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Abstract. We present a new lifting approach for strengthening arbitrary
clique tree inequalities that are known to be facet defining for the symmet-
ric traveling salesman problem in order to get stronger valid inequalities for
the symmetric quadratic traveling salesman problem (SQTSP). Applying this
new approach to the subtour elimination constraints (SEC) leads to two new
classes of facet defining inequalities of SQTSP. For the special case of the SEC
with two nodes we derive all known conflicting edges inequalities for SQTSP.
Furthermore we extend the presented approach to the asymmetric quadratic
traveling salesman problem (AQTSP).

Keywords: traveling salesman problem, quadratic traveling salesman problem, polyhe-
dral combinatorics
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1 Introduction

The symmetric traveling salesman problem (STSP) asks for a cost-minimal tour in a
complete edge-weighted undirected graph. In contrast to this, in the symmetric quadratic
traveling salesman problem (SQTSP) the costs are not associated to the edges but to each
three nodes that are traversed in succession. This leads to a minimization problem with
a quadratic objective function. The problem was introduced by Jäger and Molitor [13] in
connection with an application in biology and its polyhedral structure was studied in [6].
Special cases are the angular-metric traveling salesman problem [1] used in the design of
robot paths and the traveling salesman problem with reload costs [2] used in the planning
of transport and telecommunication systems. SQTSP can be stated as follows.

We consider complete undirected 2-graphs G = (V,E) with node set V, |V | = n, and set
of 2-edges E = V 〈3〉 := {〈u, v, w〉 = 〈w, v, u〉 : u, v, w ∈ V, |{u, v, w}| = 3} with associated
set of edges V {2} := {{u, v} : u, v ∈ V, u 6= v}. We often simply write ijk instead of 〈i, j, k〉
and ij instead of {i, j}. A 2-cycle K of length k > 2 in a 2-graph G is a set of k 2-edges
K = {v1v2v3, v2v3v4, . . . , vk−1vkv1, vkv1v2} with pairwise distinct vi. The 2-edges ijk ∈ K
are associated with a set of edges K{2} := {ij ∈ V {2} : ∃ ijk ∈ K}. A 2-cycle of length n
is called a tour and the set of all tours is denoted by Kn = {K : K 2-cycle in G, |K| = n}.

∗Department of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany.
{anja,frank}.fischer@mathematik.tu-chemnitz.de

1



The STSP is often modeled as∑
ij∈V {2}

xij = 2, i ∈ V, (1)

∑
ij∈S{2}

xij ≤ |S| − 1, S ⊂ V, 2 ≤ |S| ≤ n− 2, (2)

xij ∈ {0, 1}, ij ∈ V {2}, (3)

see e. g. [3], and the considered polytope is

PSTSPn := conv
{
x ∈ {0, 1}V {2} : (1), (2)

}
.

For the SQTSP we additionally introduce the binary variables yijk ∈ {0, 1}, ijk ∈ V 〈3〉,
and have the equalities

xij =
∑

k : ijk∈V 〈3〉
yijk =

∑
k : kij∈V 〈3〉

ykij , ij ∈ V {2}. (4)

The corresponding polytope reads

PSQTSPn
:= conv

{
(x, y) ∈ {0, 1}V {2}∪V 〈3〉 : (1), (2), (4)

}
.

There are two canonical types of 2-edges for strengthening inequalities of STSP in order
to get stronger inequalities for SQTSP. The types of 2-edges are described in detail below.
While the approach presented in [6] only adds 2-edges of one type we develop a lifting
strategy that allows to use both types.

We shortly repeat the approach in [6]. It is based on the observation that a 2-edge ikj
almost acts as the edge ij in the sense that the two nodes i, j are close in a tour. The
approach reads as follows. Let

∑
ij∈V {2} aijxij ≤ b be a valid inequality of STSP with

coefficients aij ≥ 0, ij ∈ V {2}. Let Va = {i ∈ V : ∃ ij ∈ V {2} with aij > 0}. Then in the
case |Va| < n

2 ∑
ij∈V {2}

aijxij +
∑

ikj∈V 〈3〉 :
aik=akj=0

aijyikj ≤ b (5)

and if n
2 ≤ |Va| < n and t̄ ∈ V \ Va∑

ij∈V {2}
aijxij +

∑
ikj∈V 〈3〉 :

aik=akj=0,k 6=t̄

aijyikj ≤ b (6)

are valid inequalities of PSQTSPn
. Applying the strengthening to the simplest subtour

elimination constraints on two nodes, i. e. the upper bound constraints for the x-variables,
xij ≤ 1, ij ∈ V {2}, leads to the simplest of the so called conflicting edges inequalities
xij +

∑
ikj∈V 〈3〉,k∈S1

yikj ≤ 1, ij ∈ V {2}, S1 = V \ {i, j}, that are valid for PSQTSPn
, n ≥ 5,

by (5) and that define facets of PSQTSPn
, n ≥ 6 [6]. Besides these constraints there

are further conflicting edges inequalities [6] that also represent a strengthening of xij ≤
1, ij ∈ V {2}, and are facet defining for PSQTSPn

, n ≥ 6, that cannot be obtained by this
strengthening approach. These read as follows:

xij +
∑

ikj∈V 〈3〉 : k∈S1

yikj +
∑

kil∈V 〈3〉 : k,l∈S2

ykil ≤ 1, (7)
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Figure 1: Visualization of inequalities (7) on the left and of (8) on the right side. At most
one of the edges (straight line) and 2-edges (curved lines) can be contained in
a tour. For (7), left figure, the set S2 may contain further nodes that lead to
further 2-edges that can be added to the inequality. But for (8) |S2| = 2 is
essential for preserving feasibility. In both cases S1 might be enlarged.

for i, j ∈ V, i 6= j, S1, S2 ∈ V \ {i, j}, V = {i, j} ∪ S1 ∪ S2, S1 ∩ S2 = ∅, S1 6= ∅, |S2| ≥ 3 and

xij +
∑

ikj∈V 〈3〉 : k∈S1

yikj + ys1is2 + ys1js2 ≤ 1, (8)

for ij ∈ V {2}, S2 = {s1, s2}, |{i, j, s1, s2}| = 4, S1 = V \ {i, j, s1, s2}. Apart from 2-edges
ikj that act as the edge ij inequalities (7) and (8) contain variables of 2-edges with middle
node i and partially j, for example 2-edges kil ∈ V 〈3〉, k, l ∈ S2 in (7). Because S1∩S2 = ∅
and S1 ∪ S2 = V \ {i, j} the inequalities remain valid [6]. Note, since |S2| = 2 in (8) the
presence of both 2-edges s1is2, s1js2 would imply a subtour if n ≥ 5. If S2 contains more
than two nodes, for example S2 = {t1, t2, t3} the 2-edges t1it2, t2jt3 may be contained in
a tour at the same time. Figure 1 shows a visualization of (7) and (8).

The aim of this paper is to improve the understanding of complex inequality classes
of PSQTSPn

and of linearizations of combinatorial optimization problems with quadratic
objective function in general. For this we develop a strengthening approach for the large
class of clique tree inequalities of PSTSPn [11] that extends the approach in [6]. The lifted
variant of

∑
ij∈V {2} aijxij ≤ b, a ≥ 0, may contain 2-edges ikj, i, j ∈ Va, k ∈ S̃1, as well as

kil, i ∈ Ṽa ⊂ Va, k, l ∈ S̃2 with S1 ⊂ S̃1, S2 ⊂ S̃2, Va∪̇S1∪̇S2 = V , i. e. the lifted inequality
has the form ∑

ij∈V {2}
aijxij +

∑
ikj∈V 〈3〉 :

k∈S̃1,aik=akj=0

aijyikj +
∑

kil∈V 〈3〉 :
i∈Ṽa,k,l∈S̃2,
aki=ail=0

ykil ≤ b. (9)

In order to obtain a valid inequality the sets S̃1, S̃2, Ṽa have to be chosen appropriately.
Indeed, the new approach allows to lift arbitrary clique tree inequalities [11] that are

a very general class and include many other well known inequalities like, e. g., subtour
elimination constraints [3], 2-matching inequalities [4] and comb inequalities [9, 10]. The
proof of the conditions for feasibility is somewhat tricky and highly depends on the struc-
ture of the clique tree inequalities (see Section 2), but the new lifting automatically
yields important facet-defining inequalities. In the special case of the bound constraints
xı̂̂ ≤ 1, ı̂̂ ∈ V {2}, we exactly obtain the conflicting edges inequalities (7) and (8) setting
Va = {ı̂, ̂}, Ṽa = {ı̂}, S1 = S̃1, S2 = S̃2 resp. Va = Ṽa = {ı̂, ̂}, S1 = S̃1, S2 = S̃2 in (9).

Finally in Section 4, we show how to extend the presented ideas to the asymmetric
equivalents of the clique tree inequalities [7] for the asymmetric traveling salesman problem
[8]. These inequalities are known to be facet defining for the ATSP, see [7]. We will
extend our lifting approach to inequalities that do not have a symmetric counterpart for
the SQTSP [6].
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Figure 2: Visualization of the structure of a clique tree C with handles Hi, i = 1, . . . , 5,
and 17 teeth. Each clique is indicated by an ellipse and a star ∗ symbolizes
that each tooth has to contain at least one node not contained in any handle by
Definition 1.

2 Clique tree inequalities

A clique tree inequality corresponding to a SQTSP on n nodes is defined as follows.

Definition 1 (see Definition 2.16 in [11]) A clique tree C = (VC , EC) with node set
VC and set of edges EC is a connected graph whose maximal cliques fulfill the following.
The cliques (a clique D is identified by its nodes, its edges are D{2}) can be partitioned
into families of handles H and teeth T with ∀X ∈ H∪T : X ⊆ VC , and ∀H,H ′ ∈ H, H 6=
H ′ : H ∩H ′ = ∅ and ∀T, T ′ ∈ T, T 6= T ′ : T ∩ T ′ = ∅. So there holds H{2} ⊂ EC , H ∈ H,
and T {2} ⊂ EC , T ∈ T. Each of the teeth fulfills 2 ≤ |T | ≤ n − 2, |T \ (

⋃
H∈HH)| ≥

1, T ∈ T, and each handle H intersects with an odd number greater one of teeth, i. e.,
|{T ∈ T : H ∩ T 6= ∅}| is greater than or equal to three and odd for H ∈ H. If a handle
H ∈ H and a tooth T ∈ T fulfill H ∩ T 6= ∅ then deleting all nodes in H ∩ T and all
incident edges enlarges the number of components of graph C.

Figure 2 shows the structure of an example clique tree. For a clique tree C with handles
H and teeth T the corresponding clique tree inequality [11] reads∑

Z∈H∪T

∑
kl∈Z{2}

xkl ≤
∑
H∈H

|H|+
∑
T∈T

(|T | − t(T ))− |T|+1
2 =: s(C), (10)

where t(T ) = |{H ∈ H : H ∩ T 6= ∅}|, T ∈ T, and is facet defining for PSTSPn [11]. The
right-hand side of (10) is often called size of C and denoted by s(C). Note, the coefficients
of all edges kl with k, l ∈ H ∩ T, k 6= l, for some H ∈ H, T ∈ T are two because such an
edge is counted once for the handle H and once for the tooth T .

