
The Spectral Bundle Method

with Second-Order Information

C. Helmberg M. L. Overton F. Rendl

Preprint 2012-10

Fakultät für Mathematik

Impressum:
Herausgeber:
Der Dekan der
Fakultät für Mathematik
an der Technischen Universität Chemnitz
Sitz:
Reichenhainer Strae 39
09126 Chemnitz
Postanschrift:
09107 Chemnitz
Telefon: (0371) 531-22000
Telefax: (0371) 531-22009
E-Mail: dekanat@mathematik.tu-chemnitz.de
Internet:
http://www.tu-chemnitz.de/mathematik/
ISSN 1614-8835 (Print)

The Spectral Bundle Method with Second-Order Information

C. Helmberg∗ M.L. Overton† F. Rendl‡

September 10, 2012

Abstract

The spectral bundle method was introduced by Helmberg and Rendl [13] to solve a class

of eigenvalue optimization problems that is equivalent to the class of semidefinite programs

with the constant trace property. We investigate the feasibility and effectiveness of including

full or partial second-order information in the spectral bundle method, building on work of

Overton and Womersley [20, 23].

We propose several variations that include second-order information in the spectral bundle

method and describe efficient implementations. One of these, namely diagonal scaling based

on a low-rank approximation of the second-order model for λmax, improves the standard

spectral bundle method both with respect to accuracy requirements and computation time.

1 Introduction

Given C,A1, . . . , Am ∈ Sn, the space of n × n real symmetric matrices, and a vector b ∈ Rm,

consider the optimization problem

(E) min
y∈Rm

λmax(C −
∑
i

yiAi) + bT y,

where λmax denotes the largest eigenvalue. The function

f(y) := λmax(C −
∑
i

yiAi) + bT y

is convex but nonsmooth. Eigenvalue optimization problems of this kind have attracted much

research over the past few decades, including the work of Cullum et al. [2], Overton [20, 21],

Schramm and Zowe [25], Jarre [15], Overton and Womersley [23], Shapiro and Fan [26], Helmberg

and Rendl [13] and Oustry [18, 19]. It is well known that the class of problems of the form (E)

is equivalent to the class of semidefinite programs (SDP) with the constant trace property, as

briefly discussed in the next section. It is this equivalence, together with the continued emerging

importance of SDP and its applications — with the constant trace property holding in many case

— that largely motivates our work.

∗Fakultät für Mathematik, Technische Universität Chemnitz, Germany
†Courant Institute of Mathematical Sciences, New York University, USA. Supported in part by National Science

Foundation Grant DMS-1016325
‡Institut für Mathematik, Alpen-Adria Universität Klagenfurt, Austria

1

In order to be able to present our ideas more clearly, we summarize a somewhat simplified

version of the spectral bundle algorithm of [13] in Section 3. In Section 4, we summarize the

second-order method of [23]. Then in Section 5, we explain how to incorporate the second-

order model into the spectral bundle method. A closely related algorithm, also incorporating

such second-order information for the maximum eigenvalue function into a first-order bundle

method, was proposed and analyzed by Oustry in [19]. However, this method has not been

used much in practice. The difficulty is that the introduction of second-order approximations

substantially raises the computational cost per iteration, resulting in an algorithm that is simply

not competitive with interior-point methods for SDP.

The same is true of the second-order method that we introduce at the beginning of Section 5,

but this is not the method that we advocate. Instead, we develop several much less computation-

ally intensive variants in Section 5.4, after first discussing two important technical issues (how

to estimate the multiplicity of the maximum eigenvalue and how to collect the corresponding

active subspace during the bundle update) in sections 5.2 and 5.3. These variants are based on

low-rank approximations of this matrix, which is then approximated itself and finally reduced

to its diagonal. The necessity to consider the entire active subspace has consequences for the

scope of such scaled spectral bundle methods as explained in Section 5.5. The effectiveness of

the methods is illustrated by numerical results that are reported in Section 6. Finally, we make

some conclusions in Section 7.

2 Eigenvalue Optimization and Constant Trace Semidefinite Pro-

grams

Consider the primal semidefinite program

(P) max
X∈Sn

〈C,X〉 such that AX = b, X � 0

and its dual

(D) min
u∈Rm

bTu such that ATu− C � 0.

As usual, X � 0 means that X is in Sn+, the cone of symmetric, positive semidefinite matrices.

The notation 〈·, ·〉 refers to the trace inner product on Sn, and AX represents the vector with

components 〈Ai, X〉 for i = 1, . . . ,m, with ATy =
∑

i yiAi defining its adjoint. It is well known

[29] that if both (P) and (D) have strictly feasible points, then their optimal values are the same

and are attained by optimizers X and u satisfying the complementarity equation X(ATu−C) = 0.

We say that the operator A has the constant trace property if the identity matrix I is in the

range of AT, i.e., ∃η such that ATη = I. The constant trace property implies constant trace of

primal feasible matrices, that is

AX = b implies tr (X) = 〈I,X〉 =
〈
ATη,X

〉
= 〈η,AX〉 = ηT b.

It is shown in [13] that, if the constant trace property holds, then there is a simple relationship

between the solution sets of (D) and the problem miny∈Rm(ηT b)λmax(C − ATy) + bT y, which is

(E) for ηT b = 1.

2

The subdifferential of f at a given point y is given by

∂f(y) = {b−A(W) :
〈
W,C −ATy

〉
= λmax(C −ATy), W ∈ Wn}

with Wn := {W ∈ Sn : trW = 1,W � 0}.

Since f is convex, y∗ solves (E) if and only if 0 ∈ ∂f(y∗). This can be rewritten as follows. Let

On,r denote the n× r matrices with orthonormal columns, i.e., P ∈ On,r satisfies P TP = I, the

identity matrix of order r. Suppose y∗ solves (E), and let λ∗ = λmax(C−ATy∗) have multiplicity

r∗. Then there exists P ∗ ∈ On,r∗ and U∗ ∈ Wr satisfying the following conditions:

• λ∗I � C − ATy∗ and (C − ATy∗)P ∗ = λ∗P ∗, i.e., λ∗ is indeed the largest eigenvalue of

C −ATy∗ and it has multiplicity r∗.

• A(P ∗U∗(P ∗)T) = b, i.e., 0 ∈ ∂f(y∗).

We say that P ∗ and U∗ satisfying these conditions furnish an optimality certificate of y∗ for (E).

3 The Spectral Bundle Method

We now recall the main idea of bundle methods [14] and more concretely of the spectral bundle

method [13].

Given a first order oracle of a nonsmooth convex function f , that is a routine returning the

function value and a subgradient of f at a given point y, bundle methods use the subgradient

information to form a minorizing model of f . A next candidate y+ is determined with respect to

a current center of stability ŷ by minimizing the model augmented by a quadratic term t
2‖y− ŷ‖

2

where t is a weight controlling the distance from the candidate to the center as in a trust region

approach. If evaluation of f at the candidate exhibits sufficient decrease, the methods perform a

descent step by moving the center to the candidate. Otherwise, in a null step, the center is not

modified but the new subgradient information is used to improve the model.

Second-order information can be incorporated in bundle methods by replacing the augmenting

term ‖y − ŷ‖2 by a general quadratic term ‖y − ŷ‖2Ht
= 〈y − ŷ, Ht(y − ŷ)〉 with

Ht = H + tI � 0

for some H � 0 and t > 0. This is often called general scaling and is central to the approach

presented here. Therefore we describe the most important steps of the spectral bundle algorithm

for general scaling, deferring discussion of what choice to use for H until the later sections.

Note that for any W ∈ Wn the function

fW (y) :=
〈
C −ATy,W

〉
+ bT y = 〈C,W 〉+ 〈b−AW, y〉

is a linear minorant of f . The spectral bundle method uses the maximum over a subset Ŵ ⊆ Wn

of the minorants to describe a cutting model

gŴ(y) := max
W∈Ŵ

fW (y) ≤ gWn(y) = f(y).

