (PC
x∗

) and

(DC
x∗

) there is ε-duality gap. Thus (RC) guarantees stable ε-duality gap for

(PC) and (DC) and, moreover, also for (PC) and (DC). Note also that the
pair (λ, β) ∈ C∗ ×X∗ obtained in Theorem 2.5 is an ε-optimal solution of
(DC

x∗
).

For ε = 0 we obtain the following consequence of Theorem 2.5.

Corollary 2.6 The regularity condition∣∣∣∣∣ {(x
∗, 0, r) : (x∗, r) ∈ epi(f + g ◦ h)∗} = [{0} × epi(g∗) + {(x∗, 0, r) : (x∗, r)

∈ epi(f∗)}+
⋃

λ∈C∗
{(a,−λ, r) : (a, r) ∈ epi((λh)∗)}] ∩ (X∗ × {0} × R)

is fulfilled if and only if for any x∗ ∈ X∗ it holds

(f + g ◦ h)∗(x∗) = min
λ∈C∗
β∈X∗

[g∗(λ) + f∗(β) + (λh)∗(x∗ − β)].

Adding to Corollary 2.6 the necessary convexity and topological hypothe-
ses, one can rediscover [4, Theorem 3.8a)] as follows.

Proposition 2.7 Let f : X → R be a proper convex lower semicontinuous
function, g : Y → R a proper convex lower semicontinuous function which
is also C-increasing and h : X → Y • a proper C-convex C-epi-closed vector
function. The regularity condition∣∣∣∣∣ {0} × epi(g∗) + {(x∗, 0, r) : (x∗, r) ∈ epi(f∗)}+

⋃
λ∈C∗
{(a,−λ, r) :

(a, r) ∈ epi((λh)∗)} is closed regarding the subspace X∗ × {0} × R
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is fulfilled if and only if for any x∗ ∈ X∗ one has

(f + g ◦ h)∗(x∗) = min
λ∈C∗
β∈X∗

{g∗(λ) + f∗(β) + (λh)∗(x∗ − β)}.

If we take x∗ = 0 we obtain from Theorem 2.5 the following result.

Corollary 2.8 The regularity condition

(RC
0
)

∣∣∣∣∣∣∣
{(0, 0, r) : (0, r) ∈ epi(f + g ◦ h)∗} ⊆ [{0} × epi(g∗) + {(0, 0, r) :
(0, r) ∈ epi(f∗)}+

⋃
λ∈C∗
{(a,−λ, r) : (a, r) ∈ epi((λh)∗)}]∩

({0} × {0} × R)− (0, 0, ε)

is fulfilled if and only if there exist some λ ∈ C∗ and β ∈ X∗ such that

inf
x∈X

(f(x) + g ◦ h(x)) ≤ −g∗(λ)− f∗(β)− (λh)∗(−β) + ε. (2.5)

Remark 5 The quantity in the right-hand side of (2.5) is not necessarily
v(DC) + ε, as the supremum in (DC) is not shown to be attained at (λ, β),
while in the left-hand side of (2.5) we have v(PC). Though, (2.5) implies
v(PC) ≤ v(DC) + ε, which actually means that for (PC) and (DC) there is

ε-duality gap and thus (RC
0
) is a regularity condition that garantees this

result. Note also that the pair (λ, β) ∈ C∗ ×X∗ obtained in Corollary 2.8
is an ε-optimal solution of (DC). Moreover, λ is an ε-optimal solution of

(DC) and (RC
0
) guarantees ε-duality gap for (PC) and (DC), too.

Remark 6 The intersection with X∗ × {0} × R in the right-hand side of
the inclusion is not necessary in (RC) or (RC) for Theorem 2.1, Theorem
2.5, Corollary 2.4 or Corollary 2.8, respectively, but we need it in Corollary
2.2 and Corollary 2.6 to ensure that the elements in the right-hand side of
the corresponding inclusions have that form.

In order to characterize formulae similar to (2.1) and (2.4), where appear
actually the optimal values of (DC) and (DC), let us consider the following
regularity conditions

(RCI) epi(f + g ◦ h)∗ ⊆ epi inf
λ∈C∗

[g∗(λ) + (f + (λh))∗(·)]− (0, ε)

and

(RCI) epi(f + g ◦ h)∗ ⊆ epi inf
λ∈C∗
β∈X∗

[g∗(λ) + f∗(β) + (λh)∗(· − β)]− (0, ε).
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Theorem 2.9 (RCI) is fulfilled if and only if for any x∗ ∈ X∗ we have

(f + g ◦ h)∗(x∗) ≥ inf
λ∈C∗

[g∗(λ) + (f + (λh))∗(x∗)]− ε. (2.6)

Proof. “⇒” Let x∗ ∈ X∗. If (f+g ◦h)∗(x∗) = +∞, (2.6) holds. Otherwise,
it is clear that (x∗, (f + g ◦ h)∗(x∗)) ∈ epi((f + g ◦ h)∗). From (RCI) we get
(f + g ◦ h)∗(x∗) ≥ infλ∈C∗ [g

∗(λ) + (f + (λh))∗(x∗)]− ε.
“⇐” Let (x∗, r) ∈ epi(f + g ◦ h)∗. This means that (f + g ◦ h)∗(x∗) ≤ r.

