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We study the problem of reconstructing a sparse polynomial in a basis of
Chebyshev polynomials (Chebyshev basis in short) from given samples on a
Chebyshev grid of [−1, 1]. A polynomial is called M -sparse in a Chebyshev
basis, if it can be represented by a linear combination of M Chebyshev poly-
nomials. We show that an M -sparse polynomial of maximum degree 2N − 1
can be theoretically recovered from 2M samples on a Chebyshev grid. As
efficient recovery methods, Prony–like methods are used. The reconstruction
results are mainly presented for bases of Chebyshev polynomials of first and
second kind, respectively. But similar issues can be obtained for bases of
Chebyshev polynomials of third and fourth kind, respectively.

Key words and phrases: Sparse interpolation, Chebyshev basis, Cheby-
shev polynomial, sparse polynomial, Prony–like method, ESPRIT, matrix
pencil factorization, companion matrix, Prony polynomial, eigenvalue prob-
lem, rectangular Toeplitz-plus-Hankel matrix.

AMS Subject Classifications: 65D05, 41A45, 65F15, 65F20.

1 Introduction

The central issue of compressive sensing is the recovery of sparse signals from a rather
small set of measurements, where a sparse signal can be represented in some basis by
a linear combination with few nonzero coefficients. For example, a 1-periodic trigono-
metric polynomial of maximum degree N − 1 with only M nonzero exponential terms
can be recovered by O(M log4(N)) sampling points that are randomly chosen from the
equidistant grid { jN ; j = 0, . . . , N − 1}, where M � N (see [20]). Recently, Rauhut and
Ward [18] have presented a recovery method of a polynomial of maximum degree N − 1
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given in Legendre expansion with M nonzero terms, where O(M log4(N)) random sam-
ples are taken independently according to the Chebyshev probability measure of [−1, 1].
The recovery algorithms in compressive sensing are often based on `1–minimization.
Exact recovery of sparse signals or functions can be ensured only with a certain proba-
bility. The method of [18] can extended to sparse polynomial interpolation in a basis of
Chebyshev polynomials too.

In contrast to these random recovery methods, there exist also deterministic methods
for the reconstruction of an exponential sum

H(t) :=
M∑
j=1

cj eifjt (t ∈ R)

with distinct frequencies fj ∈ [−π, π) and complex coefficients. Such methods are the
Prony–like methods [16], such as the classical Prony method, annihilating filter method
[5], ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques)
[19], matrix pencil method [8, 7], and approximate Prony method [3, 15]. This approach
allows the recovery of all parameters of H, i.e. M , fj and cj for j = 1, . . . ,M , from
equidistant samples H(k) (k = 0, . . . , 2N − 1), where N ≥ M . Prony–like methods can
be applied also for the reconstruction of sparse trigonometric polynomials [16, Example
4.2]. Note that the classical Prony method is equivalent to the annihilating filter method.
Unfortunately, the classical Prony method is very sensitive to noise in the sampled data.
Hence numerous modifications have been proposed in order to improve the numerical
behavior of the Prony method. Efficient Prony–like methods are ESPRIT, matrix pencil
methods, and approximate Prony methods. This procedures are important within many
disciplines in sciences and engineering (see [13]). For a survey of the most successful
methods for the data fitting problem with linear combinations of complex exponentials,
we refer to [12]. Note that a variety of papers compare the statistical properties of the
different algorithms, see e.g. [8, 1, 2, 6]. Similar results for our new suggested algorithms
are of great interest, but are behind the scope of this paper.

In this paper, we present a new deterministic approach to sparse polynomial interpolation
in a basis of Chebyshev polynomials, if relatively few samples of a Chebyshev grid of
[−1, 1] are given. Note that Chebyshev grids are much better suited for the recovery of
polynomials than uniform grids (see [4]). For n ∈ N0, the nth Chebyshev polynomial of
first kind can be defined by

Tn(x) := cos(n arccos x) (x ∈ [−1, 1])

(see for example [11, p. 2]). These polynomials are orthogonal with respect to the weight
(1− x2)−1/2 on (−1, 1) (see [11, p. 73]) and form the Chebyshev-1 basis.
Let M and N be integers with 1 ≤M < N . A polynomial of maximum degree 2N − 1

h(x) =

2N−1∑
k=0

bk Tk(x)
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is called to be M -sparse in the Chebyshev-1 basis, if M coefficients bk are nonzero and
if the other 2N −M coefficients vanish. Then such a M -sparse polynomial h can be
represented in the form

h(x) =
M∑
j=1

cj Tnj (x) (1.1)

with cj := bnj 6= 0 and 0 ≤ n1 < n2 < . . . < nM < 2N . The integer M is called the
Chebyshev-1 sparsity of the polynomial (1.1).

Recently the authors have presented a unified approach to Prony–like methods for the
parameter estimation of an exponential sum [16], namely the classical Prony method,
the matrix pencil method [7], and the ESPRIT method [19]. The main idea is based on
the evaluation of the eigenvalues of a matrix which is similar to the companion matrix of
the Prony polynomial. To this end we have computed the singular value decomposition
(SVD) or the QR decomposition of a special Toeplitz-plus-Hankel matrix (T+H matrix).
The aim of this paper is to generalize this unified approach in order to obtain stable
algorithms for an interpolation problem of a sparse polynomial (1.1) in the Chebyshev-1
basis. A similar spare interpolation problem on a grid of [1, ∞], which is solved by
the Prony method, was explored in [10, 9]. However we use a deterministic sampling
set of [−1, 1], and need only, at least theoretically, 2M samples for the reconstruction
of the 2M parameters. Theorem 2.6 shows that an M -sparse polynomial (1.1) in a
Chebyshev basis can be reconstructed from only 2M samples. A Prony–like method for
sparse Legendre reconstruction was suggested by Peter, Plonka and Rosça in [14]. This
method can be also generalized to other polynomial systems, but one needs there high
order derivatives of the sparse polynomial.

The outline of this paper is as follows. In Section 2, we collect some useful properties of
T+H matrices and Vandermonde–like matrices. Further we formulate the algorithms,
if the order M is known and if only 2M sampled data (1.1) are given. We find a
factorization of the T+H matrix in Lemma 2.2 and prove an interesting relation between
the Prony polynomial and its companion matrix in Lemma 2.5. Thereby we are able
to present the algorithms. In Section 3, we obtain corresponding results on sparse
polynomial interpolation for unknown Chebyshev-1 sparsity M . Furthermore one can
improve the numerical stability of the algorithms by using more sampling values. In
Section 4, we discuss the sparse interpolation in the basis of Chebyshev polynomials of
second kind. Finally we present some numerical experiments in Section 5, where we
apply our methods to sparse polynomial interpolation.

In the following we use standard notations. By N0, we denote the set of all nonnegative
integers. The Kronecker symbol is δk. The linear space of all column vectors with N real
components is denoted by RN , where o is the corresponding zero vector. The linear space
of all real M -by-N matrices is denoted by RM×N , where OM,N is the corresponding
zero matrix. For a matrix AM,N ∈ RM×N , its transpose is denoted by AT

M,N , and

its Moore–Penrose pseudoinverse by A†M,N . A square matrix AM,M is abbreviated to
AM . By IM we denote the M -by-M identity matrix. By nullAM,N we denote the
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null space of a matrix AM,N . Further we use the known submatrix notation. Thus
AM,M+1(1 : M, 2 : M + 1) is the submatrix of AM,M+1 obtained by extracting rows 1
through M and columns 2 through M + 1, and AM,M+1(1 : M, M + 1) means the last
column vector of AM,M+1. Definitions are indicated by the symbol :=. Other notations
are introduced when needed.

2 Interpolation for known Chebyshev–1 sparsity

For uN := cos π
2N−1 we form the nonequidistant Chebyshev grid {uN,k := Tk(uN ) =

cos kπ
2N−1 ; k = 0, . . . , 2N − 1} of the interval [−1, 1]. Note that T2N−1(uN,k) = (−1)k

(k = 0, . . . , 2N−1). We consider the following problem of sparse polynomial interpolation
in the Chebyshev-1 basis: For given sampled data hk := h(uN,k) = h(cos kπ

2N−1) (k =
0, . . . , 2M−1) determine all parameters nj and cj (j = 1, . . . ,M) of the sparse polynomial
(1.1). If we substitute x = cos t (t ∈ [0, π]), then we see that the above interpolation
problem is closely related to the interpolation problem of the sparse, even trigonometric
polynomial

g(t) := h(cos t) =

M∑
j=1

cj cos(njt) (t ∈ [0, π]) , (2.1)

where the sampled values g( kπ
2N−1) = hk (k = 0, . . . , 2M − 1) are given (see [17]).