3

To simplify the notation in what follows, we focus on the case where Ŵ is defined by some

P ∈ On,k as

Ŵ = {PUP T : U ∈ Sk, trU = 1, U � 0} (1)

although in practice, it is necessary to consider a slightly more general set

{PUP T + αW : trU + α = 1, U ∈ Sr, U � 0, α ∈ R, α ≥ 0}

where W ∈ Sn+ is used to “aggregate” residual information in order to allow for fewer columns

in P . A key point of the spectral bundle method is that the columns of the matrix P are chosen

to be approximate eigenvectors for the largest eigenvalues of C −ATŷ at the current or previous

values of ŷ. Given a bundle of approximate eigenvectors P , a scaling matrix H � 0, a weight

t > 0 and a center of stability ŷ, the next candidate is

y+ = argmin
y∈Rm

{gŴ(y) + 1
2‖y − ŷ‖

2
Ht
} = argmin

y∈Rm
max
W∈Ŵ

{〈C,W 〉+ 〈b−AW, y〉+ 1
2‖y − ŷ‖

2
Ht
}. (2)

Compactness and convexity of the set Ŵ and strong convexity of the augmented function in y

ensure the existence of saddle points, so we may exchange min with max. For any given W , the

minimizing y is

y(W) := ŷ −H−1
t (b−AW), (3)

so, substituting this into the right-hand side of (2), we must maximize the dual functional

〈C,W 〉+ 〈b−AW, ŷ〉 − 1
2‖b−AW‖

2
H−1

t
.

For Ŵ as in (1), a maximizing W+ = PU+P T is defined by

U+ ∈ argmax{
〈
C,PUP T

〉
+
〈
b−APUP T , ŷ

〉
− 1

2‖b−APUP
T ‖2

H−1
t

: trU = 1, U � 0}

or equivalently

U+ ∈ argmax{
〈
P T (C −ATŷ)P ,U

〉
+ bT ŷ − 1

2‖b−APUP
T ‖2

H−1
t

: trU = 1, U � 0}. (4)

This convex optimization problem in Sk, with a quadratic objective and a semidefinite constraint,

is called a quadratic SDP. We assume that k is small enough that it can be solved efficiently

by a standard interior-point method. Having determined U+, the new candidate is given by

y+ = y(W+) = y(PU+P T). If the progress predicted by the model value gŴ(y+) = fW+(y+) is

small in relative scale, i.e., if for given εopt > 0

f(ŷ)− fW+(y+) ≤ εopt

max{1, trH/n}
(|f(ŷ)|+ 1), (5)

then the algorithm stops. Here the denominator max{1, trH/n} compensates for the influence

of H on the step size in (3). Otherwise, f is evaluated at y+ and actual progress f(ŷ) − f(y+)

is compared to the predicted progress f(ŷ)− fW+(y+). If this ratio is good, say f(ŷ)− f(y+) >

κ[f(ŷ)− fW+(y+)] for some κ ∈ (0, 1), the method performs a descent step by moving its center

of stability to the candidate, that is, setting ŷ ← y+. Otherwise, in a null step, the center of

stability is left unchanged and the model Ŵ is corrected by updating P . Summarizing, we have

the following basic version of the spectral bundle algorithm.

4

Algorithm 1 (Spectral Bundle Method)

Input : ŷ ∈ Rm, εopt ≥ 0, κ ∈ (0, 1), κ̄ ∈ (κ, 1), Hmin
t and Hmax

t with 0 ≺ Hmin
t � Hmax

t .

SB0 (Initialization).

Compute f(ŷ) and initialize P to contain some approximate eigenvectors for the largest eigen-

values of C −ATŷ. Initialize Ht � 0 so that Hmin
t � Ht � Hmax

t .

Iteration: repeat the following steps

SB1 (Candidate Finding).

Compute U+ and W+ = PU+P T by solving (4) and set y+ ← y(W+) using (3). If

f(ŷ)− fW+(y+) ≤ εopt

max{1, trH/n}
(|f(ŷ)|+ 1),

stop.

SB2 (Evaluation and Descent Test).

For B+ := C−ATy+ compute a Ritz vector v, with ‖v‖ = 1, so that at least one of the following

cases applies:

SB3a (Null Step).

f(ŷ)− fvvT (y+) ≤ κ̄[f(ŷ)− fW+(y+)]

In this case, leave ŷ unchanged.

SB3b (Descent Step).

Here we assume v to satisfy fvvT (y+) = f(y+); see the remark below.

f(ŷ)− fvvT (y+) > κ[f(ŷ)− fW+(y+)]

In this case set ŷ ← y+.

SB4 (Update Bundle and Scaling Matrix).

Update the bundle P . Details will be given later, but if a null step was taken (Step SB3a), the

update must ensure that Ŵ+ ⊇ conv{W+, vvT } and Ht � H+
t � Hmax

t . If a descent step was

taken (SB3b), update Ht so that Hmin
t � Ht � Hmax

t .

Remark 1 The main work in evaluating f and updating P is the computation of λmax(C−ATy+).

In this computation, sparsity or other structural properties of C − ATy+ are exploited by an

iterative method of Lanczos type. It generates a sequence of Ritz pairs consisting of Ritz vectors

vi ∈ Rn, ‖vi‖ = 1, and corresponding Ritz values vTi (C−ATy+)vi that converge to λmax(C−ATy+)

from below. Note that via Wi = viv
T
i ∈ Wn each Ritz vector generates a linear minorant satisfying

fWi(y
+) ≤ f(y+). As soon as some Ritz value gives rise to a value fWi(y

+) fulfilling the null step

criterion (see Step SB3a above), the Ritz vector vi provides sufficient information to proceed

with a null step of the bundle method and neither the precise value λmax(C − ATy+) nor a

corresponding eigenvector needs to be computed. Otherwise the process is continued until the

5

maximum eigenvalue is well approximated together with a corresponding eigenvector; see step

SB3b.

To summarize, the evaluation of f in step SB2 results in a matrix V = (v1, . . .) of Ritz vectors

with v = v1 and associated Ritz values

vT1 B
+v1 ≥ vT2 B+v2 ≥ . . .

and V TV = I. Regardless of the null step or descent step decision, the matrix P is then updated.

For details we refer to [13, 11]. In theory, satisfying the condition Ŵ+ ⊇ conv{W+, vvT } during

null steps suffices to ensure f(ŷ)→ inf f over all descent steps by the standard analysis of bundle

methods [11].

In order to motivate our second-order enhancements to this algorithm, we first describe in

the following section a second-order method to minimize f(y). Then we will explain the changes

to Algorithm 1 which are needed to incorporate second-order information.

4 A Second-Order Method to Minimize f

It is well known that the maximum eigenvalue function λmax is differentiable around a given

matrix X ∈ Sn if and only if the maximum eigenvalue of X is simple. In this case, the formula

for the second derivative of λmax can be found, for example, in [17] and (less explicitly) in [16]. If,

on the other hand, the maximum eigenvalue of X has multiplicity r > 1, the maximum eigenvalue

function is smooth near X only if it is restricted to the submanifold of Sn consisting of matrices

whose maximum eigenvalue has multiplicity r. Thus, the key idea for second-order methods is

to model the second-order behavior of the maximum eigenvalue function on such a manifold.

Using this idea, a second-order method to solve (E) (for the case b = 0) was given in [20], based

on a parameterization used for inverse eigenvalue problems by Friedland, Nocedal and Overton

[7] and also, less directly, a second-order model for semidefinite constraints due to Fletcher [6].

Overton and Womersley [23] and Shapiro and Fan [26] independently analyzed the algorithm of

[20] (extended to the case where the matrix depends smoothly, not necessarily affinely, on param-

eters), establishing its local quadratic convergence under nondegeneracy assumptions. These two

approaches to proving quadratic convergence used quite different techniques; a third approach

may be found in [4]. Oustry [19] introduced the same quadratic model into a bundle method for

(E), proving global and local quadratic convergence under nondegeneracy assumptions, using yet

another analytical technique based on U-Lagrangian theory [18].

In order to understand the enhancements of the standard spectral bundle method, which are

the main topic of this paper, we now provide a brief description of Iteration 4 from Overton and

Womersley [23], which we rephrase in the terminology of this paper, and which we call the OW

method. Let y∗ be a unique minimizer of f(y) and let

C −ATy∗ = Q∗Λ∗(Q∗)T

be the spectral decomposition at y∗. Assume that λmax(C −ATy∗) has multiplicity r.

One iteration of the OW method can be described as follows. Let ŷ be the current iterate,

assumed to be close enough to y∗ such that λmax(C −ATŷ) has approximate multiplicity r.