3 The new lifting approach

In this section we will extend the lifting approach (6) for the clique tree inequalities. Let
(a1)Tx + (a2)T y ≤ b, a1 ≥ 0, a2 ≥ 0, be an appropriately lifted clique tree inequality. It
is called a1-a2-dominated if for any K ∈ Kn there exists a dominating tour K̄ ∈ Kn with
(a1)TxK{2} + (a2)T yK ≤ (a1)TxK̄{2} + (a2)T yK̄ = (a1)TxK̄{2} ≤ b, i. e. the coefficients of
all 2-edges in K̄ have to be zero. Here xK̄{2} , yK̄ denote the incidence vectors of all edges
V {2} resp. all 2-edges V 〈3〉 of the 2-cycle K̄. For proving that a lifted clique tree inequality
(a1)Tx + (a2)T y ≤ b is a1-a2-dominated we study the structure of the intersection of an
arbitrary tour in G and a clique tree C. Figure 3 shows an example for the intersection of
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Figure 3: Intersection of the edges K{2} of a tour K ∈ Kn and the edges EC of a clique tree
C = (VC , EC) with |H| = 1, |T| = 3 and |VC | = n−3 and V = VC∪S1∪S2, |S1| =
1, |S2| = 2. All edges in the intersection are highlighted in bold.

the edges K{2} of a tour K ∈ Kn and of the edges EC of a clique tree C = (VC , EC) with
|H| = 1, |T| = 3 and |VC | = n− 3.

In constructing dominating tours we will use the following notations. A path P =
u1 . . . uk is a sequence of pairwise different nodes u1, . . . , uk, k ∈ N, so that uiui+1, i =
1, . . . , k − 1, are edges. The subpath ui . . . uj , 1 ≤ i ≤ j ≤ k, of P is denoted by uiPuj .
Note that the subpath may contain only one node if i = j. If we want to emphasize that
u1 is an end node of a path P we simply write P = Pu1 resp. P = u1P . For two paths
P = Pu and Q = uQ their concatenation is the path PQ = PuQ. The set of nodes of a
path P is denoted by V (P ), the set of edges by E(P ).

Let G = (V,E) be a complete undirected 2-graph with |V | = n. If |VC | < n holds for a
clique tree C = (VC , EC) ⊂ G it is easy to see that the intersection of the edges K{2} of
a tour K ∈ Kn and EC leads to a set of edges that form paths. Furthermore we consider
all isolated nodes v ∈ VC \ {w ∈ VC : ∃wz ∈ K{2} ∩ EC} as paths.

For proving that a lifted inequality (a1)Tx + (a2)T y ≤ b, a1 ≥ 0, a2 ≥ 0, is a1-a2-
dominated we have to show that for each tour K ∈ Kn there exists a dominating tour
K̄ ∈ Kn such that the left-hand side calculated for K̄ is at least as high as the left-hand
side for K and a2

ijk = 0 for all ijk ∈ K̄. We do this by considering not only the edges

K{2} ∩ EC but also all 2-edges ijk ∈ K with nonzero coefficients. In our approach such
a coefficient might be nonzero because j ∈ S̃1, ik ∈ EC or j ∈ ṼC ⊂ VC , i, k ∈ S̃2, see
(9). For constructing K̄ we start with a set of paths, more precisely a set of edges of

paths. Let K
{2}
E denote the set of all edges corresponding to a tour K. Then we have

(K{2} ∩ EC) ⊂ K
{2}
E . If a tour K contains a 2-edge ijk ∈ K with coefficient a2

ijk > 0

and j ∈ S̃1, ik ∈ EC according to (9) we add the edge ik to K
{2}
E . If set S2 is nonempty

the set K
{2}
E corresponds to a set of paths, see the proof of the lifting approach in [6].

Indeed, K
{2}
E cannot correspond to a tour because it does not visit the nodes in S2 and its

edges cannot form subtours because K ∈ Kn. The situation is a bit more complicated for
2-edges ijk ∈ K with a2

ijk > 0 and i, k ∈ S̃2, j ∈ Ṽa ⊂ VC according to (9). Then we want
to preserve the information that node j has this property and we will call such a node a
blocked node. This leads to the definition of path systems containing blocked nodes.

Definition 2 A path system in C = (VC , EC) is a pair (P, B) of a set of paths P and a
set of blocked nodes B so that

(i) ∀P,Q ∈ P, P 6= Q : V (P ) ∩ V (Q) = ∅,

(ii) ∀P ∈ P : V (P ) ∩B = ∅,
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Figure 4: Visualization of a possible path system (P, B) for the example in Figure 3.
The set of paths P comprises three paths of length three (straight lines) and B
contains exactly one blocked node in handle H that is highlighted.

(iii)
⋃

P∈P V (P ) ∪B = VC .

Note that P may contain paths that contain only one node. The weight of a path system
is

ω(P, B) = |B|+
∑
P∈P

(|E(P ) ∩ E(H)|+ |E(P ) ∩ E(T)|),

where E(H) =
⋃

H∈H E(H), E(T) =
⋃

T∈T E(T ). We denote with E(P) := {v ∈ VC \
B : ∃P = vP ∈ P} the set of all end nodes of paths in P.

Figure 4 shows the path system for the example in Figure 3 with one blocked node in H.
The weight of a path system (P, B) is defined so that the left-hand side of a lifted clique
tree inequality (9) computed for a tour K ∈ Kn equals ω(P, B) with P, B as follows. The
edges of the paths are obtained by (K{2} ∩ EC) ∪ {ik ∈ EC : j ∈ S̃1, a

2
ijk > 0, ijk ∈ K}

and B = {j ∈ VC : i, k ∈ S̃2, a
2
ijk > 0, ijk ∈ K}. By an appropriate choice of S̃1, S̃2, Ṽa we

will ensure that this construction leads indeed to a path system associated with K.
Instead of working directly with the inequalities or the tours, we look at the correspond-

ing path systems and study their properties. We show that there exists a path system
(P′, B′), B′ = ∅ for each path system (P, B) with (T \

⋃
H∈HH) * B for all T ∈ T and

the path systems fulfill ω(P, B) ≤ ω(P′, B′). This is achieved in two main steps. First we
simplify the path system and get (P̂, B̂), ω(P, B) ≤ ω(P̂, B̂). For this we modify (P, B)
such that no tooth contains a blocked node, i. e. B̂ ∩

⋃
T∈T T = ∅. Since the nonempty

intersections of handles H ∈ H and teeth T ∈ T are very important for the next step
we force that the paths P̂ have the following simple structure. For each handle H ∈ H

and tooth T ∈ T with H ∩ T 6= ∅ there is exactly one path P ∈ P̂ that has a nonempty
intersection with H ∩ T and this intersection comprises exactly one (connected) subpath
of P . If after this simplification there exists a handle H ∈ H with B̂ ∩H 6= ∅ we reorder
the paths in such a way that after reordering one of the paths has an end node in H and
we can enlarge this path by connecting it to a path of all nodes B̂∩H 6= ∅ and delete these
nodes from B resp. B̂. If we end up in a path system (P′, B′), B′ = ∅, ω(P, B) ≤ ω(P′, B′)
we show that we indeed can construct a dominating tour K̄ with the desired properties.
More precisely, K̄ contains only 2-edges whose coefficients are zero in the lifted inequality.
So the left-hand side of the lifted inequality as well as of the original inequality calculated
for K̄ is at least as big as the left-hand side calculated for K.

First we prove that a blocked node v ∈
⋃

T∈T T can easily be eliminated without reducing
the weight.
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Figure 5: Visualization of a path system (P′, B′), B′ = ∅ that fulfills ω(P′, B′) = ω(P, B)
for (P, B) the path system in Figure 4. One of the paths in Figure 4 was reordered
and we connected the blocked node to it.

Lemma 3 Let (P, B) be a path system on a clique tree C = (VC , EC) with handles H and
teeth T. If for each tooth T ∈ T it holds (T \

⋃
H∈HH) 6⊂ B then there exists a path system

(P′, B′) with ω(P′, B′) ≥ ω(P, B) and

B′ ∩ (
⋃
T∈T

T ) = ∅. (11)

Proof. Let (P, B) be a path system with minimal number of blocked nodes |B∩(
⋃

T∈T T )| >
0 fulfilling (T \

⋃
H∈HH) 6⊂ B for each tooth T ∈ T. Assume there exists a tooth

T ∈ T with B ∩ T = {v1, . . . , vm} 6= ∅. By assumption on the path system there exists
a node w ∈ (T \

⋃
H∈HH) with w /∈ B. Let P ∈ P be the path with w ∈ V (P ). If

P = Pw, i. e. w is an end node, we enlarge P to a path P ′ := Pwv1v2 . . . vm and set P′ :=
(P \ {P})∪{P ′}, B′ := B \ {v1, . . . , vm}. Otherwise, if P = pPwzPq, w 6= z, we enlarge P
to a path P ′ := pPwv1v2 . . . vmzPq and set P′ := (P \ {P})∪{P ′}, B′ := B \ {v1, . . . , vm}.
In both cases (P′, B′) fulfills ω(P′, B′) ≥ ω(P, B) because the number of edges in T that
are counted in ω is enlarged by at least m and the number of blocked nodes is reduced by
exactly m. �

As can be seen in Figure 4 it might sometimes be impossible to directly eliminate a
blocked node v ∈ (H \

⋃
T∈T T ) ∩B,H ∈ H, by connecting it to a path with an end node

in H. Here a reordering of the paths of other handles and teeth might be needed, see
Figure 5. If each handle H ∈ H intersects with a T ∈ T, T ∩ (

⋃
H′∈H,H′ 6=H H ′) = ∅ this

reordering can be found relatively simple, see Figure 5. But if no such T exists for H ∈ H,
see H4 in Figure 2, it is not obvious how to restructure the path system. In order to reduce
the number of cases that have to be considered for such path systems resp. blocked nodes
we simplify the structure of the path system.

Lemma 4 Let (P, B) be a path system on a clique tree C = (VC , EC) with handles H, teeth
T and

⋃
T∈T T ∩ B = ∅. Then there exists a path system (P′, B) with ω(P′, B) ≥ ω(P, B)

that fulfills the property

a) H-T-loop-free: for all H ∈ H, T ∈ T, H∩T 6= ∅ there exists no P = Pxx′Py′yP ∈ P′

with x, y ∈ H ∩ T and V (x′Py′) ∩ (H ∩ T ) = ∅,

and E(P) ⊆ E(P′).

