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N. Rückert ∗, R. S. Anderssen † , B. Hofmann∗

Abstract

Using the dual Black-Scholes partial differential equation, Dupire [6] derived
an explicit formula, involving the ratio of partial derivatives of the evolving fair
value of a European call option (ECO), for recovering information about its vari-
able volatility. Because the prices, as a function of maturity and strike, are only
available as discrete noisy observations, the evaluation of Dupire’s formula reduces
to being an ill-posed numerical differentiation problem, complicated by the need to
take the ratio of derivatives. In order to illustrate the nature of ill-posedness, a
simple finite difference scheme is first used to approximate the partial derivatives.
A new method is then proposed which reformulates the determination of the volatil-
ity, from the partial differential equation defining the fair value of the ECO, as a
parameter identification activity. By using the weak formulation of this equation,
the problem is localized to a subregion on which the volatility surface can be ap-
proximated by a constant or a constant multiplied by some known shape function
which models the local shape of the volatility function. The essential regularization
is achieved through the localization, the choice of the analytic weight function, and
the application of integration-by-parts to the weak formulation to transfer the dif-
ferentiation of the discrete data to the differentiation of the analytic weight function.

Keywords.Parameter identification, Volatility surfaces, Dupire’s equation, Fi-
nite difference, Localization approach

1 Introduction

In financial markets, a major activity is the buying and selling of European call options
(ECO), with agreed strike price K > 0 and maturity date T > 0, for some financial
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asset S with price S(t) at time t. Decision-making is based on solving the appropriate
parabolic partial differential equation (PPDE) which predicts the likely future fair value
C(S, t,K, T ) of an ECO for different choices of K and T . For example, if it is assumed
that the evolving price S(t) of the financial asset S follows the geometric Brownian motion
process

dS(t) = S(t)µdt+ S(t)σdW (t)

with drift µ, volatility σ and the standard Brownian motion W (t), then the PPDE for
the fair value C(S(t), t,K, T ) at time t takes the form

Ct(S, t,K, T ) + rSCS(S, t,K, T ) +
1

2
σ2S2CSS(S, t,K, T )− rC(S, t,K, T ) = 0, (1)

for (S, t) ∈ (0,∞)× [0, T ] with constant short-term interest rate r and final payoff condi-
tion

C(S, T,K, T ) = max(S −K, 0), S ∈ (0,∞). (2)

Further details can be found, for example, in [16] and [20]. However, assuming that r and
S(t) are known, this PPDE can only be solved once an estimate for the volatility σ has
been determined. Consequently, for the ECO situation, the basic parameter identification
problem (PIP) reduces to recovering estimates of the volatility σ from previously observed
ECO prices C∗(Kj, Ti), for different Kj and Ti values.
The drawback with the utilization of equations (1) and (2) to solve the PIP is the assump-
tion that the volatility σ is constant. This assumption contradicts market observations
that market prices of ECO never coincide with a constant volatility. To fit the theoretical
option prices to the observed option prices at the market, the volatility is a function of
asset price S and time t (the smile effect [9, 19]). In [7], using the dual Black-Scholes equa-
tion, Dupire derived the following alternative expression for the fair price C(S, t,K, T ),
which is frequently called Dupire equation,

CT (S, t,K, T ) =
1

2
σ2(K,T )K2CKK(S, t,K, T )− rKCK(S, t,K, T ) (3)

for (K,T ) ∈ (0,∞)× (t, T̄ ] in combination with the initial condition

C(S, t,K, t) = max(S −K, 0), K ∈ (0,∞).