From (2.6) we have that infλ∈C∗ [g
∗(λ) + (f + (λh))∗(x∗)] ≤ r + ε. This

means that (x∗, r) ∈ epi infλ∈C∗ [g
∗(λ) + (f + (λh))∗(x∗)]− (0, ε). �

Remark 7 Relation (2.6) means actually v(PC
x∗

) ≤ v(DC
x∗

)+ε, i.e. we have

stable ε-duality gap for (PC) and (DC).

Taking ε = 0 in Theorem 2.9, we get the following obvious statement.

Corollary 2.10 The regularity condition

epi(f + g ◦ h)∗ = epi inf
λ∈C∗

[g∗(λ) + (f + (λh))∗(·)]

is fulfilled if and only if for any x∗ ∈ X∗ we have

(f + g ◦ h)∗(x∗) = inf
λ∈C∗

[g∗(λ) + (f + (λh))∗(x∗)].

Nevertheless, if we take x∗ = 0 in Theorem 2.9 we obtain the following
ε-duality gap statement for (PC) and (DC).

Corollary 2.11 The condition
(RCI0)
(epi(f+g◦h)∗)∩({0}×R) ⊆ (epi inf

λ∈C∗
[g∗(λ)+(f+(λh))∗(·)])∩({0}×R)−(0, ε)

is fulfilled if and only if we have

inf
x∈X

(f(x) + g ◦ h(x)) ≤ sup
λ∈C∗

[−g∗(λ)− (f + (λh))∗(0)] + ε.

Theorem 2.12 (RCI) is fulfilled if and only if for any x∗ ∈ X∗ we have

(f + g ◦ h)∗(x∗) ≥ inf
λ∈C∗
β∈X∗

[g∗(λ) + f∗(β) + (λh)∗(x∗ − β)]− ε. (2.7)
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If we take x∗ = 0 we obtain the following ε-duality gap statement for
(PC) and (DC).

Corollary 2.13 The condition

(RCI
0
) (epi(f + g ◦ h)∗) ∩ ({0} × R) ⊆

(
epi inf

λ∈C∗
β∈X∗

[g∗(λ) + f∗(β)

+(λh)∗(· − β)]
)
∩ ({0} × R)− (0, ε)

is fulfilled if and only if we have

inf
x∈X

(f(x) + g ◦ h(x)) ≤ sup
λ∈C∗
β∈X∗

[−g∗(λ)− f∗(β)− (λh)∗(−β)] + ε.

Remark 8 Taking into consideration Theorem 2.1, Theorem 2.5, Theorem
2.9 and Theorem 2.12 we get the following implications: (RC) ⇒ (RC) ⇒
(RCI) and (RC) ⇒ (RCI) ⇒ (RCI). Using, for instance, [4, Example
3.10], one can construct examples that show that the opposite implications
are not valid in general.

Remark 9 Note also that (RCI) together with the condition{
(x∗, 0, r) : inf

λ∈C∗
[g∗(λ) + (f + (λh))∗(x∗)] ≤ r

}
=

[{0}× epi(g∗) +
⋃
λ∈C∗
{(a,−λ, r) : (a, r) ∈ epi((f + (λh))∗)}]∩ (X∗×{0}×R)

implies (RC) and, analogously, (RCI) together with the condition{
(x∗, 0, r) : inf

λ∈C∗
β∈X∗

[g∗(λ)+f∗(β)+(λh)∗(x∗−β)] ≤ r
}

= (X∗×{0}×R)∩[{0}×

epi(g∗)+{(x∗, 0, r) : (x∗, r) ∈ epi(f∗)}+
⋃
λ∈C∗
{(a,−λ, r) : (a, r) ∈ epi((λh)∗)}]

yields (RC).

Now let us give some statements regarding (ε+ η)-duality gap for (PC)
and its duals, where η > 0.

Theorem 2.14 If (RCI0) is fulfilled then for each η > 0 there exists λη ∈
C∗ such that

v(PC) ≤ −g∗(λη)− (f + (ληh))∗(0) + ε+ η.

11



Proof. From (RCI0) we get v(PC) = −(f + g ◦h)∗(0) ≤ supλ∈C∗ [−g∗(λ)−
(f + (λh))∗(0)] + ε. For each η > 0 there exists λη ∈ C∗ such that
supλ∈C∗ [−g∗(λ) − (f + (λh))∗(0)] ≤ −g∗(λη) − (f + (ληh))∗(0) + η. So,
v(PC) ≤ −g∗(λη)− (f + (ληh))∗(0) + ε+ η. �

Analogously, one can show the following result.

Theorem 2.15 If (RCI
0
) is fulfilled then for each η > 0 there exist λη ∈ C∗

and βη ∈ X∗ such that

v(PC) ≤ −g∗(λη)− f∗(βη)− (ληh)∗(−βη) + ε+ η.