We introduce the Prony polynomial P of degree M with the leading coefficient 2M−1,
whose roots are xj := Tnj (uN ) = cos

njπ
2N−1 (j = 1, . . . ,M), i.e.

P (x) = 2M−1
M∏
j=1

(
x− cos

njπ

2N − 1

)
. (2.2)

Then the Prony polynomial P can be represented in the Chebyshev-1 basis by

P (x) =
M∑
l=0

pl Tl(x) (pM := 1) . (2.3)

The coefficients pj of the Prony polynomial (2.3) can be characterized as follows:

Lemma 2.1 For k = 0, 1, . . ., the sampled data hk and the coefficients pl of the Prony
polynomial (2.3) satisfy the equations

M−1∑
j=0

(hj+k + h|j−k|) pj = −(hk+M + h|M−k|) . (2.4)

Proof. Using cos(α+ β) + cos(α− β) = 2 cosα cosβ, we obtain by (2.1) that

hj+k + h|j−k| = 2
M∑
l=1

cl

(
cos

nl(j + k)π

2N − 1
+ cos

nl(j − k)π

2N − 1

)
= 2

M∑
l=1

cl cos
nljπ

2N − 1
cos

nlkπ

2N − 1
. (2.5)
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Thus we conclude that

M∑
j=0

(
hj+k + h|j−k|

)
pj = 2

M∑
l=1

cl cos
nlkπ

2N − 1

M∑
j=0

pj cos
nljπ

2N − 1

= 2
M∑
l=1

cl cos
nlkπ

2N − 1
P
(

cos
nlπ

2N − 1

)
= 0 .

By pM = 1, this implies the assertion (2.4).

Introducing the vectors h(k) := (hj+k +h|j−k|)
M−1
j=0 (k = 0, . . . ,M) and the square T+H

matrix

HM (0) := (hj+k + h|j−k|)
M−1
j,k=0 =

(
h(0) h(1) . . . h(M − 1)

)
=


2h0 2h1 . . . 2hM−1
2h1 h2 + h0 . . . hM + hM−2

...
...

...
2hM−1 hM + hM−2 . . . h2M−2 + h0

 ,

then by (2.4) the vector p := (pk)
M−1
k=0 is a solution of the linear system

HM (0)p = −h(M) . (2.6)

Lemma 2.2 Let M and N be integers with 1 ≤M ≤ N . Further let h be an M -sparse
polynomial of degree at most 2N − 1 in the Chebyshev-1 basis.
If h(uN,j) = 0 for j = 0, . . . ,M−1, then h is identically zero. Further the Vandermonde-
like matrix

V M (x) :=
(
Tnj (uN,k)

)M−1,M
k=0,j=1

=
(
Tk(xj)

)M−1,M
k=0,j=1

=
(

cos
njkπ

2N − 1

)M−1,M
k=0,j=1

with x := (xj)
M
j=1 is nonsingular and the T+H matrix HM (0) can be factorized in the

following form
HM (0) = 2V M (x) (diag c)V M (x)T (2.7)

and is nonsingular.

Proof. 1. Assume that the Vandermonde-like matrix V M (x) is singular. Then there
exists a vector d = (dl)

M−1
l=0 6= o such that dT V M (x) = oT. We consider the even

trigonometric polynomial D of order at most M − 1 given by

D(t) =
M−1∑
l=0

dl cos(lt) (t ∈ R) .

Hence dT V M (x) = oT implies that tj =
njπ

2N−1 ∈ [0, π] (j = 1, . . . ,M) are roots of D.
These M roots are distinct, because 0 ≤ n1 < . . . < nM < 2N . But this is impossible,
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since the even trigonometric polynomial D 6= 0 of degree at most M − 1 cannot have M
distinct roots in [0, π]. Therefore, V M (x) is nonsingular.
If h(uN,j) = 0 for j = 0, . . . ,M − 1, then V M (x) c = o. Since V M (x) is nonsingular, c
is equal to o, such that h is identically zero.
2. The factorization (2.7) of the T+H matrix HM (0) follows immediately from (2.5).
Since cj 6= 0 (j = 1, . . . ,M), diag c is nonsingular. Further the Vandermonde–like matrix
V M (x) is nonsingular, such that HM (0) is nonsingular too.

Introducing the matrix

PM :=



0 1 0 . . . 0 0 −p0
1 0 1 . . . 0 0 −p1
0 1 0 . . . 0 0 −p2
...

...
...

...
...

...
0 0 0 . . . 0 1 −pM−3
0 0 0 . . . 1 0 1− pM−2
0 0 0 . . . 0 1 −pM−1


∈ RM×M

and using the linear system (2.6), we see that

HM (0)PM = HM (1) +
(
o h(0) . . . h(M − 2)

)
with the T+H matrix

HM (1) :=
(
h(1) h(2) . . . h(M)

)
=
(
hj+k+1 + h|j−k−1|

)M−1
j,k=0

∈ RM×M .

This T+H matrix has the following properties:

Lemma 2.3 The T+H matrix HM (1) can be factorized in the following form

HM (1) = 2V M (x) (diag c)V ′M (x)T (2.8)

with the Vandermonde-like matrix V ′M (x) :=
(
Tk(xj)

)M
k,j=1

. Further the matrices HM (1)

and V ′M (x) are nonsingular.

Proof. 1. By Lemma 2.1 we know that

M∑
k=0

(hj+k + h|j−k|) pk = 0 (j = 0, . . . , 2N −M − 1) .

Consequently we obtain

HM (0) (pk)
M−1
k=0 = −h(M) , HM (1) (pk+1)

M−1
k=0 = −p0 h(0) ,

where

p0 = 2M−1 (−1)M
M∏
j=1

cos
njπ

2N − 1

6



does not vanish. This implies that

h(M) ∈ span {h(0), . . . ,h(M − 1)} , h(0) ∈ span {h(1), . . . ,h(M)} .

Thus we obtain that rankHM (0) = rankHM (1) = M .
2. The (j, k)th element of the matrix product 2V M (x) (diag c)V ′M (x)T can be analo-
gously computed as (2.5) such that

2

M∑
l=1

cl Tnl
(uN,j)Tnl

(uN,k) = hj+k+1 + h|j−k−1| .

Since HM (1), V M (x), and diag c are nonsingular, it follows from (2.8) that the Van-
dermonde-like matrix V ′M (x) is nonsingular too.

In the following Lemmas 2.4 and 2.5 we show that the zeros of (2.3) can be computed
via an eigenvalue problem. To this end, we represent the Chebyshev polynomial TM in
the form of a determinant.

Lemma 2.4 Let M be a positive integer. Further let EM := diag (12 , 1, . . . , 1)T ∈ RM
and the modified shift matrix

SM :=
(
δj−k−1 + δj−k+1

)M−1
j,k=0

=



0 1 0 . . . 0 0 0
1 0 1 . . . 0 0 0
0 1 0 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 0 1 0
0 0 0 . . . 1 0 1
0 0 0 . . . 0 1 0


∈ RM×M .

Then
det (2EM x− SM ) = TM (x) (x ∈ R) .

Proof. We show this by induction. For M = 1 and M = 2 it follows immediately the
assertion. For M ≥ 3 we compute the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 . . . 0 0 0
−1 2x −1 . . . 0 0 0
0 −1 2x . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 2x −1 0
0 0 0 . . . −1 2x −1
0 0 0 . . . 0 −1 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
using cofactors of the last row (cf. [11, p. 18]). Then we obtain the known recursion
of the Chebyshev polynomials TM (x) = 2xTM−1(x) − TM−2(x) (see [11, p. 2]). This
completes the proof.