Here, T̄ is the maximal maturity for which option prices are available. Consequently,
the ECO PIP reduces to the determination of the volatility function σ2(K,T ) from the
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parabolic differential equation (3). For fixed time t∗ and fixed asset price S∗ = S(t∗) > 0,
the observed prices of the ECO C∗(K,T ) := C(S∗, t∗, K, T ), are given on Ω∗ ⊆ R+×(t, T̄ ],
where it is assumed that C∗(K,T ) ∈ C2,1(Ω∗). From this perspective, Dupire’s equation
can be rearranged to yield the following relationship [18]

σ2(K,T ) =
C∗
T (K,T ) + r K C∗

K(K,T )
1
2
K2C∗

KK(K,T )
, (K,T ) ∈ Ω∗ , (4)

for the volatility function σ(K,T ).
It is evident that the evaluation of this formula, because of its complexity, represents a
challenging task. In addition, market option data are only available at discrete points
(Kk, Tl) for 1 ≤ k ≤ n and 1 ≤ l ≤ m. Furthermore, it is well-known that numerical
differentiation is a moderately ill-posed problem (see, e.g., [3, 12, 17]) which compounds
the evaluation of the ratio in equation (4). For example, if the numerator changes sign,
then unrealistic estimates for the volatilities will be obtained, or if the denominator has a
small value, then extremely high estimates of the volatilities will result. As mentioned in
[11], such difficulties are compounded when finite difference schemes are used to evaluate
the partial derivatives. The need to perform numerical differentiation on the available dis-
crete data, and the fact that the boundary conditions are unknown represent challenges
for the evaluation of Dupire’s formula (4). Another drawback is that the volatility surface
σ(K,T ) can only be estimated in the subregion Ω∗ ⊆ R+× (t, T̄ ], whereas the volatilities
on the whole region R+ × (t, T̄ ] are required. These difficulties and the importance of
estimating volatilities generate a need to explore computational alternatives. Here, fol-
lowing an ansatz proposed for the transmissivity estimation problem, originally in [5], we
examine the use of the weak formulation of Dupire’s PPDE (3) to construct alternative
algorithms for the ECO PIP; in particular, a parameter identification localization (PILO)
procedure. The paper [5] appealed to the fact that in transmissivity applications there
is often a natural zonation structure in the geology. This point has subsequently been
pursued by a number of authors including [1, 4, 10]. In our finance context, zonation of
this nature does not arise. However, the volatility surface tends to change only slowly so
that a piecewise constant approximation is not inappropriate.

The paper has been organized in the following manner. Notation, preliminaries and syn-
thetic option prices are discussed in section 2. The evaluation of Dupire’s formula (4) with
simple finite difference schemes is examined in section 3. Because of the poor approxi-
mation of partial derivatives by finite difference schemes, as the numerical experiments
of section 3 show, there is a need to consider the dual Black-Scholes equation (3) from a
parameter identification perspective instead of computing the volatility surface σ(K,T )
by Dupire’s formula (4). In section 4, by applying the weak formulation strategy of Chow
and Anderssen [5] to equation (3), the identification of σ(K,T ) is reduced to computing
constant estimates of σ2(K,T ) on appropriately small subregions in Ω∗. The advantage of
this approach is that the numerical differentiation of the available discrete data C∗(Kk, Tl),
i ≤ k ≤ n, 1 ≤ l ≤ m, is replaced by an analytic differentiation of an appropriately chosen
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analytic weight function. The numerical performance of this methodology is examined in
detail in section 5. The results are summarized in section 6.
In the sequel, σ2(K,T ) will be referred to as the volatility surface, and σ2

e(K,T ) its com-
puted estimate using synthetic option prices.

2 Notation, Preliminaries and Synthetic Option Prices

2.1 Synthetic Data

In the current numerical study, it is assumed, following [9], that the volatility surface
σ2(K,T ) has a separable decomposition into a price-dependent factor σ2

1(Ke−rT ) and a
time-dependent factor σ2

2(T )

σ2(K,T ) = σ2
1(Ke−rT ) σ2

2(T ). (5)

As in [9], under assumption (5), the transformations Y = Ke−rT , A(Y ) = 1
2
σ2

1(Y ) =
1
20

[
1− 1

2
exp

(
−4 ln2(Y )

)
sin (2πY )

