
A Parallel Bundle Method for Asynchronous

Subspace Optimization in Lagrangian Relaxation

F. Fischer, C. Helmberg

Preprint 2012-2

Fakultät für Mathematik

Impressum:
Herausgeber:
Der Dekan der
Fakultät für Mathematik
an der Technischen Universität Chemnitz
Sitz:
Reichenhainer Strae 39
09126 Chemnitz
Postanschrift:
09107 Chemnitz
Telefon: (0371) 531-22000
Telefax: (0371) 531-22009
E-Mail: dekanat@mathematik.tu-chemnitz.de
Internet:
http://www.tu-chemnitz.de/mathematik/
ISSN 1614-8835 (Print)

A Parallel Bundle Method for
Asynchronous Subspace Optimization

in Lagrangian Relaxation

Frank Fischer∗ Christoph Helmberg∗

February 14, 2012

Abstract. An algorithmic approach is proposed for exploiting parallelization
possibilities in large scale optimization models of the following generic type.
Objects change their state over time subject to a limited availability of common
resources. These are modeled by linear coupling constraints and result in few
objects competing for the same resource at each point in time.
In a kind of asynchronous parallel coordinate descent, each independent pro-

cess iteratively picks a free subset of violated constraints together with their
interacting objects, improves the corresponding Lagrange multipliers by a bun-
dle method to a certain level, and stores observed presumable dependencies
leading to increased violation of other constraints in a common dependency
graph. These dependencies have to be respected in future subset selections.
No synchronization is required between the processes, for each subproblem the
number of evaluations may differ arbitrarily. Under the assumption of bound-
edness of the set of dual optimizers we prove convergence of appropriate subse-
quences of the iterates to primal and dual optimal solutions of the relaxation.
Preliminary computational results indicate that this approach may develop into
a viable alternative to classical bundle methods using parallel evaluations.
Keywords: bundle methods, parallel programming, Lagrangian relaxation
MSC 2010: 90C06; 65Y05, 90C25, 65K05

1. Introduction

We consider the problem of solving structured optimization problems that arise from La-
grangian relaxation of linear constraints that couple a number of well solvable basic prob-
lems. Formally, given a finite number ω ∈ N of compact ground sets Ωv ⊂ Rnv with
nv ∈ N and n :=

∑
v∈V nv for v ∈ V := {1, . . . , ω}, the coupled problem reads

(P)
maximize h(x) :=

∑
v∈V hv(xv)

subject to Ax = b,
x = (xT1 , . . . , x

T
ω)T ∈ Ω :=

⊗
v∈V Ωv,

where hv : Ωv → R, v ∈ V , are arbitrary functions, A ∈ RM×n, b ∈ RM with constraint
set M = {1, . . . ,m}.

∗Fakultät für Mathematik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.
{frank.fischer, helmberg}@mathematik.tu-chemnitz.de

1

Problems of this kind appear generically in connection with multicommodity flow models
in scheduling and planning applications. In such problems a sequence of valid states has
to be determined for different objects (indexed by V) like vehicles, robots, machines where
each object requires some resources (e. g., route capacity, time slot restrictions, ...) in
each state. The schedules therefore have to be chosen so that the resource constraints
are not violated. For each object the sequence of states over time is then represented
by some time expanded network and the resource restrictions are modeled using coupling
equalities and inequalities (indexed by M). In such applications Lagrangian relaxation
and decomposition has proven to be a valuable tool, see, e. g., [5, 15, 16] for an overview
on Lagrangian relaxation and applications, [4, 11] for applications in train timetabling
and inventory management, [1] for further models based on multicommodity flows, or
[23] for stochastic programming. The increasing problem sizes in this area as well as the
availability of cheap parallel computing hardware require the development of decomposition
techniques not only on the modeling but also on the algorithmic side. We contribute to this
by proposing an asynchronous parallel approach for Lagrangian relaxation under the rather
natural assumption in this setting, that most of the coupling constraints either couple only
few subproblems or, if they couple many, coupling actually affects just a few subproblems
that try to use the corresponding resource at the same time. In this, we assume without
loss of generality (w. l. o. g.) that each row of A has at least one non-zero entry, i. e.,

Aj,• 6= 0 for all j ∈M. (1.1)

Lagrangian relaxation is applicable if for each v ∈ V and all y ∈ RM the subproblem

(Pv(y))
maximize Lv(xv, y) := hv(xv)− yTA•,vxv
subject to xv ∈ Ωv

(1.2)

can be easily solved via an oracle that returns the optimal value

fv(y) := max
xv∈Ωv

Lv(xv, y) (1.3)

and an optimal solution x̂v(y). The standard algorithmic approach is then to compute an
upper bound for (P) by solving the Lagrangian Dual problem of (P)

(D) min
y∈RM

f(y) := bT y +
∑
v∈V

fv(y)

via a subgradient or bundle method. Note that the optimal value of (D) may be larger than
the optimal value of (P) in general because the functions hv, v ∈ V , may be arbitrary and
the sets Ωv may be non-convex, in many applications even discrete. In fact, the optimal
value of (D) is equal to the optimal value of the following “convexified” relaxation of the
primal problem (P)

(convP)
maximize h̄(x) :=

∑
v∈V h̄v(xv)

subject to Ax = b
x = (xT1 , . . . , x

T
ω)T , xv ∈ conv Ωv, v ∈ V,

where for each v ∈ V the function h̄v : conv Ωv → R is the negative closed convex hull
of −h with respect to (w. r. t.) conv Ωv, i. e., epi(−h̄v) = conv epi(−hv), see, e. g., [14],
Theorem 2.12.
We propose to extend this Lagrangian approach to a fully parallel approach by itera-

tively identifying subsets of y-coordinates that can be optimized in parallel in a form of

2

asynchronous parallel coordinate descent, so that overall convergence to primal and dual
optimal solutions is still guaranteed whenever the set of optimizers of (D) is bounded.
Here is a brief sketch of the algorithmic idea. A master process sets up the initial global

data and then starts new parallel processes whenever less than some predefined number
of processes are running. Each single process executes the following same four steps for
solving at most one subspace optimization problem.

(a) Subspace selection: identify a “free” subset J ⊆ M together with subproblems
VJ ⊆ V interacting with J , that promises a significant portion of a global predicted
decrease measure, and block both in the global data against being used in other
processes. If no appropriate subspace J is available, wait for the global data to
change and then execute this step again.

(b) Set up the subspace problem: create the data for the subspace problem. Given
the current global point ŷ, the subproblem changes yJ and uses fixed values ŷM\J ,

min
yJ∈RJ

[
bTJ yJ +

∑
v∈VJ

max
xv∈Ωv

(
hv(xv)− ŷTM\JAM\J,vxv − y

T
JAJ,vxv

)]
.

(c) Solve the subspace problem: perform the steps of a bundle method until a certain
stopping criterion is met.

(d) Update global data with subspace solution: check for progress impeding de-
pendencies between J and M \J , store relevant solution and dependency information
in the global data, and free the subspace afterwards. If a certain global termination
criterion is satisfied, stop all process and the entire algorithm, otherwise stop this
process only (or continue as a new process with step (a)).

The subspace selection in step (a) will start with a single promising seed coordinate j ∈M
that is then possibly extended to a larger subset J according to simple rules. Improving
Lagrange multipliers on this subset may lead to increased violation of constraints in M \J
and this may destroy convergence. If in step (d) the process detects increases in violation
of significant size, these presumable dependencies are stored in a global dependency graph
as arcs pointing form the seed j to the adverse coordinates. Future subspace selections in
step (a) with seed j will be forced to include all these presumably dependent coordinates,
as well. Note that this dynamic construction of the dependency graph requires no a priori
knowledge about the problem.
If dependencies are strong and the graph forces J = M eventually, the algorithm reduces

to the standard sequential bundle method. In large scale applications, however, strong
dependencies should only exist between rather small groups of multipliers and objects
so that several processes can be started on more or less independent subproblems. In
particular, the algorithm will be able to make good use of parallelism if the sets J and
corresponding coupled subsets of V remain small. We will therefore present two algorithmic
variants. The first and simpler variant assumes rather loose coupling in the sense that each
constraint should couple only a few objects of V . This setting is well suited for getting
acquainted with the basic mechanisms of our asynchronous parallel framework. For the
second variant we consider the more realistic scenario that most indices j ∈M represent a
resource constraint limiting the use of a specific resource at a given point in time to a few
of many potential objects. In an actual solution most of these objects will not make use
of the corresponding resource at this specific point in time. In the algorithm the states of
the objects are represented by a convex combination of primal solutions and with respect

3

to a current convex combination of primal solutions the corresponding Lagrange multiplier
then typically affects only a few objects. Therefore, we keep track of actual constraint-
object interactions by dynamically collecting for each v ∈ V all constraints j that were
“visited” by primal solutions of v. In the subspace selection step (a) of the second variant
the selection of J ⊆ M then entails the selection of all v ∈ V that interacted with one
of the constraints in J before and the update step (d) will have to make sure, that this
selection was in fact sufficient to guarantee correctness and convergence.
In the proofs of convergence of the two algorithmic variants the main work is to prove

correctness of the asynchronous updating schemes, which requires a fair amount of book-
keeping. Once correctness is ensured, the finiteness of the dependency graph and the
interaction sets allow to employ the standard bundle convergence mechanisms more or less
directly (see, e. g., [2] for an introduction and [13] for a detailed exposition) if boundedness
of the set of dual optimizers is assumed. Without this assumption convergence is open
and more elaborate techniques might be required. Further relevant questions open to fur-
ther investigation concern the possibility to allow deletions in the dependency graph or
to delete entries in the interaction sets. The extension to primal inequalities (or dual box
constraints), however, should pose no major difficulties, see [10].
In order to highlight the difference of our asynchronous scheme to existing approaches we

shortly review parallel algorithms of the literature. The classic parallelization approach for
solving problem (D) via subgradient optimization is to exploit the decomposing structure
of the problem by organizing the algorithm in a queen-worker approach. Here a single
queen process does the global iteration, updating the current point in the dual space y, the
evaluation of the dual function f(y) = bT y +

∑
v∈V fv(y) is then distributed over several

worker processes where each subproblem is solved independently by some of the workers.
A computational study of this approach for a bundle algorithm can be found in [17].
Another class of algorithms are variable transformation algorithms for unconstrained [6]

and constrained [22] optimization problems. In each iteration they select a set of subspaces
either along coordinate directions [22] or more general directions [6] such that the subspaces
span the whole space and then compute a new candidate point on each subspace where
each subspace problem can be solved in an independent process. Afterwards a new global
iterate is derived from the candidate points. Usually these approaches require smoothness
of the objective function but can also be applied to non-smooth optimization problems
using smoothing techniques as, e. g., the Moreau-Yosida regularization [18].

A successful approach to non-smooth optimization uses incremental subgradient meth-
ods. These methods change y in each major iteration incrementally through a sequence of
ω steps. In each step y is modified according to a subgradient direction of a single sub-
problem. In [21] this approach is extended to a fully parallel and asynchronous approach
where the sequences in which the subproblem computations are started and in which y
is modified may differ. In particular, when the candidate computed by a subproblem is
considered as a new point, the current point y may differ from the point when that sub-
problem was started (in contrast to the non-parallel case). [21] proves the convergence of
this approach under the assumption that the number of updates of y between the start of
the subproblem’s processing and the consideration of the subproblem’s result are bounded
by a constant. This implies that the overall number of evaluations is asymptotically equal
for each subproblem, which is also the case for the synchronized parallel approaches above.
Other parallel approaches exploit the explicit static structure of convex optimization

problems. Those so called splitting methods solve easier subproblems generated by the
corresponding augmented Lagrangian function, which may be solved alternating or in
parallel, and combine the results to solutions of the original problem in some iterative

4

scheme, see, e. g., [7, 8, 9, 19, 20].
The subspace selection of our approach is somewhat similar to the variable distribution

approaches [3, 6, 22], but in contrast we do not require to select a set of subspaces that
span the whole space. Furthermore there is no global synchronization step as in [7, 8]
and no requirement on how often a certain subproblem must be evaluated. Indeed, some
subproblems may require considerably fewer evaluations than others and this is a main
source of efficiency. In contrast to the algorithms proposed in the papers above, there
is no regularization condition or synchronization to ensure global convergence. Instead,
convergence is guaranteed only by dependency analysis between the subspace evaluations.
This paper is organized as follows. In Section 2 we introduce the notation and the basic

bundle framework used throughout the paper. Afterwards in Section 3 we develop the
basic parallel bundle algorithm, which is designed to work on loosely coupled problems
where each constraint acts only on a small number of subproblems. This approach is
then extended in Section 4 to stronger coupled systems with additional structure so that
active influence of the multipliers on the solution of the decoupled subproblems can be
determined dynamically by the algorithm. We conclude the paper with some numerical
tests in Section 5 comparing the parallel bundle algorithm proposed in this paper with
the classical bundle method. These tests are very preliminary as it is not the focus of
this paper to provide an extensive numerical study of the proposed algorithms. Still, the
tests seem to indicate that the parallel bundle algorithm is superior to the classical bundle
method for some problem classes of practical relevance and can therefore provide a useful
alternative in applications.