Remark 10 Note that when η goes towards 0 it does not follow that the
sequence (λη)η>0 obtained in Theorem 2.14 converges towards an ε-optimal
solution to (DC) since (RCI0) is equivalent only to ε-duality gap for (PC)
and (DC), with no guarantee that the dual has an ε-optimal solution. Anal-

ogously, since (RCI
0
) is equivalent to ε-duality gap for (PC) and (DC), in

general the sequence (λη, βη)η≥0 obtained in Theorem 2.15 does not converge

towards an ε-optimal solution of (DC), when η converges towards 0.

For the following result we consider some additional topological and con-
vexity hypotheses on the involved functions.

Theorem 2.16 Let the functions f and g be moreover convex lower semi-
continuous and h also proper C-convex C-epi-closed. If

(RCD) inf
λ∈C∗

[g∗(λ) + (f + (λh))∗(·)] is lower semicontinuous,

then for each η > 0 there exists λη ∈ C∗ such that

v(PCx∗) ≤ −g∗(λη)− (f + (ληh))∗(x∗) + η for all x∗ ∈ X∗.

Proof. As (cf. [6, Theorem 3.1]) we have that (f+g◦h)∗ = cl infλ∈C∗ [g
∗(λ)+

(f + (λh))∗(·)], the hypotheses of the theorem imply (f + g ◦ h)∗(x∗) =
infλ∈C∗ [g

∗(λ) + (f + (λh))∗(x∗)] for all x∗ ∈ X∗. Thus for each η > 0 there
exists λη ∈ C∗ such that g∗(λη) + (f + (ληh))∗(x∗) ≤ (f + g ◦ h)∗(x∗) + η.
So, we get v(PCx∗) = −(f + g ◦ h)∗(x∗) ≤ −g∗(λη)− (f + (ληh))∗(x∗) + η. �

Remark 11 Like in the proof of [4, Theorem 4.3], it can be shown that
(f + g ◦ h)∗(x∗) = infλ∈C∗ [g

∗(λ) + (f + (λh))∗(x∗)] is also equivalent to
infλ∈C∗+q[g

∗(λ) + (f + ((λ − q)h))∗(·)] is lower semicontinuous regarding
{0} ×X∗. This condition can be used instead of (RCD) in Theorem 2.16.
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Analogously one can show the following statement.

Theorem 2.17 Let the functions f and g be moreover convex lower semi-
continuous and h also C-convex C-epi-closed. If

(RCD)

∣∣∣∣ inf{g∗(λ) + f∗(β) + (λh)∗(· − β) : λ ∈ C∗, β ∈ X∗} is
lower semicontinuous,

then for each η > 0 there exist λη ∈ C∗ and βη ∈ X∗ such that

v(PCx∗) ≤ −g∗(λη)− f∗(βη)− (ληh)∗(x∗ − βη) + η for all x∗ ∈ X∗.

Remark 12 Note that when η goes towards 0 it does not follow that the
sequence (λη)η>0 obtained in Theorem 2.16 converges towards an optimal
solution to (DC) since (RCD) is equivalent only to the zero duality gap
for (PCx∗) and (DC

x∗) for all x∗ ∈ X∗, with no guarantee that the duals
have optimal solutions. Analogously, since (RCD) is equivalent to the zero

duality gap for (PCx∗) and (DC
x∗) for all x∗ ∈ X∗, in general the sequence

(λη, βη)η≥0 obtained in Theorem 2.17 does not converge towards an optimal

solution of the corresponding (DC
x∗), when η converges towards 0.

3 ε-duality gap statements using subdifferentials

In this section we show that the relations (2.1)–(2.7) can be characterized
by regularity conditions involving ε-subdifferentials, too.

Theorem 3.1 One has

(RCSC) ∂(f + g ◦ h)(x) ⊆
⋂
η>0

⋃
ε1,2≥0

ε1+ε2=ε+η
λ∈C∗∩∂ε2g(h(x))

∂ε1(f + (λh))(x)

for all x ∈ X if and only if (2.6) holds for all x∗ ∈ R(∂(f + g ◦ h)).

Proof. “⇒” Let x∗ ∈ R(∂(f + g ◦ h)). Then exists x ∈ X such that
x∗ ∈ ∂(f + g ◦ h)(x). This means that (f + g ◦ h)(x) + (f + g ◦ h)∗(x∗) =
〈x∗, x〉. Because the condition (RCSC) is satisfied, for each η > 0 there are
some λη ∈ C∗ ∩ ∂ε2g(h(x)) and ε1, ε2 ≥ 0 with ε1 + ε2 = ε + η, such that
(f + (ληh))∗(x∗) + (f + (ληh))(x) ≤ 〈x∗, x〉 + ε1 and g(h(x)) + g∗(λη) ≤
(ληh)(x) + ε2. It follows that g∗(λη) + (f + (ληh))∗(x∗) ≤ 〈x∗, x〉 − (f + g ◦

13



h)(x) + ε + η = (f + g ◦ h)∗(x∗) + ε + η. Consequently, (f + g ◦ h)∗(x∗) ≥
infλ∈C∗ [g