]
and B(T ) = σ2

2(T ) = 1 + 3
5

sin(2πT ) are used to
generate synthetic option prices. Applying these transformations to Dupire’s equation
(3), the transformed Dupire equation becomes

Uτ (Y, τ) = A(Y )Y 2UY Y (Y, τ), (Y, τ) ∈ (0,∞)× (0, 1],

U(Y, 0) = max(S(0)− Y, 0), Y ∈ (0,∞),

where U(Y, τ) := C(K,T ), τ(T ) :=
∫ T

0
B(t)dt and

∫ T̄
0
B(t)dt = 1. In solving these

equations to determine the synthetic option prices, additional boundary conditions are
required, such as U(0, τ) = S(0) and UY (Ȳ , τ) = 0 where the initial price of the underlying
asset is S(0) at time t = 0, and the value of Ȳ is sufficiently large.
The synthetic option prices were generated for the region Ω = {(K,T ) : 0 ≤ K ≤ K̄, 0 ≤
T ≤ T̄} as explained in section 2.2 step 1. Because option prices in financial markets
are non-exact, perturbed option prices were generated and examined. In the numerical
investigations below, S(0) = 1, r = 0.1, T̄ = 1 and K̄ = 3S(0) = 3. For this synthetic
data, “at-the-money” options corresponds to K = 1.

2.2 Template Structure

Computationally, the evaluation of the Dupire formula (4) and of the new parameter
identification formula, defined in section 4, reduces to calculating various expressions on
a template (rectangular grid) of discrete points. The former involves the evaluation of
various numerical difference differentiators, while the latter involves the evaluation of
appropriate quadrature formulas. The templates on which the corresponding calculations
are performed are defined as follows:
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1. On Ω, let G denote a fixed fine grid

G(n,m) = {[Kk, Tl] : [K0 = 0, K1, . . . , Kn = K̄][T0 = 0, T1, . . . , Tm = T̄ ]}

with grid points [Kk, Tl] and ∆K = Kk+1 − Kk = K̄
n

, k = 0, 1, . . . , n − 1 and

∆T = Tl+1− Tl = T̄
m

, l = 0, 1, . . . ,m− 1. For the numerical studies reported in this
paper, m and n are chosen as 212.
The synthetic option prices are generated on the template G(n,m) as discussed in
section 2.1.
To obtain the perturbed option prices, a matrix ε ∈ Rm×n of normally distributed
entries εkl ∼ N(0, v2), k = 1, . . . ,m and l = 1, . . . , n was generated with the variance
v2 determined from E||ε||22 = mnv2 ≈ δ2 for a chosen noise level δ. The perturbed
grid data are generated as Cδ(Kk, Tl) = C(Kk, Tl) + εkl.

2. A representative point (K∗, T ∗) is chosen in G.

3. A rectangular region Ω0 = [K0
0 , Kn1 ] × [T 0

0 , Tn2 ] ⊆ Ω is chosen with (K∗, T ∗) at its
center. Using grid points of G(n,m), we discretize Ω0 by

G0(n1, n2) = {[K0
k , T

0
l ] : [K0 ≤ K0

0 , K
0
1 , . . . , K

∗ = K0
n1
2
, . . . , K0

n1
= Kn1 ≤ K̄]

[T0 ≤ T 0
0 , T

0
1 , . . . , T

∗ = T 0
n2
2
, . . . , T 0

n2
= Tn2 ≤ T̄ ]}

a set of symmetrically placed and evenly located grid points [K0
k , T

0
l ] with ∆K0 =

K0
k+1−K0

k , k = 0, 1, . . . , n1−1 and ∆T 0 = T 0
l+1−T 0

l , l = 0, 1, . . . , n2−1. The values
of the indices n1 and n2 control the size of Ω0 or the fineness of the discretization
performed by G0(n1, n2). For our numerical evaluation of Dupire’s formula (4) with
the finite difference scheme and the application of the PILO, we use the following
specifications:

(a) Finite Difference Scheme

n1 = 2p, n2 = 2q, p, q = 2, 3, . . . , 11,

∆K0 =
Kn1

n1

=
K̄

n1

, ∆T 0 =
Tn2

n2

=
T̄

n2

.