6

Algorithm 2 (Second-Order Iteration from [23])

OW1 Compute the spectral decomposition

C −ATŷ = Q̂Λ̂Q̂T

with λ̂1 ≈ . . . ≈ λ̂r > λ̂r+1 ≥ . . . ≥ λ̂n and Q̂Q̂T = I, with Q̂ = [Q̂1 Q̂2], where the columns

of Q̂1 are eigenvectors corresponding to λ̂1, . . . , λ̂r and the columns of Q̂2 are eigenvectors

for the remaining eigenvalues.

OW2 Solve the least-squares problem

Ũ = argmin
U∈Sr

{‖b−A(Q̂1UQ̂
T
1)‖2 : trU = 1}.

OW3 Define the m×m second-order matrix H(Ũ) by

H(Ũ)ij = 2 tr (AiQ̂1ŨQ̂
T
1 AjQ̂2(λ̂1I −D2)−1Q̂T2), (6)

where D2 = diag(λ̂r+1, . . . , λ̂n).

OW4 Compute the new iterate y from

min
y∈Rm,δ∈R

1

2
‖y − ŷ‖2

H(Ũ)
+ bT y + δ such that δI = Q̂T1 (C −ATy)Q̂1

and set ŷ := y.

In Theorem 7 from [23] it is shown that under some regularity assumptions, this iteration

converges quadratically to y∗, provided that the starting point ŷ is close enough to y∗.

We close this section with two remarks.

Remark 2 The matrix H(Ũ) in (6) corresponds to the second-order formula from [23], or more

precisely the variant W̃ discussed there, and is also the formula used in [20] (for a slightly different

problem) and in [19]. Using the vec operator and the Kronecker product, it is equivalent to

H(Ũ) = 2Ā(Q1 ⊗Q2)(Ũ ⊗ (λ̂1I −D2)−1)(Q1 ⊗Q2)T ĀT, (7)

where ĀT = [vec(A1), . . . , vec(Am)] and D2 = diag(λ̂r+1, . . . , λ̂n).

Note, as pointed out in [12], the similarity of the structure of this matrix to that of the system

matrix that must be formed in primal-dual interior-point methods for SDP [28], the key difference

being that H(Ũ) is well defined in the limit as y → y∗ since the quantities being inverted in the

central factor do not converge to zero as long as the multiplicity r is estimated correctly. Note

also, however, that H(Ũ) will be singular whenever the rank of Ũ is smaller than r.

Remark 3 We consider reformulating step OW4 as follows, reflecting the philosophy of the

spectral bundle method. The equation

δI = Q̂T1 (C −ATy)Q̂1

7

imposes, to first-order, an eigenvalue of C −ATy with multiplicity r and value δ. We change it

to the semidefinite constraint

δI � Q̂T1 (C −ATy)Q̂1

requiring that δ is at least as large as the largest eigenvalue of the matrix on the right-hand side.

Making this substitution, step OW4 becomes

min
y∈Rm

1

2
‖y − ŷ‖2

H(Ũ)
+ bT y + λmax(Q̂T1 (C −ATy)Q̂1).

which can be rewritten as

min
y∈Rm

max
U∈Sk

{
〈
Q̂T1 (C −ATy)Q̂1, U

〉
+ bT y +

1

2
‖y − ŷ‖2

H(Ũ)
: tr (U) = 1, U � 0}. (8)

This is now a problem of the form (2) with t = 0 and Q̂1 taking the role of the bundle P .

Step OW2 is based on the assumption that ŷ is close enough to the optimum y∗, so that r, the

multiplicity of the largest eigenvalue, is known a priori and the minimizing matrix Ũ is positive

definite by continuity (given a regularity assumption). In (8) we impose the semidefinite con-

straint on U explicitly, allowing us to change the multiplicity estimate r for the largest eigenvalue

dynamically, as described below.

The full second-order iteration involves several operations which are acceptable only for small

problems. A full spectral decomposition, as required in OW1, limits the size n of the primal

space to n ≈ 1000. The second-order matrix H(Ũ) of order m ×m is generically dense, even if

the Ai are sparse. This puts a limit on m, as is the case for interior-point methods. In the next

section we describe an extension of the spectral bundle method that incorporates second-order

information efficiently.

5 Incorporating Second-Order Information into the Spectral Bun-

dle Method

In this section we give several ways to define the scaling matrix Ht in the spectral bundle method

(Algorithm 1) using second-order information, inspired by the OW method (Algorithm 2).

The spectral bundle method is driven by the n × k bundle matrix P , which is used in step

SB1 to solve (4) yielding U+ and the new trial point y+ = y(PU+P T). In constrast the OW

iterations are based on the spectral decomposition of C−ATŷ, given by the orthogonal eigenvector

matrix Q̂. In order to incorporate second order information into the spectral bundle method, we

aim at using Q̂ to define the scaling matrix Ht. To maintain computational efficiency we also

would like to avoid a full factorization to get Q̂. Thus we extend the original SB method by

including, in addition to the bundle matrix P , a matrix Q of order n× `, where k ≤ ` ≤ n, which

contains approximate eigenvectors of C −ATy+. The matrix Q will play the role of a truncated

approximation to Q̂ in the OW method. The modified SB method is therefore driven by the

bundle P and the matrix Q of approximate eigenvectors of C − ATy+. Both P and Q will be

updated in each iteration.

We now provide an overview of the modifications to the spectral bundle method which allow

us to include second order information in the scaling matrix Ht. Mathematical justifications

8

and implementation details will be described in the following subsections. At the beginning of

each iteration of the modified spectral bundle method (MSB) in Algorithm 3 below we have the

following data:

ŷ . . . current candidate solution with objective function value f(ŷ),

P . . . n× k bundle matrix with P TP = I,

Q . . . n× ` eigenvector estimates of C −ATy+ with QTQ = I,

Ht � 0 . . . scaling matrix.

Algorithm 3 (Modified Spectral Bundle Method)

MSB1 (Determine a new trial point y+).

Compute U+ as in (4). Set W+ = PU+P T and y+ = ŷ −H−1
t (b−AW+); see (3).

MSB2 (Evaluation of f(ŷ)).

For B+ := C −ATy+ use a Lanczos type method to generate Ritz vectors V = (v1, . . .) and Ritz

values vT1 B
+v1 ≥ vT2 B+v2 ≥

MSB3 (Null step or descent step).

Decide on whether to take a null step or a descent step as in Algorithm 1.

MSB4 (Update P,Q and Ht).

MSB4a (Estimate eigenvectors q̄i and eigenvalues λ̄i of B+).

Let V̄ be an orthonormal basis of [Q V]. Compute an eigenvalue decomposition of V̄ TB+V̄ =

SΛ̄ST with STS = I and Λ̄ = diag(λ̄i) with λ̄1 ≥ λ̄2 ≥ . . . and set Q̄ = (q̄1, . . .) = V̄ S. Thus

λ̄i = q̄Ti B
+q̄i. For details see Section 5.1.

MSB4b (Multiplicity estimate).

Determine an estimate for the multiplicity r of λmax(B+). Details are given in Section 5.2.

MSB4c (Update P and Q).

Use P and Q̄ to get an update P+ for P and use Q̄ to get an update Q+ for Q. Set P ← P+, Q←
Q+. Details are given in Section 5.3.

MSB4d (Minimum norm approximate subgradient).

Partition Q = [Q1 Q2] where Q1 is n× r. Solve

Ũ = argmin
U∈Sr

{‖b−A(Q1UQ
T
1)‖2 : trU = 1, U � 0}. (9)

This corresponds to step OW2 of Algorithm 2, except that a semidefinite constraint is included

in (9); see Remark 3.

MSB4e (Update the scaling matrix Ht).

Set Ht to an approximation of the second-order matrix H(Ũ) defined in (7) as explained below

in Section 5.4. This corresponds to step OW3, as explained in Remark 2. The matrix Ht is then

used in the next iteration in step MSB1; see also Remark 3.

Summarizing, the new trial point ŷ is determined through the bundle P and the scaling matrix

Ht which mimicks the second order term H(Ũ) in step OW4; compare in particular (8) and (2).

9

A quadratic SDP of the form (4) has to be solved. In contrast to Algorithm 2 we avoid a full

spectral decomposition of B+, approximating only the largest eigenvalues of B+; see MSB4a.

The update of Ht requires the solution of an additional quadratic SDP to get the matrix Ũ which

forms the basis for the second order matrix H(Ũ); see (7), and the variants described in Section

5.4 below.