2. General Setting

The Lagrangian function L : Ω×Rm → R,

L(x, y) := h(x) + (b−Ax)T y = bT y +
∑
v∈V

Lv(xv, y), (2.1)

gives rise to the respective (convex) dual functions, as introduced before,

fv(y) = max
xv∈Ωv

Lv(xv, y) (v ∈ V) and f(y) = bT y +
∑
v∈V

fv(y) = max
x∈Ω

L(x, y). (2.2)

For x ∈ Ω the functions Lv(xv, ·) (v ∈ V) and L(x, ·) are linear in y with gradients

gv(xv) := −A•,vxv (v ∈ V) and g(x) := b−Ax = b+
∑
v∈V

gv(xv), (2.3)

so each point

wv ∈Wv := {(lv, xv) ∈ R× Ωv : lv = hv(xv)} (v ∈ V),

w ∈W := {(l, x) ∈ RV × Ω: (lv, xv) = wv ∈Wv, v ∈ V }

generates linear minorants

f̂wv ,v(y) := lv + gv(xv)
T y ≤ fv(y), (2.4)

f̂w(y) :=
∑
v∈V

lv + g(x)T y = bT y +
∑
v∈V

f̂wv ,v(y) ≤ f(y).

Convex combinations wv ∈ convWv (v ∈ V) and w ∈ convW also yield such minorants.

5

A bundle method optimizing f(y) over the full space Rm (see, e. g., [12, 13]) starts at a
given center of stability ŷ ∈ Rm and forms, given a compact Ŵ ⊆ convW , a model

f̂
Ŵ

(y) := sup
(l,x)∈Ŵ

f̂(l,x)(y) ≤ f(y).

The bundle method [13] determines, for a given weight u > 0 and an augmenting term
u
2‖y − ŷ‖

2 that penalizes points far from ŷ, the next candidate

ȳ = argmin
y∈RM

[
f̂
Ŵ

(y) + u
2‖y − ŷ‖

2
]
.

For this candidate it checks whether the actual progress f(ŷ)− f(ȳ) is good in comparison
to the predicted decrease f(ŷ) − f̂

Ŵ
(ȳ). If so, a descent step is made by setting ŷ ← ȳ.

Otherwise, in a null step, the center is left unchanged but the model f̂
Ŵ

is modified to
improve the model in ȳ.
In our setting the compactness requirement on Ŵ implies the following equality for the

bundle subproblem [12]

inf
y∈RM

sup
w∈Ŵ

[f̂w(y) + u
2‖y − ŷ‖

2] = sup
w∈conv Ŵ

inf
y∈RM

[f̂w(y) + u
2‖y − ŷ‖

2].

The inner optimization problem of the right hand side can be solved explicitly for given
w = (l, x) ∈ conv Ŵ ,

ȳ(w) = ŷ − 1
ug(x) = ŷ − 1

u(b−Ax).

Therefore ȳ is found by determining a (not necessarily unique) primal aggregate

w̄ = (l̄, x̄) ∈ Argmax
(l,x)∈conv Ŵ

[∑
v∈V

lv + g(x)T ŷ − 1
2u‖g(x)‖2

]
.

The new objective value in ȳ = ȳ(w̄) promised by this aggregate minorant is

f̂
Ŵ

(ȳ) = f̂w̄(ȳ) = f̂w̄(ŷ)− 1
u‖g(x̄)‖2. (2.5)

Its difference to the objective value in the center is the predicted decrease

∆(ŷ, (l̄, x̄)) := f(ŷ)− f̂(l̄,x̄)(ŷ) + 1
u‖g(x̄)‖2. (2.6)

3. An Asynchronous Parallel Framework for Loose Coupling

Rather than optimizing over the full space the idea is to optimize in parallel over several
subspaces. For this we will often refer to certain subsets of dual or primal variables. Let
V ′ ⊆ V and J ⊆ M be subsets of the subproblems and constraints, resp., and let x ∈ Rn
and y ∈ RM be a primal and a dual vector. Then xV ′ = (xv)v∈V ′ and yJ := (yj)j∈J
denote the subvectors with index blocks in V ′ and indices in J . Similarly for a matrix
A ∈ RM×n the matrix AJ,V ′ ∈ RJ×nV ′ , nV ′ =

∑
v∈V ′ nv, denotes the submatrix with

elements contained in rows J and column blocks corresponding to V ′. If one of the sets
contains only one element or one block, i. e., J = {j} or V ′ = {v}, we write as usual xv,
yj or Aj,v.
The selection of subspaces will depend on the structure of the coupling constraints. We

collect the dependencies of subproblems and constraints in the following notation illustrated
in Fig. 1.

6

V \ VJ VJ

V1 ⊂ VJ V2 ⊂ VJ

J

J̄

M \ (J ∪ J̄)

Figure 1: For J ⊆M , VJ consists of all v interacting with some j ∈ J ,
J̄ are the remaining constraints interacting with some v ∈ VJ .

Definition 1 Let v ∈ V , j ∈M , and J ⊆M . Then

Jv := {j ∈M : Aj,v 6= 0}, the set of all constraints interacting with v, (3.1)
Vj := {v ∈ V : j ∈ Jv}, the set of all subproblems interacting with j, (3.2)
VJ :=

⋃
j∈J Vj , the set of all subproblems interacting with J, (3.3)

J̄ :=
⋃
v∈VJ (Jv \ J), constraints in M \ J interacting with some v ∈ VJ . (3.4)

These definitions imply

∀ v ∈ V,∀ j ∈M : j ∈ Jv ⇔ v ∈ Vj , (3.5)

∀ v ∈ V,∀ y ∈ RM : (AJv ,v)
T yJv = (A•,v)

T y, (3.6)

∀ v ∈ V,∀ y, y′ ∈ RM : yJv = y′Jv ⇒ fv(y) = fv(y
′), (3.7)

∀ v ∈ V,∀wv ∈ convWv,∀ y, y′ ∈ RM : yJv = y′Jv ⇒ f̂wv ,v(y) = f̂wv ,v(y
′), (3.8)

∀ J ⊆M, ∀x, x′ ∈ Rn : xVJ = x′VJ ⇒ g(x)J = g(x′)J . (3.9)

The algorithm starts with the initialization of some global data and then acts as a master
process. This master process continues starting several parallel processes as long as less
than some predefined number of processes are running. Each process executes the steps
(a)–(d) outlined in the introduction. In this, steps (a) and (d) interact with global data
and (b) and (c) do not interact with global data. For data consistency, at most one process
is allowed to be in a step that interacts with global data. This is achieved using semaphores
which block a process whenever it tries to start a globally interacting step if another process
is currently dealing with global data. Once a process finished a step interacting with global
data, one of the blocked processes (if there is one) is allowed to proceed. Because of this
organization there is a unique sequence of global interactions. We denote this sequence by
a global index marker σ ∈ N0 which is increased each time some elements of the global
data are modified.
Throughout the algorithm the following objects are maintained globally, with an index

marker σ ∈ N0 indicating the value after the σ-th writing access to the global data:

7

ŷ〈σ〉 ∈ RM , the current global center,
f
〈σ〉
v := fv(ŷ

〈σ〉) ∈ R, the optimal primal value of Pv(ŷ〈σ〉) attained in some x̂〈σ〉v ∈
Ωv for v ∈ V ,

(l̄〈σ〉, x̄〈σ〉) ∈ convW , the current global aggregate minorant,
B〈σ〉 ⊆ V , set of primal problems currently blocked by some processes,
D〈σ〉 = (M,E〈σ〉), digraph with arc set E〈σ〉 collecting presumed dependencies.

The global variables ŷ〈σ〉 and x̄〈σ〉 correspond to the current dual and primal variables.
Like for a standard bundle method, we will see that under reasonable assumptions each
accumulation point of (ŷ〈σ〉)σ is a dual optimal solution and there is a suitable subsequence
of (x̄〈σ〉)σ converging to a primal optimal solution of (convP).
Given the current center of stability ŷ〈σ〉 ∈ RM and the primal aggregate x̄〈σ〉v ∈ conv Ωv

for all v ∈ V , the intuition underlying step (a) is to choose an initial coordinate ̂ and
enlarge it to a subspace J ⊆ M so that the subproblems VJ interacting with J strongly
violate the coupling constraints AJ,VJ x̄

〈σ〉
VJ

= b. The process will then try to improve the
Lagrange multipliers ŷJ associated with the subspace J in order to reduce this violation. As
long as this process runs, no other process is allowed to change any of the primal variables
associated with VJ (for this, B〈σ〉 keeps track of all selected sets VJ) or the dual variables
associated with J ∪ J̄ but other subspaces without such interaction may be selected and
processed at the same time. If the sets Vj , j ∈ J , are relatively small subsets of V , i. e., each
constraint couples only a small number of subproblems (which is a reasonable assumption
in many large scale applications), several disjoint subsets may be selected simultaneously.
For the selection of an appropriate subspace we investigate the contribution of a subset

J to the predicted decrease ∆ of (2.6),

∆〈σ〉 :=
∑
v∈V

[
f 〈σ〉v − f̂

(l̄
〈σ〉
v ,x̄

〈σ〉
v),v

(ŷ〈σ〉)
]

+ 1
u‖g(x̄〈σ〉)‖2, (3.10)

∆
〈σ〉
J :=

∑
v∈VJ

[
f 〈σ〉v − f̂

(l̄
〈σ〉
v ,x̄

〈σ〉
v),v

(ŷ〈σ〉)
]

+ 1
u‖g(x̄〈σ〉)J‖2, (3.11)

∆̄
〈σ〉
J :=

∑
v∈V \VJ

[
f 〈σ〉v − f̂

(l̄
〈σ〉
v ,x̄

〈σ〉
v),v

(ŷ〈σ〉)
]

+ 1
u‖g(x̄〈σ〉)M\(J∪J̄)‖2, (3.12)

δ
〈σ〉
J̄

:= 1
u‖g(x̄〈σ〉)J̄‖2.

The value ∆
〈σ〉
J may be interpreted as the predicted decrease if only the variables ŷJ along

with the primal variables x̄VJ are allowed to change and all other variables are fixed. The
value ∆̄

〈σ〉
J is the predicted decrease that cannot be influenced by changing ŷJ or x̄VJ ,

and δ〈σ〉
J̄

is the residual part that can be influenced by both, the subproblems VJ and the
subproblems not interacting with J , namely V \ VJ . The following observation justifies
this.

Observation 2 For J ⊆ M there holds ∆〈σ〉 = ∆
〈σ〉
J + ∆̄

〈σ〉
J + δ

〈σ〉
J̄

and if f 〈σ〉v = fv(ŷ
〈σ〉)

for all v ∈ V , then ∆〈σ〉 = ∆(ŷ〈σ〉, (l̄〈σ〉, x̄〈σ〉)).

Proof. This follows from (2.2), (2.4) and (2.6) by direct computation. �

If ∆
〈σ〉
J represents a significant portion of ∆〈σ〉 and the process’s attempt to reserve J and

VJ as its subspace in step (a) is successful, it then optimizes over J and VJ by a bundle
method thereby driving ∆J to zero while not changing ∆̄J , but this only helps to reduce the
global predicted decrease ∆〈σ〉 if δJ̄ does not increase too much. If δJ̄ develops unfavorably,

8

say due to some coordinate j∗ ∈ J̄ , a new edge (̂, j∗) will be inserted into E〈σ〉 in step
(d) in order to memorize that future selections starting with index ̂ should always include
index j∗, as well.
We point out two facts. First, there may be some processes which do never update the

global data, either because the subspace selection in step (a) fails or because the algorithm
stops while the process has not yet completed step (d). Because those processes have no
relevant influence on the global data, we will mostly ignore them in the following (as long
as we can guarantee that at least one process is running, see Observation 9 below). In
contrast, a relevant process (one with a successful subspace selection step and a completed
step (d)) interacts exactly twice with the global data, namely at the steps (a) and (d).
Second, note that for a relevant process the global data at the beginning of step (d) may
have changed since the process has set up its subproblem in step (b) because the processes
run in parallel without synchronization and some other process may have changed the
global data in the meantime.
Because at most one process is allowed to interact with the global data at the same time,

there is a well-defined sequence of global interactions and we can identify these global states
using the global counter σ ∈ N0. Furthermore each relevant process interacts exactly twice
with the global data and it will be convenient to identify the status of each process via
these two associated index markers. For this purpose each process π is equipped with two
labels, π and π. In initialization these labels are set to π = −1 = π. Whenever the process
tries to acquire a subproblem in step (a), the label π is set to the current value of σ. If π
succeeds in reserving a subspace at π = σ then this will be the final value of π, the new
status is indicated by setting π ← ∞ and σ is increased. Once the process completed its
subproblem and enters step (d), the label π is assigned the new current value of σ as its
final value and σ will be increased again. In consequence, a process π with π ≤ π is waiting
for a suitable subproblem, a process with π = ∞ is currently working on its subproblem,
and if π < π <∞ the process has done its work.