Consequently, through various choices of p and q, a variety of coarse and fine
evenly-spaced subgrids can be chosen from G.

(b) Parameter Identification Localization
The region Ω0 is chosen so that Ω0 ⊂ Ω.

5



n1 = 2p − 2, n2 = 2q − 2, p, q = 2, 3, . . . , 11,

∆K0 = ∆K =
K̄

n
, ∆T 0 = ∆T =

T̄

m
.

Figure 1 illustrates the template structure. The fixed fine grid G(n,m) is represented by
black and the varying grid G0(n1, n2) by blue crosses.

-
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Figure 1: Template structure

2.3 Relative Error

The relative error of the computed volatility estimate in the region Ω0, which is centered
at (K∗, T ∗), is evaluated as

RΩ0(K,T ) =
||σ2

e(K,T )− σ2(K,T )||F
||σ2(K,T )||F

with σe and σ denoting the estimated and exact values of the volatility, and

||θ(K,T )||F =

√√√√ 1

n1n2

n1∑

k=1

n2∑

l=1

(θ(K0
k , T

0
l ))

2

will be used below to asses numerical performance. Whereas the relative error at a specific
point (K∗, T ∗) is estimated as
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R(K∗, T ∗) =
|σ2
e(K

∗, T ∗)− σ2(K∗, T ∗)|
σ2(K∗, T ∗)

.

3 Finite Difference Evaluation of Dupire’s Formula

In financial mathematical deliberations, finite difference schemes are used to evaluate
Dupire’s formula (4) (e.g. in [11]). The utility of this approach is now explored.
We use the templates defined in section 2.2. On various gridsG0(n1, n2), each of the partial
derivatives ∂/∂K and ∂/∂T was evaluated using the corresponding equally weighted five-
point-stencil (see [2]). For the second partial derivative ∂2/∂K2 another equally weighted
five-point-stencil in one dimension

CKK(K0
k , T

0
l ) =

−C(K0
k−2, T

0
l ) + 16C(K0

k−1, T
0
l )− 30C(K0

k , T
0
l ) + 16C(K0

k+1, T
0
l )− C(K0

k+2, T
0
l )

12(∆K0)2

k = 2, . . . , n1 − 2 and l = 2, . . . , n2 − 2 was computed.
In order to assess the numerical performance of such finite difference algorithms for the
evaluation of Dupire’s formula (4), the values of n1 and n2 are sought which minimize,

for a given choice of Ω0 centered at (K∗, T ∗) =
(
Kn1

2
, Tn2

2

)
, the relative error RΩ0(K,T ).

It is expected that the optimum (n1,opt, n2,opt) lies between the extreme values of n1 and
n2 because of the trade-off between error enhancement on fine discretizations and poor
approximation of derivatives on coarse discretizations. The numerical experiments showed
that, if Ω0 was either too large or too small, the estimates for the volatility behaved
chaotically. Consequently, the relative errors were only calculated for Ω0 = [0.7, 1.5] ×
[0.4, 0.8].

In figure 2, for the noise level δ = 10−2, the relative errors RΩ0(K,T ) are shown for
different grid sizes (n1, n2). For small and large values of n1, the 5-point-stencil yields
poor approximations to the volatility surface. As the figure shows clearly, the five-point-
stencil approach is not as sensitive with respect to the discretization of T as to the levels
of discretizations of K. This is consistent with the structure of equation (4) which only
involves the first derivatives with respect to T , but first and second derivatives with
respect to K. For the region Ω0 = [0.7, 1.5] × [0.4, 0.8], the finite difference evaluation
performs well. A good insight into the nature of this approach is given in table 1.