5.1 Approximate Eigenvalues and Eigenvectors

The evaluation of f at y+ is done approximately, as explained in section 3, using a Lanczos-type

algorithm. It produces an approximation to λmax(B+) together with a set of Ritz vectors, which

are collected in the matrix V , where V TV = I. We combine the new Ritz vectors and the matrix

Q into a new matrix Q̄ as follows. First, let V̄ form an orthonormal basis of [Q V]. We determine

the eigenvalue decomposition of the projected matrix V̄ TB+V̄ , given as

SΛ̄ST = V̄ TB+V̄ ,

with STS = I, Λ̄ = diag(λ̄i) and λ̄1 ≥ λ̄2 ≥ . . ., and set Q̄ = V̄ S. Thus Λ̄ = Q̄TB+Q̄. Note that, if

the iterative eigenvalue solver returned a true eigenvector for λmax(B+), then λ̄1 = λmax(B+). In

any case, by continuity of the eigenspaces, the largest {λ̄i} will become highly accurate estimates

of the largest eigenvalues of B+ whenever y converges. Thus, these values are employed as

estimates for λi(B
+).

5.2 Estimating the Eigenvalue Multiplicity

A key challenge is to devise a stable approach for determining a good estimate of the multiplicity

r of the maximum eigenvalue. In theory (see [12]), once the algorithm is close enough to an

optimal solution y∗, there will be a gap of significant relative size between λr and λr+1.

In practice, however, even quite complex schemes based on observing the ratio (λr−λr+1)/(λ1−
λr+1) fail quite regularly. For example, it might happen that the multiplicity estimate r stabilizes

at a certain value for several iterations and then suddenly drops to r = 1. Such misclassifications

have dire consequences for the performance of the bundle method, increasing the number of null

steps dramatically. Instead, we estimate the multiplicity using the following two ingredients.

As a first estimate, r should at least embrace all eigenvalues of B+ within a relative precision,

say τ , of λmax. (We used τ = 10−6.) The resulting lower bound based on the λ̄i is

r = max{j ∈ {1, . . . , k} : λ̄1 − λ̄i ≤ τ(|λ̄1|+ 1) ∀i = 1, . . . , j}.

Secondly, we use the optimizer U+ of (4) in step SB1 based on the following intuition. Once

we are close enough to an optimal solution y∗, the matrix W+ = PU+P T approaches an optimal

solution of (P), so the columns of P approach the eigenspace of λmax(C − ATy∗). The rank of

W+, or equivalently U+, therefore serves as another estimate for the multiplicity r. As long as

k, the number of columns in P , is at least r∗, the actual multiplicity of λmax(C − ATy∗), this

provides another reasonable estimate for r. In order to identify the nonzero eigenvalues of U+ we

make use of the idea of Tapia indicators [5] as follows. In solving (4) by an interior-point method,

let U ′ be the last iterate before the algorithm terminates with the solution U+ and denote

the corresponding eigenvalues by λi(U
′) and λi(U

+) sorted nonincreasingly for i = 1, . . . , k.

10

Generically, the “active” eigenvalues converge to some fixed positive value while inactive ones

converge to zero with the same speed as the barrier parameter, so the criterion estimates the

decrease from λi(U
′) to λi(U

+). In our implementation the barrier parameter is typically reduced

by some value in (0, 0.3], leading to the rather simple estimate

r̄ = max{j ∈ {1, . . . , k} : λi(U
+) ≥ 0.8λi(U

′) ∀i = 1, . . . , j}.

The final multiplicity estimate is then

r = max{r̄, r}.

5.3 The Update Mechanism for P and Q in step MSB4c

We recall that in the spectral bundle method the columns of P should contain approximate

eigenvectors for the largest eigenvalue of C −ATy at the current and possibly previous iterates.

Thus, to update P we use the old bundle P and also the eigenvector estimates for B+ in Q̄. Here

are the details for the update of the n× k bundle matrix P to a matrix P+.

1. First we include min(r+3, k) eigenvectors wi of PU+P T corresponding to its largest eigen-

values.

2. Secondly we also consider including additional eigenvectors wi of PU+P T , by investigating

their contribution to the second-order matrix H. For inclusion of the eigenvector wi in P+,

we consider as an indicator for the importance of the i-th eigenvector to the model the

contribution of the corresponding q̄i to the trace of H if q̄i appears as a column of Q̄2,

ρi =

m∑
h=1

q̄Ti AhPU
+P TAhq̄i(λ̄1 − λ̄i)−1.

We include wi in P+ if ρi is large enough. Assuming prescaled ‖Ah‖ = 1 for all h = 1, . . . ,m

we include wi in P+ if ρi > m, i.e., if the average contribution to each diagonal element of

H is at least one.

3. Finally, we include 5 columns of Q̄ corresponding to the largest eigenvalue estimates λ̄i.

The total number of columns included from P in 1. and 2. is denoted kP and will be used in

Section 5.4.3, and the total number of columns of P and Q added from 1., 2. and 3. is denoted

k+. Since the columns from Q are not orthogonal to the ones from P , the resulting set must be

orthogonalized.

A straightforward update for Q would simply be to use Q̄. Since we also have computational

efficiency in mind, we select only a subset of the columns of Q̄, based on the following intuition.

In view of the definition of H(Ũ), it seems reasonable to discard eigenvectors corresponding to

eigenvalues significantly smaller than the largest.

The update of Q will be denoted Q+, and is thus formed by taking some, but not all, vectors

of Q̄ as follows. The updated matrix Q+ is chosen to contain the first k+ and at least na

11

further columns of the matrix Q̄ for some adaptive parameter na ∈ N described in Section 5.4.2.

Furthermore, we drop all indices i > k+ + na with

λ̄i < λ̄1 −min{10−2(1 + |λ̄1|), 10(λ̄1 − λ̄r+1)}.

Of the remaining ones we keep the first few with contribution ρi > m/10 to H. Because the

computation of the ρi is quite involved, this is restricted to the update on descent steps.

5.4 Four Choices of H Inspired by the Second-Order Method

We now describe four variants for choosing H, the first one being the full Newton method which is

then, for the sake of computational efficiency, approximated and simplified, the final simplification

being a diagonal scaling heuristic.

The spectral bundle method is started without scaling, i.e., initially H = 0 so Ht = tI with

t being updated as described in [11]. From the beginning, however, the bundle update scheme

of Section 5.3 is employed, so that all required information is available once scaling is started.

Scaling is used once a relative precision of 10−2 has been reached, i.e., when f(ŷ)− fW+(y+) ≤
10−2(|f(ŷ)|+ 1). From then on, a new scaling matrix H is formed at every descent step and Ht

is set to H + tI. During null steps, however, Ht � H+
t is required to ensure convergence. To

meet this, H is not altered during null steps.

5.4.1 The Full Second-Order Model

This variant implements the full second-order model as explained in Section 4. We compute the

full spectral decomposition C − ATy+ = Q̂Λ̂Q̂T . We also compute Ũ as well as H = H(Ũ) as

defined in (9) and (6). Also, the bundle P is replaced by P = Q̂1, so in fact the bundle update

scheme of the previous section would only be needed for null steps.

Even though H(Ũ) may be singular, Ht = H + tI is positive definite because t > 0 provides

the necessary regularization. Still, a large t might be appropriate when H = 0 but may hinder

progress in the presence of a full Newton matrix H. Therefore, when H is nonzero for the

first time, we reinitialize t by the following heuristic. Let t̃ denote the minimal value of t over

all iterations up to this point, then t ← max{10−3 · miniH(Ũ)ii,min{10−3, t̃/10}}. During

subsequent null steps the heuristic for choosing t as described in [11] is used but the t of the next

descent step is not allowed to exceed ten times the value of the previous t.

The eigenvalue decomposition requires O(n3) operations and takes roughly 5 times the com-

putation time of a dense Cholesky factorization. For large structured problems this exceeds the

work required for computing an extremal eigenvalue via Lanczos methods significantly. The cost

of computing H(Ũ) is comparable in cost to forming the system matrix in semidefinite interior-

point methods and is typically by far the most expensive step unless m is small or the Ai have

very special structure. The Cholesky factorization of H(Ũ) is also required, to define the co-

efficient matrices in the quadratic SDP which must be solved in (8). This amounts to O(m3)

arithmetic operations. Because a new H(Ũ) and its factorization must be computed for each

descent step, the iterations of interior-point methods can be expected to be at least as fast.

Thus, from a computational perspective the bundle method with full second-order scaling is not

suitable for large-scale semidefinite optimization and cannot be expected to be able to compete

with interior-point methods even for medium scale problems.