Now we show that 1
2 E
−1
M PM is the companion matrix of the Prony polynomial (2.3) in

the Chebyshev-1 basis.
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Lemma 2.5 Let M be a positive integer. Then 1
2 E
−1
M PM is the companion matrix of

the Prony polynomial (2.3) in the Chebyshev-1 basis, i.e.

det
(
2xEM − PM

)
= 2M−1 det

(
x IM −

1

2
E−1M PM

)
= P (x) (x ∈ R) .

Proof. Applying Lemma 2.4, we compute det (2xEM −PM ) using cofactors of the last
column. Then we obtain

det
(
2xEM − PM

)
= TM (x) +

M−1∑
l=0

pl Tl(x) = P (x) (x ∈ R) .

Otherwise it follows that

det
(
2xEM − PM

)
= det (2EM ) det

(
x IM −

1

2
E−1M PM

)
with det (2EM ) = 2M−1. This completes the proof.

Theorem 2.6 Let M and N be integers with 1 ≤ M < N . Let h be a M -sparse
polynomial of maximum degree 2N − 1 in the Chebyshev-1 basis.
Then the M coefficients cj ∈ R (j = 1, . . .M) and the M nonnegative integers nj
(j = 1, . . .M) of (1.1) can be reconstructed from the 2M samples hk = h(cos kπ

2N−1)
(k = 0, . . . , 2M − 1).

Proof. We form the equation (2.6). The matrixHM (0) is nonsingular by Lemma 2.2. By
Lemma 2.5, the eigenvalues of the companion matrix 1

2 E
−1
M PM of the Prony polynomial

(2.3) in the Chebyshev-1 basis coincide with the zeros of (2.3). Note that

PM = SM −
(
o . . . o p

)
i.e., we compute the zeros of the Prony polynomial (2.2) as an eigenvalue problem such
that we obtain the nonnegative integers nj (j = 1, . . .M). We form the Vandermonde-
like matrix V M (x) with xj = Tnj (uN ) (j = 1, . . . ,M), which is nonsingular by Lemma
2.2, and obtain finally the coefficients cj ∈ R (j = 1, . . . ,M).

Thus we can summarize:

Algorithm 2.7 (Prony method for sparse Chebyshev-1 interpolation)

Input: hk = h(uN,k) ∈ R (k = 0, . . . , 2M − 1), M ∈ N Chebyshev-1 sparsity of (1.1).

1. Solve the square system

HM (0) (pj)
M−1
j=0 = −h(M) .

2. Determine the simple roots xj (j = 1, . . .M) of the Prony polynomial (2.3), where
1 ≥ x1 > x2 > . . . > xM ≥ −1, and compute then nj := [2N−1π arccosxj ] (j = 1, . . . ,M),
where [x] := bx+ 0.5c means rounding of x ∈ R to the nearest integer.
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3. Compute cj ∈ R (j = 1, . . . ,M) as solution of the square Vandermonde-like system

V M (x) c = (hk)
M−1
k=0

with c := (cj)
M
j=1 .

Output: nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).

Now we show that the matrix pencil method follows directly from the Prony method. In
other words, the matrix pencil method is a simplified Prony method. First we observe
that

HM (0) = 2V M (x) (diag c)V M (x)T .

Since cj 6= 0 (j = 1, . . . ,M), the matrix HM (0) has the rank M and is invertible. Note
that the Chebyshev-1 sparsity of the polynomial (1.1) coincides with the rank of HM (0).
Hence we conclude that

det (2xHM (0)EM −HM (0)PM ) = det (HM (0)) det (2xEM − PM )

= det (HM (0))P (x)

such that the eigenvalues of the square matrix pencil

2xHM (0)EM −HM (0)PM (x ∈ RM ) (2.9)

are exactly xj = cos
njπ

2N−1 ∈ [−1, 1] (j = 1, . . . ,M). Each eigenvalue xj of the matrix

pencil (2.9) is simple and has a right eigenvector v = (vk)
M−1
k=0 with

vM−1 = TM (xj) = −
M−1∑
l=0

pl Tl(xj) .

The other components vM−2, . . . , v0 can be computed recursively from the linear system

PM v = 2xj EM v .

Hence we obtain HM (0)PM v = 2xjHM (0)EM v, where the matrices can be repre-
sented in the following form

HM (0)PM = HM (1) +
(
o h(0) . . . h(M − 2)

)
,

2HM (0)EM = HM (0) +
(
o h(1) . . . h(M − 1)

)
.

Example 2.8 In the case M = 3 we have to solve the linear system 0 1 −p0
1 0 1− p1
0 1 −p2

 v0
v1
v2

 =

 xj v0
2xj v1
2xj v2


with

v2 = T3(xj) = −
2∑
l=0

pl Tl(xj) .
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Then we determine the other components of the eigenvector v = (vl)
2
l=0 as

v1 = −p1 T0(xj)− (2p0 + p2)T1(xj)− p1 T2(xj) ,
v0 = −(p0 + p2)T0(xj)− 2p1 T1(xj)− 2p0 T2(xj) .

In the following, we factorize the square T+H matricesHM (s) (s = 0, 1) simultaneously.
Therefore we introduce the rectangular T+H matrix

HM,M+1 :=
(
HM (0) HM (1)(1 : M, M)

)
=
(
h(0) h(1) . . . h(M)

)
(2.10)

such that conversely

HM (s) = HM,M+1(1 : M, 1 + s : M + s) (s = 0, 1) . (2.11)

Then we compute the QR factorization of HM,M+1 with column pivoting and obtain

HM,M+1 ΠM+1 = QM RM,M+1

with an orthogonal matrix QM , a permutation matrix ΠM+1, and a trapezoidal ma-
trix RM,M+1, where RM,M+1(1 : M, 1 : M) is a nonsingular upper triangular matrix.
Note that the permutation matrix ΠM+1 is chosen such that the diagonal entries of
RM,M+1(1 : M, 1 : M) have nonincreasing absolute values. Using the definition

SM,M+1 := RM,M+1 ΠT
M+1 ,

we infer that by (2.11)

HM (s) = QM SM (s) (s = 0, 1) ,

where
SM (s) := SM,M+1(1 : M, 1 + s : M + s) (s = 0, 1) .

Hence we can factorize the matrices 2HM (0)EM and HM (0)PM in the following form

2HM (0)EM = HM (0) +
(
o h(1) . . . h(M − 1)

)
= QM S

′
M (0) ,

HM (0)PM = HM (1) +
(
o h(0) . . . h(M − 2)

)
= QM S

′
M (1) ,

where

S′M (0) := SM (0) +
(
o SM (1)(1 : M, 1 : M − 1)

)
, (2.12)

S′M (1) := SM (1) +
(
o SM (0)(1 : M, 1 : M − 1)

)
. (2.13)

Since QM is orthogonal, the generalized eigenvalue problem of the matrix pencil (2.9)
is equivalent to the generalized eigenvalue problem of the matrix pencil

xS′M (0)− S′M (1) = S′M (0)
(
x IM −

(
S′M (0)

)−1
S′M (1)

)
(x ∈ R) .

Since HM (0) is nonsingular by Lemma 2.2, the matrix 2HM (0)EM is nonsingular too.
Hence S′M (0) = 2Q∗MHM (0)EM is invertible.

We summarize this method:
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Algorithm 2.9 (Matrix pencil factorization based on QR decomposition for sparse
Chebyshev-1 interpolation)

Input: hk = h(uN,k) ∈ R (k = 0, . . . , 2M − 1), M ∈ N Chebyshev-1 sparsity of (1.1).

1. Compute the QR factorization with column pivoting of the rectangular T+H matrix
(2.10) and form the matrices (2.12) and (2.13).
2. Determine the eigenvalues xj ∈ [−1, 1] (j = 1, . . . ,M) of the square matrix(

S′M (0)
)−1

S′M (1) ,

where xj are ordered in the following way 1 ≥ x1 > x2 > . . . > xM ≥ −1. Form
nj := [2N−1π arccosxj ] (j = 1, . . . ,M).
3. Compute cj ∈ R (j = 1, . . . ,M) as solution of the square Vandermonde-like system

V M (x) c = (hk)
M−1
k=0

with x := (xj)
M
j=1 and c := (cj)

M
j=1 .

Output: nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).