Proof. Let (P, B) be a path system with minimal number of H-T-loops. In this proof the
set of blocked nodes remains unchanged. Let P ∈ P be a path with P = pPxx′Py′yPq ∈ P

such that there exists H ∈ H, T ∈ T with x, y ∈ H ∩ T, x′, y′ ∈ (H ∪ T ) \ (H ∩ T )

7



x′

y′
x
y

x

y

x′

y′

Figure 6: Visualization of an H-T-loop and of the reordered path system according to the
proof of Lemma 4. In all figures straight lines correspond to edges. We use solid
waved lines if there is a (possibly empty) path between the nodes and dotted
waved lines for unspecified continuations of paths. All end nodes are highlighted.

and V (x′Py′) ∩ H ∩ T = ∅ (see Fig. 6). Then we can replace P by two new paths
P ′ := x′Py′, P ′′ := pPxyPq setting P′ := (P \ {P}) ∪ {P ′, P ′′}. Because the edges
xx′, yy′ are counted once in ω and xy is counted twice it holds ω(P′, B) = ω(P, B) and
the considered system was not minimal because P′ contains one H-T-loop less than P.
Furthermore it holds E(P) ( E(P′) because all end nodes in P remain end nodes of P′ and
we get at least one additional end node. �

Lemma 5 Let (P, B) be a path system on a clique tree C = (VC , EC) with handles H,
teeth T and

⋃
T∈T T ∩ B = ∅ that fulfills property a). Then there exists a path system

(P′, B) with ω(P′, B) ≥ ω(P, B) that fulfills the properties a) and

b) H-T-one-path: for all H ∈ H, T ∈ T, H ∩T 6= ∅ there exists exactly one path P ∈ P′

with V (P ) ∩ (H ∩ T ) 6= ∅.

Furthermore it holds {Z ∈ H ∪ T : Z ∩ E(P) 6= ∅} ⊂ {Z ∈ H ∪ T : Z ∩ E(P′) 6= ∅}, i. e.,
all Z ∈ H ∪ T that contain an end node in (P, B) also contain an end node in (P′, B) but
there might be further Z ′ ∈ H ∪ T containing end nodes for (P′, B).

Proof. Let (P, B) be an H-T-loop-free path system with minimal number of paths P ∈ P

with V (P )∩ (H ∩T ) 6= ∅ for all H ∈ H, T ∈ T, H ∩T 6= ∅. In this proof the set of blocked
nodes remains unchanged. Let H ∈ H, T ∈ T, H ∩ T 6= ∅ and assume there exist two
paths P, P ′ ∈ P, P 6= P ′, with V (P ) ∩ (H ∩ T ) 6= ∅, V (P ′) ∩ (H ∩ T ) 6= ∅. We distinguish
two main cases. First, if V (P ) ⊂ (H ∩ T ) and V (P ′) ⊂ (H ∩ T ) we can simply join the
two paths P = Px, P ′ = yP ′ to one path P ′′ := PxyP ′, i. e., P′ := (P \ {P, P ′}) ∪ {P ′′},
ω(P′, B) = ω(P, B) + 2. Both end nodes of P ′′ lie in H ∩ T . If w. l. o. g. V (P ) 6⊂ (H ∩ T )
with P = pPxx′Pq, x ∈ H ∩ T, x′ ∈ (H ∪ T ) \ (H ∩ T ) and

1) V (P ′) ⊂ (H ∩ T ), P ′ = p′P ′q′: then P ′′ := pPxp′P ′q′,P′ := (P \ {P, P ′}) ∪ {P ′′, x′Pq}
fulfills condition a), ω(P′, B) = ω(P, B) + 1 and q′ is an end node in H and T .

q′

p′

xx′

q′

p′

xx′

2) {gh} = {z1z2 ∈ P ′ : z1 ∈ H ∩ T, z2 ∈ (H ∪ T ) \ (H ∩ T )}, g ∈ H ∩ T, P ′ = p′P ′ghP ′q′:
then P ′′ := pPxp′P ′g,P′ := (P \ {P, P ′}) ∪ {P ′′, hP ′q′, x′Pq} fulfills condition a),
ω(P′, B) = ω(P, B) and g is an end node in H and T .
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g
h

xx′

p′ p′

xx′x′

h
g

3) {g1h1, g2h2} = {z1z2 ∈ P ′ : z1 ∈ H ∩ T, z2 ∈ (H ∪ T ) \ (H ∩ T )}, g1h1 6= g2h2, g1, g2 ∈
H ∩ T, P ′ = p′P ′h1g1P

′g2h2P
′q′: we set P ′′ := pPxg2P

′g1x
′Pq. Then (P′, B) with

P′ = (P \ {P, P ′}) ∪ {P ′′, p′P ′h1, h2P
′q′} fulfills condition a) and ω(P′, B) = ω(P, B)

but the number of paths P ∈ P′ with V (P ) ∩ (H ∩ T ) in the considered T,H has
been reduced be one. Because we only enlarged path P by putting a path between
nodes x, x′ and some edges are deleted it holds {Z ∈ {H,T} : E(P) ∩ Z 6= ∅} ⊂ {Z ∈
{H,T} : E(P′) ∩ Z 6= ∅}.

g1

g2

h1
h2

xx′

g1

g2

xx′

h1
h2

Note that because of
⋃

T∈T T ∩ B = ∅ and a) these are all cases to consider. In all cases
the considered system was not minimal and so the statement follows. �

Definition 6 A path system (P, B) that satisfies
⋃

T∈T T ∩B = ∅ and conditions a)–b) is
called simple path system.

Now we show how to delete blocked nodes in v ∈ B ∩ (
⋃

H∈HH \ (
⋃

T∈T T )). Therefore
we transform simple path systems so that we can move end nodes of paths to other teeth
or handles.

Lemma 7 Let C = (VC , EC) be a clique tree with handles H, teeth T and (P, B) be a
simple path system in C. Let X,Y ∈ H ∪ T, X 6= Y , X ∩ Y 6= ∅ so that X ∩ E(P) = ∅
and Y ∩ E(P) 6= ∅. Then there exists a path system (P′, B) with X ∩ E(P′) 6= ∅ and
ω(P′, B) = ω(P, B).

Before we prove Lemma 7 we state the following corollary.

Corollary 8 Let C = (VC , EC) be a clique tree with handles H and teeth T and let (P, B)
be a simple path system in C. Fix some X ∈ H ∪ T. Then there exists a simple path
system (P′, B) with E(P′) ∩X 6= ∅ and ω(P′, B) = ω(P, B).

Proof. Because P is a nonempty set of paths there must be a sequence X1, . . . , Xk, k ∈ N,
Xi ∈ H∪T, i = 1, . . . , k, with X1 = X, E(P)∩Xi = ∅, i = 1, . . . , k−1, and E(P)∩Xk 6= ∅.
Applying Lemma 7 repeatedly on Xk−1, Xk−2, . . . , X1 we end up with a path system
(P′, B) with the desired properties. �

Note that Corollary 8 allows to transform any simple path system so that some specific
tooth or handle contains at least one end node.
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Proof (of Lemma 7). We prove the assertion by induction on l := |H ∪ T|. Obviously
the claim holds for l = 1, so we may assume it holds for all clique trees with |H ∪ T| < l.

Let S := X∩Y 6= ∅. S ⊂ X contains no end nodes by assumption on X, thus there must
be exactly one path P ∈ P (since P is simple) with P = pPu′uPvv′Pq and V (uPv) ⊆ S
and u′, v′ /∈ S. We distinguish w. l. o. g. five cases depending on the positions of u′, v′ and
the end node x ∈ Y \ S.

1) u′, v′ ∈ X: The end node x ∈ Y \ S does not belong to P . Let x be the end node
of path Q = Qx ∈ P (possibly V (Q) = {x}) and set P ′ := pPu′ and Q′ := QxuPq.
Because Q and P are disjoint paths Q′ does not contain a cycle and hence is a path.
The path system P′ := (P\{P,Q})∪{P ′, Q′} fulfills the requirements: It holds E(P′) =
(E(P) \ {u′u})∪{xu} and u′u, xu /∈ S{2}, thus ω(P′, B) = ω(P, B) and (P′, B) remains
simple (no H-T-loop can arise) and contains the end node u′ ∈ E(P) ∩X.

x

u

v

v′

u′

x

u

v

v′

u′u′

2) u′, v′ ∈ Y and P = pPu′Pv′Px, i. e. (x = q): The end node x ∈ Y \ S is an end
node of P . We set P ′ := pPu′xPu and P′ := (P \ {P}) ∪ {P ′}. As above it is easy
to see that P′ remains simple and contains the end node u ∈ E(P′) ∩ X. Because
of E(P′) = (E(P) \ {u′u}) ∪ {u′x} we have ω(P′, B) = ω(P, B), thus P′ fulfills the
requirements.

x

v′

u′

u

v x

v′

u′

u

v

3) u′, v′ ∈ Y and x /∈ V (P ): x is end node of a path Q = Qx ∈ P, P 6= Q. We set
P ′ := uPq and Q′ := Qxu′Pp (both are paths because P 6= Q) and P̄ := (P \ {P,Q})∪
{P ′, Q′}. P̄ contains end node u ∈ E(P̄) ∩ X and by E(P̄) = (E(P) \ {u′u}) ∩ {xu′}
we have ω(P̄, B) = ω(P, B). The path Q′ ∈ P̄ may contain an H-T-loop, but applying
Lemma 4 to (P̄, B) leads to a simple path system (P′, B) with u ∈ E(P̄) ⊂ E(P′) and
ω(P′, B) = ω(P̄, B) = ω(P, B).

u

v

u′

v′

x v

u′

v′

x

u

4) v′ ∈ X, u′ ∈ Y and x /∈ V (P ): Analogous to the previous case we set P ′ := uPq
and Q′ := Qxu′Pp leading to a system P̄ that may contain an H-T-loop. As before
applying Lemma 4 leads to a simple system (P′, B) fulfilling the requirements.

v′ v u′u

x

v′ v u′u

x

5) v′ ∈ X, u′ ∈ Y and x ∈ V (P ): This is the most difficult case. We have to distinguish
further cases depending on X ∈ H or X ∈ T and the intersections with further sets.
Note that we may assume E(P) ∩ Y = {x} because otherwise we could apply case 4).
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v′ v u′u

x

5.1) X ∈ H.