For various choices of δ, the optimal values of n1 and n2 are listed which yield the smallest
relative errors. This highlights the importance of the trade-off associated with choosing
a medium grid size. As the noise level decreases, finer meshes can be used to improve
the accuracy. This is consistent with theory because it predicts that coarser meshes are
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Figure 2: For Ω0 = [0.7, 1.5] × [0.4, 0.8], relative errors RΩ0(K,T ) for different grid sizes
(n1, n2) and a noise level δ = 10−2

δ n1,opt n2,opt RΩ0(K,T)

1 16 8 0.0403

10−2 32 16 0.0026

10−4 64 32 2.0874e-4

Table 1: Optimal grid size (n1,opt, n2,opt) for Ω0 when applying the five-point-stencil for
Ω0 = [0.7, 1.5]× [0.4, 0.8]

required for finite difference differentiators as the error level in the data increases. Herein
lies the weakness of traditional finite difference formulas - even if the data are available
on a fine grid it cannot be fully utilized. Alternative methods are necessary to recover
volatility for the remaining data.
Our numerical experiments show that the approximation of the volatility improves (see
table 2) as the strike value K approaches one, which corresponds to “at-the-money” op-
tion. This is of special interest since such options are frequently traded. Moreover, in
analytic studies of the ill-posedness of the calibration problem for purely time-dependent
volatility functions σ2(T ), “at-the-money” corresponds to certain singular and extremal
situations (see [13, 14, 15]). Furthermore, instability effects are stronger for small ma-
turities T for in-the-money (K < S) and out-of-the-money options (K > S). Table 2
confirms that the finite difference approach yields good estimates to the volatility close
to the “at-the-money” state, and can be used to determine the volatility surface close to
K = 1. The drawback of this approach is that the volatility can be determined rather
stable only in the region of the “at-the-money” state. This is implicit in the structure of
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equation (4) because the first derivative with respect to K is multiplied by K whereas
the second derivative (in the denominator) is multiplied by K2. The effect of moving K
from K = 1 is accentuated by the fact that the first derivative term is in the numerator
while the second derivative term is in the denominator.

K∗ σ2
e(K

∗, T ∗) σ2(K∗, T ∗) R(K∗, T ∗)

0.28 15.07578 0.15990 93.2826

0.61 0.17741 0.17513 0.0130

0.89 0.21392 0.21430 1.7732e-3

0.98 0.17971 0.17973 1.1128e-4

1.03 0.15719 0.15710 5.7288e-4

1.22 0.09433 0.09422 1.1675e-3

1.5 0.15349 0.14966 0.0256

1.82 -0.41689 0.18055 3.3090

2.11 -0.00801 0.15649 0.9488

Table 2: Estimated σ2
e(K

∗, T ∗) and predefined volatilities σ2(K∗, T ∗) for various strikes
K∗ at T ∗ = 0.25 for the noise level δ = 10−2 on the template G0(64, 32).

For the noise level δ = 10−2 and different grid sizes (n1, n2), relative errors R(K∗, T ∗) are
shown in figure 3 for two special points, (K∗,1, T ∗,1) = (0.9, 0.4) and (K∗,2, T ∗,2) = (2, 0.8),
which are away from the “at-the-money” state. The relative errors for (K∗,1, T ∗,1) =
(0.9, 0.4), which is near the “at-the-money” state, have a small variability for different
grid sizes (n1, n2). Only small and large n2 cause large relative errors. The variability
of the relative errors (K∗,2, T ∗,2) = (2, 0.8), which is far from the “at-the-money” state,
are larger. Little changes in (n1, n2) cause very different relative errors. This sensitivity
does not occur for (K∗,1, T ∗,1). This confirms that finite difference schemes yield good
approximations to the volatility for the “at-the-money” state K = 1. The pattern of the
relative errors for different grid sizes, seen in figure 2 for the estimation of the volatility
in the region Ω0 = [0.7, 1.5]× [0.4, 0.8], can be observed again in figure 3 where it is more
obvious for (K∗,1, T ∗,1) = (0.9, 0.4) than for (K∗,2, T ∗,2) = (2, 0.8).
However, the general aim is to estimate the volatility surface for different K and not only
“at-the-money”. This yields motivation for the formulation and analysis of an alternative
approach.
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(a) (K∗,1, T ∗,1) = (0.9, 0.4) (b) (K∗,2, T ∗,2) = (2, 0.8)