12

5.4.2 A Low-Rank Variant of the Second-Order Model

In practice, as explained in Section 3, it is impractical to compute all eigenvalues of B+ =

C − ATy+, so we assume in this subsection that only the matrix Q = (q1, . . . , q`) (with ` <

n) together with the corresponding approximate eigenvalues λ̄i = qTi B
+qi is available. This

eliminates the possibility of using the full second-order model. However, partitioning Q = [Q1, Q2]

with Q1 consisting of the first r columns and Q2 consisting of the remaining columns and splitting

Λ = diag(λ̄) into D1 and D2 correspondingly, suggests how to replace the full second-order model

by a low-rank approximation. Using Q1, the matrix Ũ in (9) can be computed as before. The

computation of H(Ũ) in (7) now reads

H(Ũ) = 2Ā(Q1 ⊗Q2)(Ũ ⊗ (λ̄1I −D2)−1)(Q1 ⊗Q2)T ĀT,

which is a low-rank approximation because Q has less than n columns. Even if the dimension

of D2 is kept small, it is tempting to reduce the rank further by eliminating small eigenvalues of

Ũ ⊗ (λ̄1I −D2)−1. These are λi(Ũ)/(λ̄1 − λ̄j) which may be small in comparison to the largest

choice with i = 1 and j = r + 1.

Computationally, however, the approximation seems to profit more from first computing the

QR decomposition of

Ā(Q1 ⊗Q2) =: QĀRĀ (10)

and then computing the spectral factorization

2RĀ(Ũ ⊗ (λ̄1I −D2)−1)RTĀ = Q′H̄ΛH̄Q
′T
H̄ .

Instead of using

H̄ = QH̄ΛH̄Q
T
H̄ with QH̄ := QĀQ

′
H̄ ,

we use a low rank approximation obtained by deleting from ΛH̄ all eigenvalues (ΛH̄)ii < δ̃λmax(H̄)

for a parameter δ̃ ∈ (0, 1) (we use δ̃ = 10−6). Calling the corresponding submatrices ΛH̃ and QH̃
we finally have the approximation

H(Ũ) ≈ H̃ = QH̃ΛH̃Q
T
H̃
.

In this scaling approach, the bundle is updated as described in Section 5.3 also after descent

steps.

Note that the dimension of D2 and the number of columns in Q2 depend directly on the

number of columns ` provided by this update. Due to the high computational cost involved

in a large `, in particular in view of the QR decomposition (10), the rules for including more

columns in the update Q+ are rather stringent but work sufficiently well initially. In some cases,

in particular if higher accuracy levels are required, the rules are too restrictive leading to a poor

scaling matrix H̃ which leads to a large number of null steps between consecutive descent steps.

In such cases the lower bound na on the number of columns in Q2 is increased by the following

heuristic rule. Initially na = 5, and whenever at least h > 20 null steps preceed a descent step,

na is increased by bh/20c as long as na does not exceed n/10.

Regarding the regularization in Ht = H̃+ tI by t > 0 for low-rank scaling, we first reinitialize

t to the minimal value of t over all previous iterations before H̃ is computed for the first time.

13

During subsequent iterations the heuristic of [11] for choosing t is used, but to increase stability

in view of a less accurate H, the t of the next descent step is not allowed to exceed the previous

descent step value by a factor of 4/3 or to be reduced by more than a factor of 2/3.

Because H̃ is already given by its eigenvalue decomposition, the inverse of Ht could be ap-

plied explicitly in a numerically stable way via a representation of QH̃ by Householder vectors.

In practice, however, exploiting the low rank structure by a Sherman-Morrison variant proved

computationally more efficient on our test instances.

5.4.3 A Low-Rank Approximation with PU+P T replacing Q1ŨQ
T
1

For large r, the quadratic SDPs to determine U+ in step SB1 and to compute Ũ in (9) are

computationally quite involved. We will now argue that the solution U+ of SB1 can be used to

construct increasingly accurate solutions to (9) without actually solving (9).

While [22] stresses the importance of computing Ũ , it can be shown as in [8] that all cluster

points of Q1ŨQ
T
1 as well as of those PU+P T that result in descent steps are optimal solutions

to the primal program (P). Indeed, because b−A(Q1ŨQ1) as well as b−A(PU+P) goes to zero,

all cluster points are feasible for (P). Therefore optimality for (P) follows from complementarity

as Q1 and P converge to the active subspace of optimal solutions of (D). If the primal optimal

solution is unique rewriting (7) allows us to conclude

H(Ũ) = 2Ā[(Q1ŨQ
T
1)⊗ (Q2(λ̄1I −D2)−1QT2)]ĀT ≈ 2Ā[(PU+P T)⊗ (Q2(λ̄1I −D2)−1QT2)]ĀT

once ‖Q1ŨQ
T
1 − PU+P T ‖ is small enough. Instead of solving (9) it might therefore suffice to

approximate Q1ŨQ
T
1 by PU+P T . Recall that we include kP columns from P in P+, see Section

5.3. Furthermore, the gain of including in H second-order information with respect to directions

already contained in the bundle P seems to be negligible, because the nonpolyhedral bundle

model gives this information already.

In this variant we therefore replace Q1ŨQ
T
1 by P (

∑kP
i=1 λi(U

+)uiu
T
i)P T , where the ui denote

the eigenvectors for λi(U
+). Equivalently, Q1 is replaced by Q̃1 = P · [u1, . . . , ukP]. The matrix

Q2 is formed from Q by extracting the columns kP + 1 through `. This variant basically makes

no use of the first kP columns of Q. Otherwise, we proceed exactly as in Section 5.4.2.

5.4.4 Using the Diagonal of the Low-Rank Approximation

In terms of computational efficiency diagonal scaling has many advantages even compared to

the low-rank approach. Indeed, the diagonal of a low rank approximation can be computed

directly without forming the matrix Ā(Q1 ⊗ Q2), so the need for the computationally involved

QR-factorization (10) is eliminated. Also, the coefficients of the quadratic SDP (4) can be

determined much faster. Furthermore, a diagonal H allows us to employ the highly efficient

approach of [11] for implementing box constraints on y. Because of these advantages we decided

to also test diagonal scaling based on the diagonal of the low rank approximation. In particular,

using the notation of Section 5.4.3, the diagonal element for i ∈ {1, . . . ,m} is computed by

Hii = 2tr (AiP (

kP∑
i=1

λi(U
+)uiu

T
i)P TAiQ2(λ̄1I −D2)−1QT2),

14

where we now use all eigenvalues and eigenvectors of U+ that are kept in the bundle in the

hope of improving the quality of the approximation PU+P T of Q1ŨQ1. The choice of all other

parameters is identical to that of the previous subsection. Surprisingly, the same scheme for

choosing t again seems to produce very good results.

5.5 Computational limitations with a large bundle

Let us look more closely at the linear algebra involved in solving the quadratic SDPs (4). The

primal objective may be expressed as

d+ cTPu−
1

2
uTQPu

where

d = bT ŷ − 1

2
bTH−1

t b, cP = APH
−1
t b+ vec(P TCP − P TATŷP), QP = ATPH

−1
t AP ,

and

u = vec(U), AP =
[
(vec(P TAiP))T

]
i=1,...,m

.

In order for the scaled variants of the spectral bundle method to be effective it is important that

k, the number of columns of P , be at least r∗, the optimal multiplicity. However, this means

that each step of the interior-point method solving the quadratic SDPs involves factorizing a

positive definite matrix of order k(k + 1)/2 (recall that the original m dual variables have been

eliminated in (4) by using (3)). For m constraints a reasonable estimate of the dimension of

the optimal subspace is r∗ ≈
√
m, because there always exists an optimal primal solution whose

rank is bounded by this number [1, 24]. Solving the primal-dual KKT-system of a standard

primal-dual interior-point method for semidefinite programming requires factorizing a matrix of

order m. So, if the cost of one interior-point iteration is dominated by this factorization and if

r∗ ≈
√
m, solving one quadratic SDP is almost as expensive as solving the original problem by an

interior point method. In our computational experiments the update scheme for P of Section 5.3

leads to a moderate increase of k towards r∗ over time, so that the fast initial progress of bundle

methods is preserved, i.e., solutions of moderate accuracy are obtained significantly faster than

by interior-point methods. However, good progress at higher accuracy levels seems to require

k ≥ r∗.
Therefore the scope of problems where the proposed scaled versions of the spectral bundle

method may indeed outperform interior-points methods in computing rather accurate solutions

is restricted to problems where either the optimal multiplicity r∗ is known to be small or where m

is small and the cost of interior-point methods is dominated by the cost of factorizing the primal

and dual matrix variables. This can also be observed for our test instances in the next section.