∗(λ) + (f + (λh))∗(x∗)]− ε− η.
Letting η converge towards 0, (2.6) follows.
“⇐” Taking x∗ ∈ ∂(f + g ◦ h)(x) we have (f + g ◦ h)(x) + (f + g ◦

h)∗(x∗) = 〈x∗, x〉. For each η > 0 there is some λη ∈ C∗ such that
infλ∈C∗ [g

∗(λ) + (f + (λh))∗(x∗)] ≥ g∗(λη) + (f + (ληh))∗(x∗) − η. Using
(2.6) we get g∗(λη) + (f + (ληh))∗(x∗) − η − ε ≤ 〈x∗, x〉 − (f + g ◦ h)(x).
This is equivalent to g∗(λη) + g(h(x)) + (f + (ληh))∗(x∗) + (f + (ληh))(x) ≤
〈x∗, x〉 + (ληh)(x) + η + ε. Using the Young-Fenchel inequality, it follows
that there exist ε1, ε2 ≥ 0 with ε1 + ε2 = ε+ η such that g∗(λη) + g(h(x)) ≤
(ληh)(x)+ε2 and (f+(ληh))∗(x∗)+(f+(ληh))(x) ≤ 〈x∗, x〉+ε1. So, we get
that λη ∈ ∂ε2g(h(x)) and x∗ ∈ ∂ε1(f + (λh))(x), which means that (RCSC)
holds. �

The assertion of Theorem 3.1 can be refined as follows.

Corollary 3.2 Let x ∈ X. Then (RCSC) holds for x if and only if for all
x∗ ∈ ∂(f + g ◦ h)(x) one has

−(f+g◦h)(x)+〈x∗, x〉 = (f+g◦h)∗(x∗) ≥ inf
λ∈C∗

[g∗(λ)+(f+(λh))∗(x∗)]−ε.

Remark 13 The inequality in Corollary 3.2 is nothing but v(PCx∗) ≤ v(DC
x∗)+

ε, i.e. ε-duality gap for the pair of problems (PCx∗) and (DC
x∗), when x is an

optimal solution of (PCx∗).

Remark 14 One can analogously show that relation (2.6) implies

∂ν(f + g ◦ h)(x) ⊆
⋂
η>0

⋃
ε1,2≥0

ε1+ε2=ε+η+ν
λ∈C∗∩∂ε2g(h(x))

∂ε1(f + (λh))(x), (3.1)

for all x ∈ X and ν > 0. Viceversa, for ν > 0 (3.1) implies

(f + g ◦ h)∗(x∗) ≥ inf
λ∈C∗

[g∗(λ) + (f + (λh))∗(x∗)]− ε− ν,

for all x∗ ∈ R(∂ν(f + g ◦ h)).

Remark 15 If ε = 0, relation (3.1) becomes

∂ν(f + g ◦ h)(x) ⊆
⋂
η>0

⋃
ε1,2≥0

ε1+ε2=η+ν
λ∈C∗∩∂ε2g(h(x))

∂ε1(f + (λh))(x) (3.2)
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and Remark 14 yields for ν > 0 that, for x ∈ X, (3.2) implies

(f + g ◦ h)∗(x∗) ≥ inf
λ∈C∗

[g∗(λ) + (f + (λh))∗(x∗)]− ν ∀x∗ ∈ ∂ν(f + g ◦ h)(x).

Thus, (3.2) holds for all x ∈ X and all ν > 0 if and only if (f +g ◦h)∗(x∗) =
infλ∈C∗ [g

∗(λ) + (f + (λh))∗(x∗)] for all x∗ ∈ ∩ν>0R(∂ν(f + g ◦h)) = R(∂f +
g ◦ h)). As the set in the right-hand side of (3.2) is always a subset of the
one in the left-hand side, adding the necessary topological and convexity
hypotheses on the involved functions, one can rediscover [3, Proposition
3.2].

In the following result we give another characterization for relation (2.1),
this time by making use of ε-subdifferentials.

Theorem 3.3 One has

(RCLC) ∂(f + g ◦ h)(x) ⊆
⋃

ε1,2≥0
ε1+ε2=ε

λ∈C∗∩∂ε2g(h(x))

∂ε1(f + (λh))(x)

for all x ∈ X if and only if for each x∗ ∈ R(∂(f + g ◦h)) there exists λ ∈ C∗
such that (2.1) holds.

Proof. “⇒” Let x∗ ∈ ∂(f + g ◦ h)(x). This means that (f + g ◦ h)(x) +
(f + g ◦ h)∗(x∗) = 〈x∗, x〉. Because the condition (RCLC) is satisfied there
are some λ ∈ C∗ ∩ ∂ε2g(h(x)) and ε1, ε2 ≥ 0 with ε1 + ε2 = ε, such that
(f+(λh))∗(x∗)+(f+(λh))(x) ≤ 〈x∗, x〉+ε1 and g(h(x))+g∗(λ) ≤ (λh)(x)+
ε2. It follows that g∗(λ) + (f + (λh))∗(x∗) ≤ 〈x∗, x〉 − (f + g ◦ h)(x) + ε =
(f + g ◦ h)∗(x∗) + ε. So, (2.1) holds.