5.1.1) ∃Z ∈ T \ {Y } and Q = dQa′aQbb′Qd′ ∈ P with V (aQb) ⊆ S′ := X ∩ Z, a′, b′ ∈
Z \ S′.
We use induction. Let C ′ = (V ′C , E

′
C) be the subcliquetree that arises by deleting

X from H, i. e. C ′ is the component of C \ (X \ Z) that contains Z. Define the
path system (P̄, B̄) with P̄ := {P ∈ P : V (P ) ⊆ V ′C}, B̄ := B ∩ V ′C . Note that
by assumption there is no path P ∈ P with V (P ) ∩ V ′C 6= ∅ and V (P ) \ V ′C 6= ∅.
Now we apply Corollary 8 to C ′ with path system (P̄, B̄). This gives us a simple
path system (P̄′, B̄) in C ′ with an end node x′ ∈ Z ∩ E(P̄′). We combine P̄′ and
P \ P̄ to a path system (P̃, B) in C with an end node in Z. Note that this path
system is not necessarily simple because X ∩ Z is not an intersection of a tooth
and a handle in C ′. But we can apply first Lemma 4 and then Lemma 5 to (P̃, B).
This leads to a simple path system (P̃′, B) preserving at least one end node in Z.
Now by construction P̃′ has either an end node in S′ ⊂ Z or it contains a path
Q̃ = Q̃c′cQ̃dd′Q̃ with V (cQ̃d) ⊆ S′ and c′, d′ ∈ Z \ S′. Thus we are now either in
case 2) or 3) using Z instead of Y .

v′ v u′u x

a′

a b

b′

5.1.2) ∃Z ∈ T \ {Y } and Q = dQa′aQbb′Qd′ ∈ P with V (aQb) ⊆ S′ := X ∩ Z, a′, b′ ∈
X \ S′ (possibly Q = P , but we only visualize the case Q 6= P , the other case
looks quite similar).

Because Z ∈ T there exists an x̄ ∈ Z \
⋃

H∈HH. If this x̄ is an end node, i. e.

∃R ∈ P with R = x̄R, then we set P̃ := (P \ {P,R}) ∪ {d′Qb′, dQbx̄R} and get
ω(P, B) = ω(P̃, B) as well as an end node b′ ∈ X.

If this x̄ is not an end node, i. e. ∃R ∈ P with R = rRx̄x̄′Rr′, then we set
P̃ := (P \ {P,R}) ∪ {d′Qb′a′Qd, rRx̄aQbx̄′Rr′}. This fulfills ω(P, B) = ω(P̃, B)
and we can apply case 5.1.1).

a′b′
v u′u x

b a

v′

x̄

a′
v u′u x

b a

v′

x̄

b′

a′b′
v u′u x

b a

v′

x̄x̄′

a′b′
v u′u x

b a

v′

x̄x̄′

Because by assumption X contains no end node and is a handle X ∈ H, which
intersects with an odd number of teeth greater than one, we know that those two
cases above are exhaustive.
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5.2) X ∈ T. In this case Y ∈ H. We consider three cases, the first two are analogous
to the previous two cases.

5.2.1) ∃Z ∈ T \ {X} and Q = dQa′aQbb′Qd′ ∈ P with V (aQb) ⊆ S′ := Y ∩ Z, a′, b′ ∈
Z \ S′.
As in 5.1.1) we get by induction hypothesis a simple path system (P̃, B) with an
end node in Z. Analogous to either case 2) or 3) we get a path system (P̃′, B)
with an additional end node x̃ 6= x in Y ∩ Z, so we may apply case 4) with end
node x̃.

v′ v u u′
b

a
a′

b′x

5.2.2) ∃Z ∈ T \ {X} and P = pPuPa′aPbb′Px ∈ P with V (aPb) ⊆ S′ := Y ∩ Z,
a′, b′ ∈ Y \ S′.
Because Z ∈ T there exists an x̄ ∈ Z \

⋃
H∈HH. If this x̄ is an end node,

i. e. ∃R ∈ P with R = x̄R, then we set P̃ := (P \ {P,R}) ∪ {pPuPbx̄R, b′Px}.
If this x̄ is not an end node, i. e. ∃R ∈ P with R = rRx̄x̄′Rr′, then we set
P̃ := (P\{P,R})∪{pPuPa′b′Px, rRx̄aPbx̄′Rr′}. In both cases ω(P, B) = ω(P̃, B).
In the first case it holds b′ ∈ E(P̃) that is not contained in the path containing the
subpath v′vPuu′ and in the second case we can apply case 4) respectively 5.2.1).

v′ v u u′
a

b

b′ a′

x x̄

v′ v u u′
a

b

a′

x x̄

b′

v′ v u u′
a

b

b′ a′

x x̄
x̄′

v′ v u u′
a

b

b′ a′

x x̄
x̄′

5.2.3) If neither of the previous two cases occurs we know by Y ∈ H (and thus Y
intersects with an odd number of sets of T) that P must contain a path Q =
p̃QabQq̃ with ab ∈ E(Y ) \ E(T). We set P ′ := uPq and Q′ := p̃Qau′PxbQq̃ and
set P′ := (P \ {P,Q})∪{P ′, Q′}. It is easy to check that P′ is simple, contains the
end node u ∈ X ∩ E(P′) and it holds ω(P′, B) = ω(P, B).

v′ v u u′

x

b
a v′ v u′

x

b
au

�

If there is a blocked node v ∈ B ∩H in a handle H ∈ H and H contains an end node
w, i. e. there exists P = Pw ∈ P, we can force an edge vw and delete v from B.
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Corollary 9 Let (P, B) be a simple path system. Then there exists a path system (P′, ∅)
with ω(P, B) ≤ ω(P′, ∅).

Proof. Let X ∈ H with B ∩ X 6= ∅. Corollary 8 implies there is a path system (P̃, B)
with ω(P̃, B) = ω(P, B) and x ∈ X ∩ E(P̃) and B ∩X = {b1, . . . , bk} 6= ∅. Let P ∈ P̃ be
the path with P = Px. Set P̃′ := (P̃ \ {P}) ∪ {Pxb1 . . . bk} and B̃′ := B \ {b1, . . . , bk}.
Then ω(P̃′, B̃′) = ω(P,B). Continuing like this removing all blocked nodes we get a path
system (P′, ∅) as desired. �

Our main result is the following theorem that includes two variants for lifting clique tree
inequalities. In order to use the previous results for path systems by transforming a given
tour K the lifted inequalities have to fulfill that a 2-edge ijk, i, k ∈ S2 and the edges ij, jk
are not counted simultaneously for the tour (blocked nodes are not contained in paths).
Furthermore we have to achieve that for each T ∈ T there exists a node v ∈ T \

⋃
H∈HH

that does not become a blocked node.

Theorem 10 Let C = (VC , EC) be a clique tree with handles H and teeth T according to
Definition 1. Let S1, S2 ⊂ V \ VC be two sets with S1 ∩ S2 = ∅, V = VC ∪ S1 ∪ S2, S1 6=
∅, S2 6= ∅. Let W1,W2 ⊆ VC be two arbitrary subsets satisfying⋃

H∈H
H ⊆Wi, i = 1, 2,

∀T ∈ T, |T \
⋃

H∈H
H| < |S2| : |T \W1| = 1

∀T ∈ T : |T \W2| = 1

Then the inequalities∑
Z∈H∪T

∑
kl∈Z{2}

xkl +
∑

Z∈H∪T

∑
kl∈Z{2},m∈S1∪VC :

km,lm/∈EC

ykml +
∑

kml∈V 〈3〉 :
k,l∈S2,m∈W1

ykml ≤ s(C), (12)

∑
Z∈H∪T

∑
kl∈Z{2}

xkl +
∑

Z∈H∪T

∑
kl∈Z{2},
m∈S1

ykml +
∑

kml∈V 〈3〉 : k,l∈S2∪VC
m∈W2,km,ml/∈EC

ykml ≤ s(C) (13)

are valid for PSQTSPn
for each choice of W1,W2.

The choice of sets W1,W2 ensures that the corresponding path system that is used in the
proof fulfills (T \

⋃
H∈HH) * B either by definition or as otherwise a subtour would be

implied.

Remark 11 For S2 = {t̄} and |VC | ≥ |V |
2 inequalities (12) are equivalent to clique tree

inequalities strengthened by (6).

Using the previous results we are able to prove our main result Theorem 10.

Proof (of Theorem 10). Let K ∈ Kn be an arbitrary tour. We have to show that
K fulfills (12) and (13) for appropriate choices of a clique tree C = (VC , EC) and sets
S1, S2,W1,W2. We will show this by constructing dominating tours K̄1, K̄2 ∈ Kn that
fulfill the following properties

• they do not contain 2-edges with coefficients greater zero in (12) resp. (13),
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• calculating the left-hand side of (12) resp. (13) for K these values are not greater
than the computed left-hand side of (10) for K̄1 resp. K̄2.

Then the validity of (12) resp. (13) follows from the validity of the clique tree inequalities
(10) for PSTSPn .

We start with the validity of (12) and build up a path system (P1, B1) that is empty at
the beginning. The blocked nodes B1 correspond to the 2-edges counted in the last sum,

B1 := {v ∈ VC : uvw ∈ K with u,w ∈ S2, v ∈W1}.

Note that by construction we have |{uvw ∈ K : u,w ∈ S2}| = 1 for all v ∈ B1, hence each
blocked node corresponds to exactly one counted 2-edge.

Next, we specify all edges of the path system and collect them in the set P1.

P1 := (K{2} ∩ EC) ∪ {uw ∈ EC : ∃ v ∈ S1 ∪ VC , uvw ∈ K,uv, vw /∈ EC}.

Because K is a tour, and thus does not contain a subtour, and S2 6= ∅ we know by the
same arguments as in the proofs of the standard lifting approach [6] that for each node v
it holds |{vw ∈ P1}| ≤ 2. Furthermore the edges in P1 do not form a cycle because this
cycle would not visit all nodes (in particular, it would not visit S2) and would be therefore
a subtour. By construction it holds for each v ∈ B1 that {uv ∈ P1} = ∅. This implies
that the edges of P1 together with the isolated nodes in VC \ (V (P1) ∪B1) correspond to
a set of paths P1 so that (P1, B1) is a path system in C. We further know that each tooth
T ∈ T fulfills (T \

⋃
H∈HH) 6⊂ B1, either by the definition of W1 or because otherwise K

would contain a subtour using only nodes in T and S2.

We denote by (P
(k)
1 , B

(k)
1 ), k ∈ N, a family of path systems. Using Lemma 3, Lemma 4

and Lemma 5 we get a simple path system (P̄1, B̄1) and by applying Corollary 9 we get

(P
(1)
1 , B

(1)
1 ), B

(1)
1 = ∅. This path system can then be extended to a cycle K̄1 in the following

way. As long as there exists a Z ∈ H∪T such that P
(k)
1 , k ∈ N, contains two paths P,Q ∈

P
(k)
1 , P 6= Q, P = Px, x ∈ Z, and Q = Qy, y ∈ Z, we set P

(k+1)
1 = (P

(k)
1 \{P,Q})∪{PxyQ}

that enlarges the weight, i. e., ω(P
(k)
1 , ∅) + 1 ≤ ω(P

(k+1)
1 , ∅). Let (P(k̂), ∅) denote the path

system after the path connection steps. Then we get a tour K̄1 be simply hanging the

paths in Pk̂ at the end nodes together until there remains only one path. At its end nodes
this path is connected to the path s1

1 . . . s
1
|S1|s

2
1 . . . s

2
|S2| of the nodes {s1

1, . . . , s
1
|S1|} ∈ S1

and {s2
1, . . . , s

2
|S2|} ∈ S2. By construction the 2-edges ijk ∈ K̄1 have coefficient zero in

(12). Because ω(P1, B1) ≤ ω(P̄1, B̄1) ≤ ω(P
(k̂)
1 , ∅) the left-hand side of (10) (or (12))

calculated for K̄1 is at least as big as the left-hand side of (12) for K1. Thus, (12) is valid
for PSQTSPn

under the given assumptions.
For the construction of K̄2 we start with defining the set of blocked nodes B2 corre-

sponding to the 2-edges counted in the last sum,

B2 := {v ∈ VC : uvw ∈ K with u,w ∈ S2 ∪ VC , km,ml /∈ EC , v ∈W2}.