3.1. The Subspace Problem Associated with Process π

Each process π solves a subproblem in a certain subspace indexed by a subset ofM acquired
in step (a). Each subspace problem itself is again a convex optimization problem of the
same kind as the global dual problem (D). We mark all information that is associated
with a specific process π with the superscript (π). In particular, we will use the following
notation,

J (π) ⊆M, the subset selected in step (a) that π may modify,

V (π) := VJ(π) , the subproblems that π optimizes, (3.13)

J̄ (π) :=
⋃
v∈V (π) Jv \ J (π), dual variables interacting with V (π) but not in J (π), (3.14)

Ω(π) =
⊗

v∈V (π) Ωv, the primal ground set.

The subspace J (π) determines everything else except for the constant cost coefficients c(π)

defined next and to be determined in step (b) w. r. t. the global data:

c(π)
v := −(AJ̄(π),v)

T ŷ
〈π〉
J̄(π) for all v ∈ V (π). (3.15)

These give rise to modified cost functions

h(π)
v (xv) := hv(xv) + (c(π)

v)Txv for xv ∈ Ωv, v ∈ V (π). (3.16)

9

With the same notation now equipped with superscript (π),

L(π)
v (xv, y

(π)) := h(π)
v (xv)− (y(π))TAJ(π),vxv, xv ∈ Ωv, v ∈ V (π), y(π) ∈ RJ(π)

, (3.17)

f (π)
v (y(π)) := max

xv∈Ωv
L(π)
v (xv, y

(π)), v ∈ V (π), y(π) ∈ RJ(π)
, (3.18)

f (π)(y(π)) := bT
J(π)y

(π) +
∑

v∈V (π)

f (π)
v (y(π)), y(π) ∈ RJ(π)

, (3.19)

the subproblem that π solves is

(SP (π)) min
y(π)∈RJ(π)

f (π)(y(π)).

Introducing the rest of the notation in the same vein, let

W (π) :=
{

(l(π), x(π)) ∈ RV (π)× Ω(π) : l(π)
v = hv(x

(π)
v), x(π)

v ∈ Ωv, v ∈ V (π)
}
.

The process π manages a local version of the global data, namely,

ŷ(π) ∈ RJ(π)
, the local center,

(l̄(π), x̄(π)) ∈ convW (π), the local aggregate minorant.

Process π solves the problem approximately using a bundle method. Each point (l̄(π), x̄(π))
∈ convW (π) defines a minorant of f (π),

f̂
(π)

(l̄(π),x̄(π))
(y(π)) := bT

J(π)y
(π) +

∑
v∈V (π)

f̂
(π)

(l̄
(π)
v ,x̄

(π)
v),v

(y(π)) ≤ f (π)(y(π))

where
f̂

(π)

(l̄
(π)
v ,x̄

(π)
v),v

(y(π)) := l̄(π)
v + (c(π)

v)T x̄(π)
v − (y(π))TAJ(π),vx̄

(π)
v . (3.20)

The gradient of f̂ (π)

(l̄(π),x̄(π))
can be worked out to be

g(π)(x̄(π)) := bJ(π) −AJ(π),V (π) x̄(π). (3.21)

Indeed, the blocks of A appearing here but not in the gradients of (3.20) are zero blocks
by definition of Jv and do not influence the result.
Given a center ŷ(π), an aggregate minorant (l̄(π), x̄(π)) ∈ convW (π) and the minimizer

ȳ(π) := ŷ(π) − 1
ug

(π)(x̄(π))

of the augmented model f̂ (π)

(l̄(π),x̄(π))
(y(π)) + u

2‖y
(π) − ŷ(π)‖2 as candidate, the predicted de-

crease of this subproblem is

∆(π)(ŷ(π), (l̄(π), x̄(π))) := f (π)(ŷ(π))− f̂ (π)

(l̄(π),x̄(π))
(ŷ(π)) + 1

u‖g
(π)(x̄(π))‖2. (3.22)

The definitions above immediately imply the following relations.

Observation 3

Jv ⊆ J (π) ∪ J̄ (π) for all v ∈ V (π), (3.23)

Jv ∩ J (π) = ∅ for all v ∈ V \ V (π), (3.24)

Vj ∩ V (π) = ∅ for all j ∈M \ (J (π) ∪ J̄ (π)). (3.25)

Proof. Directly from the definitions. �

10

3.2. Linking Local and Global Information

There is a direct relation between the subproblems L(π)
v , v ∈ V (π), of π and the global

subproblems Lv, v ∈ V (π), as well as between the local and global function values, models,
and gradients.

Observation 4 Let π = (π, π) be a process, v ∈ V (π) and y ∈ RM so that yJ̄(π) = ŷ
〈π〉
J̄(π) .

L(π)
v (xv, yJ(π)) = Lv(xv, y) for all xv ∈ Ωv, (3.26)

f (π)
v (yJ(π)) = fv(y), (3.27)

f̂
(π)
(lv ,xv),v(yJ(π)) = f̂(lv ,xv),v(y) for all (l, x) ∈ convW, (3.28)

g(π)(xV (π)) = g(x)J(π) for all (l, x) ∈ convW. (3.29)

Proof. There hold Jv ⊆ J (π) ∪ J̄ (π) by (3.23) and AM\Jv ,v = 0 by (3.1), so

c(π)
v −ATJ(π),v

yJ(π)

(3.15)
= −AT

J̄(π),v
ŷ
〈π〉
J̄(π) −ATJ(π),v

yJ(π)

= −AT
J̄(π),v

yJ̄(π) −ATJ(π),v
yJ(π) = −AT•,vy.

Thus, for xv ∈ Ωv,

L(π)
v (xv, yJ(π))

(3.16)(3.17)
= hv(xv) + (c(π)

v)Txv − yTJ(π)AJ(π),vxv

= hv(xv)− yTA•,vxv
(1.2)
= Lv(xv, y).

This proves (3.26) and also (3.27) by (1.3) and (3.18). For (3.28),

f̂
(π)
(lv ,xv),v(yJ(π))

(3.20)
= lv + (c(π)

v)Txv − (yJ(π))TAJ(π),vxv

= lv − yTA•,vxv
(2.4)
= f̂(lv ,xv),v(y).

Finally, (3.29) relies on Aj,V \Vj = 0 and Vj ⊆ V (π) for j ∈ J (π) by (3.13),

g(π)(xV (π))
(3.21)

= bJ(π) −AJ(π),V (π)xV (π) −AJ(π),V \V (π)︸ ︷︷ ︸
=0 by (3.13)

xV \V (π)

= bJ(π) −AJ(π),•x
(2.3)
= g(x)J(π) . �

3.3. The Parallel Bundle Algorithm for Loose Coupling

Next we present the parallel bundle algorithm in detail. In this algorithm each process π is
allowed to modify the global data on its associated subspace J (π) and for the subproblems
V (π), but while π is running no other process may change this global data or the multi-
pliers corresponding to J̄ (π). The importance of the latter requirement is clearly visible in
Observation 4 and is achieved by condition (S3) in the algorithm below.

Algorithm Parallel Bundle:

1. Initialization

• Choose parameters

11

• relative predicted subspace decrease level τ1 ∈ (0, 1
2 min{ 1

|M | ,
1
|V |}),

• subspace improvement level τ2 ∈ (0, 1),
• subspace dependency level τ3 ∈ [0, 1− τ2),
• termination precision ε > 0,
• maximal number of parallel processes NΠ ≤ |M |,
• weight u > 0 and descent step parameter ρ ∈ (0, 1) for the bundle method.

• Set σ ← 0, ŷ〈0〉 ← 0, B〈0〉 ← ∅.
• Set E〈0〉 ← ∅ (or use some prespecified dependencies).

• Determine all f 〈0〉v = fv(ŷ
〈0〉) and set (l̄〈0〉, x̄〈0〉) to the minorant defined by the optimal

solutions.

• Compute ∆〈0〉. If ∆〈0〉 ≤ ε(|f(ŷ〈0〉)|+ 1) then do not start any process and STOP.

2. While less than NΠ processes are running, start a new process π setting π ← −1,
π ← −1. Each process π does the following (with semaphores guarding the access).

(a) Subspace selection

• Secure exclusive access to global data, set π ← σ.

• Find ̂ ∈M and a subspace J (π) ⊆M , ̂ ∈ J (π) with

(S1) {j : (̂, j) ∈ E〈π〉} ⊆ J (π),

(S2) ∆
〈π〉
J(π) ≥ τ1∆〈π〉,

(S3) V (π) ∩B〈π〉 = ∅.
• If no such ̂ exists, the step is unsuccessful, do not change the global data, free

access to it and restart at some later time at (a) when σ > π.

• The step is successful, B〈σ+1〉 ← B〈π〉 ∪ V (π), π ←∞ and keep(
ŷ〈σ+1〉, (l̄〈σ+1〉, x̄〈σ+1〉), f

〈σ+1〉
V , E〈σ+1〉

)
←
(
ŷ〈π〉, (l̄〈π〉, x̄〈π〉), f

〈π〉
V , E〈π〉

)
.

(3.30)

• Read required global data, set σ ← π + 1, and free exclusive access.

(b) Set up the subspace problem.
There is no global interaction in this step!
Compute c(π)

v by (3.15) for all v ∈ V (π) and initialize the bundle method to solve
problem (SP (π)) with this c(π) starting from center ŷ(π) = ŷ

〈π〉
J(π) and initial ag-

gregate (l̄(π), x̄(π)) = (l̄
〈π〉
V (π) , x̄

〈π〉
V (π)). In the first iteration we have then exactly a

predicted decrease
∆(π)(ŷ(π), (l̄(π), x̄(π))) = ∆

〈π〉
J(π) .

(c) Solve the subspace problem.
There is no global interaction in this step!
Solve (SP (π)) by the bundle method, iteratively generating candidates ȳ(π) together
with primal aggregates (l̄(π), x̄(π)) ∈ convW (π). In each iteration test the following
conditions in this sequence.

1. If the predicted decrease on the subspace J (π) has been sufficiently reduced,
i. e.,

∆(π)(ŷ(π), (l̄(π), x̄(π))) < τ2∆
〈π〉
J(π) , (StopP)

go to (d).

12

2. If ∆(π)(ŷ(π), (l̄(π), x̄(π))) ≥ τ2∆
〈π〉
J(π) and the descent step criterion

∆(π)(ŷ(π), (l̄(π), x̄(π))) ≤ 1
ρ(f (π)(ŷ(π))− f (π)(ȳ(π))) (StopD)

is satisfied, set ŷ(π) ← ȳ(π) and go to (d).

(d) Update global data with subspace solution.

• Secure exclusive access to global data, set π ← σ.
• Independent of (StopP) and (StopD), keep(

ŷ
〈σ+1〉
M\J(π) , f

〈σ+1〉
V \V (π) , (l̄

〈σ+1〉
V \V (π) , x̄

〈σ+1〉
V \V (π))

)
←
(
ŷ
〈π〉
M\J(π) , f

〈π〉
V \V (π) , (l̄

〈π〉
V \V (π) , x̄

〈π〉
V \V (π))

)
(3.31)

and update the subterms

(l̄
〈σ+1〉
V (π) , x̄

〈σ+1〉
V (π))← (l̄

(π)

V (π) , x̄
(π)

V (π)), (3.32)

B〈σ+1〉 ← B〈π〉 \ V (π), (3.33)

• If π stopped with (StopD), update

ŷ
〈σ+1〉
J(π) ← ŷ(π), (3.34)

f
〈σ+1〉
V (π) ← f

(π)

V (π)(ŷ
(π)), (3.35)

otherwise keep (
ŷ
〈σ+1〉
J(π) , f

〈σ+1〉
V (π)

)
←
(
ŷ
〈π〉
J(π) , f

〈π〉
V (π)

)
. (3.36)

• If π stopped with (StopP) and

δ
〈σ+1〉
J̄(π) − δ

〈π〉
J̄(π) > τ3∆

〈π〉
J(π) , (Dep)

• increase E〈σ+1〉 ← E〈π〉 ∪ {(̂, j∗)} by at least an arc (̂, j∗) with

j∗ ∈ Argmax{g(x̄〈σ+1〉)2
j − g(x̄〈π〉)2

j : j ∈ J̄ (π)},

in all other cases keep E〈σ+1〉 ← E〈π〉.
• Set σ ← π + 1 and compute ∆〈σ〉. If ∆〈σ〉 ≤ ε(|f(ŷ〈σ〉)| + 1) terminate all

processes and STOP.
• Free access to global data and stop this process π.

Note, we do not require continuation of a previous model on the same subset J of variables
in some later process. In fact, another subset might work on the same subproblem v ∈ V
and change (l̄

〈σ〉
v , x̄

〈σ〉
v).

For the analysis, it will be convenient to arrange the processes in different groups for
each value σ ∈ N0 ∪ {∞} by forming these sets as soon as the algorithm’s index marker
exceeds this value σ or when the algorithm reached its final marker of at most this value,

Π〈σ〉 := {π = (π, π) : π < π and π < σ},

Π
〈σ〉

:= {π = (π, π) : π < π < σ},

Π〈σ〉 := {π = (π, π) : π < σ ≤ π} = Π〈σ〉 \Π
〈σ〉
.