In contrast to Algorithm 2.9, we use now the singular value decomposition (SVD) of the
rectangular Hankel matrix (2.10) and obtain a method which is known as the ESPRIT
method. Applying the SVD to HM,M+1, we obtain

HM,M+1 = UM DM,M+1WM+1

with orthogonal matrices UM , WM+1 and a diagonal matrix DM,M+1, whose diagonal
entries are the ordered singular values σ1 ≥ σ2 ≥ . . . ≥ σM > 0 of HM,M+1. Introducing

DM := DM,M+1(1 : M, 1 : M) , WM,M+1 := WM+1(1 : M, 1 : M + 1) ,

we can simplify the SVD of (2.10) by

HM,M+1 = UM DMWM,M+1 .

Note that WM,M+1W
T
M,M+1 = IM . Setting

WM (s) := WM,M+1(1 : M, 1 + s : M + s) (s = 0, 1) ,

it follows from (2.11) that HM (s) = UM DMWM (s) (s = 0, 1). Hence we can factorize
the matrices 2HM (0)EM and HM (0)PM in the following form

2HM (0)EM = HM (0) +
(
o h(1) . . . h(M − 1)

)
= UM DMW

′
M (0) ,

HM (0)PM = HM (1) +
(
o h(0) . . . h(M − 2)

)
= UM DMW

′
M (1) ,

where

W ′
M (0) := WM (0) +

(
o WM (1)(1 : M, 1 : M − 1)

)
, (2.14)

W ′
M (1) := WM (1) +

(
o WM (0)(1 : M, 1 : M − 1)

)
. (2.15)
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Clearly,W ′
M (0) = 2D−1M UT

MHM (0)EM is a nonsingular matrix by construction. Then
we infer that the generalized eigenvalue problem of the matrix pencil (2.9) is equivalent
to the generalized eigenvalue problem of the matrix pencil

xW ′
M (0)−W ′

M (1) = W ′
M (0)

(
x IM −

(
W ′

M (0)
)−1

W ′
M (1)

)
,

since UM is orthogonal and DM is invertible. Therefore we obtain that

PM =
(
HM (0)

)−1
UM DMW

′
M (1) .

Algorithm 2.10 (ESPRIT method for sparse Chebyshev-1 interpolation)

Input: hk ∈ R (k = 0, . . . , 2M − 1), M ∈ N Chebyshev-1 sparsity of (1.1).

1. Compute the SVD of the Hankel matrix (2.10) and form the matrices (2.14) and
(2.15).

2. Determine the eigenvalues xj ∈ [−1, 1] (j = 1, . . .M) of
(
W ′

M (0)
)−1

W ′
M (1), where

xj are ordered in the following form 1 ≥ x1 > x2 > . . . > xM ≥ −1. Form nj :=
[2N−1π arccosxj ] (j = 1, . . . ,M).
3. Compute the coefficients cj ∈ R (j = 1, . . . ,M) as solution of the square Vandermonde-
like system

V M (x) c = (hk)
M−1
k=0

with x := (xj)
M
j=1 and c := (cj)

M
j=1.

Output: nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).

Remark 2.11 The last step of the Algorithms 2.7 – 2.10 can be replaced by the compu-
tation of the real coefficients cj (j = 1, . . . ,M) as least squares solution of the overdeter-
mined Vandermonde-like V 2M,M (x) c = (hk)

2M−1
k=0 with the rectangular Vandermonde-

like matrix

V 2M,M (x) :=
(
Tk(xj)

)2M−1,M
k=0,j=1

=
(

cos
njkπ

2N − 1

)2M−1,M
k=0,j=1

.

In the case of sparse Chebyshev-1 interpolation of (1.1) with known Chebyshev-1 sparsity
M , we have seen that each method determines the eigenvalues xj (j = 1, . . . ,M) of the
matrix pencil 2xEM − PM , where 1

2 E
−1
M PM is the companion matrix of the Prony

polynomial (2.3) in the Chebyshev-1 basis.

3 Interpolation for unknown Chebyshev-1 sparsity

Now we consider the more general case of interpolation of the sparse polynomial (1.1)
with unknown Chebyshev-1 sparsity M . Let L ∈ N be convenient upper bound of the
sparsity M with M ≤ L ≤ N . In order to improve the stability, we allow to choose more
sampling points. Therefore we introduce an additional parameter K with L ≤ K ≤ N
such that we use K+L sampling points of (1.1), more precisely we assume that noiseless
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sampled data hk = h(uN,k) (k = 0, . . . , L+K − 1) are given. With the L+K sampled
data hk ∈ R (k = 0, . . . , L+K − 1) we form the rectangular T+H matrices

HK,L+1 :=
(
hl+m + h|l−m|

)K−1,L
l,m=0

, (3.1)

HK,L(s) :=
(
hl+m+s + h|l−m−s|

)K−1,L−1
l,m=0

(s = 0, 1) . (3.2)

Then HK,L(1) is a shifted version of the T+H matrix HK,L(0) and

HK,L+1 =
(
HK,L(0) HK,L(1)(1 : K, L)

)
,

HK,L(s) = HK,L+1(1 : K, 1 + s : L+ s) (s = 0, 1) . (3.3)

Note that in the special case M = L = K we obtain again the matrices (2.10) and
(2.11). Using the coefficients pk (k = 0, . . . ,M − 1) of the Prony polynomial (2.3),
we form the vector pL := (pk)

L−1
k=0 with pM := 1, pM+1 = . . . = pL−1 := 0. By

SL :=
(
δk−l−1 + δk−l+1

)L−1
k,l=0

we denote the sum of forward and backward shift matrix,

where δk is the Kronecker symbol. Analogously, we introduce pL+1 := (pk)
L
k=0 with

pL := 0, if L > M , and SL+1 :=
(
δk−l−1 + δk−l+1

)L
k,l=0

.

Lemma 3.1 Let L, K, M , N ∈ N with M ≤ L ≤ K ≤ N be given. Furthermore, let
hk = h(uN,k) (k = 0, . . . , L+K − 1) be noiseless sampled data of the sparse polynomial
(1.1) with cj ∈ R \ {0} (j = 1, . . . ,M). Then

rankHK,L+1 = rankHK,L(s) = M (s = 0, 1) . (3.4)

If L = M , then nullHK,M+1 = span {pM+1} and nullHK,M (s) = {o} for s = 0, 1. If
L > M , then

nullHK,L+1 = span {pL+1, SL+1pL+1, . . . ,S
L−M
L+1 pL+1} ,

nullHK,L(s) = span {pL, SLpL, . . . ,SL−M−1L pL} (s = 0, 1)

and

dim (nullHK,L+1) = L−M + 1 ,

dim (nullHK,L(s)) = L−M (s = 0, 1) .

Proof. 1. For xj = Tnj (uN ) (j = 1, . . . ,M), we introduce the rectangular Vandermonde-
like matrices

V K,M (x) :=
(
Tk−1(xj)

)K,M
k,j=1

=
(

cos
nj(k − 1)π

2N − 1

)K,M
k,j=1

, (3.5)

V ′K,M (x) :=
(
Tk(xj)

)K,M
k,j=1

=
(

cos
njkπ

2N − 1

)K,M
k,j=1

,

which have the rank M , since V M (x) and V ′M (x) are nonsingular by Lemmas 2.2 and
2.3. Then the rectangular T+H matrices (3.1) and (3.2) can be factorized in the following
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form

HK,L+1 = 2V K,M (x) (diag c)V L+1,M (x)T ,

HK,L(0) = 2V K,M (x) (diag c)V L,M (x)T ,

HK,L(1) = 2V K,M (x) (diag c)V ′L,M (x)T

with x = (xj)
M
j=1 and c = (cj)

M
j=1. This can be shown in similar way as in the proof

of Lemma 2.2. Since cj 6= 0 and since xj ∈ [−1, 1] are distinct, we obtain (3.4). Using
rank estimation, we can determine the rank and thus the Chebyshev-1 sparsity of the
sparse polynomial (2.3). By (3.4) and HK,L+1 pM+1 = o (see (2.4)), the 1–dimensional
null space of HK,L+1 is spanned by pM+1. Furthermore, the null spaces of HK,L(s) are
trivial for s = 0, 1.
2. Assume that L > M . From

M∑
m=0

pm
(
hl+m+s + h|l−m−s|

)
= 0 (l = 0, . . . , 2N −M − s− 1; s = 0, 1)

it follows that
HK,L+1 (SjL+1 pL+1) = o (j = 0, . . . , L−M)

and analogously

HK,L(s) (SjL pL) = o (j = 0, . . . , L−M − 1; s = 0, 1) ,

where o denotes the corresponding zero vector. By pM = 1, we see that the vectors
SjL+1 pL+1 (j = 0, . . . , L−M) and SjL pL (j = 0, . . . , L−M−1) are linearly independent
and located in nullHK,L+1, and nullHK,L(s), respectively.
3. Let again L > M . Now we prove that nullHK,L+1 is contained in the linear span

of the vectors SjL+1pL+1 (j = 0, . . . , L −M). Let u = (ul)
L
l=0 ∈ RL+1 be an arbitrary

right eigenvector of HK,L+1 related to the eigenvalue 0 and let U be the corresponding
polynomial

U(x) =
L∑
l=0

ul Tl(x) (x ∈ R) .