6 Numerical Results

The scaling methods were implemented within the ConicBundle (CB) callable library [10] in

C++ and tested on Intel(R) Core(TM) i7 CPU 920 machines with 8 MB cache and 12 GB RAM

under openSUSE Linux 11.1 (x86 64) in single processor mode. As test instances we generated

15

several general random sparse SDP problems satisfying the constant trace property as well as

semidefinite relaxations of max-cut problems corresponding to Ising spin glasses [27] on three

dimensional toroidal grids with edge weights chosen randomly from {−1, 1}.
The general random sparse instances were generated for given n (order of X and Z), m

(number of constraint matrices Ai), p (number of nonzeros per row) and different seeds for the

random number generators. Starting with the weighted adjacency matrix A of a connected

random graph with an expected number of np edges and edge weights uniformly distributed

in [−1
2 ,

1
2], and a uniform random vector dZ ∈ [0, 10]n + 1, a dual slack matrix Z is set to

Z = Diag(dZ +A1)−A (Z is not enforced to be positive definite). A primal matrix X is formed

by X = EET + Diag(dX) for a uniform random vector dx ∈ [0, 10]n + 1, where each element of

E ∈ Rn×dn/4e is drawn from the standard normal distribution. This X determines the right-hand

side b0 = trX of the trace constraint A0 = I in 〈A0, X〉 = b0. For each Ai, i ∈ {1, . . . ,m}, a

principal submatrix is selected consisting of p distinct indices from 1, . . . , n uniformly at random;

its elements are chosen uniformly at random from −100, . . . , 100; the Ai are then normalized to

Frobenius norm 1, so that there should be no obvious improvement by pure diagonal scaling.

The right-hand side is set to b = AX ensuring primal feasibility. Finally a vector y ∈ Rm is

drawn from the standard normal distribution and the cost matrix is set to C = Z +ATy. Dual

feasibility, a duality gap of zero and primal attainment are guaranteed by the trace constraint.

The computational results indicate that all problems have dual optimal solutions.

For comparison the problems were also solved with SDPT3-4.0 beta [30] and the old version

of the spectral bundle code SB described in [9]. SDPT3 is a primal dual interior point package

which provides special support for sparsity and solves the Newton system by a preconditioned

conjugate gradient approach achieving excellent results also for rather large-scale instances.

To illustrate the results, figures 1–7 give performance profiles in the style suggested in [3] for

comparing the cumulative number of problems that have been solved by each method to precision

10−4 (left) and 10−6 (right), respectively, within the time given on the abscissa. The methods

are

• the conic bundle code (CB-ns) with the bundle update of Section 5.3 but no scaling (Ht =

tI),

• the full Newton version (CB-fN) described in Section 5.4.1,

• the low rank approximation of Newton (CB-lrN) of Section 5.4.2,

• its approximated variant (CB-alrN) of Section 5.4.3,

• the diagonal version (CB-diag) employing the diagonal scaling heuristic of Section 5.4.4,

• the interior-point code (SDPT3),

• and the old spectral bundle code (SB).

In order to circumvent, in these comparisons, the inherent difficulties of bundle methods to

terminate precisely at a desired precision on the basis of the rather weak stopping criterion (5),

we let all codes solve the problems to a relative precision εopt = 10−8 and then use the best dual

objective value f∗ over all codes as a reference value in order to determine afterwards for each code

the computation time needed until the first descent step or iterate satisfies f(y)−f∗ ≤ ε(|f∗|+1)

for ε = 10−4 and ε = 10−6, respectively. For ε = 10−6 more detailed information is given in

Tables 1–6. These list, for each method and a canonical grouping of the instances, mean and

variance of computation time in seconds, the number of descent steps and the total number of

16

function evaluations/iterations.

Figures 1–3 display small to medium sized problems with n ∈ {100, 300, 500}, where the full

second-order approach does not take too long to run, the results being grouped so that instances

with m = 100 are shown in Figure 1 (for these the observed multiplicity r ranged from 4 to 7),

m = 500 in Figure 2 (9 ≤ r ≤ 18), and m = 1000 in Figure 3 (16 ≤ r ≤ 28). This grouping is

motivated by the fact that for relative precision requirements beyond 10−3 the decisive parameter

for the performance of the spectral bundle method relative to interior-point methods is the number

of constraints m. In particular, the plots of Figure 3 show that for most spectral bundle variants

the order of the semidefinite matrix n is less relevant than m; in part this might also be due to

the surprising observation that for these instances and constant m the values of r decrease with

increasing n. The plots also confirm that for increasing m and increasing precision the interior-

point approach SDPT3 becomes more attractive. While CB-fN is reasonably competitive for

instances with small n ∈ {100, 300} and m = 100, it performs poorly in terms of computation

time in spite of its rather small number of oracle calls (see Table 3). On the other hand CB-diag

clearly outperforms CB-alrN and CB-lrN in computation time, the real surprise being that it also

needs fewer oracle calls quite regularly (see Table 3). CB-alrN is a bit faster than CB-lrN, both

need roughly the same number of oracle calls. Note that CB-diag is clearly better than CB-ns

with respect to time and calls, but CB-alrN may well be outperformed by CB-ns as m increases

in spite of the significant difference in oracle calls, as the additional cost of low-rank scaling is

considerable. In general, all CB variants seem to be preferable to the old spectral bundle code

SB whose performance deteriorates quickly for higher precision requirements and increasing m.

Figures 4–6 illustrate the development of computation time for increasing matrix sizes n ∈
{1000 · i : i = 1, . . . , 6} grouped by instances with m = 1000 (Figure 4, 8 ≤ r ≤ 16), m = 3000

(Figure 5, 17 ≤ r ≤ 29), and m = 5000 (Figure 5, 23 ≤ r ≤ 40). For these instances CB-fN

is no longer an option and therefore it is excluded from these tests. The advantage of CB-diag,

however, becomes even more apparent as the order of the matrices increases. The additional

effort of low rank scaling already pays off for rather moderate precision requirements. This is

even more so if the number of constraints is increased, as can be seen in Figure 5, where m = 3000

and matrix sizes range in n ∈ {1000 · i : i = 1, . . . , 3}. SB is not competitive, failing to obtain

the desired precision almost all the time, while once again we see confirmed that the advantage

of SDPT3 for larger m is diminishing with increasing matrix order n.

Finally, Figure 7 and Tables 5–6 present the results for computing the SDP relaxation of

max-cut for Ising spin glasses on h×h×h grids for h ∈ {10, 15, 20, 25} (for h = 30, SDPT3 failed

due to memory problems); the observed value of r was roughly h for instances corresponding to h.

For these instances the code SB was known to perform quite well and the main purpose here is to

show that none of this good performance is lost in the case of CB-diag. SDPT3 cannot compete

with the bundle approaches, but also CB-lrN and CB-alrN fall off considerably in comparison to

the diagonal variants in spite of their smaller number of oracle calls (see Table 6).