13

The first group Π〈σ〉 collects all processes that have successfully executed step (a) before
the algorithm reached σ, Π

〈σ〉 singles out all processes that have executed (d) before σ
and the set Π〈σ〉 comprises all processes that are actively working on or just finishing a
subproblem at σ, i. e., these are running in parallel. Each increment of σ by the algorithm
is associated with the addition or deletion of exactly one process from this set of parallel
processes as we show next.

Observation 5 Π〈0〉 = ∅ and for σ′ ∈ N0 there holds Π〈σ
′〉 6= Π〈σ

′+1〉 if and only if
|(Π〈σ′〉 \ Π〈σ

′+1〉) ∪ (Π〈σ
′+1〉 \ Π〈σ

′〉)| = 1. If Π〈σ
′〉 = Π〈σ

′+1〉 then for all σ ≥ σ′ we have
Π〈σ〉 = Π〈σ

′〉 and there is no process π with π = σ or π = σ.

Proof. In the first statement Π〈0〉 = ∅ follows by definition and sufficiency is obvious. In
order to show necessity observe that Π〈σ

′〉 6= Π〈σ
′+1〉 implies |(Π〈σ′〉 \Π〈σ

′+1〉) ∪ (Π〈σ
′+1〉 \

Π〈σ
′〉)| ≥ 1, so there must be at least one process π that is in Π〈σ

′〉 but not in Π〈σ
′+1〉, i. e.,

it satisfies π = σ′, or that is in Π〈σ
′+1〉 but not in Π〈σ

′〉, i. e., it satisfies π = σ′. Due to the
exclusive access steps (a) and (d) there is exactly one such process π with π ≥ 0. Indeed,
any process π ∈ Π〈σ

′+1〉 with π = σ′ executed step (a) successfully at σ = σ′ (unsuccessful
steps have π < 0) and increased the marker to σ = σ′ + 1 so that all further executions
of steps (a) and (d) lead to larger numbers. An analogous argument holds for the case
π = σ′.
If Π〈σ

′〉 = Π〈σ
′+1〉 then no process π ∈ Π〈σ

′〉 executes (d) at σ = σ′ and there is no new
successful execution of (a) at σ = σ′. Thus, σ is never increased above σ′ + 1, all running
processes π ∈ Π〈σ

′〉 satisfy π =∞, all others have π < σ′+ 1 and none of these values ever
change, so the claim follows. �

By this observation, the following set collects the markers σ ∈ N0 visited by the algorithm,

Σ := {0} ∪ {σ ∈ N : Π〈σ〉 6= Π〈σ−1〉}.

3.4. Consistency of the Updating Scheme

The most important steps of the algorithm, which guarantee that the parallel subspace
process does not endanger global convergence, are the subspace selection step (a) and the
update of the dependency graph D〈σ〉 = (M,E〈σ〉) in step (d). The tests (S1)–(S3) enforce
a proper selection of the subspaces.
Condition (S1) ensures that all dependencies implicated by the dependency graph D〈σ〉

are respected. If two subspaces have a dependency in the sense that an improvement on
one subspace may worsen the other, future selections should always include the second
with the first. Those dependencies are detected in the update step (d).
Condition (S2) guarantees that the progress made on the subspace achieves sufficient

decrease on the whole space. This means, if a descent step occurs on the subspace this
step is also a good descent step on the whole space, and if no descent step occurs, the
reduction in predicted decrease ∆

〈σ〉
J(π) on the subspace leads to a significant reduction of

the predicted decrease ∆〈σ〉 on the whole space.
Condition (S3) ensures that two processes running in parallel can interact only in a

limited way. The next statement quantifies this limitation.

Lemma 6 For σ ∈ Σ,

(i) B〈σ〉 =
⋃
π∈Π〈σ〉 V

(π),

(ii) V (π) ∩ V (π′) = ∅ for π, π′ ∈ Π〈σ〉 with π 6= π′,

14

(iii) J (π′) ∩ (J (π) ∪ J̄ (π)) = J (π) ∩ (J (π′) ∪ J̄ (π′)) = ∅ for π, π′ ∈ Π〈σ〉 with π 6= π′,

(iv) ŷ〈π〉
J(π)∪J̄(π) = ŷ

〈σ〉
J(π)∪J̄(π), (l̄

〈π〉
V (π) , x̄

〈π〉
V (π)) = (l̄

〈σ〉
V (π) , x̄

〈σ〉
V (π)), and f

〈π〉
V (π) = f

〈σ〉
V (π) for π ∈ Π〈σ〉.

Proof. The proof works by induction on σ. For σ = 0 we have B〈σ〉 = ∅ and Π〈σ〉 = ∅,
thus (i)–(iv) hold trivially. Now suppose σ + 1 ∈ Σ and the claim holds for σ ∈ Σ. By
definition, σ + 1 ∈ Σ implies Π〈σ〉 6= Π〈σ+1〉, so Observation 5 asserts the existence of a
unique η ∈ (Π〈σ〉 \Π〈σ+1〉) ∪ (Π〈σ+1〉 \Π〈σ〉) and this η either satisfies η = σ or η = σ.
If η = σ we have Π〈σ〉 = Π〈σ+1〉 \ {η} and process η executed a successful step (a) at σ,

so B〈σ+1〉 = B〈σ〉 ∪ V (η) and (i) as well as (iv) hold. By induction, (ii) and (iii) only need
to be verified for π = η and π′ ∈ Π〈σ〉. Because V (π′) ⊆ B〈σ〉 and (S3) was satisfied for η at
σ, (ii) follows from ∅ = V (η) ∩B〈σ〉 ⊇ V (η) ∩ V (π′). For (iii) assume, w. l. o. g., there exists
a j ∈ J (η) ∩ (J (π′) ∪ J̄ (π′)). Assumption (1.1) implies ∅ 6= Vj and by (3.3) and (3.13) we
have Vj ⊆ VJ(η) = V (η). If j ∈ J (π′) then by the same argument Vj ⊆ V (π′) and therefore
∅ 6= Vj ⊆ VJ(π′) ∩ VJ(η) , a contradiction to (ii). If j ∈ J̄ (π′) then by (3.14) there is a
v ∈ V (π′) so that j ∈ Jv which implies by (3.5) v ∈ Vj and as above v ∈ VJ(π′) ∩ VJ(η) 6= ∅.
If η = σ we have Π〈σ+1〉 = Π〈σ〉 \ {η} and process η executed a step (d) at σ. By

the latter, B〈σ+1〉 = B〈σ〉 \ V (η) and all values for indices M \ J (η) and V \ VJ(η) are left
unchanged. In view of the validity of (ii) and (iii) for π = η at σ, (i)–(iv) hold by induction
also for σ + 1 and its remaining processes. �

When a process π stops at π, the relevant subspace information for π has not been
modified and at π+ 1 the data on its selected subspace and subproblems is consistent with
the terminal status of the bundle method of π.

Lemma 7 Given π ∈ Π
〈∞〉 assume f 〈π〉

V (π) = fV (π)(ŷ〈π〉). Then

ŷ
〈π〉
J̄(π) = ŷ

〈σ〉
J̄(π) for all σ ∈ {π, . . . , π + 1}, (3.37)

ŷ
〈π〉
J(π) = ŷ

〈σ〉
J(π) for all σ ∈ {π, . . . , π}, (3.38)

f
〈π〉
V (π) = f

〈σ〉
V (π) = fV (π)(ŷ〈σ〉) = f

(π)

V (π)(ŷ
〈σ〉
J(π)) for all σ ∈ {π, . . . , π}, (3.39)

(l̄
〈π〉
V (π) , x̄

〈π〉
V (π)) = (l̄

〈σ〉
V (π) , x̄

〈σ〉
V (π)) for all σ ∈ {π, . . . , π}, (3.40)

∆
〈π〉
J(π) = ∆

〈σ〉
J(π) for all σ ∈ {π, . . . , π}, (3.41)

and with ŷ(π) and (l̄(π), x̄(π)) ∈ convWV (π) be the final values of π in step (d) at π

ŷ
〈π+1〉
J(π) = ŷ(π), f

〈π+1〉
V (π) = f

(π)

V (π)(ŷ
(π)) = fV (π)(ŷ〈π+1〉), (3.42)

ŷ
〈π+1〉
M\J(π) = ŷ

〈π〉
M\J(π) , f

〈π+1〉
V \V (π) = f

〈π〉
V \V (π) , (3.43)

(l̄
〈π+1〉
V (π) , x̄

〈π+1〉
V (π)) = (l̄(π), x̄(π)), (l̄

〈π+1〉
V \V (π) , x̄

〈π+1〉
V \V (π)) = (l̄

〈π〉
V \V (π) , x̄

〈π〉
V \V (π)), (3.44)

∆
〈π+1〉
J(π) = ∆(π)(ŷ(π), (l̄(π), x̄(π))), ∆̄

〈π+1〉
J(π) = ∆̄

〈π〉
J(π) . (3.45)

Proof. For σ ∈ {π + 1, . . . , π} we have π ∈ Π〈σ〉, hence, for these values of σ, Lemma 6
(iv) implies (3.37), (3.38), (3.40), and the first equation of (3.39) (the remaining two will
be proved below). With these (3.41) follows from the definition (3.11) together with (3.7)–
(3.9) using (3.23).
The values for σ = π + 1 are set by π when executing step (d) at π, so (3.44) follows

from (3.31) and (3.32). Likewise, (3.31) establishes (3.43) and also completes the result

15

for (3.37) because the definition of J̄ (π) (3.14) implies J̄ (π) ⊆ M \ J (π). Because of (3.37)
we may invoke Observation 4 for ŷ〈π〉 up to ŷ〈π+1〉 throughout this proof. In particular, to
complete (3.39),

fV (π)(ŷ〈σ〉)
(3.27)

= f
(π)

V (π)(ŷ
〈σ〉
J(π))

(3.38)
= f

(π)

V (π)(ŷ
〈π〉
J(π))

(3.27)
= fV (π)(ŷ〈π〉) = f

〈π〉
V (π) for all σ ∈ {π, . . . , π}.

Now consider (3.42). If step (c) was ended by (StopP), then ŷ(π) = ŷ
〈π〉
J(π)

(3.38)
= ŷ

〈π〉
J(π)

(3.36)
= ŷ

〈π+1〉
J(π)

and fV (π)(ŷ〈π+1〉)
(3.27)

= f
(π)

V (π)(ŷ
(π))

(3.39)
= f

〈π〉
V (π)

(3.36)
= f

〈π+1〉
V (π) . If step (c) was ended by (StopD) then

ŷ(π)(3.34)
= ŷ

〈π+1〉
J(π) and f 〈π+1〉

V (π)

(3.35)
= f

(π)

V (π)(ŷ
(π))

(3.27)
= fV (π)(ŷ〈π+1〉), so (3.42) holds.

The left hand side equation of (3.45) follows by

∆(π)(ŷ(π), (l̄(π), x̄(π)))
(3.22)

=
∑

v∈V (π)

[
f (π)
v (ŷ(π))− f̂ (π)

(l̄(π),x̄(π)),v
(ŷ(π))

]
+ 1

u‖g
(π)(x̄(π))‖2

(3.42),(3.44)
=
∑

v∈V (π)

[
f 〈π+1〉
v − f̂ (π)

(l̄
〈π+1〉
v ,x̄

〈π+1〉
v),v

(ŷ
〈π+1〉
J(π))

]
+ 1

u‖g
(π)(x̄

〈π+1〉
V (π))‖2

(3.28),(3.29)
=
∑

v∈V (π)

[
f 〈π+1〉
v − f̂

(l̄
〈π+1〉
v ,x̄

〈π+1〉
v),v

(ŷ〈π+1〉)
]

+ 1
u‖g(x̄〈π+1〉)J(π)‖2

(3.11),(3.13)
= ∆

〈π+1〉
J(π) .

In order to show ∆̄
〈π+1〉
J(π) = ∆̄

〈π〉
J(π) it suffices to check that none of the values involved in

(3.12) change when π executes (d) at π. With VJ(π) = V (π) by (3.13) this follows from
(3.43) and (3.44) because for v ∈ V \ VJ(π) we have Jv ⊆ M \ J (π) by (3.24) and so
ŷ
〈π+1〉
Jv

= ŷ
〈π〉
Jv

, f 〈π+1〉
v = f

〈π〉
v , and (l̄

〈π+1〉
v , x̄

〈π+1〉
v) = (l̄

〈π〉
v , x̄

〈π〉
v). Thus, (3.8) establishes

f̂
(l̄
〈π+1〉
v ,x̄

〈π+1〉
v),v

(ŷ〈π+1〉) = f̂
(l̄
〈π〉
v ,x̄

〈π〉
v),v

(ŷ〈π〉) for v ∈ V \VJ(π) , while g(x̄〈π+1〉)M\(J(π)∪J̄(π)) =

g(x̄〈π〉)M\(J(π)∪J̄(π)) follows via (3.9) because VM\(J(π)∪J̄(π)) ∩ VJ(π) = ∅ by (3.25). Thus,

∆̄
〈π+1〉
J(π) = ∆̄

〈π〉
J(π) and (3.45) holds. �

Throughout the algorithm, the global data is consistent and the arc set of the dependency
graph may only increase.