Using the noiseless sampled data hk = h(uN,k) (k = 0, . . . , 2N − 1), we obtain

0 =

L∑
m=0

(hl+m + h|l−m|)um =

L∑
m=0

um

( M∑
j=1

cj
[
Tnj (uN,l+m) + Tnj (uN,|l−m|)

])
.

Thus by Tnj (uN,l+m)+Tnj (uN,|l−m|) = Tl+m(xj)+T|l−m|(xj) = 2Tl(xj)Tm(xj) it follows
that

0 = 2

M∑
j=1

cj Tl(xj)U(xj) (l = 0, . . . , 2N − L− 1)

and hence by (3.5)

V K,M (x)
(
cj U(xj)

)M
j=1

= o .
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Since xj ∈ [−1, 1] (j = 1, . . . ,M) are distinct by assumption, the square Vandermonde-
like matrix V M (x) is nonsingular by Lemma 2.2. Hence we obtain U(xj) = 0 (j =
1, . . . ,M) by cj 6= 0. Thus it follows that U(x) = P (x)R(x) with certain polynomial

R(x) =
L−M∑
k=0

rk Tk(x) (x ∈ R; rk ∈ R) .

But this means for the coefficients of the polynomials P , R, and U that

u = r0 pL+1 +
1

2
r1 SL+1 pL+1 + . . .+

1

2
rL−M S

L−M
L+1 pL+1 .

Hence the vectors SjL+1 pL+1 (j = 0, . . . , L−M) form a basis of nullHK,L+1 such that
dim(nullHK,L+1) = L−M + 1. Similarly, one can show the results for the other Hankel
matrices (3.2). This completes the proof.

The Prony method for sparse Chebyshev-1 interpolation (with unknown Chebyshev-1
sparsity M) is based on the following result.

Lemma 3.2 Let L, K, M , N ∈ N with M ≤ L ≤ K ≤ N be given. Let hk = h(uN,k)
(k = 0, . . . , L + K − 1) be noiseless sampled data of the sparse polynomial (1.1) with
cj ∈ R \ {0}. Then following assertions are equivalent:
(i) The polynomial

Q(x) :=
L∑
k=0

qk Tk(x) (x ∈ R; qL := 1) (3.6)

with real coefficients qk has M distinct zeros xj ∈ [−1, 1] (j = 1, . . . ,M).
(ii) The vector q = (qk)

L−1
k=0 is a solution of the linear system

HK,L(0) q = −h(L) (h(L) :=
(
hL+m + h|L−m|

)K−1
m=0

). (3.7)

(iii) The matrix QL := SL −
(
o . . . o q

)
∈ RL×L has the property

HK,L(0)QL = HK,L(1) +
(
o h(0) . . . h(L− 2)

)
. (3.8)

Further the eigenvalues of 1
2 E
−1
L QL coincide with the zeros of the polynomial (3.6).

Proof. 1. From (i) it follows (ii): Assume that Q(xj) = 0 (j = 1, . . . ,M). For m =
0, . . . ,K, we compute the sums

sm :=

L∑
k=0

(hk+m + h|k−m|) qk .

Using hk = h(uN,k) (k = 0, . . . , 2N − 1), (1.1), and the known identities (see e.g. [11,
p. 17 and p. 31])

2Tj(x)Tk(x) = Tj+k(x) + T|j−k|(x) , Tj
(
Tk(x)

)
= Tj+k(x) (j, k ∈ N0) ,
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we obtain

sm =

L∑
k=0

qk

[
h
(
Tk+m(uN )

)
+ h
(
T|k−m|(uN )

)]
=

M∑
l=1

cl

L∑
k=0

qk

[
Tk+m(xl) + T|k−m|(xl)

]
= 2

M∑
l=1

cl Tm(xl)Q(xl) = 0 .

By qL = 1 this implies that

L−1∑
k=0

(hk+m + h|k−m|) qk = −1 (hL+m + h|L−m|) (m = 0, . . . ,K) .

Hence we get (3.7).
2. From (ii) it follows (iii): Assume that q = (ql)

L−1
l=0 is a solution of the linear system

(3.7). Then by

HK,L(0) (δk−j)
L−1
k=0 = h(j) =

(
hk+j + h|k−j|

)K−1
k=0

(j = 1, . . . , L− 1) ,

−HK,L(0) q = h(L) =
(
hk+L + h|k−L|

)K−1
k=0

,

we obtain (3.8) column by column.
3. From (iii) it follows (i): By (3.8) we obtain (3.7), since the last column of QL reads
(δL−2−j)

L−1
j=0 − q and since the last column of

HK,L(1) +
(
o h(0) . . . h(L− 2)

)
is equal to h(L) + h(L− 2). Then (3.7) implies

L∑
k=0

(hk+m + h|k−m|) qk = 0 (m = 0, . . . ,K).

As shown in the first step, we obtain

M∑
l=1

cl Tm(xl)Q(xl) = 0 (m = 0, . . . ,K) ,

i.e. by (3.5) finally V K,M (x)
(
clQ(xl)

)M
l=1

= o . Especially we conclude that

V M (x)
(
clQ(xl)

)M
l=1

= o .

Since xj ∈ [−1, 1] (j = 1, . . . ,M) are distinct, the square Vandermonde-like matrix
V M (x) is nonsingular by Lemma 2.2 such that Q(xj) = 0 (j = 1, . . . ,M).
4. From Lemma 2.5, it follows that

det
(
2xEL −QL

)
= Q(x) (x ∈ R) .
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Hence the eigenvalues of the square matrix 1
2 E
−1
L QL coincide with the zeros of the

polynomial (3.6). This completes the proof.

In the following, we denote a polynomial (3.6) as a modified Prony polynomial of degree
L (M ≤ L ≤ N), if the corresponding coefficient vector q = (qk)

L−1
k=0 is a solution of the

linear system (3.7). Then (3.6) has the same zeros xj ∈ [−1, 1] (j = 1, . . . ,M) as the
Prony polynomial (2.3), but (3.6) has L−M additional zeros, if L > M . The eigenvalues
of 1

2 E
−1
L QL coincide with the zeros of the polynomial Q.

Now we formulate Lemma 3.2 as an algorithm. Since the unknown coefficients cj (j =
1, . . . ,M) do not vanish, we can assume that |cj | > ε for convenient bound ε (0 < ε� 1).

Algorithm 3.3 (Prony method for sparse Chebyshev-1 interpolation)

Input: L, K, N ∈ N (N � 1, 3 ≤ L ≤ K ≤ N , L is upper bound of the Chebyshev-1
sparsity M of (1.1)), hk = h(uN,k) ∈ R (k = 0, . . . , L+K − 1), 0 < ε� 1.

1. Compute the least squares solution q = (qk)
L−1
k=0 of the rectangular linear system (3.7).

2. Determine the simple roots x̃j ∈ [ − 1, 1] (j = 1, . . . , M̃) of the modified Prony
polynomial (3.6), i.e., compute all eigenvalues x̃j ∈ [ − 1, 1] (j = 1, . . . , M̃) of the
companion matrix 1

2 E
−1
L QL. Assume that x̃j are ordered in the following form 1 ≥

x̃1 > x̃2 > . . . > x̃M ≥ −1. Note that rankHK,L(0) = M ≤ M̃ .
3. Compute c̃j ∈ R (j = 1, . . . , M̃) as least squares solution of the overdetermined linear
Vandermonde–like system

V L+K,M̃ (x̃) (c̃j)
M̃
j=1 = (hk)

L+K−1
k=0

with x̃ := (x̃j)
M̃
j=1 and V L+K,M̃ (x̃) :=

(
Tk(x̃j)

)L+K−1,M̃
k=0,j=1

.