Figure 3: Relative errors R(K∗, T ∗) for different grid sizes (n1, n2) when applying the finite
difference scheme for different points (K∗,i, T ∗,i), i = 1, 2, with a noise level δ = 10−2

4 Parameter Identification Localization (PILO)

The following alternative approach, based on the ideas of [5], consists of the following four
steps (cf. [4]):

1. the weak formulation of Dupire’s equation (3),

2. the application of integration by parts to transfer the differentiation of the discrete
option prices to the differentiation of the analytic weight function,

3. the localization to a subregion on which the volatility function is assumed to be a
constant multiplied by a known shape function which models the local shape of the
volatility surface,

4. the choice of the weight function and the local shape.

The application of these steps leads to a constant volatility σ2
0 on subregion Ω0. The weak

formulation of Dupire’s equation (3) is

1

2

∫

Ω

σ2(K,T )K2CKK(K,T )w(K,T )dKdT =

∫

Ω

(CT (K,T ) + rKCK(K,T ))w(K,T )dKdT

where we take Ω = (0, 3S(0)]× (0, T̄ ] with S(0) being the initial price of the underlying
asset, T̄ the largest available maturity date and w(K,T ) a suitably chosen analytic and
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sufficiently smooth weight function. The weight function w(K,T ) is localized to some
subregion Ω0 ⊂ Ω with the following properties

w(K,T ) > 0 in Ω0 ⊂ Ω, w(K,T ) = 0 in Ω\Ω0

and w(K,T ) = 0 on ∂Ω0

and, in addition,

wK(K,T ) = wKK(K,T ) = wT (K,T ) = 0 on ∂Ω0.

The subregion Ω0 is chosen to be sufficiently small so that

σ2(K,T ) ≈ σ2
0 ϕ(K,T ), σ2

0 = constant, ϕ(K,T ) known on Ω0,

is guaranteed. Then the weak formulation above can be rewritten as

σ2
0

2

∫

Ω0

ϕ(K,T )K2CKK(K,T )w(K,T )dKdT =

∫

Ω0

(CT (K,T )+rKCK(K,T ))w(K,T )dKdT

(6)

Applying integration by parts to equation (6) yields

σ2
0 = −2

∫
Ω0

C(K,T )wT (K,T ) + rC(K,T )(Kw(K,T ))KdKdT

∫
Ω0

C(K,T )(ϕ(K,T )K2w(K,T ))KKdKdT
. (7)

As explained in section 2.2, the subregion Ω0, centered at a chosen (K∗, T ∗), is given by
[K0, Kn1 ] × [T0, Tn2 ] ⊂ Ω. We use a separable weight function w(K,T ), i.e. w(K,T ) =
w(1)(T )w(2)(K) with

w(1)(T ) =

{
(T − T0)2(T − Tn2)

2 if T ∈ [T0, Tn2 ],

0 elsewhere,
(8)

w(2)(K) =

{
−(K −K0)3(K −Kn1)

3 if K ∈ [K0, Kn1 ],

0 elsewhere.