Lemma 8 For all σ ∈ Σ,

f
〈σ〉
V = fV (ŷ〈σ〉), (l̄〈σ〉, x̄〈σ〉) ∈ convW, (3.46)

∆〈σ〉 = ∆(ŷ〈σ〉, (l̄〈σ〉, x̄〈σ〉)), E〈σ〉 ⊆ E〈σ+1〉 ⊆ {(i, j) : i, j ∈M, i 6= j}.

Furthermore, ∆〈σ〉 > ε(|f(ŷ〈σ〉)|+ 1) for all σ ∈ Σ with σ + 1 ∈ Σ.

Proof. The proof is by induction on σ. For σ = 0 the claim holds by the initialization
step. Suppose now σ + 1 ∈ Σ and the claim holds for σ ∈ Σ. If σ + 1 is reached by
a step (a) then none of the involved variables are changed and the relations still hold.
Otherwise σ + 1 is reached by a step (d) executed by some process π with π = σ. For
v ∈ V \ V (π) (3.24) yields Jv ⊆ M \ J (π) and by (3.31) ŷ〈π+1〉

Jv
= ŷ

〈π〉
Jv

, f 〈π+1〉
v = f

〈π〉
v ,

(l̄
〈π+1〉
v , x̄

〈π+1〉
v) = (l̄

〈π〉
v , x̄

〈π〉
v) ∈ convWv, so for v ∈ V \ V (π) (3.46) holds by induction

because fv(y) only depends on yJv by (3.7). For v ∈ V (π) the claim follows for (3.46)
directly from (3.42) and (3.44). The correctness of (3.46) for π+ 1 implies the correctness
of ∆〈π+1〉 by Observation 2. The claim for E〈π+1〉 follows directly from step (d). Finally,
∆〈π+1〉 ≤ ε(|f(ŷ〈π+1〉)|+ 1) leads to the termination of the algorithm in step (d) at π and
then π + 1 = max Σ. �

16

Next we show that the algorithm always starts at least one working process as long as
the stopping criterion is not met.

Observation 9 For σ ∈ Σ with Π〈σ〉 = ∅ there holds Π〈σ+1〉 = {π} for some π with π = σ
if and only if ∆〈σ〉 > ε(|f(ŷ〈σ〉)|+1). In words, if no process is running, at least one process
is started with a successful step (a) if and only if the stopping criterion is not satisfied for
the current global data.

Proof. Lemma 6 (i) and (1.1) (J (π) 6= ∅ ⇒ V (π) 6= ∅) assert that Π〈σ〉 = ∅ is equivalent
to B〈σ〉 = ∅. For B〈σ〉 = ∅ conditions (S1)–(S3) can always be satisfied. Indeed, choosing
J (π) = M satisfies (S1) becauseM trivially observes all dependencies of E〈σ〉, (S2) because
∆
〈π〉
M = ∆〈π〉 by (3.10) and (3.11), and (S3) because B〈σ〉 = ∅. In particular, the algorithm

starts with setting σ = 0 and B〈0〉 = ∅ and reaches step (a) if and only if the stopping
criterion is not satisfied in step 1. For 0 < σ ∈ Σ, Π〈σ〉 = ∅ requires Π〈σ−1〉 = {π′} for some
process π′ with π′ = σ− 1 by Observation 5. Thus, π′ executes a step (d) at σ− 1 and the
algorithm continues if and only if the stopping criterion is not satisfied for the global data
of σ. �

Already very small subspaces may suffice to satisfy the selection criteria. Indeed, the
following observation proves that there is always a one dimensional subspace, i. e., an
index set with one element that satisfies (S2) (without considering blocking or implications
required by E).

Observation 10 Let σ ∈ Σ. For J ⊆ J ′ ⊆ M there holds ∆
〈σ〉
J ≤ ∆

〈σ〉
J ′ . There always

exists a j ∈M with ∆
〈σ〉
{j} ≥

1
2∆〈σ〉min{ 1

m ,
1
|V |}.

Proof. For v ∈ V , (3.46) asserts (l̄
〈σ〉
v , x̄

〈σ〉
v) ∈ convWv and

f 〈σ〉v
(3.46)

= fv(ŷ
〈σ〉)

(2.4)

≥ f̂
(l̄
〈σ〉
v ,x̄

〈σ〉
v),v

(ŷ〈σ〉),

so the first statement concerning ∆
〈σ〉
J is an immediate consequence of (3.11).

For the second statement, recall that

∆〈σ〉
(3.10)

=

(∑
v∈V

[
f 〈σ〉v − f̂

(l̄
〈σ〉
v ,x̄

〈σ〉
v),v

(ŷ〈σ〉)
])

+

 1
u

∑
j∈M

g(x̄〈σ〉)2
j

 .

At least one of both summands is greater than or equal to 1
2∆〈σ〉. If this is true for the

first one, for at least one v ∈ V the term f
〈σ〉
v − f̂

(l̄
〈σ〉
v ,x̄

〈σ〉
v),v

(ŷ〈σ〉) is greater than or equal

to 1
2∆〈σ〉 1

|V | and any j ∈ Jv satisfies the claim. If it is true for the second one, for at least
one j ∈M the term 1

ug(x̄〈σ〉)2
j is greater than or equal to 1

2∆〈σ〉 1
m . �

The next result establishes that no process runs forever, so existing dependencies between
subspaces have to be discovered eventually.

Lemma 11 For each σ ∈ Σ, each process π ∈ Π〈σ〉 either stops at π < ∞ or it is ter-
minated by another process π′ executing step (d) at π′ < ∞ with the global data of π′ + 1
satisfying the termination criterion.

17

Proof. Each process π ∈ Π〈σ〉 satisfies (S2) at π, therefore ∆
〈π〉
J(π) ≥ τ1∆〈π〉 > 0 by

Lemma 7. Then π runs a standard bundle method. After a finite number of its itera-
tions either a descent step occurs or the predicted decrease drops below τ2∆

〈π〉
J(π) > 0, see,

e. g., [12, 13]. Thus, if π is not terminated externally before, one of the conditions (StopP)
or (StopD) is satisfied in finite time. �

Corollary 12 If |Σ| < ∞ then for σ = max Σ there holds ∆〈σ〉 ≤ ε(|f(ŷ〈σ〉)| + 1). If
|Σ| =∞ then Π〈∞〉 = ∅, Π〈∞〉 = Π

〈∞〉, and Σ =
⋃̇
π∈Π

〈∞〉{π, π}.

Proof. This follows from Observation 5, Observation 9, and Lemma 11. �

In the next section we show that the predicted decrease satisfies lim infσ∈N0 ∆〈σ〉 → 0 if
f is bounded from below, so in this case the algorithm is finite whenever ε > 0.

3.5. Convergence Analysis

First we clarify the relation between the global progress and that of a single process.

Lemma 13 For π ∈ Π
〈∞〉

0 ≤ f (π)(ŷ
〈π〉
J(π))− f (π)(ŷ

〈π+1〉
J(π)) = f(ŷ〈π〉)− f(ŷ〈π+1〉),

i. e., the global progress achieved when π stores its subspace solution in the global data is
exactly the progress made by π on J (π). In particular, the sequence (f(ŷ〈σ〉))σ is non-
increasing.

Proof. First observe that for π the initial value of the center ŷ(π) is ŷ〈π〉
J(π) by step (b) and

the final center is ŷ〈π+1〉
J(π) by (3.42), so the left hand inequality follows from the properties of

the bundle method employed in step (c) of π. By Lemma 8 the requirement for Lemma 7
is met, so we may use its results for proving the second equation,

0 ≤ f (π)(ŷ
〈π〉
J(π))− f (π)(ŷ

〈π+1〉
J(π))

(3.19)
= bT

J(π)(ŷ
〈π〉
J(π) − ŷ

〈π+1〉
J(π)) +

∑
v∈V (π)

[
f (π)
v (ŷ

〈π〉
J(π))− f (π)

v (ŷ
〈π+1〉
J(π))

]
(3.38)

= bT
J(π)(ŷ

〈π〉
J(π) − ŷ

〈π+1〉
J(π)) +

∑
v∈V (π)

[
f (π)
v (ŷ

〈π〉
J(π))− f (π)

v (ŷ
〈π+1〉
J(π))

]
(3.39),(3.42),(3.43),(3.46)

= bT (ŷ〈π〉 − ŷ〈π+1〉) +
∑
v∈V

[
fv(ŷ

〈π〉)− fv(ŷ〈π+1〉)
]

(2.2)
= f(ŷ〈π〉)− f(ŷ〈π+1〉).

Observation 5 implies that for any σ ∈ Σ without a π ∈ Π
〈∞〉 satisfying π = σ there is a

process π with π = σ which executes step (a) at π. Therefore (3.30) and (2.2) guarantee
f(ŷ〈π〉) = f(ŷ〈π+1〉) in this case, which establishes that (f(ŷ〈σ〉))σ is non-increasing. �

Next we show that the algorithm always drives the predicted decrease to zero on an ap-
propriate subsequence.

Lemma 14 Suppose an infinite number of descent steps occurs and f is bounded from
below. Then

lim inf
σ∈N0

∆〈σ〉 → 0.

18

Proof. Let π be a process for which a descent step occurs, i. e., π is stopped because of
condition (StopD). By (S2) we have ∆〈π〉 ≤ 1

τ1
∆
〈π〉
J(π) . By Lemma 8 and Lemma 7 (3.44) the

final predicted decrease of π that caused the descent step, is ∆(π)(ŷ
〈π〉
J(π) , (l̄

〈π+1〉
V (π) , x̄

〈π+1〉
V (π))).

Because (StopD) and not the preceding test (StopP) has caused π to stop, we have

τ2∆
〈π〉
J(π)

(StopP)

≤ ∆(π)(ŷ
〈π〉
J(π) , (l̄

〈π+1〉
V (π) , x̄

〈π+1〉
V (π)))

(StopD)

≤ 1

ρ

(
f (π)(ŷ

〈π〉
J(π))− f (π)(ŷ

〈π+1〉
J(π))

)
.

Putting all together and using Lemma 13 we get

∆〈π〉 ≤ 1

τ1
∆
〈π〉
J(π) ≤

1

τ1τ2ρ

(
f (π)(ŷ

〈π〉
J(π))− f (π)(ŷ

〈π+1〉
J(π))

)
=

1

τ1τ2ρ

(
f(ŷ〈π〉)− f(ŷ〈π+1〉)

)
.

Because f is bounded from below and the sequence (f(ŷ〈σ〉))σ is non-increasing by Lemma 13,
the right hand side of the inequality above converges to zero. �

Lemma 15 Assume there is only a finite number of descent steps and ε = 0, then

lim
σ∈Σ

∆〈σ〉 = 0.

Proof. If |Σ| < ∞, then the statement holds by Corollary 12. Therefore we may assume
|Σ| =∞.
Lemma 8 implies ∆〈σ〉 > 0 for all σ ∈ Σ and the dependency graph D〈σ〉 can only be

increased. Because M is a finite set there must be a σ′ ∈ Σ such that for each σ ≥ σ′ we
have E〈σ〉 = E〈σ

′〉 and all processes π with π > σ := min
(
{σ′} ∪ {π′ : π′ ∈ Π〈σ

′〉}
)
do not

perform a descent step.
Let σ > σ′, then by Corollary 12 there is a process π such that σ ∈ {π, π}. If σ = π

we know by (3.30) and Lemma 8 that ∆〈π〉 = ∆〈π+1〉. So assume σ = π. Because σ > σ′

process π satisfied condition (StopP) and E〈σ+1〉 = E〈σ〉, so (Dep) is not satisfied,

δ
〈π+1〉
J̄(π) − δ

〈π〉
J̄(π) ≤ τ3∆

〈π〉
J(π) .

Invoking Observation 2 twice for the subspace J (π) of π but once for the data of π and
once for π + 1 yields the relations

∆〈π〉 = ∆
〈π〉
J(π) + δ

〈π〉
J̄(π) + ∆̄

〈π〉
J(π) ,

∆〈π+1〉 = ∆
〈π+1〉
J(π) + δ

〈π+1〉
J̄(π) + ∆̄

〈π+1〉
J(π) .