The edge set P2 is defined as

P2 := (K{2} ∩ EC) ∪ {uw ∈ EC : ∃ v ∈ S1, uvw ∈ K}.

Because even less edges are inserted we know by the same arguments as above that for
each node v it holds |{vw ∈ P2}| ≤ 2 and that the edges in P2 do not form a cycle.
Again by construction it holds for each v ∈ B2 that {uv ∈ P2} = ∅. So analogously
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S1

T

S2

Figure 7: Visualization of a subtour elimination constraint for one tooth with four nodes
lifted according to (13) with W2 the three corner nodes of the triangle. At most
three of the edges and 2-edges can be contained in a tour.

to above we get the path system (P2, B2) in C. Again we know that each tooth T ∈ T

fulfills (T \
⋃

H∈HH) 6⊂ B2 by the definition of W2. As above we get a new path system
(P′2, B

′
2), B′2 = ∅. This path system can then be extended to a cycle K̄2 by simply hanging

the paths in P′2 at the end nodes together to one long path. These is connected to the path
s1

1 . . . s
1
|S1|s

2
1 . . . s

2
|S2| of the nodes s1

1, . . . , s
1
|S1| ∈ S1 and s2

1, . . . , s
2
|S2| ∈ S2 on both ends. By

construction the 2-edges ijk ∈ K̄2 have coefficient zero in (13) and the left-hand side of
(10) is at least as big as the left-hand side of (13) for K2. This proves Theorem 10. �

The result in Theorem 10 can be seen as general lifting approach for improving clique
tree inequalities for SQTSPn. Applying it to the subtour elimination constraints, which
are a special case of the clique tree constraints with exactly one tooth and no handle, leads
to the following result.

Remark 12 Let I, S1, S2 ⊂ V, V = I∪̇S1∪̇S2, I ∩ S1 = ∅, I ∩ S2 = ∅, S1 ∩ S2 = ∅, S1 6= ∅.
The inequalities∑

ij∈I{2}
xij +

∑
ikj∈V 〈3〉 : i,j∈I,k∈S1

yikj +
∑

kil∈V 〈3〉 : i∈I,k,l∈S2

ykil ≤ |I| − 1 (14)

for 2 ≤ |S2| ≤ |I|, and for some ı̄ ∈ I∑
ij∈I{2}

xij +
∑

ikj∈V 〈3〉 : i,j∈I,k∈S1

yikj +
∑

kil∈V 〈3〉 : i∈I\{ı̄},k,l∈S2

ykil ≤ |I| − 1 (15)

for |S2| > |I| ≥ 2 are valid for PSQTSPn
, because they are clique-tree constraints (12) resp.

(13) with VC = I, H = ∅ and T = {I}. In the case |I| = 2 inequalities (14) are equivalent
to the special conflicting edges inequalities (8) and (15) are equivalent to the standard
conflicting edges inequalities (7). Furthermore one can prove for |I| ≥ 3 with methods
similar to the ones used in [6] for proving the facetness of several inequality classes that
inequalities (14) and (15) as above define facets of PSQTSPn

if |S1 ∪ S2| ≥ 5 or |S2| = 3
(see Appendix).

Unfortunately one cannot expect that applying this approach leads to facets in general.
Here future research is needed to improve the understanding of complex facet classes of
PSQTSPn

.
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4 The asymmetric case

The asymmetric quadratic traveling salesman problem is the problem of finding a directed
Hamiltonian 2-cycle (a tour) in a weighted directed 2-graph G = (V,A) with node set
V, |V | = n, set of directed 2-arcs A = V (3) = {(i, j, k) : i, j, k ∈ V, |{i, j, k}| = 3}, set of
associated directed arcs V (2) = {(i, j) : i, j ∈ V, i 6= j} and 2-arc weights c(i,j,k), (i, j, k) ∈
A. The corresponding polytope reads

PAQTSPn
= conv{(x̄, ȳ) ∈ {0, 1}n(n−1)+n(n−1)(n−2) :∑

(i,j)∈V (2)

x̄(i,j) =
∑

(j,i)∈V (2)

x̄(j,i) = 1 for all i ∈ V ;

x̄(i,j) =
∑

(i,j,k)∈V (3)

ȳ(i,j,k) =
∑

(k,i,j)∈V (3)

ȳ(k,i,j) for all (i, j) ∈ V (2);

∑
(i,j)∈S(2)

x̄(i,j) ≤ |S| − 1 for all S ⊂ V, 2 ≤ |S| ≤ n− 2},

see [5]. It equals the convex hull over all incidence vectors of directed Hamiltonian 2-cycles.

Definition 13 A valid inequality (a1)T x̄ + (a2)T ȳ ≤ b of PAQTSPn
is called coefficient-

symmetric if (a1)(i,j) = (a1)(j,i) for all (i, j) ∈ V (2) and (a2)(i,j,k) = (a2)(k,j,i) for all

(i, j, k) ∈ V (3).

Like for the STSP and ATSP [12], a valid inequality (a1)Tx + (a2)T y ≤ b for PSQTSPn

leads to a coefficient-symmetric valid inequality (â1)T x̄ + (â2)T ȳ ≤ b of PAQTSPn
with

coefficients (â1)(i,j) = (â1)(j,i) = (a1)ij for ij ∈ V {2} and (â2)(i,j,k) = (â2)(k,j,i) = (a2)ijk for

ijk ∈ V 〈3〉 and vice versa. In [7] Fischetti proved that the coefficient-symmetric variant of
the clique tree inequalities (10) define facets for ATSP. He also remarked that coefficient-
symmetric facets of PATSPn lead to facets of PSTSPn . With these arguments one can
show that the coefficient-symmetric variants of (12) and (13) are valid inequalities for
PAQTSPn

. For the simple case of the bound constraints xij ≤ 1, ij ∈ V {2} resp. the
subtour elimination constraints x̄(i,j) + x̄(j,i) ≤ 1, i, j ∈ V, i 6= j, we get all coefficient-
symmetric conflicting arcs inequalities presented in [5]. These define facets of PAQTSPn

for appropriately chosen n and sets S1, S2. But [5] contains a class of facet-defining
inequalities that are strengthenings of x̄(i,j) + x̄(j,i) ≤ 1, i, j ∈ V, i 6= j, that are not
coefficient-symmetric. Before repeating these we introduce the following notation: Given
sets L1, L2, L3 ⊂ V , we simply write

ȳ(L1,L2,L3) :=
∑

(i,j,k)∈V (3) :
i∈L1,j∈L2,k∈L3

ȳ(i,j,k).

Let C = (VC , EC) be a clique tree. Then we write

ȳ(L1,L2,L3)EC
:=

∑
(i,j,k)∈V (3) :

i∈L1,j∈L2,k∈L3
ik∈EC

ȳ(i,j,k) and ȳ(L1,L2,L3)2EC

:=
∑

(i,j,k)∈V (3) :
i∈L1,j∈L2,k∈L3

∃H∈H,T∈T,i,k∈H∩T

ȳ(i,j,k).

With this notation the inequalities in [5] read as follows:

x̄(i,j) + x̄(j,i) + ȳ(i,S3,j) + ȳ(j,S4,i) + ȳ(S3,i,S4) ≤ 1 (16)
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j i
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S1

Figure 8: Visualization of inequalities (17): at most one of these arcs (straight lines) and
2-arcs (curved lines) can be contained in a directed Hamiltonian 2-cycle.

for i, j ∈ V, i 6= j, S3, S4 ⊂ V \ {i, j}, S3 ∩ S4 = ∅, V = {i, j}∪̇S3∪̇S4, |S3| ≥ 2, |S4| ≥ 2.
One can further combine the two approaches for getting conflicting arcs inequalities. It is
easy to see that

x̄(i,j) + x̄(j,i) + ȳ(i,S1,j) + ȳ(j,S1,i) + ȳ(S2∪S3,i,S2∪S4) + ȳ(i,S3,j) + ȳ(j,S4,i) ≤ 1 (17)

are valid for PAQTSPn
, n ≥ 5, for i, j ∈ V, i 6= j, So ⊂ V \ {i, j}, o = 1, . . . , 4, So ∩ Sp =

∅, o, p = 1, . . . , 4, o 6= p. A visualization of these can be found in Figure 8.
Inequalities (16) and (17) motivate the question if such a strengthening can also be

applied to the coefficient-symmetric clique tree inequalities∑
Z∈H∪T

∑
(k,l)∈Z(2)

x̄kl ≤ s(C)

for a given clique tree according to Definition 1. The following theorem answers this
question.

Theorem 14 Let C = (VC , EC) be a clique tree with handles H and teeth T according to
Definition 1. Let S1, S2, S3, S4 ⊂ V \ VC be sets with So ∩ Sp = ∅, o, p = 1, . . . , 4, o 6= p,
V = VC∪̇S1∪̇S2∪̇S3∪̇S4 and with (S2 6= ∅ ∨ |VC | < |S1 ∪ S3 ∪ S4|) . Let W be an arbitrary
subset satisfying ⋃

H∈H
H ⊆W, and ∀T ∈ T : |T \W | = 1

and W1,W2 ⊂W,W1 ∩W2 = ∅,W1 ∪W2 = W . Then the inequalities∑
Z∈H∪T

∑
(k,l)∈Z(2)

x̄(k,l) +
∑

Z∈H∪T

∑
(k,l)∈Z(2),
m∈S1∪VC ,
km,ml/∈EC

ȳ(k,m,l) + ȳ(S2∪S3,W1,S2∪S4) + ȳ(S2∪S4,W2,S2∪S3)

+ ȳ(W1,S3,VC\W1)EC
+ ȳ(W2,S4,VC\W2)EC

+ ȳ(W1,S3,W2)2EC

+ ȳ(W2,S4,W1)2EC

≤ s(C) (18)

are valid for PAQTSPn
, n ≥ 5, for each choice of W1,W2,W and Si, i = 1, . . . , 4.

Proof. We prove this by showing that for each directed Hamiltonian 2-cycle ~K there
exists a directed Hamiltonian 2-cycle ~K ′ such that ~K ′ does not use a 2-arc with nonzero
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coefficient and the left-hand side of (18) calculated for ~K ′ is at least as big as the left-hand
side of (18) with ~K. First we construct an arc set ~L via

~L :={(i, j) ∈ V (2) : ij ∈ EC , (i, j) ∈ ~K(2)}
∪ {(i, j) ∈ V (2) : (i, k, j) ∈ ~K, k ∈ S1 ∪ VC , ik, kj /∈ EC}
∪ {(i, j) ∈ V (2) : i ∈W1, k ∈ S3, j ∈ VC \W1, ij ∈ EC , (i, k, j) ∈ ~K}
∪ {(i, j) ∈ V (2) : i ∈W2, k ∈ S4, j ∈ VC \W2, ij ∈ EC , (i, k, j) ∈ ~K}.