4. Delete all the x̃l (l ∈ {1, . . . , M̃} with |c̃l| ≤ ε and denote the remaining values by xj
(j = 1, . . . ,M) with M ≤ M̃ . Calculate nj := [2N−1π arccosxj ] (j = 1, . . . ,M).
5. Repeat step 3 and compute c = (cj)

M
j=1 ∈ RM as least squares solution of the

overdetermined linear Vandermonde–like system

V L+K,M (x) c = (hk)
L+K−1
k=0

with x := (xj)
M
j=1 and V L+K,M (x) :=

(
Tk(xj)

)L+K−1,M
k=0,j=1

=
(

cos
njkπ
2N−1

)L+K−1,M
k=0,j=1

.

Output: M ∈ N, nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).

Now we show that the Prony method for sparse Chebyshev-1 interpolation can be sim-
plified to a matrix pencil method. As known, a rectangular matrix pencil may not have
eigenvalues in general. But this is not the case for our rectangular matrix pencil

2xHK,L(0)EL −HK,L(0)QL , (3.9)

which has xj ∈ [−1, 1] (j = 1, . . . ,M) as eigenvalues. Note that by (3.8) both matrices
HK,L(0)EL and HK,L(0)QL are known by the given sampled data hk (k = 0, . . . , 2N−
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1). The matrix pencil (3.9) has at least the eigenvalues xj ∈ [−1, 1] (j = 1, . . . ,M). If
v ∈ CL is a right eigenvector related to xj , then by(

2xjHK,L(0)EL −HK,L(0)QL

)
v = HK,L(0)

(
2xj EL −QL

)
v

and

det
(
2xj EL −QL

)
= Q(xj) = 0

we see that v = (vk)
L−1
k=0 is a right eigenvector of the square eigenvalue problem

1

2
E−1L QL v = xj v .

A right eigenvector can be determined by

vL−1 = TL(xj) = −
L−1∑
l=0

ql Tl(xj) ,

whereas the other components vL−2, . . . , v0 can be computed recursively from the linear
system

QL v = 2xj EL v .

Now we factorize the rectangular T+H matrices (3.2) simultaneously. For this reason, we
compute the QR decomposition of the rectangular T+H matrix (3.1). By (3.4), the rank
of the T+H matrix HK,L+1 is equal to M . Hence HK,L+1 is rank deficient. Therefore
we apply QR factorization with column pivoting and obtain

HK,L+1 ΠL+1 = UK RK,L+1

with an orthogonal matrix UK , a permutation matrix ΠL+1, and a trapezoidal matrix

RK,L+1 =

(
RK,L+1(1 : M, 1 : L+ 1)

OK−M,L+1

)
,

where RK,L+1(1 : M, 1 : M) is a nonsingular upper triangular matrix. By the QR
decomposition we can determine the rank M of the T+H matrix (3.1) and hence the
Chebyshev-1 sparsity of the sparse polynomial (1.1). Note that the permutation matrix
ΠL+1 is chosen such that the diagonal entries of RK,L+1(1 : M, 1 : M) have nonincreas-
ing absolute values. We denote the diagonal matrix containing these diagonal entries by
DM . With

SK,L+1 := RK,L+1 ΠT
L+1 =

(
SK,L+1(1 : M, 1 : L+ 1)

OK−M,L+1

)
, (3.10)

we infer that by (3.3)

HK,L(s) = UK SK,L(s) (s = 0, 1)
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with

SK,L(s) := SK,L+1(1 : K, 1 + s : L+ s) (s = 0, 1) .

Hence we can factorize the matrices 2HK,L(0)EL and HK,L(0)QL in the following
form

2HK,L(0)EL = HK,L(0) +
(
o h(1) . . . h(L− 1)

)
= UK S

′
K,L(0) ,

HK,L(0)QL = HK,L(1) +
(
o h(0) . . . h(L− 2)

)
= UK S

′
K,L(1) ,

where

S′K,L(0) := SK,L(0) +
(
o SK,L(1)(1 : K, 1 : L− 1)

)
,

S′K,L(1) := SK,L(1) +
(
o SK,L(0)(1 : K, 1 : L− 1)

)
.

Since UK is orthogonal, the generalized eigenvalue problem of the matrix pencil (3.9) is
equivalent to the generalized eigenvalue problem of the matrix pencil

xS′K,L(0)− S′K,L(1) (x ∈ R) .

Using the special structure of (3.10), we can simplify the matrix pencil

xTM,L(0)− TM,L(1) (x ∈ R) (3.11)

with

TM,L(s) := SK,L(1 : M, 1 + s : L+ s) (s = 0, 1) . (3.12)

Here one can use the matrix DM as diagonal preconditioner and proceed with

T ′M,L(s) := D−1M TM,L(s) . (3.13)

Then the generalized eigenvalue problem of the transposed matrix pencil

xT ′M,L(0)T − T ′M,L(1)T

has the same eigenvalues as the matrix pencil (3.11) except for the zero eigenvalues and
it can be solved as eigenvalue problem of the M -by-M matrix

F QR

M :=
(
T ′M,L(0)T

)†
T ′M,L(1)T . (3.14)

Finally we obtain the nodes xj ∈ [−1, 1] (j = 1, . . . ,M) as the eigenvalues of (3.14).

Algorithm 3.4 (Matrix pencil factorization based on QR decomposition for sparse
Chebyshev-1 interpolation)

Input: L, K, N ∈ N (N � 1, 3 ≤ L ≤ K ≤ N , L is upper bound of the Chebyshev-1
sparsity M of (1.1)), hk = h(uN,k) ∈ R (k = 0, . . . , L+K − 1).
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1. Compute QR factorization of the rectangular T+H matrix (3.1). Determine the rank
of (3.1) and form the matrices (3.12) and (3.13).
2. Determine the eigenvalues xj ∈ [ − 1, 1] (j = 1, . . . ,M) of the square matrix (3.14).
Assume that xj are ordered in the following form 1 ≥ x1 > x2 > . . . > xM ≥ −1.
Calculate nj := [2N−1π arccosxj ] (j = 1, . . . ,M).
3. Compute the coefficients cj ∈ R (j = 1, . . . ,M) as least squares solution of the
overdetermined linear Vandermonde–like system

V L+K,M (x) (cj)
M
j=1 = (hk)

L+K−1
k=0

with x := (xj)
M
j=1 and V L+K,M (x) :=

(
Tk(xj)

)L+K−1,M
k=0,j=1

=
(

cos
njkπ
2N−1

)L+K−1,M
k=0,j=1

.

Output: M ∈ N, nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).

In the following we derive the ESPRIT method by similar ideas as above, but now we
use the SVD of the T+H matrix (3.1), which is rank deficient by (3.4). Therefore we
use the factorization

HK,L+1 = UKDK,L+1W L+1 ,

where UK and W L+1 are orthogonal matrices and where DK,L+1 is a rectangular diag-
onal matrix. The diagonal entries of DK,L+1 are the singular values of (3.1) arranged
in nonincreasing order σ1 ≥ σ2 ≥ . . . ≥ σM > σM+1 = . . . = σL+1 = 0. Thus we can
determine the rank M of the Hankel matrix (3.1) which coincides with the Chebyshev-1
sparsity of the polynomial (1.1). Introducing the matrices

DK,M := DK,L+1(1 : K, 1 : M) =

(
diag (σj)

M
j=1

OK−M,M

)
,

WM,L+1 := W L+1(1 : M, 1 : L+ 1) ,

we can simplify the SVD of the Hankel matrix (3.1) as follows

HK,L+1 = UKDK,MWM,L+1 .