We claim that ∆〈π+1〉 ≤ (1 − τ)∆〈π〉 for some constant 0 < τ < 1 independent of π.
Indeed, by Lemma 8 we may invoke Lemma 7, so (3.41) implies ∆

〈π〉
J(π) = ∆

〈π〉
J(π) and (3.45)

gives ∆̄
〈π〉
J(π) = ∆̄

〈π+1〉
J(π) . The subspace selection condition (S2) asserts ∆

〈π〉
J(π) ≥ τ1∆〈π〉 and

stopping condition (StopP) implies ∆
〈π+1〉
J(π)

(3.45)
= ∆(π)(ŷ

〈π+1〉
J(π) , (l̄

〈π+1〉
J(π) , x̄

〈π+1〉
V (π))) < τ2∆

〈π〉
J(π) . This

yields

∆〈π〉 −∆〈π+1〉 = (∆
〈π〉
J(π) −∆

〈π+1〉
J(π)) + (∆̄

〈π〉
J(π) − ∆̄

〈π+1〉
J(π)) + (δ

〈π〉
J̄(π) − δ

〈π+1〉
J̄(π))

= (∆
〈π〉
J(π) −∆

〈π+1〉
J(π)) + (δ

〈π〉
J̄(π) − δ

〈π+1〉
J̄(π))

≥ (1− τ2 − τ3)∆
〈π〉
J(π)

≥ τ1(1− τ2 − τ3)︸ ︷︷ ︸
=:τ∈(0,1)

∆〈π〉.

(3.47)

19

Note that this shows ∆〈π〉 −∆〈π+1〉 ≥ 0 for all π = σ ≥ σ. Together with ∆〈π〉 = ∆〈π+1〉

(see above) we get therefore that the sequence (∆〈σ〉)σ≥σ is non-increasing. Because π > σ′

we have π ≥ σ and thus ∆〈π〉 ≥ ∆〈π〉. From (3.47) we obtain

∆〈π〉 −∆〈π+1〉 ≥ τ∆〈π〉 ≥ τ∆〈π〉

and so
∆〈π+1〉 ≤ (1− τ)∆〈π〉.

Together with the case σ = π above we get limσ∈N0 ∆〈σ〉 = 0, which completes the proof.�

Corollary 16 If f is bounded from below and ε = 0, the predicted decrease ∆〈σ〉 =
f(ŷ〈σ〉)− f̂(l̄〈σ〉,x̄〈σ〉)(ŷ

〈σ〉)+ 1
u‖g(x̄〈σ〉)‖2 goes to zero for an appropriate subsequence Σ∗ ⊆ Σ.

In particular, f(ŷ〈σ〉) − f̂(l̄〈σ〉,x̄〈σ〉)(ŷ
〈σ〉) and ‖g(x̄〈σ〉)‖ go to zero, too, for the subsequence

Σ∗.

Proof. Depending on whether an infinite number of descent steps occurs or not the claim
follows either from Lemma 14 or Lemma 15. The last statement follows from the fact
f(ŷ〈σ〉)− f̂(l̄〈σ〉,x̄〈σ〉)(ŷ

〈σ〉) ≥ 0 and ‖g(x̄〈σ〉)‖ ≥ 0. �

Theorem 17 Suppose ∅ 6= Argmin f is bounded. Then for an appropriate subsequence
Σ∗ ⊆ Σ the sequences (ŷ〈σ〉)σ∈Σ∗ and (x̄〈σ〉)σ∈Σ∗ that are generated by the parallel bundle
algorithm have the following properties.

(i) each accumulation point of (ŷ〈σ〉)σ∈Σ∗ is an optimal solution of (D),

(ii) each accumulation point of (x̄〈σ〉)σ∈Σ∗ is an optimal solution of (convP).

Proof. Let f∗ := min{f(y) : y ∈ RM}. The boundedness of the level set {y : f(y) ≤ f∗}
implies the boundedness of all level sets, particularly of the set S := {y : f(y) ≤ f(ŷ〈0〉)}.
Because (f(ŷ〈σ〉))σ is non-increasing, see Lemma 13, we have ŷ〈σ〉 ∈ S for all σ ∈ Σ and
therefore the sequence (ŷ〈σ〉)σ is bounded. Likewise, (l̄〈σ〉, x̄〈σ〉)σ lies in the compact set
convW by Lemma 8.
Let Σ′ ⊆ Σ be a subsequence that drives ∆〈σ〉 to zero, according to Corollary 16. Let

(l∗, x∗), y∗ be accumulation points of (l̄〈σ〉, x̄〈σ〉)σ∈Σ∗ , (ŷ〈σ〉)σ∈Σ∗ for an appropriate subse-
quence Σ∗ ⊆ Σ′, then Corollary 16 asserts g(x∗) = 0 and therefore x∗ is a feasible solution
of (convP). By definition of h̄v and Wv we have lv ≤ h̄v(xv) for all (lv, xv) ∈ convWv

(v ∈ V), thus f(ŷ〈σ〉)− f̂(l̄〈σ〉,x̄〈σ〉)(ŷ
〈σ〉)→ 0 implies

h̄(x∗)
σ∈Σ∗←−

∑
v∈V

[
h̄v(x̄

〈σ〉
v) + (ŷ〈σ〉)T︸ ︷︷ ︸

bounded

g(x̄〈σ〉v)︸ ︷︷ ︸
→0

]
≥
∑
v∈V

[
l̄〈σ〉v + (ŷ〈σ〉)T g(x̄〈σ〉v)

]
= f̂(l̄〈σ〉,x̄〈σ〉)(ŷ

〈σ〉)
σ∈Σ∗−→ f(y∗).

Thus x∗ is an optimal solution of (convP) and y∗ is an optimal solution of (D). �

4. Extension to Stronger Coupling

In many applications the assumption that Vj is small for most j ∈M is actually too strong.
Consider, e. g., a constraint for a common resource ensuring that only a limited number
of all objects may make use of this resource at specific point in time. Even though such
a constraint j ∈ M couples many subproblems, it typically influences but a few of them,

20

V \ V [π] V [π]

V1 ⊆ V [π] V2 ⊆ V [π]

J [π]

J̄ [π]

M \ (J [π] ∪ J̄ [π])

Figure 2: Bold lines show J
{π}
v , dashed lines Jv \ J{π}v for all v ∈ V .

because most objects need this resource at some other time. A typical example for this
situation, the train timetabling problem, is given in Section 5. In the extended approach
this is exploited by keeping track of those constraints j and subproblems v ∈ V , that have
proven to interact for at least one feasible solution xv up to the current marker σ, and the
optimization process is restricted to these.
In order to clearly discern the new objects of this extended version from the objects of the

last section, we will use superscript {σ} for index markers and [π] for objects belonging to a
process π. The algorithm maintains sets J{σ}v ⊆ Jv for v ∈ V which collect the indices of all
those constraints acting on subproblem v, whose Lagrange multipliers presumably influence
the optimal solution of Pv(y) or its value. In the corresponding restricted subproblems the
constraints Jv \ J{σ}v will be ignored in the following sense. When a process π selects its
subspace J [π] ⊆ M and corresponding subproblems V [π] ⊂ V at σ = π (see Fig. 2), it
assumes that only the multipliers belonging to M [π] :=

⋃
v∈V [π] J

{π}
v have an influence on

the solution of these subproblems. Once π finishes its work at σ = π, it will not only need
to include newly discovered influences due to new optimal solutions x̂v for some v ∈ V [π]

in updated sets J{π+1}
v , but possibly also encounter modified sets J{π}v 6= J

{π}
v for some

v ∈ V [π] due to changes of the Lagrange multipliers in M \M [π] by other processes that
might or might not invalidate the results of π, so that they have to be discarded. We start
by studying conditions that ensure that results remain valid.

4.1. Conditions of Global Validity for Restricted Subproblems

Sufficient conditions that for every v ∈ V the optimal solutions computed with respect to
the restricted constraint set J{σ}v are in fact optimal for the full subproblem with constraint
set Jv, are established by the following three properties that will be required to hold for
the current multiplier vector ŷ{σ} and the primal aggregate x̄{σ},

ŷ
{σ}
j · (Aj,vxv) ≥ 0 for all v ∈ V, xv ∈ Ωv, j ∈ Jv \ J{σ}v , (E1)

A
Jv\J{σ}v ,v

x̂v = 0 for all v ∈ V for some
x̂v ∈ Argmax{hv(xv)− (ŷ

{σ}
J
{σ}
v

)TA
J
{σ}
v ,v

xv : xv ∈ Ωv},
(E2)

A
Jv\J{σ}v ,v

x̄{σ}v = 0 for all v ∈ V. (E3)

21

Properties (E1) and (E2) ensure (see Observation 21 below) that for v ∈ V an optimal
solution x̂v computed for (1.2) with respect to the restricted subspace of multiplier indices
J
{σ}
v is actually optimal when the remaining indices Jv \ J{σ}v of this ŷ{σ} are included as

well. Condition (E3) guarantees that the global affine minorant associated with (l̄{σ}, x̄{σ})

only depends on the restricted subspace J{σ}v .

Remark 18 Condition (E1) is usually not checked explicitly but guaranteed by exploiting
the problem structure. For example, if Aj,v ≥ 0 and xv ≥ 0 for all xv ∈ Ωv (which is often
the case for combinatorial problems) the condition is equivalent to the condition ŷ{σ}j ≥ 0.

The next definition and observation provide the basis for these requirements.

Definition 19 Given v ∈ V , a multiplier vector y ∈ RM and a set J ′v ⊆ Jv, call a point
xv ∈ conv Ωv (y, J ′v)-consistent if

yj · (Aj,vxv) = 0 for all j ∈M \ J ′v. (C1)

The set J ′v is (y, v)-consistent if

yj · (Aj,vxv) ≥ 0 for all xv ∈ Ωv, j ∈ Jv \ J ′v and (C2)

there exists a (y, J ′v)-consistent x̂v ∈ Argmax{hv(xv)− (yJ ′v)
TAJ ′v ,vxv : xv ∈ Ωv}. (C3)

In this case x̂v is called a witness (of (y, v)-consistency). A family J ′V := (J ′v)v∈V is
y-consistent, if J ′v is (y, v)-consistent for each v ∈ V .

Observation 20 Given v ∈ V , y ∈ RM and sets J ′v ⊆ J ′′v ⊆ Jv, suppose J ′v is (y, v)-
consistent with a witness x̂v ∈ Ωv. Then J ′′v is also (y, v)-consistent and x̂v is a witness
for this. In particular, x̂v is an optimal solution for Pv(y) with

fv(y) = Lv(x̂v, y) = hv(x̂v)− (yJ ′v)
TAJ ′v ,vx̂v. (4.1)

Proof. Let xv ∈ Ωv, v ∈ V , be an arbitrary primal point. Then

hv(xv)− (yJ ′′v)TAJ ′′v ,vxv = hv(xv)− (yJ ′v)
TAJ ′vxv − (yJ ′′v \J ′v)

TAJ ′′v \J ′v ,vxv︸ ︷︷ ︸
≥0 by (C2)

≤ hv(xv)− (yJ ′v)
TAJ ′v ,vxv

(C3)

≤ hv(x̂v)− (yJ ′v)
TAJ ′v ,vx̂v

= hv(x̂v)− (yJ ′v)
TAJ ′v ,vx̂v − (yJ ′′v \J ′)

TAJ ′′v \J ′,vx̂v︸ ︷︷ ︸
=0 as (C1) holds for x̂v

.

Therefore x̂v is an optimal solution for the subproblem induced by J ′′v with the same
objective value. Putting J ′′v = Jv, (4.1) follows from (1.2), (1.3) and (3.1). �

The next observation connects y-consistency to (E1) and (E2).

Observation 21 Let σ ∈ N0 with ŷ{σ} ∈ RM and J
{σ}
v ⊆ Jv, v ∈ V , so that (E1)

and (E2) hold. Then J{σ}V := (J
{σ}
v)v∈V is ŷ{σ}-consistent.

Proof. For v ∈ V , (E1) implies (C2) and (E2) establishes (C3) with (C1) for the witness.�

It will be exploited repeatedly that the conditions remain true whenever the sets J{σ}v are
increased but no other global data is changed.

22

Observation 22 Let σ ∈ N0 so that (E1)–(E3) hold and assume J{σ}v ⊆ J{σ+1}
v for v ∈ V .

(i) If ŷ{σ} = ŷ{σ+1} then (E1) and (E2) hold for σ + 1.

(ii) If x̄{σ} = x̄{σ+1} then (E3) holds for σ + 1.

Proof. (E1) and (E3) follow directly from the definition. For (E2) applying Observation 20
for J ′ = J

{σ}
v and J ′′ = J

{σ+1}
v implies that any x̂{σ}v satisfying (E2) for σ also satisfies

(E2) for σ + 1. �

4.2. Global Objects and Data

Next we specify the objects with their modifications that are required for exploiting the
weaker dependency assumptions. The new algorithm maintains the following global data
indexed by the global index marker σ ∈ N0,
ŷ{σ} ∈ RM , the current global center,
f
{σ}
v := fv(ŷ

{σ}) ∈ R, the optimal primal value of Pv(ŷ〈σ〉) attained in some x̂{σ}v ∈ Ωv

for v ∈ V ,
(l̄{σ}, x̄{σ}) ∈ convW , the current global aggregate minorant,
B{σ} ⊆ V , set of primal problems currently blocked by some processes,
D{σ} = (M,E{σ}), digraph with arc set E{σ} collecting presumed dependencies,
and additionally
J
{σ}
v ⊆ Jv, the constraints that subproblem v ∈ V has interacted with,
B
{σ}
M ⊆M , set of constraints currently blocked by some processes.