It holds |{(i, j) ∈ ~L}| ≤ 1 and |{(j, i) ∈ ~L}| ≤ 1 for all i ∈ VC because an in- or out-degree
of a node i ∈ VC larger than one would imply that ~K is not a directed Hamiltonian 2-cycle
(exactly one arc enters resp. leaves a node). Furthermore the arcs in ~L do not contain a
directed cycle because this would imply a directed 2-cycle in ~K not visiting the nodes in
S2 if S2 6= ∅ or a directed 2-cycle in ~K of length at most 2|VC | < n if |VC | < |S1∪S3∪S4|.
Let L be a set of edges with L := {ij ∈ V {2} : (i, j) ∈ ~L ∨ (j, i) ∈ ~L}. Then L is the edge
set of a set of paths. In the next step we build a set of nodes B (later the blocked nodes).
We set

B :={j ∈W1 : i ∈ S2 ∪ S3, k ∈ S2 ∪ S4, (i, j, k) ∈ ~K}
∪ {j ∈W2 : i ∈ S2 ∪ S4, k ∈ S2 ∪ S3, (i, j, k) ∈ ~K}.

Because ~K is a (directed) tour we know that a node j ∈ B can either lie on one 2-arc from
S2∪S3 to S2∪S4 or on one 2-arc from S2∪S4 to S2∪S3. Furthermore it holds {j ∈ VC : ij ∈
L} = ∅ for all i ∈ B by construction of L and B. So we can set up a path system (P, B)
with P formed by all paths corresponding to L and all isolated nodes v ∈ VC \ (B ∪ {i ∈
V : ∃ ij ∈ L}). The weight ω(P, B) equals the left-hand side of (18) computed for ~K. Now
we apply the results of the previous section, more precisely Lemma 3, Lemma 4, Lemma 5
and Lemma 7, to (P, B) and get a simple path system (P̄, ∅) with ω(P̄, ∅) ≥ ω(P, B). Let
(P(k), ∅), k ∈ N, be a family of path systems with (P(1), ∅) = (P̄, ∅). As long as there exist a
Z ∈ H∪T with P,Q ∈ P(k), P 6= Q, xP = P, yQ = Q, x, y ∈ Z we join the two path to one

path P ′ = PxyQ and set P(k+1) = (P(k) \ {P,Q})∪ {P ′}. Let (P(k̂), ∅) be the path system
after the joining operations. Then we join all paths to one large path and connect this
to the path s1

1 . . . s
1
|S1|s

2
1 . . . s

2
|S2|s

3
1 . . . s

3
|S3|s

4
1 . . . s

4
|S4| of all nodes in S1, S2, S3, S4. Closing

this path to an undirected tour and orienting it with one of the two orientations gives a
directed Hamiltonian 2-cycle ~K ′ that fulfills the desired properties. �

If the clique tree C consists of only one tooth T with T = {i, j}, i 6= j we receive (17)
with W = {i},W1 = {i},W2 = ∅. Figure 9 visualizes a strengthened subtour elimination
constraint with one tooth of size |T | = 3.
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Appendix

Theorem 15 Inequalities (14) define facets of PSQTSPn
for I, S1, S2 ⊂ V, V = I∪̇S1∪̇S2,

I ∩ S1 = ∅, I ∩ S2 = ∅, S1 ∩ S2 = ∅, S1 6= ∅, |I| ≥ 3, 2 ≤ |S2| ≤ |I| and (|S1 ∪ S2| ≥ 5 or
|S2| ≥ 3).

Proof. We used the proof-framework of the proof of the dimension of PSQTSPn
in [6]. To

keep the proof self-contained we will repeat the notations used there. We prove this result
by constructing f(n) := 3 ·

(
n
3

)
+
(
n
2

)
− n2 affinely (linearly) independent tours in three

main steps. In the first step we determine the rank of some specially structured tours C̄ n̄,1
dim

by means of a computer algebra system and take the largest affinely independent subset
C n̄,1
dim ⊂ C̄ n̄,1

dim. In the second and the third step we build tours so that each tour contains
at least one 2-edge that is not contained in any tour constructed before. So, considering
a matrix formed by the incidence vectors of these tours, we get a block with full row rank
and a lower triangular matrix with ones on the main diagonal and zeros in the block of
the first step for those variables that form the main diagonal in the second and third step.
It is easy to see that the constructed matrix has full row rank.

We set, w. l. o. g., I = {i1 = n− |I|+ 1, . . . , i|I| = n}, S1 = {1, . . . , |S1|} and denote by
Ī all nodes of I that are not explicitly mentioned in the tours, in arbitrary order.

(Step(14)1) If |S1 ∪ S2| ≥ 5 we know {1, . . . , 5} ∩ I = ∅. We set n̄ = 5 and can use the

same construction as in [6] building tours C̄ n̄,1
dim = {K ∈ Kn : {〈n̄+1, n̄+2, n̄+

3〉, 〈n̄+2, n̄+3, n̄+4〉, . . . , 〈n−2, n−1, n〉} ⊂ K, {n−1, n} ∈ K{2}}. A largest
affinely independent subset of C̄ n̄,1

dim contains 54 tours that are collect in set

C n̄,1
dim. In the case |S1| = 1, |S2| = 3 it holds 5 ∈ I and so setting n̄ = 5 we

have to restrict to tours C̃ n̄,1
dim,(14) = {K ∈ Kn : {〈n̄+1, n̄+2, n̄+3〉, 〈n̄+2, n̄+

3, n̄+4〉, . . . , 〈n−2, n−1, n〉} ⊂ K, {n−1, n} ∈ K{2}, ({5, n} ∈ K{2}∨{5, 6} ∈
K{2}∨〈n, 1, 5〉 ∈ K∨〈5, 1, 6〉 ∈ K∨〈2, 5, 3〉 ∈ K∨〈2, 5, 4〉 ∈ K∨〈3, 5, 4〉 ∈ K)}.
The rank reduces by one to 53 in this case.

(Step(14)2) The set C n̄,2
dim =

⋃
n̄<k<n−1 Tk is formed iteratively. For each k ∈ {n̄+1, . . . , n−

2} we build a set of tours Tk that contains nk tours t1k, . . . , t
nk
k . The tour

construction uses five substeps. During each substep the order of the tours is
arbitrary. In each substep we append new rows of incidence vectors of tours
to a large matrix built by the affinely independent tours. At the end we have
to check that the tours indeed fulfill the described matrix structure (a lower
triangular matrix with ones on the main diagonal).

Let k be fixed with n̄ < k < n−1. All tours presented next are represented by
the order of the nodes, i. e., a tour t = {v1v2v3, v2v3v4, . . . , vn−1vnv1, vnv1v2}
is represented by v1 v2 v3 . . . vn−1 vn. Only the relevant parts of the tours are
specified. The node sequence (k+2) (k+3) . . . (n−2) (n−1) is subsumed and
denoted by the symbol $k. If some nodes are not explicitly mentioned and
the completion of the tour is arbitrary we denote this by “ . . . ”. We underline
the decisive 2-edge (the three corresponding nodes) eik, i = 1, . . . , nk, that is
used for forming the triangular structure. It belongs to one of the four types
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(Type-I1) 〈a, k, b〉, a, b ∈ {1, . . . , k − 1}, a < b,

(Type-I2) 〈k, a, k + 1〉, a ∈ {2, . . . , k − 1},
(Type-I3) 〈a, b, k + 1〉, a, b ∈ {1, . . . , k − 1}, a 6= b.

(Type-I4) 〈n, a, k〉, 〈n, k, a〉, a ∈ {1, . . . , k − 1}.
In [6] the standard construction for fixed k is

(I1) . . . a k 1 (k + 1)$k n . . ., for a ∈ {2, . . . , k − 1}
(the 2-edge 〈k, 1, k + 1〉 is not used as an eik),

(I2) . . . 1 k a (k + 1)$k n . . ., for a ∈ {2, . . . , k − 1},
(I3) . . . a k b (k + 1)$k n . . ., for a, b ∈ {2, . . . , k − 1}, a < b,

(I4) . . . k a b (k + 1)$k n . . ., for a, b ∈ {1, . . . , k − 1}, a 6= b,

(I5) . . . (k + 1)$k na b . . . , for a, b ∈ {1, . . . , k}, a 6= b, k ∈ {a, b}.
These substeps fulfill the desired triangular structure (proof of Claim 1 in the
proof of Theorem 2.3 in [6]).

As long as k ∈ S1 ∪ S2 the nodes in I lie next to each other and so the
corresponding tours define roots of (14). Adaptations of (I1)–(I5) are needed
for the case k ∈ I. We start with a specific ordering for k = i1 for the case
|S1 ∪ S2| ≥ 5.

(Ii1(14)1) . . . a i1 1 i2$k n . . . , for a ∈ (S1 ∪ S2) \ {1}
(the 2-edge 〈i1, 1, i2〉 is not used as an eı̂k; the same 2-edge is not used in
(I1), too),

(Ii1(14)2a) . . . 1 i1 a i2$k n . . . , for a ∈ S1 \ {1},

(Ii1(14)3a) . . . a i1 b i2$k n . . . , for a ∈ (S1 ∪ S2) \ {1}, b ∈ S1 \ {1}, b < a,

(Ii1(14)4a) . . . a b i2$k n 1 i1 . . . , for a, b ∈ (S1 ∪ S2) \ {1}
(the 2-edge 〈n, 1, i1〉 is not used as an eı̂k; it is the one specific tour that
is lost in comparison to the dimension proof in [6]),

(Ii1(14)5a)

{
. . .m o i2$k n i1 a . . . , for a ∈ S1 ∪ S2,
. . .m o i2$k na i1 . . . , for a ∈ S1 \ {1},

with m, o ∈ (S1 ∪ S2) \ {1}, |{a,m, o}| = 3,

(Ii1(14)4b) . . . a b i2$k n i1 . . ., for a, b ∈ S1 ∪ S2, 1 ∈ {a, b}, a 6= b,

(Ii1(14)3b) . . . i2$k n 1 a i1 b . . . , for a, b ∈ S2, a < b,

(Ii1(14)5b) . . . i2$k na i1m. . . , for a ∈ S2 with m ∈ S2,m 6= a,

(Ii1(14)2b) . . .m i1 a i2$k n . . ., for a ∈ S2 with m ∈ S2,m 6= a.

All tours in (Ii1(14)1)–(Ii1(14)2b) define roots of (14) because the nodes i2 to n
lie next to each other and for i1 it holds that either i1 lies next to node n, or
there is exactly one node between i1 and i2 resp. n and this node belongs to
S1 or i1 lies between two nodes in S2. Furthermore we have to show that all
underlined 2-edges are not used in a tour of a previous substep. It suffices to
look only at previous substeps for the same k = i1.