“⇐” Taking x∗ ∈ ∂(f + g ◦ h)(x) we have (f + g ◦ h)(x) + (f + g ◦
h)∗(x∗) = 〈x∗, x〉. Using (2.1) we get that there exists λ ∈ C∗ such that
g∗(λ) + (f + (λh))∗(x∗)− ε ≤ 〈x∗, x〉 − (f + g ◦ h)(x). This is equivalent to
g∗(λ) + g(h(x)) + (f + (λh))∗(x∗) + (f + (λh))(x) ≤ 〈x∗, x〉 + (λh)(x) + ε.
Using the Young-Fenchel inequality, it follows that there exist ε1, ε2 ≥ 0
with ε1 + ε2 = ε such that g∗(λ) + g(h(x)) ≤ (λh)(x) + ε2 and (f +
(λh))∗(x∗) + (f + (λh))(x) ≤ 〈x∗, x〉 + ε1. So, we get that λ ∈ ∂ε2g(h(x))
and x∗ ∈ ∂ε1(f + (λh))(x), which means that (RCLC) holds. �

Remark 16 An observation similar to Remark 14 can be made in the sense
that relation (2.1) implies a formula like (3.1) but without η. Investigating
further, a similar analysis to the one in Remark 15 can be given, too, with [4,
Theorem 3.3 b)] as the rediscovered result.
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The following result characterizes relation (2.7).

Theorem 3.4 One has

(RCSC) ∂(f + g ◦ h)(x) ⊆
⋂
η>0

⋃
ε1,2≥0

ε1+ε2+ε3=ε+η
λ∈C∗∩∂ε3g(h(x))

∂ε1f(x) + ∂ε2(λh)(x)

for all x ∈ X if and only if for all x∗ ∈ R(∂(f + g ◦ h)), (2.7) holds.

The assertion of Theorem 3.4 can be refined as follows.

Corollary 3.5 Let x ∈ X. Then (RCSC) holds for x if and only if for all
x∗ ∈ ∂(f + g ◦ h)(x) one has

−(f+g◦h)(x)+〈x∗, x〉=(f+g◦h)∗(x∗)≥ inf
λ∈C∗
β∈X∗

[g∗(λ)+f∗(β)+(λh)∗(x∗−β)]−ε.

Remark 17 The inequality in Corollary 3.5 is nothing but v(PCx∗) ≤ v(DC
x∗)+

ε, i.e. ε-duality gap for the pair of problems (PCx∗) and (DC
x∗), when x is an

optimal solution of (PCx∗). Consequently, (RCSC) yields ε-duality gap for
the pair of problems (PCx∗) and (DC

x∗), too.

Remark 18 Relation (2.7) implies

∂ν(f + g ◦ h)(x) ⊆
⋂
η>0

⋃
ε1,2≥0

ε1+ε2=ε+η+ν
λ∈C∗∩∂ε2g(h(x))

∂ε1f(x) + ∂ε2(λh)(x), (3.3)

for all x ∈ X and ν > 0. Viceversa, for ν > 0 (3.3) implies

(f + g ◦ h)∗(x∗) ≥ inf
λ∈C∗
β∈X∗

[g∗(λ) + f∗(β) + (λh)∗(x∗ − β)]− ε− ν,

for all x∗ ∈ R(∂ν(f + g ◦ h)).

Remark 19 If ε = 0, relation (3.3) becomes

∂ν(f + g ◦ h)(x) ⊆
⋂
η>0

⋃
ε1,2≥0

ε1+ε2=η+ν
λ∈C∗∩∂ε2g(h(x))

∂ε1f(x) + ∂ε2(λh)(x) (3.4)
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and Remark 18 yields for ν > 0 that, for x ∈ X, (3.4) implies

(f+g◦h)∗(x∗) ≥ inf
λ∈C∗,
β∈X∗

[g∗(λ)+f∗(β)+(λh)∗(x∗−β)]−ν ∀x∗ ∈ R(∂ν(f+g◦h)).

Thus, (3.4) holds for all x ∈ X and for all ν > 0 if and only if (f+g◦h)∗(x∗) =
infλ∈C∗,β∈X∗ [g

∗(λ) + f∗(β) + (λh)∗(x∗− β)] for all x∗ ∈ R(∂(f + g ◦ h)). As
the set in the right-hand side of (3.4) is always a subset of the one in the
left-hand side, adding the necessary topological and convexity hypotheses
on the involved functions, one can rediscover [3, Proposition 3.3].

In the following result we characterize relation (2.4).

Theorem 3.6 One has

(RCLC) ∂(f + g ◦ h)(x) ⊆
⋃

ε1,2≥0
ε1+ε2+ε3=ε+η
λ∈C∗∩∂ε3g(h(x))

∂ε1f(x) + ∂ε2(λh)(x)

for all x ∈ X if and only if for each x∗ ∈ R(∂(f + g ◦ h)) there exist λ ∈ C∗
and β ∈ X∗ such that (2.4) holds.