In our first algorithm the blocked constraints were implicitly given via the blocked sub-
problems B〈σ〉 ⊂ V , but in the new algorithm the actual relation between subproblems
and constraints changes during the algorithm, so the new blocking set B{σ}M is needed to
track the blocked constraints explicitly.

4.3. The Restricted Subspace Problem Associated with Process π

In contrast to the previous algorithm, in the extended algorithm a process π selects the
subproblems V [π] w. r. t. the actual global dependency information J

{σ}
v , v ∈ V , at the

time σ = π when the process starts. This gives rise to the following objects for process π.

J [π] ⊆M, subset that π may modify, selected in step (a),

V
[π]
j := {v ∈ V : j ∈ J{π}v }, the subproblems currently interacting with j, (4.2)

V [π] :=
⋃
j∈J [π] V

[π]
j , the subproblems that π optimizes over, (4.3)

J [π]
v := J{π}v ∩ J [π], dual variables interacting with v and in J [π],

J̄ [π]
v := J{π}v \ J [π], dual variables interacting with v and not in J [π],

J̄ [π] :=
⋃
v∈V [π] J̄

[π]
v , dual variables interacting with V [π] but not in J [π], (4.4)

Ω[π] =
⊗

v∈V [π] Ωv, primal ground set.

The important difference is the definition of V [π] which contains only those problems that
actually interact with the selected constraints J [π]. Note that setting J{π}v := Jv for all
v ∈ V , i. e., having all possible dependencies, implies V [π] = V (π) and J̄ [π] = J̄ (π). As
before, there are some simple relations involving the sets defined above.

23

Observation 23 (see Observation 3)

J{π}v = J [π]
v ∪ J̄ [π]

v ⊆ J [π] ∪ J̄ [π] for all v ∈ V [π], (4.5)

J{π}v ∩ J [π] = ∅ for all v ∈ V \ V [π], (4.6)

J{σ}v ⊆ Jv for all v ∈ V, σ ∈ N0. (4.7)

Proof. Directly from the definitions. �

We split the global predicted decrease ∆{σ} at some index σ according to the selected
subspace and subproblems of a specific process π, but this time the analysis will be sim-
pler if we split the coordinates M \ J [π] of the aggregate subgradient with respect to the
dependencies known to or generated by π in the final step at π,

Ĵ [π] :=
⋃
v∈V [π] J

{π+1}
v \ J [π] (4.8)

∆{σ} :=
∑
v∈V

[
f{σ}v − f̂

(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ})
]

+ 1
u‖g(x̄{σ})‖2, (4.9)

∆{σ}π :=
∑
v∈V [π]

[
f{σ}v − f̂

(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ})
]

+ 1
u‖g(x̄{σ})J [π]‖2, (4.10)

∆̄{σ}π :=
∑

v∈V \V [π]

[
f{σ}v − f̂

(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ})
]

+ 1
u‖g(x̄{σ})M\(J [π]∪Ĵ [π])‖2, (4.11)

δ{σ}π := 1
u‖g(x̄{σ})Ĵ [π]‖2.

Observation 24 For each process π and each global index σ there holds

∆{σ} = ∆{σ}π + ∆̄{σ}π + δ{σ}π

and if f{σ}v = fv(ŷ
{σ}) for all v ∈ V , then ∆{σ} = ∆(ŷ{σ}, (l̄{σ}, x̄{σ})).

Proof. Direct computation. �

Process π computes cost coefficients

c[π]
v := −AT

J̄
[π]
v ,v

ŷ
{π}
J̄
[π]
v

for v ∈ V [π], (4.12)

and forms augmented cost functions

h[π]
v (xv) := hv(xv) + (c[π]

v)Txv for xv ∈ Ωv, v ∈ V [π]. (4.13)

Using the correspondingly adapted notation

L[π]
v (xv, y

[π]) :=h[π]
v (xv)− (y

[π]

J
[π]
v

)TA
J
[π]
v ,v

xv for xv ∈ Ωv, v ∈ V [π], y[π] ∈ RJ [π]
, (4.14)

f [π]
v (y[π]) := max

xv∈Ωv
L[π]
v (xv, y

[π]) for v ∈ V [π], y[π] ∈ RJ [π]
, (4.15)

f [π](y[π]) :=bT
J [π]y

[π] +
∑
v∈V [π]

f [π]
v (y[π]) for y[π] ∈ RJ [π]

, (4.16)

the subproblem that π solves is

(SP [π]) min
y[π]∈RJ[π]

f [π](y[π]).

24

Affine minorants will be generated by the set

W [π] :=
{

(l[π], x[π]) ∈ RV [π] × Ω[π] : l[π]
v = hv(x

[π]
v), x[π]

v ∈ Ωv, v ∈ V [π]
}
.

The local version of the global data of process π is

ŷ[π] ∈ RJ [π]
, local center,

x̂[π] ∈ Ω[π], x̂[π]
v maximizes (4.15) in ŷ[π], v ∈ V [π],

(l̄[π], x̄[π]) ∈ convW [π], local aggregate minorant.

Process π solves (SP [π]) approximately using a bundle method. Each (l̄[π], x̄[π]) ∈ convW [π]

defines minorants of f [π]
v and f [π]

f̂
[π]

(l̄
[π]
v ,x̄

[π]
v),v

(y[π]) := l̄[π]
v + (c[π]

v)T x̄[π]
v − (y

[π]

J
[π]
v

)TA
J
[π]
v ,v

x̄[π]
v for v ∈ V [π], y[π] ∈ RJ [π]

, (4.17)

f̂
[π]

(l̄[π],x̄[π])
(y[π]) := bT

J [π]y
[π] +

∑
v∈V [π]

f̂
[π]

(l̄
[π]
v ,x̄

[π]
v),v

(y[π]) for y[π] ∈ RJ [π]
.

Due to the selective use of rows of A in (4.14), the gradient of the affine function f̂ [π]

(l̄[π],x̄[π])

is somewhat clumsy to state,

g[π](x̄[π]) := bJ [π] −
[∑
v∈V [π]

j

Aj,vx̄
[π]
v

]
j∈J [π]

. (4.18)

With this, the next candidate w. r. t. a given center ŷ[π] and an aggregate minorant (l̄[π], x̄[π])
∈ convW [π] is determined as the minimizer

ȳ[π] := ŷ[π] − 1
ug

[π](x̄[π])

of the augmented model f̂ [π]

(l̄[π],x̄[π])
(y[π]) + u

2‖y
[π] − ŷ[π]‖2, giving the predicted decrease

∆[π](ŷ[π], (l̄[π], x̄[π])) :=f [π](ŷ[π])− f̂ [π]

(l̄[π],x̄[π])
(ŷ[π]) + 1

u‖g
[π](x̄[π])‖2. (4.19)

4.4. Linking Local and Global Information

In analogy to the standard setting of Section 3 we establish the conditions that ensure a
direct relation between the subproblems of process π and the global subproblems.

Observation 25 Given a process π, v ∈ V [π] and y ∈ RM with y
J̄
[π]
v

= ŷ
{π}
J̄
[π]
v

, there hold

L[π]
v (xv, yJ [π]) = hv(xv)− (y

J
{π}
v

)TA
J
{π}
v ,v

xv for xv ∈ Ωv, (4.20)

f̂
[π]
(lv ,xv),v(yJ [π]) = lv − yT

J
{π}
v
A
J
{π}
v ,v

xv for (lv, xv) ∈ convWv. (4.21)

Proof. Due to y
J̄
[π]
v

= ŷ
{π}
J̄
[π]
v

we have c[π]
v

(4.12)
= −AT

J̄
[π]
v ,v

y
J̄
[π]
v
, so by J{π}v = J

[π]
v ∪ J̄ [π]

v definitions

(4.13) and (4.14) prove (4.20) and definition (4.17) shows (4.21). �

Observation 26 Given a process π, v ∈ V [π] and y ∈ RM with y
J̄
[π]
v

= ŷ
{π}
J̄
[π]
v

, suppose J{π}v

is (y, v)-consistent with witness x̂v. Then

f [π]
v (yJ [π]) = L[π]

v (x̂v, yJ [π]) = Lv(x̂v, y) = fv(y). (4.22)

25

Proof. Together with

f [π]
v (yJ [π])

(4.15)
= max

xv∈Ωv
L[π]
v (xv, yJ [π])

(4.20)(C3)
= hv(x̂v)− (y

J
{π}
v

)TA
J
{π}
v ,v

x̂v
(4.20)

= L[π]
v (x̂v, yJ [π])

this is a direct consequence of (4.1). �

Observation 27 Given a process π, v ∈ V [π], y ∈ RM with y
J̄
[π]
v

= ŷ
{π}
J̄
[π]
v

, and (lv, xv) ∈

convWv, suppose xv is (y, J
{π}
v)-consistent. Then

f̂
[π]
(lv ,xv),v(yJ [π]) = f̂(lv ,xv),v(y). (4.23)

Proof. f̂ [π]
(lv ,xv),v(yJ [π])

(4.21)
= lv − yT

J
{π}
v

A
J
{π}
v ,v

xv
(C1)
= lv − yTA•,vxv

(2.4)
= f̂(lv ,xv),v(y). �

Observation 28 Given a process π and an x ∈ conv Ω satisfying

Aj,vxv = 0 for v ∈ Vj \ V [π]
j , j ∈ J [π], (4.24)

there holds
g[π](xV [π]) = g(x)J [π] . (4.25)

Proof. We use Aj,V \Vj = 0 for all j ∈M (see the definition (3.2) of Vj),

g[π](xV [π])
(4.18)

= bJ [π] −
[∑
v∈V [π]

j

Aj,vxv +
∑

v∈Vj\V
[π]
j

Aj,vxv︸ ︷︷ ︸
=0 by (4.24)

]
j∈J [π]

= bJ [π] −AJ [π],•x
(2.3)
= g(x)J [π] . �

4.5. The Parallel Bundle Algorithm for Stronger Coupling

Now we present the extended parallel bundle algorithm in detail. While step 2.(d) needs
several modifications, steps 1. and 2.(a)–(c) require only minor adaptations and we mark
these by boxes.
Algorithm Extended Parallel Bundle:

1. Initialization

• Choose parameters

• relative predicted subspace decrease level τ1 ∈ (0, 1
2 min{ 1

|M | ,
1
|V |}),

• subspace improvement level τ2 ∈ (0, 1),
• subspace dependency level τ3 ∈ [0, 1− τ2) and
• termination precision ε > 0,
• maximal number of parallel processes NΠ ≤ |M |.
• weight u > 0 and descent step parameter ρ ∈ (0, 1) for the bundle method.

• Set σ ← 0, ŷ{0} ← 0, B{0} ← ∅, B{0}M ← ∅ .

• Set E{0} ← ∅ (or use some prespecified dependencies).

• Determine all f{0} = fv(ŷ
{0}) and set (l̄{0}, x̄{0}) to the minorant defined by the

optimal solutions.

26

• Set J{0}v ← {j ∈M : Aj,vx̄
{0}
v 6= 0} for all v ∈ V and possibly enlarge them further

until each is (ŷ{0}, v)-consistent.

• If ∆{0} ≤ ε(|f(ŷ{0})|+ 1) then STOP.

2. While less than NΠ processes are running, start a new process π setting π ← −1,
π ← −1. Each process π does the following (with semaphores guarding the access).

(a) Subspace selection

• Secure exclusive access to global data, set π ← σ.

• Find ̂ ∈M and a subspace J [π] ⊆M with

[S1] {j : (̂, j) ∈ E{π}} ⊆ J [π],

[S2] ∆
{π}
π ≥ τ1∆{π},

[S3] V [π] ∩B{π} = ∅,

[S4] B
{π}
M ∩ (J [π] ∪ J̄ [π]) = ∅ .

• If no such ̂ exists, the step is unsuccessful, do not change the global data, free
access to it and restart at some later time at (a) when σ > π.

• The step is successful, set B{σ+1} ← B{π} ∪ V [π], B
{σ+1}
M ← B

{π}
M ∪ J [π] ,

π ←∞ and keep(
ŷ{σ+1}, (l̄{σ+1}, x̄{σ+1}), f

{σ+1}
V , E{σ+1}, J

{σ+1}
V

)
←(

ŷ{π}, (l̄{π}, x̄{π}), f
{π}
V , E{π}, J

{π}
V

)
. (4.26)

• Read required global data, set σ ← π + 1 and free exclusive access.

(b) Set up the subspace problem.
There is no global interaction in this step!
Compute c[π]

v by (4.12) for all v ∈ V [π] and initialize the bundle method to solve
problem (SP [π]) with this c[π] starting from center ŷ[π] = ŷ

{π}
J [π] and initial aggregate

(l̄[π], x̄[π]) = (l̄
{π}
V [π] , x̄

{π}
V [π]). In the first iteration we have then exactly a predicted

decrease
∆[π](ŷ[π], (l̄[π], x̄[π])) = ∆{π}π .