• Tours in (Ii1(14)2a): all tours in (Ii1(14)1) contain the 2-edge 〈i1, 1, i2〉.

• Tours in (Ii1(14)3a): all tours in (Ii1(14)1)–(Ii1(14)2a) contain the edge {i1, 1}.
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• Tours in (Ii1(14)4a): all tours in (Ii1(14)1)–(Ii1(14)3a) contain a 2-edge 〈i1, ã,
i2〉 ∈ V 〈3〉.
• Tours in (Ii1(14)5a): all tours in (Ii1(14)1)–(Ii1(14)3a) contain a 2-edge 〈n, ã, b̃〉 ∈
V 〈3〉 with ã, b̃ ∈ S1 ∪ S2 and the tours in (Ii1(14)4a) contain the 2-edge

〈n, 1, i1〉.
• Tours in (Ii1(14)4b): all tours in (Ii1(14)1)–(Ii1(14)3a) contain a 2-edge 〈i1, ã, i2〉
∈ V 〈3〉 and in (Ii1(14)4a) the nodes a, b and in (Ii1(14)5a) the nodes m, o are
not allowed to be 1.

• Tours in (Ii1(14)3b): all tours (Ii1(14)1)–(Ii1(14)4b) contain an edge {n, i1} or

an edge {i1, ã}, ã ∈ S1.

• Tours in (Ii1(14)5b): all tours in (Ii1(14)1)–(Ii1(14)3a) contain a 2-edge 〈n, ã, b̃〉 ∈
V 〈3〉 with ã, b̃ ∈ S1 ∪ S2 and the tours in (Ii1(14)4a)–(Ii1(14)3b) contain the

edge {n, i1} or an edge {n, ã}, ã ∈ S1.

• Tours in (Ii1(14)2b): all tours in (Ii1(14)1)–(Ii1(14)3a) contain a 2-edge 〈i1, ã, i2〉
∈ V 〈3〉 with ã ∈ S1 and there are at least two nodes between i1 and i2 in
the tours in (Ii1(14)4a)–(Ii1(14)5b) because i1 ≥ 6.

All in all, we constructed exactly one tour less than described in (Type-I1)–
(Type-I4) for this k.

For k ∈ I, k 6= i1, k ≤ n− 2 the substeps presented next provide tours having
the desired root structure.

(I(14)1) . . . a k 1 (k + 1)$k n Ī . . . , for a ∈ {2, . . . , k − 1}
(the 2-edge 〈k, 1, k + 1〉 is not used as an eı̂k, see (I1)),

(I(14)2a) . . . 1 k a (k + 1)$k n Ī . . . , for a ∈ {2, . . . , k − 1} \ S2,

(I(14)3a) . . . a k b (k + 1)$k n Ī . . . , for a ∈ {2, . . . , k − 1}, b ∈ S1 \ {1}, b < a,

(I(14)3b) . . . a k b (k+ 1)$k n Ī . . . , for a ∈ {1, . . . , k− 1} \S1, b ∈ {1, . . . , k− 1} ∩
I, a < b,

(I(14)4a) . . . a b (k + 1)$k n 1 Ī k . . . , for a, b ∈ S2, a 6= b,

(I(14)5a) . . .m o (k + 1)$k na b Ī . . . , for a, b ∈ {1, . . . , k} ∩ (I ∪ S1), k ∈ {a, b},
with m, o ∈ S2, |{a, b,m, o}| = 4,

(I(14)4b) . . . a b (k + 1)$k nk Ī . . . , for a, b ∈ S1 ∪ S2, {a, b} ∩ S1 6= ∅, a 6= b,

(I(14)4c) . . . Ī k a b (k + 1)$k n . . . , for a, b ∈ {1, . . . , k−1}\S2, {a, b}∩I 6= ∅, a 6=
b,

(I(14)4d) . . . a b (k + 1)$k nk Ī 1 . . . , for a ∈ S2, b ∈ {1, . . . , k − 1} ∩ I,

(I(14)4e) . . .m a b (k + 1)$k nk Ī 1 . . . , for a ∈ {1, . . . , k−1}∩ I, b ∈ S2 with m ∈
S2,m 6= b,

(I(14)5b) . . . Ī (k + 1)$k nk a . . . , for a ∈ S2,

(I(14)3c) . . . (k + 1)$k n Ī a k b . . . , for a, b ∈ S2, a < b,

(I(14)5c) . . . Ī (k + 1)$k na km . . . , for a ∈ S2 with m ∈ S2,m 6= a,

(I(14)2b) . . .m k a (k + 1)$k n Ī . . . , for a ∈ S2 with m ∈ S2,m 6= a
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The tours in (I(14)1)–(I(14)2b) define roots of (14) because in (I(14)1)–(I(14)5b)
all nodes in I lie next to each other, partially with exactly one node from
S1 between them. In (I(14)3c)–(I(14)2b) the nodes I \ {k} lie next to each
other and node k lies between two nodes of S2. It remains to prove that all
underlined 2-edges are not used in a tour of a previous substep.

• Tours in (I(14)2a): all tours in (I(14)1) contain the 2-edge 〈k, 1, k + 1〉.
• Tours in (I(14)3a), (I(14)3b): the two substeps use different 2-edges of

type (Type-I2). So we can treat them together. All tours in (I(14)1)–
(I(14)2a) contain the edge {k, 1}.
• Tours in (I(14)4a): all tours in (I(14)1)–(I(14)3b) contain a 2-edge 〈k, ã, k+

1〉 ∈ V 〈3〉.
• Tours in (I(14)5a): in all tours in (I(14)1)–(I(14)4a) there are at least two

nodes between node n and node k on both sides. Note, Ī represents at
least one node in (I(14)4a).

• Tours in (I(14)4b)–(I(14)4e): the four substeps use different 2-edges of
type (Type-I3). So we can treat them together. All tours in (I(14)1)–

(I(14)3b) contain a 2-edge 〈k, ã, k + 1〉 ∈ V 〈3〉. The tours in (I(14)4a)–

(I(14)5a) contain a 2-edge 〈ã, b̃, k + 1〉 ∈ V 〈3〉, ã, b̃ ∈ S2, ã 6= b̃.

• Tours in (I(14)5b): in all tours in (I(14)1)–(I(14)4a), (I(14)4c) there are
at least two nodes between node n and node k on both sides. All tours
in (I(14)5a)–(I(14)4b), (I(14)4d)–(I(14)4e) contain a 2-edge 〈n, ã, b̃〉, ã, b̃ ∈
{k} ∪ I ∪ S1.

• Tours in (I(14)3c): all tours in (I(14)1)–(I(14)3a) contain an edge {k, ã},
ã ∈ S1 and all tours in (I(14)3b)–(I(14)5b) contain an edge {k, b̃}, b̃ ∈
I ∪ S1 (note n ∈ I).

• Tours in (I(14)5c): in all tours in (I(14)1)–(I(14)4a), (I(14)4c) there are
at least two nodes between node n and node k on both sides. All
tours in (I(14)5a)–(I(14)4b), (I(14)4d)–(I(14)4e) contain a 2-edge 〈n, ã, b̃〉 ∈
V 〈3〉, ã, b̃ ∈ {k} ∪ I ∪ S1. The tours in (I(14)5b) contain the edge {n, k}
and each tour in (I(14)3c) contains an edge {n, ã}, ã ∈ I.

• Tours in (I(14)2b): all tours in (I(14)1)–(I(14)3b) contain a 2-edge 〈k, ã, k+

1〉 ∈ V 〈3〉, ã ∈ S1 ∪ I, and in the tours in (I(14)4a)–(I(14)5c) there are at
least two nodes between nodes k + 1 and k on both sides.

Because, in total, the same 2-edges are underlined and used for building the
triangular structure we get exactly 3

2k
2− 3

2k− 1 tours for k ∈ {n̄+ 1, . . . , n−
2} \ {i1} (1

2(k− 1)(k− 2) with (Type-I1), k− 2 with (Type-I2), (k− 1)(k− 2)
with (Type-I3) and 2(k−1) with (Type-I4)), see proof of Claim 3 in the proof
of Theorem 2.3 in [6].

(Step(14)3) In all tours in (Step(14)1) and (Step(14)2) the nodes n−1 and n are adjacent.

Now we construct tours C n̄,3
dim,(14) = {t1L, . . . , t

nL
L } in which n− 1 and n do not

lie next to each other. Each tour will contain a 2-edge eiL, i = 1, . . . , nL, of
one of the types

(Type-L1) 〈a, n− 1, b〉, a, b ∈ {1, . . . , n− 2}, a < b,

(Type-L2) 〈a, n, b〉, a, b ∈ {1, . . . , n− 2}, a < b,
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(Type-L3) 〈n− 1, a, n〉, a ∈ {1, . . . , n− 2}.
Except for one all of these 2-edges are used as eiL. During the following
substeps we will ensure that each underlined eiL is not used in a previous
substep (the order in each substep is arbitrary) and not in (Step(14)1) and
(Step(14)2). Indeed, the substeps are only slightly modified in comparison to
the ones used in the third step in the original dimension proof in [6]. We
specify the position of Ī here and split up some of the original substeps in
several successive ones in order to simplify the presentation. We set w1 =
1, w2, w3 ∈ S2, w2 6= w3 with W = {w1, w2, w3}.

(L(14)1a) . . . a (n− 1) b Ī w1 nw2 . . . , for a ∈ {1, . . . , n− 2} \ {w1, w2}, b ∈ I \ {n−
1, n}, a < b,
(the 2-edge 〈w1, n, w2〉 is not used as an eı̂L),

(L(14)1b) . . . a (n− 1) b Ī w1 nw2 . . . , for a ∈ (S1 ∪ S2) \ {w1, w2}, b ∈ S1 \ {w1},
a > b,

(L(14)1c) . . . a (n− 1) b Ī w1 nw2 . . . , for a, b ∈ S2 \ {w2}, a < b,

(L(14)2)

{
. . .m (n− 1) Ī w1 nw3 . . . , with m ∈ (S1 ∪ S2) \W ,
. . .m (n− 1) Ī w2 nw3 . . . , with m ∈ (S1 ∪ S2) \W ,

(L(14)3) . . . a (n− 1)w1 Ī w2 nw3 . . . , for a ∈ {1, . . . , n− 2} \W,

(L(14)4) . . . w2 (n− 1) a Ī w1 nw3 . . . , for a ∈ {1, . . . , n− 2} \W,

(L(14)5a) . . . a nw1 Ī (n− 1)w2 . . ., for a ∈ (S1 ∪ S2) \W,
(L(14)5b) . . . a n b Ī (n− 1)w1 . . ., for a ∈ {w2, w3}, b ∈ (S1 ∪ S2) \W,
(L(14)5c) . . . w1 na Ī m (n− 1) o . . . , for a ∈ I \ {n− 1, n} with m, o ∈ {1, . . . , n−

2}, |{a,m, o}| = 3, and ((m, o ∈ S2, {m, o} 6⊂W ) ∨ (m ∈ I ∪ S1))

(L(14)5d) . . . a n bw1 (n − 1) Ī m . . . , for a ∈ {w2, w3}, b ∈ I \ {n − 1, n} with m ∈
{1, . . . , n− 2} \W, |{a, b,m}| = 3,

(L(14)6)


. . . w2 (n− 1)w1 Ī nw3 . . . ,

. . . w3 (n− 1)w1 Ī nw2 . . . ,

. . . w2 (n− 1)w3 Ī nw1 . . . ,

(L(14)7a) . . . a n b Ī w1 (n−1) . . . , for a ∈ {1, . . . , n−2}\W, b ∈ I \{n−1, n}, a < b,

(L(14)7b) . . . a n b Ī (n− 1) . . . , for a ∈ {1, . . . , n− 2} \ (I ∪W ), b ∈ S1 \W,a > b,

(L(14)7c) . . . a n b Ī (n− 1) . . . , for a, b ∈ S2 \W,a < b,

(L(14)8a) . . . (n− 1) an Ī . . . , for a ∈ (S1 ∪ I) \ {n− 1, n},

(L(14)8b) . . . Ī (n− 1) anm . . . , for a ∈ S2 with m ∈ S2,m 6= a.