Remark 20 An observation similar to Remark 18 can be made in the sense
that relation (2.4) implies a formula like (3.3) but without η. Investigating
further, a similar analysis to the one in Remark 19 can be given, too, with [4,
Theorem 3.8b)] as the rediscovered result.

Remark 21 Looking at the conditions (RC) and (RCLC) one can observe
that (RC) is equivalent to the validity of (2.1) for all x∗ ∈ X∗, while (RCLC)
holds if and only if (2.1) is satisfied only for all x∗ ∈ R(∂(f + g ◦ h)). This
yields that (RC) implies (RCLC). Analogously, (RC) means the satisfac-
tion of (2.4) for all x∗ ∈ X∗, while (RCLC) is equivalent to the validity of
(2.4) for all x∗ ∈ R(∂(f + g ◦ h)), consequently, (RC) implies (RCLC).

4 Byproducts: ε-optimality conditions, ε-Farkas
statements and (ε, η)-saddle points

From the results presented in the previous sections one can derive other use-
ful statements concerning ε-optimality conditions, ε-Farkas assertions and
characterizations for (ε, η)-saddle points as follows. We begin with the ε-
optimality conditions.
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Theorem 4.1 (a) Let ε, η ≥ 0. Suppose that the condition (RCI0) is
fulfilled. If x is an ε-optimal solution of the problem (PC), then there
exist ε1, ε2 ≥ 0, and λ ∈ C∗ such that

(i) g∗(λ) + g(h(x)) ≤ (λh)(x) + ε2,

(ii) (f + (λh))∗(0) + (f + (λh))(x) ≤ ε1,
(iii) ε1 + ε2 = ε+ η.

Moreover, λ is an (ε+ η)-optimal solution of the problem (DC).

(b) If there exist ε1, ε2 ≥ 0 and λ ∈ C∗ such that the relations (i) − (iii)
hold for x ∈ X and λ ∈ C∗ then x is an (ε + η)-optimal solution of
the problem (PC). Moreover, λ is an (ε + η)-optimal solution of the
problem (DC).

Proof. (a) As x is an ε-optimal solution of the problem (PC) we have that
0 ∈ ∂ε(f + g ◦ h)(x). By relation (3.1) written for x∗ = 0, i.e.

0 ∈ ∂ε(f + g ◦ h)(x)⇒ 0 ∈
⋂
ν>0

⋃
ε1,2≥0

ε1+ε2=ε+ν
λ∈C∗∩∂ε2g(h(x))

∂ε1(f + (λh))(x),

there exist ε1, ε2 ≥ 0 and λ ∈ C∗ such that ε1 + ε2 = ε + η, λ ∈ C∗ ∩
∂ε2g(h(x)) and 0 ∈ ∂ε1(f + (λh))(x). As λ ∈ ∂ε2g(h(x)), the assertion (i)
arises directly. From 0 ∈ ∂ε1(f + (λh))(x) the assertion (ii) can be deduced
from the definition of ε-subdifferential. Further, from relations (i)− (ii) and
taking into consideration the relation (iii), we get that

f(x) + g(h(x)) ≤ −g∗(λ)− (f + (λh))∗(0) + ε+ η. (4.1)

We know that weak duality always holds, i.e. v(DC) ≤ v(PC) and, since
v(PC) ≤ f(x)+(g ◦h)(x), one gets v(DC) ≤ −g∗(λ)−(f+(λh))∗(0)+ε+η,
which means that λ is an (ε+ η)-optimal solution of the problem (DC).

(b) By summing the relations (i) and (ii) and taking into consideration
the relation (iii), we get that

g∗(λ) + g(h(x))− (λh)(x) + (f + (λh))∗(0) + (f + (λh))(x) ≤ ε1 + ε2 = ε+ η.
(4.2)

By (1.1) we get (f+g◦h)∗(0)+(f+g◦h)(x) ≤ ε+η, thus 0 ∈ ∂ε+η(f+g◦h)(x),
i.e. x is an (ε+η)-optimal solution of the problem (PC). On the other hand,
(4.2) implies (4.1), so λ is an (ε+ η)-optimal solution of (DC). �

The similar statement for (DC) can be proven analogously.
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Theorem 4.2 (a) Let ε, η ≥ 0. Suppose that the condition (RCI
0
) is

fulfilled. If x is an ε-optimal solution of the problem (PC), then there
exist ε1, ε2, ε3 ≥ 0, λ ∈ C∗ and β ∈ X∗ such that

(i) g∗(λ) + g(h(x)) ≤ (λh)(x) + ε3,

(ii) f∗(β) + f(x) ≤
〈
β, x

〉
+ ε1,

(iii) (λh)∗(−β) + (λh)(x) ≤
〈
−β, x

〉
+ ε2,

(iv) ε1 + ε2 + ε3 = ε+ η.

Moreover, (λ, β) is an (ε+ η)-optimal solution of the problem (DC).