Note that WM,L+1W
T
M,L+1 = IM . Setting

WM,L(s) = WM,L+1(1 : M, 1 + s : L+ s) (s = 0, 1) , (3.15)

it follows from (3.3) that HK,L(s) = UKDK,MWM,L(s) (s = 0, 1). Hence we can
factorize the matrices 2HK,L(0)EL and HK,L(0)QL in the following form

2HK,L(0)EL = HK,L(0) +
(
o h(1) . . . h(L− 1)

)
= UKDK,MW

′
K,L(0) ,

HK,L(0)QL = HK,L(1) +
(
o h(0) . . . h(L− 2)

)
= UKDK,MW

′
K,L(1) ,

where

W ′
K,L(0) := WK,L(0) +

(
o WK,L(1)(1 : K, 1 : L− 1)

)
,

W ′
K,L(1) := WK,L(1) +

(
o WK,L(0)(1 : K, 1 : L− 1)

)
.
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Since UK is orthogonal, the generalized eigenvalue problem of the rectangular matrix
pencil (3.9) is equivalent to the generalized eigenvalue problem of the matrix pencil

xDK,MW
′
M,L(0)−DK,MW

′
M,L(1) . (3.16)

If we multiply the transposed matrix pencil (3.16) from the right side with(
diag (σ−1j )Mj=1

OK−M,M

)
,

we obtain the generalized eigenvalue problem of the matrix pencil

xW ′
M,L(0)T −W ′

M,L(1)T ,

which has the same eigenvalues as the matrix pencil (3.16) except for the zero eigenvalues.
Finally we determine the nodes xj ∈ [−1, 1] (j = 1, . . . ,M) as eigenvalues of the matrix

F SV D
M :=

(
W ′

M,L(0)T
)†
W ′

M,L(1)T . (3.17)

Thus the ESPRIT algorithm reads as follows:

Algorithm 3.5 (ESPRIT method for sparse Chebyshev-1 interpolation)

Input: L, K, N ∈ N (N � 1, 3 ≤ L ≤ K ≤ N , L is upper bound of the Chebyshev-1
sparsity M of (1.1)), hk = h(uN,k) ∈ R (k = 0, . . . , L+K − 1).

1. Compute the SVD of the rectangular T+H matrix (3.1). Determine the rank M of
(3.1) and form the matrices (3.15).
2. Compute all eigenvalues xj ∈ [−1, 1] (j = 1, . . . ,M) of the square matrix (3.17).
Assume that the eigenvalues are ordered in the following form 1 ≥ x1 > x2 > . . . >
xM ≥ −1. Calculate nj := [2N−1π arccosxj ] (j = 1, . . . ,M).
3. Compute the coefficients cj ∈ R (j = 1, . . . ,M) as least squares solution of the
overdetermined linear Vandermonde–like system

V L+K,M (x) c = (hk)
L+K−1
k=0

with x := (xj)
M
j=1 and c := (cj)

M
j=1.

Output: M ∈ N, nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).

4 Sparse polynomial interpolation in Chebyshev-2 basis

In the following, we sketch the sparse interpolation in another Chebyshev basis. For
n ∈ N0 and x ∈ (−1, 1), the Chebyshev polynomial of second kind is defined by

Un(x) := (1− x2)−1/2 sin
(
(n+ 1) arccosx

)
(see for example [11, p. 3]). These polynomials are orthogonal with respect to the weight
(1− x2)1/2 on [−1, 1] (see [11, p. 74]) and form the Chebyshev-2 basis.
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For M, N ∈ N with M ≤ N , we consider a polynomial h of degree at most N − 1, which
is M -sparse in the Chebyshev-2 basis, i.e.

h(x) =
M∑
j=1

cj Unj (x) (4.1)

with 0 ≤ n1 < n2 < . . . < nM ≤ N − 1. Note that the sparsity depends on the choice of
Chebyshev basis. Using T0 = U0, T1 = U1/2 and Tn = (Un −Un−2)/2 for n ≥ 2 (cf. [11,
p. 4]), we obtain for N � 2

UN−2 + UN−1 = T0 + 2 (T1 + . . .+ TN−1) .

Thus the 2-sparse polynomial UN−2 + UN−1 in the Chebyshev-2 basis is not a sparse
polynomial in the Chebyshev-1 basis. For shortness, we restrict us on the discussion of
the sparse polynomial interpolation in the Chebyshev-2 basis. But we emphasize that
one can extend this approach the Chebyshev polynomials of third and fourth kind (see
[11, p. 5]), which are defined for n ∈ N0 by

Vn(x) :=
cos((n+ 1

2) arccosx)

cos(12 arccosx)
, Wn(x) :=

sin((n+ 1
2) arccosx)

sin(12 arccosx)
(x ∈ (−1, 1)) .

Substituting x = cos t, we obtain for all t ∈ [0, π]

sin t h(cos t) =

M∑
j=1

cj sin
(
(nj + 1) t)

)
.

By sampling at t = πk
2N−1 (k = 0, . . . , 2N − 1), it follows that

h̃k := sin
πk

2N − 1
h
(

cos
πk

2N − 1

)
=

M∑
j=1

cj sin
(
(nj + 1)

πk

2N − 1
)
)
. (4.2)

Further we set h̃−k := −h̃k (k = 1, . . . , 2N − 1). In this case, we introduce the Prony
polynomial by

P̃ (x) := 2M−1
M∏
j=1

(
x− cos

(nj + 1)π

2N − 1

)
, (4.3)

which can be represented again in the Chebyshev-1 basis in the form

P̃ (x) =

M∑
l=0

pl Tl(x) (pM = 1) .

The coefficients pl of the Prony polynomial (4.3) can be characterized as follows:
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Lemma 4.1 For all k = 0, . . . , 2N − 1, the scaled sampled values (4.2) and the coeffi-
cients pl of the Prony polynomial (4.3) fulfil the equations

M−1∑
j=0

(h̃j+k − h̃j−k) pj = −(h̃M+k − h̃M−k) .

Proof. Using sin(α+ β)− sin(α− β) = 2 sinα cosβ, we obtain for j, k = 0, . . . ,M

h̃j+k − h̃j−k = 2
M∑
l=1

cl sin
(nl + 1)πk

2N − 1
cos

(nl + 1)πj

2N − 1
. (4.4)

Note that the equation (4.4) is trivial for k = 0 and therefore omitted. From (4.4) it
follows that

M∑
j=0

(h̃j+k − h̃j−k) pj = 2
M∑
j=0

pj

M∑
l=1

cl sin
(nl + 1)πk

2N − 1
cos

(nl + 1)πj

2N − 1

= 2

M∑
l=1

cl sin
(nl + 1)πk

2N − 1
P̃
(

cos
(nl + 1)πj

2N − 1

)
= 0 .

By pM = 1, this implies the assertion.

If we introduce the T+H matrix

H̃M (0) :=
(
h̃j+k − h̃j−k

)M,M−1
k=1,j=0

and the vector h̃(M) := (h̃M+k−h̃M−k)Mk=1, then by Lemma 4.1 the vector p := (pj)
M−1
j=0

is a solution of the linear system

H̃M (0)p = −h̃(M) . (4.5)

By (4.4), the T+H matrix H̃M (0) can be factorized in the form

H̃M (0) = 2V s
M (diag c)

(
V c
M

)T
(4.6)

with the Vandermonde-like matrices

V c
M :=

(
cos

(nl + 1)πj

2N − 1

)M−1,M
j=0,l=1

, V s
M :=

(
sin

(nl + 1)πk

2N − 1

)M
k,l=1

and the diagonal matrix of c = (cl)
M
l=1. Both Vandermonde-like matrices are nonsingular.

Assume that V c
M is singular. Then there exists a vector d = (dl)

M−1
l=0 6= o with dT V c

M =
oT. Introducing

D(x) :=
M−1∑
l=0

dl cos(lx) ,

this even trigonometric polynomial of order at most M−1 has M distinct zeros (nl+1)π
2N−1 ∈

(0, π] (j = 1, . . . ,M). But this can be only the case, if D vanishes identically. Similarly,
one can see that V s

M is nonsingular too. From (4.6) it follows that H̃M (0) is also
nonsingular. Thus we obtain:
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Algorithm 4.2 (Prony method for sparse Chebyshev-2 interpolation)

Input: h̃k ∈ R (k = 0, . . . , 2M − 1), M ∈ N Chebyshev-2 sparsity of (4.1).