In the sequel, it is assumed that ϕ(K,T ) ≡ 1.
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5 Numerical Performance of the PILO

The purpose of this section is to test the numerical performance of the PILO for the
evaluation of the volatility in the neighborhood of a specific location. This then tests
the essence of the algorithm - estimate a local constant approximation to the volatility
surface. The synthetic option prices, discussed in section 2.1, are used. The basic strat-
egy adopted for achieving this consists of the steps in section 2.2. The evaluation of the
integrals in (7) was performed using Simpson’s rule.
Initially, let (K∗, T ∗) = (1, 0.5), which corresponds to an at-the-money situation. It is
of some interest whether the most stable situation is here again associated with K = 1.
In order to check this, both in-the-money and out-of-the-money scenarios are examined.
The region Ω0 as well as the template G0(n1, n2) are chosen as in section 2.2. For various
choices (K∗, T ∗), optimal grid sizes (n1, n2) are sought that the relative error R(K∗T ∗) is
minimal. The distance between two grid points are chosen as ∆K0 and ∆T 0, respectively.
To investigate if the assumption of a constant volatility in region Ω0 is useful, we consider
the variability of the volatilities σ2(K,T ) in the region Ω0. This variability can be calcu-
lated as the quotient sσ2/σ(K∗, T ∗) where sσ2 is the standard deviation of the volatilities
about σ(K∗, T ∗). If this variability is small, then it can be assumed with some confidence
that σe(K

∗, T ∗) has the potential to be representative of the value of the volatility in the
Ω0 neighborhood of (K∗, T ∗). For at-the money options, the optimal grid size (n1, n2)
within Ω0 for each noise level δ is presented in table 3.

δ n1,opt n2,opt R(K∗, T ∗)
sσ2

σ2(K∗,T ∗)
σ2
e(K

∗, T ∗)

1 62 510 3.9217e-4 0.1291 0.114955

10−2 62 14 4.8780e-4 0.0321 0.115056

10−4 62 14 1.8856e-4 0.0321 0.115022

Table 3: Relative error, the variability of the volatilities and the estimated volatility on
Ω0 for grid sizes (n1,opt, n2,opt) at the fixed point (K∗, T ∗) = (1, 0.5) with the
predetermined synthetic volatility σ2(K∗, T ∗) = 0.115

At the point (K∗, T ∗) = (1, 0.5), the relative error between the estimated and the prede-
termined volatility function is small so that the localization algorithm can be applied at
this point. The described variability of the precise volatility are shown in the fifth col-
umn. The variability of the volatilities in Ω0 for the optimal size is about 3%, except for
δ = 1, so that the assumption of an approximately constant volatility in Ω0 is confirmed.
Figure 4 illustrates the variability of the predetermined volatility (green) that is used to
obtain the synthetic option prices and the estimated (blue) volatility for a noise level
δ = 10−2 and optimal grid sizes (n1,opt, n2,opt) = (62, 14). The distance between the maxi-
mal volatility and the minimal volatility amounts 0.0097. Because this is rather small, it
can be assumed that the volatility is in the region Ω0 = [1.4773, 1.5227]× [0.4983, 0.5017]
constant.
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Figure 4: Exact (green) and estimated (blue) volatility for grid size (n1, n2) = (62, 14)
and noise level δ = 10−2 for point (K∗, T ∗) = (1, 0.5)

In addition, the sizes of the relative errors at (K∗, T ∗) = (1, 0.5) in the fourth column con-
firm that the localization algorithm yields reliable results. The last column shows the esti-
mated volatility at (K∗, T ∗) = (1, 0.5) at which the precise volatility is σ2(K∗, T ∗) = 0.115.
This establishes that the approximation of the volatility at this point by the localization
approach is robust and reliable, even when a noise level is δ = 1. This results implies that
the PILO works well for at-the-money options.

Table 4 addresses the question whether the PILO yields reliable results also for in-the-
money (K < 1) and out-of-the money (K > 1) options for fixed maturity T ∗ = 0.5 and
a noise level δ = 10−2. The grid sizes (n1, n2) as well as the relative errors R(K∗, T ∗)
are consistent with the results in table 3. The estimated volatility in column five is close
to the predetermined volatility in the sixth column so that the PILO algorithm yields
reasonable results for these cases of in-the-money and out-of-the money options.