7 Conclusions

The proposed diagonal scaling technique based on a low rank approximation of the second-order

approach of Overton and Womersley [23] significantly improves the performance of the spectral

17

10
1

0

5

10

15

20

25

30

35

40

45

Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−fN
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

10
1

0

5

10

15

20

25

30

35

40

45

Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−fN
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

Figure 1: Results for small instances with m = 100 constraints (five instances per choice of n ∈
{100, 300, 500} and p ∈ {3, 5, 7})

10
1

10
2

10
3

0

5

10

15

20

25

30

35

40

45

Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−fN
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

10
1

0

5

10

15

20

25

30

35

40

45

Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−fN
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

Figure 2: Results for medium instances with m = 500 constraints (five instances per choice of n ∈
{100, 300, 500} and p ∈ {3, 5, 7})

10
1

10
2

10
3

0

5

10

15

20

25

30

35

40

45

Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−fN
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

10
1

10
2

0

5

10

15

20

25

30

35

40

45

Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−fN
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

Figure 3: Results for medium instances with m = 1000 constraints (five instances per choice of n ∈
{100, 300, 500} and p ∈ {3, 5, 7})

18

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

10
2

10
3

0

10

20

30

40

50

60

70

80

90

Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

Figure 4: Results for big instances with m = 1000 constraints (five instances per choice of n ∈ {1000 · i :

i = 1, . . . , 6} and p ∈ {3, 4, 5})

10
2

10
3

0

10

20

30

40

50

60

70

80

90

Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
u
m

b
e
r

o
f
p
ro

b
e
lm

s
 s

o
lv

e
d

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

Figure 5: Results for big instances with m = 3000 constraints (five instances per choice of n ∈ {1000 · i :

i = 1, . . . , 6} and p ∈ {3, 4, 5})

10
3

10
4

10
5

0

10

20

30

40

50

60

70

80

90

Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

10
3

10
4

0

10

20

30

40

50

60

70

80

90

Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

Figure 6: Results for big instances with m = 5000 constraints (five instances per choice of n ∈ {1000 · i :

i = 1, . . . , 6} and p ∈ {3, 4, 5})

19

Table 1: Small random SDPs: Average and variance of computation time rounded to seconds for

reaching a relative precision of 10−6 over 15 instances per row (5 for each p ∈ {3, 5, 7})
n m CB-ns CB-fN CB-lrN CB-alrN CB-diag SDPT3 SB

100 100 0.6 (0.246) 0.3 (0.132) 0.4 (0.109) 0.4 (0.127) 0.5 (0.473) 0.6 (0.424) *1.9 (1.82)

300 100 2.3 (1.07) 1.9 (0.679) 1.4 (0.58) 1.5 (0.742) 1.2 (0.602) 1.3 (0.313) 2.5 (1.22)

500 100 7.0 (3.54) 7.7 (4.01) 4.2 (2.67) 4.3 (3) 3.8 (4.22) 3.7 (0.515) 7.2 (5.78)

100 500 6.1 (1.7) 6.1 (3.09) 8.2 (1.97) 6.1 (1.36) 5.6 (1.99) 2.7 (1.53) *1319 (1.32·103)

300 500 9 (4.95) 22 (24) 9 (2.5) 8 (2.43) 5 (1.03) 6 (4.29) 12 (4.01)

500 500 14 (7.24) 33 (13.8) 11 (3.41) 10 (3.15) 7 (1.96) 9 (4.91) 16 (9.59)

100 1000 47 (21) 94 (47.8) 61 (19.9) 46 (15.7) 45 (21.7) 7 (3.34) *2794 (1.04·103)

300 1000 26 (6.93) 90 (64.3) 35 (5.96) 27 (5.02) 19 (2.53) 19 (16.1) *383 (473)

500 1000 32 (19.7) 146 (71.7) 36 (14.1) 30 (12.6) 19 (2.97) 25 (17.9) *300 (521)

∗ not all instances achieved the required precision

Table 2: Small random SDPs: Average and variance of the number of descent steps for reaching

a relative precision of 10−6 over 15 instances per row (5 for each p ∈ {3, 5, 7})
n m CB-ns CB-fN CB-lrN CB-alrN CB-diag SDPT3 SB

100 100 37 (6.11) 20 (3.44) 33 (6.86) 33 (6.09) 38 (21.3) 11 (0.573) *43 (10.4)

300 100 43 (5.96) 22 (4.7) 38 (8.5) 39 (9.86) 37 (8.65) 13 (0.49) 53 (10.2)

500 100 58 (12.7) 27 (6.67) 50 (11.1) 51 (11.2) 52 (20) 14 (0.611) 69 (25.1)

100 500 42 (5.44) 27 (3.07) 42 (5.56) 42 (5.3) 50 (15.4) 11 (0.499) *48 (3.35)

300 500 59 (11.1) 34 (5.04) 56 (10.2) 57 (11.3) 57 (11.6) 13 (0.806) 54 (6.3)

500 500 66 (11.5) 37 (5.23) 62 (12.2) 63 (12.4) 59 (15.9) 14 (0.596) 64 (15.6)

100 1000 51 (7) 32 (3.25) 50 (8.13) 49 (8.26) 60 (17.9) 10 (0.249) *55 (2.46)

300 1000 59 (6.76) 36 (5.84) 59 (6.81) 59 (6.31) 60 (7.8) 12 (0.442) *55 (3.26)

500 1000 67 (10.8) 42 (5.44) 67 (11.2) 67 (11.1) 67 (10.5) 13 (0.442) *58 (3.64)

∗ not all instances achieved the required precision

Table 3: Small random SDPs: Average and variance of the number of oracle calls for reaching a

relative precision of 10−6 over 15 instances per row (5 for each p ∈ {3, 5, 7})
n m CB-ns CB-fN CB-lrN CB-alrN CB-diag SDPT3 SB

100 100 75 (25.6) 44 (24.9) 49 (15.8) 52 (15.6) 54 (31.3) 11 (0.573) 255 (504)

300 100 155 (60.4) 75 (44.2) 104 (41.4) 110 (49.1) 86 (29.3) 13 (0.49) 279 (171)

500 100 314 (135) 95 (44.6) 195 (102) 199 (108) 163 (132) 14 (0.611) 464 (399)

100 500 83 (18.8) 68 (27.8) 69 (13.7) 68 (12.6) 76 (20.7) 11 (0.499) *119453 (1.03·105)

300 500 178 (110) 142 (132) 125 (46.3) 127 (54.4) 107 (32.3) 13 (0.806) 289 (207)

500 500 295 (211) 180 (129) 187 (99.9) 188 (99.8) 143 (75.5) 14 (0.596) 532 (462)

100 1000 117 (35.6) 90 (25.4) 96 (21) 97 (22.6) 113 (34) 10 (0.249) *213306 (3.65·104)

300 1000 151 (41.8) 110 (59.8) 123 (23.3) 124 (24.1) 118 (19.9) 12 (0.442) *25553 (3.58·104)

500 1000 238 (159) 152 (65.1) 177 (83.8) 178 (86.7) 148 (37) 13 (0.442) *15803 (3.12·104)

∗ not all instances achieved the required precision

20

Table 4: Large random SDPs: Average and variance of computation time in seconds for reaching

a relative precision of 10−6 over 15 instances per row (5 for each p ∈ {3, 4, 5})

n m CB-ns CB-lrN CB-alrN CB-diag SDPT3 SB

1000 1000 53 (22.2) 52 (20.5) 46 (16.3) 28 (7.78) 35 (6.02) 94 (48.2)

2000 1000 169 (78.9) 113 (35.7) 108 (34.6) 65 (13.6) 183 (27.6) 196 (105)

3000 1000 *852 (764) 359 (238) 347 (240) 147 (69.3) 567 (133) *1109 (1.05·103)

4000 1000 1019 (576) 479 (218) 468 (226) 307 (407) 1228 (172) 1195 (764)

5000 1000 *2216 (1.51·103) 1026 (866) 1098 (973) 479 (376) 2459 (390) *3366 (2.7·103)

6000 1000 *3891 (3.43·103) 2016 (2.3·103) 2091 (2.44·103) 659 (609) 3934 (499) *4915 (4.35·103)

1000 3000 351 (92.3) 509 (138) 409 (102) 257 (58.9) 105 (41.2) *8561 (3.76·103)

2000 3000 593 (398) 619 (276) 529 (249) 285 (103) 278 (86) *5374 (5.57·103)

3000 3000 837 (381) 786 (240) 679 (211) 347 (90.4) 726 (167) *12868 (4.65·103)

4000 3000 1819 (1.6·103) 1229 (614) 1107 (600) 502 (199) 1515 (384) *9809 (4.74·103)

5000 3000 1826 (867) 1394 (595) 1272 (571) 596 (259) 2638 (364) *7610 (4.9·103)

6000 3000 2624 (1.61·103) 1651 (831) 1592 (854) 736 (274) 4631 (935) *5104 (2.54·103)

1000 5000 1635 (506) 2216 (425) 1723 (341) 1178 (205) 251 (102) *17719 (7.22·103)

2000 5000 1908 (1.62·103) 2083 (950) 1721 (913) 958 (248) 482 (157) *14859 (5.9·103)

3000 5000 1420 (505) 1675 (449) 1363 (362) 869 (247) 1062 (286) *26909 (1.69·104)

4000 5000 2059 (923) 2224 (998) 1829 (640) 1037 (404) 1746 (269) *39761 (1.69·104)

5000 5000 3214 (2.18·103) 3207 (2.76·103) 2753 (2.35·103) 1201 (421) 3073 (448) *51811 (1.56·104)