1. Solve the square linear system (4.5).
2. Determine the simple roots x̃j (j = 1, . . .M) of the Prony polynomial (4.3), where
1 ≥ x̃1 > x̃2 > . . . > x̃M ≥ −1, and compute then nj := [2N−1π arccos x̃j ] − 1 (j =
1, . . . ,M).
3. Compute cj ∈ R (j = 1, . . . ,M) as solution of the square Vandermonde-like system

V s
M c = (h̃k)

M−1
k=0

with c := (cj)
M
j=1 .

Output: nj ∈ N0 (0 ≤ n1 < n2 < . . . < nM < 2N), cj ∈ R (j = 1, . . . ,M).

Immediately we can see that the Algorithms 3.4 and 3.5 can be generalized in a straight-
forward manner, since the Prony polynomial P̃ is represented in the Chebyshev-1 basis.
We will denote these generalizations by Algorithms 3̃.4 and 3̃.5, respectively.

5 Numerical examples

Now we illustrate the behavior and the limits of the suggested algorithms. Using IEEE
standard floating point arithmetic with double precision, we have implemented our al-
gorithms in MATLAB. In the Examples 5.1 – 5.3, an M -sparse polynomial is given in
the form (1.1) with Chebyshev polynomials Tnj of degree nj and real coefficients cj 6= 0
(j = 1, . . . ,M). We compute the absolute error of the coefficients by

e(c) := max
j=1,...,M

|cj − c̃j | (c := (cj)
M
j=1) ,

where c̃j are the coefficients computed by our algorithms. In Example 5.4 we generalize
the method to a sparse nonpolynomial interpolation. Finally in Example 5.5, we present
an example of sparse polynomial interpolation in the Chebyshev-2 basis.

Example 5.1 We start with the following example. We choose M = 5, cj = j, uN :=
cos π

2N−1 and (n1, n2, n3, n4, n5) = (6, 12, 176, 178, 200) in (1.1). The symbols + and −
in the Table 5.1 mean that all degrees nj are correctly reconstructed and accordingly
the reconstruction fails. Since after a successful reconstruction the last step is the same
in the Algorithms 3.3 – 3.5, we present the error e(c) in the last column of the Table
5.1.

Example 5.2 It is difficult to reconstruct a sparse polynomial (1.1) in the case, if
some degrees nj of the Chebyshev polynomials Tnj differ only a little. Therefore we
consider the sparse polynomial (1.1) with (n1, n2, n3, n4, n5) = (60, 120, 1760, 1780, 2000)
and again cj = j (j = 1, . . . , 5). The results are shown in Table 5.2.
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N K L Alg. 3.3 Alg. 3.4 Alg. 3.5 e(c)

101 5 5 + + + 4.26e-14

200 5 5 + + + 7.11e-15

300 5 5 − − − –

300 6 5 + + + 1.38e-14

400 6 5 − − − –

400 7 5 + + + 3.82e-14

500 7 5 − − − –

500 8 5 − − + 7.28e-14

500 9 5 + + + 3.82e-14

1000 70 5 − − + 6.22e-15

1000 65 10 + + − 6.22e-15

1000 73 5 + + − 5.33e-15

1000 90 5 + + + 2.66e-15

1000 100 100 − + + 4.44e-15

Table 5.1: Results of Example 5.1.

N K L Alg. 3.3 Alg. 3.4 Alg. 3.5 e(c)

2000 50 50 − + + 1.78e-15

4000 50 50 − + + 2.66e-15

5000 60 5 + + + 8.88e-16

Table 5.2: Results of Example 5.2.

Example 5.3 Similarly as in Example 5.1, we choose M = 5, cj = j (j = 1, . . . , 5) and
(n1, n2, n3, n4, n5) = (6, 12, 176, 178, 200). We reconstruct the sparse polynomial (1.1)
from samples of a random Chebyshev grid. For this purpose, we choose a random integer
σ ∈ [1, N − 1] such that its inverse σ−1 modulo 2N − 1 exists. Assume that N fulfils the
conditions nj ≤ 2N − 1. By

Tnj (uN,k) = cos(
knjπ

2N − 1
)

=

{
cos(

(σk)(σ−1nj mod (2N−1))π
2N−1 ) if σ−1nj mod (2N − 1) ≤ N,

cos(
(σk)(2N−1−(σ−1nj mod (2N−1)))π

2N−1 ) if σ−1nj mod (2N − 1) > N

=

{
Tσ−1nj mod (2N−1)(uN,σk) if σ−1nj mod (2N − 1) < N,

T2N−1−(σ−1nj mod (2N−1))(uN,σk) if σ−1nj mod (2N − 1) ≥ N
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we are able to recover the degrees nj from the sampling set uN,σk = cos σkπ
2N−1 for k =

0, . . . ,K + L − 1. The main advantage is that the degrees σ−1nj are much better
separated than the original degrees nj . The results are shown in the Table 5.3. Note
that the Algorithm 3.3 determines the eigenvalues x̃j , which give the correct degrees nj
after step 2, but the selection of these correct degrees fails in general in step 4.

N K L σ Alg. 3.3 Alg. 3.4 Alg. 3.5 e(c)

2000 10 10 98 − + + 2.17e-10

4000 10 10 3294 − + + 1.46e-05

5000 10 10 1586 − + + 6.08e-07

8000 10 10 3053 − + + 1.60e-04

Table 5.3: Results of Example 5.3.
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Figure 5.1: The sparse polynomial (1.1) of Example 5.3 for N = 300 and 100 samples
with σ = 1 (left) and σ = 251 (right).

Example 5.4 This example shows a straightforward generalization to a sparse non-
polynomial interpolation. We consider special functions the form

h(x) :=
M∑
j=1

cj cos(νj arccos(x)) (x ∈ [−1, 1]) ,

where νj ∈ R with 0 ≤ ν1 < . . . < νM < 2N are not necessarily integers. Using
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t = arccos(x), we obtain

g(t) =

M∑
j=1

cj cos(νjt) (t ∈ [0, π]) .

As in Example 5.1 we choose M = 5, cj = j, uN := cos π
2N−1 and (ν1, ν2, ν3, ν4, ν5) =

(6.1, 12.2, 176.3, 178.4, 200.5). We compute the error of the values νj ∈ R by

e(ν) := max
j=1,...,5

|νj − ν̃j | (ν := (νj)
5
j=1) ,

where ν̃j are the values computed by our algorithms. This corresponding errors e(ν)
are shown in the Table 5.4. We sample the function g at the nodes kπ

2N−1 for k =
0, . . . , L + K − 1 and present the error e(c) in the last column of Table 5.4 based on
Algorithm 3.3. The results show that the Algorithms 3.4 and 3.5 can be used to find
the entries νj and the coefficients cj .

N K L Alg. 3.3 Alg. 3.4 Alg. 3.5 e(c)

120 10 10 1.64e+02 2.46e-09 2.48e-09 5.09e-09

120 20 20 1.23e+02 3.87e-10 3.92e-10 5.89e-10

Table 5.4: Results of Example 5.4.

Example 5.5 Finally, we consider a sparse polynomial (4.1) in Chebyshev-2 basis. To
this end, we chooseM = 5, cj = j (j = 1, . . . , 5), uN := cos π

2N−1 and (n1, n2, n3, n4, n5) =
(6, 12, 176, 178, 190). The symbols + and − in the Table 5.5 mean that all degrees nj
of the Chebyshev polynomials Unj are correctly reconstructed and accordingly the re-
construction fails. Remember that the generalizations of Algorithms 3.4 and 3.5 for the
Chebyshev-2 basis are denoted by Algorithms 3̃.4 and 3̃.5, respectively. Since after a
successful reconstruction the last step is the same in our algorithms, we present the error
e(c) in the last column of the Table 5.5. From Table 5.5 we observe that the algorithms
for sparse polynomial interpolation in Chebyshev-2 basis behaves very similar as the
algorithms for sparse polynomial interpolation in Chebyshev-1 basis.
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N K L Alg. 4.2 Alg. 3̃.4 Alg. 3̃.5 e(c)

100 5 5 + + + 2.35e-14

200 5 5 + + + 5.86e-14

300 5 5 − − − –

300 6 5 + + + 7.84e-02

300 7 5 + + + 1.38e-13

Table 5.5: Results of Example 5.5.
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