(b) If there exist ε1, ε2, ε3 ≥ 0, λ ∈ C∗ and β ∈ X∗ such that the relations
(i) − (iv) hold for x ∈ X, λ ∈ C∗ and β ∈ X∗ then x is an (ε + η)-
optimal solution of the problem (PC). Moreover, (λ, β) is an (ε+ η)-
optimal solution of the problem (DC).

Remark 22 Similar optimality conditions to the ones in Theorem 4.2 were
obtained also in [12, Theorem 4] but under convexity and topological hy-
potheses, with some other regularity conditions and without involving η.
These can be rediscovered, too, as consequences of our results by using

in Theorem 4.2 the regularity condition (RC
0
). Note also that employ-

ing (RC0) as regularity condition in Theorem 4.1 one obtains similar ε-
optimality conditions, but without involving η, which can be found in the
literature under additional convexity and topological hypotheses.

In the following we give ε-Farkas-type results for (PC) and its duals, too.

Theorem 4.3 (a) Suppose that (RC0) holds. If f(x)+(g◦h)(x) ≥ ε/2 for
all x ∈ X then there exists λ ∈ C∗ such that g∗(λ)+(f+λh)∗(0) ≤ ε/2.

(b) If there exists λ ∈ C∗ such that g∗(λ) + (f + λh)∗(0) ≤ −ε/2, then
f(x) + (g ◦ h)(x) ≥ ε/2 for all x ∈ X.

Proof. (a) From (RC0) we have that there exists λ ∈ C∗ fulfilling infx∈X [f(x)+
(g ◦h)(x)] ≤ −g∗(λ)− (f +λh)∗(0) +ε. Then −g∗(λ)− (f +λh)∗(0) ≥ −ε/2
and the conclusion follows.

(b) As we can find some λ ∈ C∗ fulfilling −g∗(λ) − (f + λh)∗(0) ≥ ε/2,
it follows from weak duality that f(x) + (g ◦ h)(x) ≥ ε/2. �

Analogously, one can prove the following statements for (PC) and (DC),
too.
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Theorem 4.4 (a) Suppose that (RC
0
) holds. If f(x) + (g ◦ h)(x) ≥ ε/2

for all x ∈ X then there exist λ ∈ C∗ and β ∈ X∗ such that f∗(β) +
g∗(λ) + (λh)∗(−β) ≤ ε/2.

(b) If there exist λ ∈ C∗ and β ∈ X∗ such that f∗(β)+g∗(λ)+(λh)∗(−β) ≤
−ε/2, then f(x) + (g ◦ h)(x) ≥ ε/2 for all x ∈ X.

Remark 23 Taking ε = 0 and adding convexity and topological assump-
tions, one can rediscover, via Theorem 4.3 and Theorem 4.4, the Farkas-type
results for composed convex functions from [11] (see also [13]).

We can give ε-Farkas type statements for the other regularity conditions,
too.

Theorem 4.5 (a) Suppose (RCI0) holds. If f(x) + (g ◦ h)(x) ≥ ε/2 for
all x ∈ X then infλ∈C∗ [g

∗(λ) + (f + λh)∗(0)] ≤ ε/2,

(b) If infλ∈C∗ [g
∗(λ) + (f + λh)∗(0)] ≤ −ε/2, then f(x) + (g ◦ h)(x) ≥ ε/2

for all x ∈ X.

Theorem 4.6 (a) Suppose (RCI
0
) holds. If f(x) + (g ◦ h)(x) ≥ ε/2 for

all x ∈ X then inf{f∗(β)+g∗(λ)+(λh)∗(−β) : λ ∈ C∗, β ∈ X∗} ≤ ε/2,

(b) If inf{f∗(β) + g∗(λ) + (λh)∗(−β) : λ ∈ C∗, β ∈ X∗} ≤ −ε/2, then
f(x) + (g ◦ h)(x) ≥ ε/2 for all x ∈ X.

Nevertheless, one can extend the investigations from this paper also to-
wards generalized saddle points.

The Lagrangian function assigned to (PC)− (DC) is LC : X × Y ∗ → R,
defined by (cf. [5])

LC(x, λ) =

{
f(x) + (λh)(x)− g∗(λ), if λ ∈ C∗,
−∞, otherwise.

Let η ≥ 0. We say that (x, λ) ∈ X × Y ∗ is an (η, ε)-saddle point of the
Lagrangian LC if

LC(x, λ)− η ≤ LC(x, λ) ≤ LC(x, λ) + ε for all (x, λ) ∈ X × Y ∗.

Remark 24 The notion of a ε-saddle point of a function with two variables,
where ε ≥ 0 was already considered in the literature, see for instance [18,19].
However, we are not aware of any work dealing with (η, ε)-saddle points as
introduced above.
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Slightly weakening the properness hypothesis of g and adding to it con-
vexity and topological assumptions, one obtains the following statement
connecting the (η, ε)-saddle points of LC with the (ε + η)-duality gap for
the problems (PC) and (DC), and the existence of some (ε + η)-optimal
solutions to them.