6000 5000 4084 (2.88·103) 3796 (2.66·103) 3079 (1.55·103) 1463 (514) 5277 (1.13·103) *68310 (3.3·104)

∗ not all instances achieved the required precision

Table 5: Max-Cut on h× h× h grids: Average and variance of computation time in seconds for

reaching a relative precision of 10−6 over 5 instances for each value of h.
h n = m CB-ns CB-lrN CB-alrN CB-diag SDPT3 SB

10 1000 3 (0.554) 5 (0.533) 4 (0.546) 3 (0.345) 14 (0.0326) 3 (0.388)

15 3375 41 (4.45) 94 (6.17) 69 (4.31) 37 (2.57) 411 (1.25) 42 (5.25)

20 8000 308 (27.3) 882 (36.9) 727 (40.1) 273 (22.7) 4668 (6.02) 268 (34.8)

25 15625 1821 (260) 5142 (389) 3916 (247) 1395 (88.6) 52917 (499) 1602 (200)

Table 6: Max-Cut on h × h × h grids: Average and variance of the number of oracle calls for

reaching a relative precision of 10−6 over 5 instances for each value of h.
h n = m CB-ns CB-lrN CB-alrN CB-diag SDPT3 SB

10 1000 53 (9.41) 46 (3.01) 44 (2.45) 52 (5.88) 11 (0) 55 (8.91)

15 3375 136 (8.13) 101 (2.33) 98 (2.94) 123 (3.32) 12 (0) 171 (28.9)

20 8000 251 (7.86) 189 (4.12) 186 (3.72) 227 (5.71) 12 (0) 290 (38)

25 15625 452 (49.1) 307 (10.1) 307 (8) 373 (6.99) 13 (0) 555 (78.1)

21

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

14

16

18

20

Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

14

16

18

20

Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
u

m
b

e
r

o
f

p
ro

b
e

lm
s
 s

o
lv

e
d

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

Figure 7: Results for SDP-relaxations of max-cut instances of Ising spin glasses on toroidal n = h×h×h
grids (five instances per h ∈ {10, 15, 20, 25})

bundle method [13] and, surprisingly, also requires fewer evaluations on the instances considered

than our approaches based on the low-rank approximation itself. It allows computing solutions

within relative precision of 10−6 routinely. It appears to be faster than the original spectral bundle

method even for precision requirements of 10−4. In comparison with the excellent package SDPT3

[30] (a primal dual interior-point method employing a preconditioned conjugate gradient solver)

the scaled spectral bundle approach seems to be competitive to superior in computing solutions

with a precision requirement of 10−6 whenever the number of constraints m is not significantly

bigger than the order n of the matrix. The advantage turns toward SDPT3 if the relative size of m

increases while it turns towards the scaled spectral bundle approach when precision requirements

decrease. The main advantages of the spectral bundle method are its quick computation of

low precision approximations to optimal solutions, its applicability to very large-scale problems

and its suitability for combinatorial cutting plane algorithms due to its advantageous restart

properties. The new diagonal scaling variant achieves higher precision and increased robustness

and efficiency as well.

Acknowledgment. We thank Henry Wolkowicz for the encouragement to experiment with

Tapia indicators for identifying the multiplicity r.

References

[1] A. I. Barvinok. Problems of distance geometry and convex properties of quadratic maps.

Discrete Comput. Geom., 13:189–202, 1995.

[2] J. Cullum, W.E. Donath, and P. Wolfe. The minimization of certain nondifferentiable sums

of eigenvalues of symmetric matrices. Mathematical Programming Study, 3:25–55, 1975.

[3] E. Dolan and J. Moré. Benchmarking optimization software with performance profiles.

Mathematical Programming, 91(2):201–213, 2002.

22

[4] A. Edelman, T.A. Arias, and S.T. Smith. The geometry of algorithms with orthogonality

constraints. SIAM J. Matrix Anal. Appl., 20(2):303–353, 1999.

[5] A. S. El-Bakry, R. A. Tapia, and Y. Zhang. A study of indicators for identifying zero

variables in interior–point methods. SIAM Review, 36(1):45–72, March 1994.

[6] R. Fletcher. Semi-definite matrix constraints in optimization. SIAM J. Control and Opti-

mization, 23(4):493–513, July 1985.

[7] S. Friedland, J. Nocedal, and M.L. Overton. The formulation and analysis of numerical

methods for inverse eigenvalue problems. SIAM J. Numerical Analysis, 24:634–667, 1987.

[8] C. Helmberg. Semidefinite programming for combinatorial optimization. Habilitationsschrift

TU Berlin, Jan. 2000; ZIB-Report ZR 00-34, Konrad-Zuse-Zentrum für Informationstechnik

Berlin, Takustraße 7, 14195 Berlin, Germany, October 2000.

[9] C. Helmberg. Numerical evaluation of SBmethod. Mathematical Programming, 95(2):381–

406, 2003.

[10] C. Helmberg. ConicBundle 0.3. Fakultät für Mathematik, Technische Universität Chemnitz,

2009. http://www.tu-chemnitz.de/∼helmberg/ConicBundle.

[11] C. Helmberg and K. C. Kiwiel. A spectral bundle method with bounds. Mathematical

Programming, 93(2):173–194, 2002.

[12] C. Helmberg and F. Oustry. Bundle methods to minimize the maximum eigenvalue func-

tion. In R. Saigal H. Wolkowicz and L. Vandenberghe, editors, Handbook of semidefinite

programming: theory, algorithms and applications, pages 307–337. Kluwer, 2000.

[13] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM

J. Optimization, 10:673–696, 2000.

[14] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms

I+II, volume 305 and 306 of Grundlehren der mathematischen Wissenschaften. Springer,

Berlin, Heidelberg, 1993.

[15] F. Jarre. An interior-point method for minimizing the maximum eigenvalue of a linear

combination of matrices. SIAM J. Control and Optimization, 31(5):1360–1377, 1993.

[16] T. Kato. Perturbation Theory for Linear Operators, volume 132 of Grundlehren der math-

ematischen Wissenschaften, 2nd corr. print. of the 2nd ed., Springer, Berlin, Heidelberg,

1984.

[17] P. Lancaster. On eigenvalues of matrices dependent on a parameter. Numerische Mathematik,

6:377–387, 1964.

[18] F. Oustry. The U-Lagrangian of the maximum eigenvalue function. SIAM J. Optimization,

9:526–549, 1999.

23

[19] F. Oustry. A second-order bundle method to minimize the maximum eigenvalue function.

Mathematical Programming, 89:1–33, 2000.

[20] M.L. Overton. On minimizing the maximum eigenvalue of a symmetric matrix. SIAM

Journal on Matrix Analysis and Applications, 9(2):256–268, 1988.

[21] M.L. Overton. Large-scale optimization of eigenvalues. SIAM J. Optimization, 2(1):88–120,

1992.

[22] M.L. Overton and R.S. Womersley. On the sum of the largest eigenvalues of a symmetric

matrix. SIAM Journal on Matrix Analysis and Applications, 13:41–45, 1992.

[23] M.L. Overton and R.S. Womersley. Second derivatives for optimizing eigenvalues of sym-

metric matrices. SIAM Journal on Matrix Analysis and Applications, 16:697–718, 1995.

[24] G. Pataki. On the rank of extreme matrices in semidefinite programming and the multiplicity

of optimal eigenvalues. Math. Oper. Res., 23(2):339–358, 1998.

[25] H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth function:

Conceptual idea, convergence analysis, numerical results. SIAM J. Optimization, 2:121–152,

1992.

[26] A. Shapiro and M. K. H. Fan. On eigenvalue optimization. SIAM J. Optimization, 5(3):552–

569, 1995.

[27] C. De Simone, M. Diel, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi. Exact ground states

of Ising spin glasses: new experimental results with a branch-and-cut algorithm. Journal of

Statistical Physics, 80:487–496, 1995.

[28] M.J. Todd. A study of search directions in primal-dual interior-point methods for semidefinite

programming. Optimization Methods and Software, 11:1–46, 1999.

[29] M.J. Todd. Semidefinite optimization. Acta Numerica, 10:515–560, 2001.

[30] K.-C. Toh, M.J. Todd, and R.H. Tütüncü. SDPT3 version 4.0 beta. National University of

Singapore, feb 2009. URL: http://www.math.nus.edu.sg/~mattohkc/sdpt3.html (May

21, 2010).

24