K∗ n1,opt n2,opt R(K∗, T ∗) σ2
e(K

∗, T ∗) σ2(K∗, T ∗)

0.5 126 126 18.3206e-4 0.099349 0.099168

1 62 14 4.8780e-4 0.115056 0.115000

1.5 126 6 3.7961e-5 0.086622 0.086619

Table 4: Relative error, the estimated and the predetermined volatility for fixed maturity
T ∗ = 0.5 and δ = 10−2

A drawback of the method is the large number of grid points (n1,n2) required to estimate
the volatility at only one specific point. But, nevertheless the PILO yields a good approx-
imation of the volatility for values of K away from K = 1.
Figure 5 shows the relative errors R(K∗, T ∗) for various (n1, n2) for two different points
(K∗,1, T ∗,1) = (0.9, 0.4) and (K∗,2, T ∗,2) = (2, 0.8). Numerical experiments showed that
the results and graphics are similar for these points. The structure of the relative errors
for different grid sizes (n1, n2), when using the PILO, is similar to the structure of the
relative errors when the finite difference scheme is applied to evaluate the volatility, cf.
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figure 3. The advantage of the PILO is that the structure of the relative errors for points
away from K = 1, the “at-the-money” state, cf. figure 5(b), is not as susceptible to
changes of (n1, n2) as the application of the finite difference scheme, cf. figure 3(b).
For both methods, we observe an optimal range for (n1, n2) in which the relative error is
small. The PILO as well as the finite difference scheme yields poor results outside this
range.

(a) (K∗,1, T ∗,1) = (0.9, 0.4) (b) (K∗,2, T ∗,2) = (2, 0.8)

Figure 5: Relative errors R(K∗, T ∗) for different grid sizes (n1, n2) when applying the
PILO for different points (K∗,i, T ∗,i), i = 1, 2 with a noise level δ = 10−2

6 Conclusions and open questions

Because, for the buying and selling of ECO, it is necessary to determine its fair price,
accurate estimates of the volatility σ2(K,T ) are required. This leads naturally to the need
to explore different numerical methods for its determination. Applying a finite difference
scheme to Dupire’s formula yields good approximations for “at-the-money” situations.
For the finite difference scheme, an optimal range of grid sizes can be observed for points
not far from the “at-the-money” state. But, the farther the strike prize K is away from
the “at-the-money” state, the less-reliable is the estimate of the volatility. The drawback
of this method is that the volatility can be determined rather stable only in the region of
at-the-money state.This yielded motivation to consider the identification of the volatility
surface from Dupire’s equation (3) using its weak formulation. By localizing the problem
to a subregion Ω0 where the volatility function is approximately constant, a new approach
is analyzed using representative synthetic data. For a fixed region Ω0 where σ2 is essen-
tially constant, the PILO yields good estimates of the volatility. If region Ω0 is too small,
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the estimation of the volatility with the PILO yields no useful results. On the other hand,
if Ω0 is too large, the assumption of a constant volatility in Ω0 will not be appropriate.
The advantage of the new approach is that the numerical differentiation is replaced by
an analytic differentiation of the chosen weight function. In situations where the observa-
tional data is sparse, the new method gives a good estimate when applied to representative
synthetic data. In particular, the total amount of computational effort required for the
implementation of the method is smaller than in case of using regularization approaches.
This is a substantial advantage from a practical perspective. An optimal range in which
the relative error is small, can be observed not only for points near the “at-the-money”
state but also far away.
A drawback of the PILO is the large number of grid points required to estimate the
volatility at only one specific point. But drawbacks of the new method can be overcome
by applying regularization methods, e.g. Tikhonov regularization [8, 9, 13, 14], to the
parameter identification problem of the dual Black-Scholes equation where even conver-
gence rates results are available. However, the total amount of computation required
is then much bigger. In our experiments, the function w(K,T ) was chosen to be (8).
Other choices of w(K,T ) may improve the results of the PILO. To evaluate advantages
of the new approach further, one could estimate (6) with a function ϕ(K,T ) representing
a ”smile”.
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