It follows from the proof of Claim 2 in the proof of Theorem 2.3 in [6] (and is
indeed easy to check) that all underlined 2-edges are not used in a previous
substep and that we build exactly n2 − 4n + 3 tours in (Step(14)3) (1

2(n −
2)(n−3) of type (Type-L1), 1

2(n−2)(n−3)−1 of type (Type-L2) and (n−2)
of type (Type-L3)).

• All 2-edges underlined in substeps with the same number belong to the
same type and are in pairwise conflict. So we subsume all substeps with
the same number to one in the following investigations.

• Tours in (L(14)2): all tours created in (L(14)1a)–(L(14)1c) contain the
2-edge 〈w1, n, w2〉.
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• Tours in (L(14)3), (L(14)4): all tours created in (L(14)1a)–(L(14)2) contain

a 2-edge 〈a, n− 1, b〉 ∈ V 〈3〉, a, b ∈ {1, . . . , n− 2} \ {w1, w2}.
• Tours in (L(14)5a)–(L(14)5d): all tours created in (L(14)1a)–(L(14)4) con-

tain a 2-edge c ∈ {〈w1, n, w2〉, 〈w1, n, w3〉, 〈w2, n, w3〉}.
• Tours in (L(14)6): all tours created in (L(14)1a)–(L(14)5d) contain none

of the three 2-edges 〈w1, n− 1, w2〉, 〈w1, n− 1, w3〉, 〈w2, n− 1, w3〉.
• Tours in (L(14)7a)–(L(14)7c): all tours created in (L(14)1a)–(L(14)4) con-

tain a 2-edge c ∈ {〈w1, n, w2〉, 〈w1, n, w3〉, 〈w2, n, w3〉}. In (L(14)5a)–
(L(14)6) node n is adjacent to one of the nodes w1, w2, w3 ∈W .

• Tours in (L(14)8a), (L(14)8b): in all tours created in (L(14)1a)–(L(14)7c)
there are at least two nodes between nodes n− 1 and n on both sides.

It remains to check the root property of all tours constructed. There is one
large block of nodes in I, partially with one node of S1 between two of these
nodes, in all substeps except for (L(14)1c), one tour in (L(14)2), (L(14)3), some
tours in (L(14)5b)–(L(14)5c), one tours in (L(14)6), (L(14)7c) and (L(14)8b). In
these node n−1 or node n does not belong to that block but lies between two
nodes in S2. �

All in all we created exactly f(n) tours and so one tour less than in the proof of the
dimension in [6]. If |S1 ∪ S2| = 4 we get one tour less in (Step(14)1) by the special
structure of the tours and for |S1 ∪ S2| ≥ 5 we lost one tour in (Step(14)2) for k = i1.
Thus, inequalities (14) define facets of PSQTSPn

, n ≥ 7.

Theorem 16 Inequalities (15) define facets of PSQTSPn
if I, S1, S2 ⊂ V, V = I∪̇S1∪̇S2,

I ∩ S1 = ∅, I ∩ S2 = ∅, S1 ∩ S2 = ∅, S1 6= ∅, |S2| > |I| ≥ 3.

Proof. We set, w. l. o. g., I = {i1 = n−|I|+ 1, . . . , i|I| = n}, ı̄ = n− 1, S1 = {1, . . . , |S1|}.
Again we use the proof-framework of Theorem 2.3 in [6], similar to the proof of Theorem 15,
with its notation and explain the differences only. Additionally, we denote by Ī all nodes
of I and by S̄1 all nodes of S1 that are not explicitly mentioned, in arbitrary order.

(Step(15)1) By |S1| ≥ 1 and |S2| ≥ 4 we know {1, . . . , 5} ∩ I = ∅. So setting n̄ = 5
we can use the same construction as in (Step(14)1) taking a largest affinely

independent subset C n̄,1
dim of set C̄ n̄,1

dim containing 54 tours.

(Step(15)2) As long as k ∈ S1 ∪ S2 the nodes in I lie next to each other and so the
corresponding tours define roots of (14). Adaptations are needed for the case
k ∈ I. We start with a specific ordering for k = i1. Here we can use (Ii1(14)1)–

(Ii1(14)2b) because all corresponding tours define also roots of (15) by the same
arguments as in the proof of Theorem 15. Similarly for n − 2 ≥ k > i1,
constructing substeps (I(14)1)–(I(14)2b) in the proof of Theorem 15 provide
roots of (15) and can be applied here.

(Step(15)3) Some adaptations of the construction in step three are needed specifying the
position of Ī and splitting up some of the substeps in several successive ones.
We set W = {w1, w2, w3} ⊂ S2, |W | = 3.

(L(15)1a) . . . a (n− 1) b Ī w1 nw2 . . . , for a ∈ {1, . . . , n− 2} \ {w1, w2}, b ∈ I \ {n−
1, n}, a < b,
(the 2-edge 〈w1, n, w2〉 is not used as an eı̂L),
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(L(15)1b) . . . a (n− 1) b Ī w1 nw2 . . . , for a ∈ (S1 ∪ S2) \ {w1, w2}, b ∈ S1, a > b,

(L(15)1c) . . . a (n− 1) b ηĪ,S̄2
w1 nw2 S̄1 . . . , for a, b ∈ S2 \ {w1, w2}, a < b, with

ηĪ,S̄2
denoting a path of all nodes in Ī = I \ {n − 1, n} and in S̄2 =

S2\{a, b, w1, w2}. This path starts with a node v ∈ Ī, then an alternating
sequence of the remaining nodes in S̄2 and in Ī \ {v}, (so that each node
w ∈ I lies between two nodes of S2) and depending of the size of S2 in
comparison to I a block of nodes in S2.

(L(15)2)

{
. . . 1 (n− 1) Ī w1 nw3 . . . ,
. . . 1 (n− 1) Ī w2 nw3 . . . ,

(L(15)3a) . . . w1 (n− 1) a Ī w2 nw3 . . . , for a ∈ {1, . . . , n− 2} ∩ (I ∪ S1),

(L(15)3b) . . . w1 (n− 1) a ηĪ,S̄2
w2 nw3 S̄1 . . . , for a ∈ {1, . . . , n−2}∩ (S2 \W ) with

ηĪ,S̄2
as above with Ī = I \ {n− 1, n}, S̄2 = S2 \ ({a} ∪W ),

(L(15)4a) . . . w2 (n− 1) a Ī w1 nw3 . . . , for a ∈ {1, . . . , n− 2} ∩ (I ∪ S1),

(L(15)4b) . . . w2 (n− 1) a ηĪ,S̄2
w1 nw3 S̄1 . . . , for a ∈ {1, . . . , n−2}∩ (S2 \W ) with

ηĪ,S̄2
as above with Ī = I \ {n− 1, n}, S̄2 = S2 \ ({a} ∪W ),

(L(15)5a) . . . a n b Ī 1 (n− 1) . . ., for a ∈W, b ∈ I \ {n− 1, n},
(L(15)5b) . . . a n b Ī (n− 1) . . ., for a ∈W, b ∈ S1,

(L(15)5c) . . . a n b Ī 1 (n− 1) . . . , for a ∈W, b ∈ S2 \W

(L(15)6)


. . . w1 (n− 1)w2 ηĪ,S̄2

nw3 S̄1 . . . ,

. . . w1 (n− 1)w3 ηĪ,S̄2
nw2, S̄1 . . . ,

. . . w2 (n− 1)w3 ηĪ,S̄2
nw1, S̄1 . . . ,

with ηĪ,S̄2
as above with Ī = I \ {n− 1, n}, S̄2 = S2 \W ,

(L(15)7a) . . . a n b Ī 1 (n − 1) . . . , for a ∈ {1, . . . , n − 2} \ (S1 ∪ W ), b ∈ I \ {n −
1, n}, a < b,

(L(15)7b) . . . a n b Ī (n− 1) . . . , for a ∈ {1, . . . , n− 2} \ (I ∪W ), b ∈ S1, a > b,

(L(15)7c) . . . a n b Ī (n− 1) . . . , for a, b ∈ S2 \W,a < b,

(L(15)8a) . . . S̄1 Ī (n− 1) an . . . , for a ∈ (S1 ∪ I) \ {n− 1, n},

(L(15)8b) . . . Ī (n− 1) anm . . . , for a ∈ S2 with m ∈ S2,m 6= a,

(L(15)7d) . . . a n b Ī (n− 1) . . . , for a ∈ {1, . . . , n− 2} ∩ S1, b ∈ I \ {n− 1, n}.
It follows from the proof of Claim 2 in the proof of Theorem 2.3 in [6] and from
the proof of Theorem 15 (or is easy to check) in combination with the fact
that no 2-edge 〈ã, n, b̃〉, ã ∈ S1, b̃ ∈ I, is contained in the tours in (L(15)8a)–
(L(15)8b) that all underlined 2-edges are not used in a previous substep and
that we build exactly n2 − 4n + 3 tours in (Step(15)3). It remains to check
the root property of all tours constructed.

• Tours in (L(15)1a), (L(15)1b), (L(15)2), (L(15)3a), (L(15)4a), (L(15)5c),
(L(15)7c), (L(15)8b), (L(15)7d): the tours contain one large block of nodes
in I \{n}, partially with one node of S1 between two of these nodes, and
n lies between two nodes that belong to S2.

• Tours in (L(15)1c), (L(15)3b), (L(15)4b), (L(15)6): each node in I lies
between two nodes that belong to S2.
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• Tours in (L(15)5a), (L(15)5b), (L(15)7a), (L(15)7b), (L(15)8a): the tours
contain one large block of nodes in I, partially with one node of S1

between two of these nodes.

All in all we created the same number of tour as in the proof of Theorem 15, more precisely
f(n) tours. So inequalities (15) define facets of PSQTSPn

, n ≥ 8. �
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