Theorem 4.7 Assume that g is a convex and lower semicontinuous func-
tion fulfilling g(y) > −∞ for all y ∈ Y . If (x, λ) is an (η, ε)-saddle point
of LC then x ∈ X is an (ε + η)-optimal solution to (PC), λ ∈ C∗ is an
(ε+η)-optimal solution to (DC) and there is (ε+η)-duality gap for the pair
of problems (PC) and (DC), i.e. v(PC) ≤ (DC) + ε+ η.

Proof. If (x, λ) is a (η, ε)-saddle point of LC , we get that

f(x) + (λh)(x)− g∗(λ)− η ≤ f(x) + (λh)(x)− g∗(λ) ≤

f(x) + (λh)(x)− g∗(λ) + ε for all (x, λ) ∈ X × Y • (4.3)

If λ /∈ C∗, the second and the third terms from (4.3) are −∞, while the first
one takes also real values, so λ ∈ C∗. The first inequality from (4.3) yields
that supλ∈Y • [(λh)(x)− g∗(λ)]− η ≤ (λh)(x)− g∗(λ), which is equivalent to
g∗∗(h(x))− η ≤ (λh)(x)− g∗(λ). But g∗∗(x) = g(x), so we get

g(h(x))− η ≤ (λh)(x)− g∗(λ). (4.4)

The second inequality from (4.3) yields, via Fenchel-Young inequality, that
f(x) + (λh)(x)− g∗(λ) ≤ f(x) + g(h(x)) + ε, for all x ∈ X, thus

f(x) + (λh)(x)− g∗(λ) ≤ inf
x∈X

[f(x) + g(h(x))] + ε = v(PC) + ε.

From the latter inequality and using (4.4) we get f(x) + g(h(x)) − η ≤
v(PC) + ε, which means that x is an (ε+ η)-optimal solution to (PC).

On the other hand, the second inequality from (4.3) can be rewritten as

f(x) + (λh)(x)− g∗(λ) ≤ −(f + (λh))∗(0)− g∗(λ) + ε ≤ v(DC) + ε.

So, v(PC) ≤ (f + g ◦ h)(x) ≤ (f + (λh))(x) − g∗(λ) + η ≤ v(DC) + ε + η,
which yields that there is (ε+ η)-duality gap for the pair of problems (PC)
and (DC).

We know that weak duality always holds we get that v(DC) − η ≤
v(PC)− η ≤ −(f + (λh))∗(0)− g∗(λ) + ε, which yields that λ is an (ε+ η)-
optimal solution to (DC). �
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An analogous result with Theorem 4.7 can be formulated for the pair of
problems (PC) and (DC) with the corresponding Lagrangian function given
by (cf. [5]) LC : X ×X∗ × Y ∗ → R

LC(x, β, λ) =

{
〈β, x〉+ (λh)(x)− f∗(β)− g∗(λ), if λ ∈ C∗
−∞, otherwise.

Theorem 4.8 Assume that g is a convex and lower semicontinuous func-
tion fulfilling g(y) > −∞ for all y ∈ Y . If (x, λ, β) is an (η, ε)-saddle point
of LC then x ∈ X is an (ε+ η)-optimal solution to (PC), (λ, β) ∈ C∗ ∈ X∗
is an (ε + η)-optimal solution to (DC) and there is (ε + η)-duality gap for
the pair of problems (PC) and (DC), i.e. v(PC) ≤ (DC) + ε+ η.

Remark 25 One can formulate also reverse statements for Theorem 4.7
and Theorem 4.8, which together with these collapse in case ε = η = 0
to [5, Theorem 3.4.3] and [5, Theorem 3.4.7], respectively. Moreover, it may
be worth trying to see if the regularity conditions we introduced in this
paper guarantee the existence of some (η, ε)-saddle points of the considered
Lagrangians, in the sense of [5, Corollary 3.4.4] and [5, Corollary 3.4.8],
respectively.

Remark 26 The results we gave for composed functions can be particu-
larized for combinations of functions that appear often in both theoretical
and practical problems. One of the most important such particular cases is
obtained when one takes f(x) = 0 for all x ∈ X, when different character-
izations and statements involving the function g ◦ h and the optimization
problem of minimizing it can be derived. Another important combination of
functions often met in optimization problems is f + g ◦A, where A : X → Y
is a linear continuous mapping, and it can be recovered as a special instance
of f + g ◦ h by taking h(x) = Ax for all x ∈ X. In both these special
cases, due to the fact that either f and, respectively, h, are taken to be
continuous functions, the duals and the conditions obtained when f and h
appear separated coincide with their counterparts where they are taken to-
gether. Consequently, in each of these cases we obtain only a dual problem
and a single set of results. An interesting special case of the problem of
minimizing a composition of functions as investigated in this paper is the
general constrained minimization problem (see, for instance, [8]). Conse-
quently, one can use the results delivered in this paper for recovering and
extending statements from papers dealing with this problem, such as [8–10].

22



References

[1] Y. Anbo, Nonstandard arguments and the characterization of indepen-
dence in generic structures, RIMS Kôkyûroku 1646, 4–17, 2009.
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