(c) Solve the subspace problem.
There is no global interaction in this step!
Solve (SP [π]) by the bundle method, iteratively generating candidates ȳ[π] together
with primal aggregates (l̄[π], x̄[π]) ∈ convW [π]. In each iteration test the following
conditions in this sequence.

1. If the predicted decrease on the subspace J [π] has been sufficiently reduced, i. e.,

∆[π](ŷ[π], (l̄[π], x̄[π])) < τ2∆{π}π , (StopP’)

consider x̂[π] to be the original optimizer at ŷ[π] and go to (d).

27

2. If ∆[π](ŷ[π], (l̄[π], x̄[π])) ≥ τ2∆
{π}
π and the descent step criterion

∆[π](ŷ[π], (l̄[π], x̄[π])) ≤ 1
ρ(f [π](ŷ[π])− f [π](ȳ[π])), (StopD’)

is satisfied, set ŷ[π] ← ȳ[π], let x̂[π] be the optimizer at ȳ[π] and go to (d).

(d) Update global data with subspace solution.

• Secure exclusive access to global data and set π ← σ.
• Independent of (StopP’) and (StopD’), keep(

ŷ
{σ+1}
M\J [π] , (l̄

{σ+1}
V \V [π] , x̄

{σ+1}
V \V [π]), f

{σ+1}
V \V [π]

)
←(

ŷ
{π}
M\J [π] , (l̄

{π}
V \V [π] , x̄

{π}
V \V [π]), f

{π}
V \V [π]

) (4.27)

and update the subterms

B{σ+1} ← B{π} \ V [π], B
{σ+1}
M ← B

{π}
M \ J [π] (4.28)

• Keep dependencies J{σ+1}
V \V

J[π]
← J

{π}
V \V

J[π]
, update for all v ∈ V [π]

J{σ+1}
v ← J{π}v ∪ {j ∈Jv \ J{π}v : Aj,vx̂

[π]
v 6= 0 or Aj,vx̄

[π]
v 6= 0 or (4.29)

(j ∈ J [π] ∧ ŷ
[π]
j ·Aj,vxv < 0 for some xv ∈ Ωv)}

and for all v ∈ VJ [π] \ V [π]

J{σ+1}
v ← J{π}v ∪ {j ∈ J [π] ∩ Jv \ J{π}v : ŷ

[π]
j ·Aj,vxv < 0 for some

xv ∈ Ωv}
(4.30)

• Ensure consistency of the new solution by testing the following conditions:

ŷ
[π]
j Aj,vxv ≥ 0 for v ∈ V [π], xv ∈ Ωv, j ∈ J [π] ∩ (J{σ+1}

v \ J{π}v), (4.31)

ŷ
[π]
j Aj,vx̂

[π]
v = 0 = ŷ

[π]
j Aj,vx̄

[π]
v for v ∈ V [π], j ∈ J [π] ∩ (J{σ+1}

v \ J{π}v), (4.32)

ŷ
{π}
j Aj,vx̂

[π]
v = 0 = ŷ

{π}
j Aj,vx̄

[π]
v for v ∈ V [π], j ∈ (J{σ+1}

v \ J{π}v) \ J [π], (4.33)

J{σ+1}
v ∩ J [π] = ∅ for v ∈ VJ [π] \ V [π]. (4.34)

If all of them hold, call π good and update

(l̄
{σ+1}
V [π] , x̄

{σ+1}
V [π])← (l̄[π], x̄[π]), (4.35)

otherwise call π bad and keep (l̄
{σ+1}
V [π] , x̄

{σ+1}
V [π])← (l̄

{π}
V [π] , x̄

{π}
V [π]).

• If π is good and stopped with (StopD’), update

ŷ
{σ+1}
J [π] ← ŷ[π], (4.36)

f
{σ+1}
V [π] ← f

[π]

V [π](ŷ
[π]), (4.37)

otherwise keep (
ŷ
{σ+1}
J [π] , f

{σ+1}
V [π]

)
←
(
ŷ
{π}
J [π] , f

{π}
V [π]

)
. (4.38)

28

• If π is good, stopped with (StopP’), and satisfies

δ{σ+1}
π − δ{π}π > τ3∆{π}π (Dep)

• enlarge E{σ+1} ← E{π} ∪ {(̂, j∗)} at least by an arc (̂, j∗) with

j∗ ∈ Argmax{g(x̄{σ+1})2
j − g(x̄{π})2

j : j ∈ J̄ [π]},

in all other cases keep E{σ+1} ← E{π}.
• Set σ ← π + 1 and compute ∆{σ}. If π is good and ∆{σ} ≤ ε(|f(ŷ{σ})| + 1)

terminate all processes and STOP.
• Free access to global data and stop this process π.

The proofs below will show that in actual implementations the availability of x̂[π] required
for (4.29), (4.32) and (4.33) is only needed in the case of (StopD’) but not for (StopP’),
because in the latter case the property Aj,vx̂

[π]
v = 0 holds for j ∈ Jv \ J{π}v , v ∈ V [π] by

induction. It is not needed at any other place and so we do not store it in the global data.
Note also that the consistency tests (4.31)–(4.33) need to be performed w. r. t. to the initial
dependencies J{π}v instead of the global J{π}v attained when the process stops. Indeed, the
process has to verify that the assumptions under which it solved its subproblem are still
true when it stops.
For the analysis we will collect, for each value σ ∈ N0 ∪ {∞}, the processes in the sets

Π{σ} := {π = (π, π) : π < π and π < σ},

Π
{σ}

:= {π = (π, π) : π < π < σ},

Π{σ} := {π = (π, π) : π < σ ≤ π} = Π{σ} \Π
{σ}
.

in the same way and with the same interpretation as before.

Observation 29 Π{0} = ∅ and for σ′ ∈ N0 there holds Π{σ
′} 6= Π{σ

′+1} if and only if
|(Π{σ′} \Π{σ

′+1}) ∪ (Π{σ
′+1} \Π{σ

′})| = 1. If Π{σ
′} = Π{σ

′+1} then for all σ ≥ σ′ we have
Π{σ} = Π{σ

′} and there is no process π with π = σ or π = σ.

Proof. Identical to the proof of Observation 5. �

The set of markers σ ∈ N0 visited by the algorithm will again be denoted by

Σ := {0} ∪ {σ ∈ N : Π{σ} 6= Π{σ−1}}.

4.6. Consistency of the Updating Scheme

In the new setting the two conditions [S3] and [S4] ensure that two processes running in
parallel choose subspaces in a coordinated way.

Lemma 30 For σ ∈ Σ,

(i) B{σ} =
⋃
π∈Π{σ} V

[π], B{σ}M =
⋃
π∈Π{σ} J

[π],

(ii) V [π] ∩ V [π′] = ∅ for π, π′ ∈ Π{σ} with π 6= π′,

(iii) J [π′] ∩ (J [π] ∪ J̄ [π]) = ∅ = J [π] ∩ (J [π′] ∪ J̄ [π′]) for π, π′ ∈ Π{σ} with π 6= π′,

(iv) ŷ{π}
J [π]∪J̄ [π] = ŷ

{σ}
J [π]∪J̄ [π], (l̄

{π}
V [π] , x̄

{π}
V [π]) = (l̄

{σ}
V [π] , x̄

{σ}
V [π]), and f

{π}
V [π] = f

{σ}
V [π] for π ∈ Π{σ},

29

(v) J{σ
′}

v ⊆ J{σ}v ⊆ Jv for σ′ ∈ Σ with σ′ < σ and v ∈ V ,

(vi) J [π]
v = J

{π}
v ∩ J [π] = J

{σ}
v ∩ J [π] for v ∈ V [π], π ∈ Π{σ},

(vii) (E1), (E2), (E3) are satisfied for σ.

(viii) J{π}v is (ŷ{σ}, v)-consistent for a witness x̂v with A
M\J{π}v

x̂v = 0 for v ∈ V [π], π ∈
Π{σ}.

(ix) x̄{σ}v is (ŷ{σ}, J
{π}
v)-consistent with A

M\J{π}v
x̄
{σ}
v = 0 for v ∈ V [π], π ∈ Π{σ}.

Proof. The proof works by induction on σ. For σ = 0 the initialization step sets B{σ} =

∅ = B
{σ}
M and J{σ}v ⊆ Jv (v ∈ V) satisfying (E1)–(E3), because ŷ{σ} = 0, x̂{σ} = x̄{σ} and

Aj,vx̄
{σ}
v 6= 0⇒ j ∈ J{σ}v for v ∈ V . Together with Π{σ} = ∅ this proves (i)–(ix).

Now suppose σ + 1 ∈ Σ and the claim holds for σ ∈ Σ. By definition, σ + 1 ∈ Σ implies
Π{σ} 6= Π{σ+1}, so Observation 29 asserts the existence of a unique η ∈ (Π{σ} \Π{σ+1}) ∪
(Π{σ+1} \Π{σ}) and this η either satisfies η = σ or η = σ.
Case η = σ:
We have Π{σ} = Π{σ+1} \ {η} and process η executed a successful step (a) at σ. In this
case (4.26) implies that most of the global data remains unchanged.

(i), (iv)–(vii): These hold because in a successful step (a), B{σ+1} = B{σ}∪V [η], B{σ+1}
M =

B
{σ}
M ∪ J [η] are the only global objects changing.

(ii), (iii): By induction, these only need to be verified for π = η and π′ ∈ Π{σ+1} \ {η} =

Π{σ}. Because V [π′] ⊆ B{σ} by (i) and [S3] was satisfied for η at σ, (ii) follows from
∅ = V [η]∩B{σ} ⊇ V [η]∩V [π′]. Applying the corresponding argument with [S4] proves
the left hand side equation of (iii). For the right hand side equation of (iii) assume
there exists a j ∈ J [η] ∩ (J [π′] ∪ J̄ [π′]), then by [S4] we have j ∈ J̄ [π′]. By definition
(4.4) there is a v ∈ V [π′] with j ∈ J{π

′}
v . Now π′ < η = σ by the choice of η, so by

(v) J{π
′}

v ⊆ J{η}v and with j ∈ J [η] we conclude v ∈ V [η] by (4.3), contradicting (ii).

(viii),(ix): Because the data involved in these conditions is not modified, the conditions
hold by induction for π′ ∈ Π{σ+1} \ {η}. So consider η, fix some v ∈ V [η] and

observe J [η]
v ∪ J̄ [η]

v
(4.5)
= J

{η}
v

(4.26)
= J

{σ+1}
v (and σ + 1 = η + 1). So (viii) is guaranteed by

Observation 21 because (E1),(E2) hold for σ + 1 by (vii). Likewise, (E3) establishes
(ix).

Case η = σ:
We have Π{σ+1} = Π{σ} \ {η} and process η executed a step (d) at σ.

(i)–(iv): By step (d), B{σ+1} = B{σ} \ V [η], B{σ+1}
M = B{σ} \ J [η] and for indices M \ J [η]

and V \ V [η] all values relevant for (iv) are left unchanged. In view of the validity of
(ii) and (iii) for π = η at σ, (i)–(iv) hold by induction also for σ+1 and its remaining
processes.

(v): Its correctness follows directly from the operations performed on J{σ+1}
v for v ∈ V in

step (d).

30

(vi): Because of (v) and the induction hypothesis it suffices to show J
{σ+1}
v ∩ J [π] ⊆

J
{π}
v ∩ J [π] = J

{σ}
v ∩ J [π] for v ∈ V [π], π ∈ Π{σ+1}. Assume, for contradiction, for

some π′ ∈ Π{σ+1} = Π{σ}\{η} there is a v ∈ V [π′] with some j ∈ (J
{σ+1}
v ∩J [π′])\J{σ}v .

Now v /∈ V [η] by (ii) for π = η at σ and, as this j was added to J{σ}v by step (d) of
η at σ, this forces j ∈ J [η] which contradicts (iii) for π = η at σ.

(vii): We first check (E3). For v ∈ V \ V [η] there holds x̄{σ+1}
v = x̄

{σ}
v by (4.27) and

Observation 22 (ii) together with (v) guarantees that (E3) also holds at σ + 1. For
v ∈ V [η] and a bad η, we have x̄{σ+1}

v = x̄
{σ}
v which allows the same argument

as before. If η is good, the update (4.35) ensures x̄{σ+1}
v = x̄

[η]
v and all indices

j ∈M \ J{η}v that violate Aj,vx̄
[η]
v = 0 are explicitly included in J{σ+1}

v , so that (E3)
is satisfied for these v, as well.

For checking (E1) and (E2) first consider the case that η is a bad process or stopped
by (StopP’). Then ŷ{σ+1} = ŷ{σ} and by (v) and Observation 22 (i) conditions (E1)
and (E2) hold for σ + 1. It remains to consider the case that η is good and stopped
by (StopD’).

For (E1) only the indices j ∈ J [η] need to be checked because by (4.27) the other
conditions do not change and hold by induction. For j ∈ J [η] (3.1) implies Aj,v = 0

unless v ∈ VJ [η] , so the update (4.29) and (4.30) to J{σ+1}
v in (d) adds all indices

that do not yet satisfy the condition and (E1) holds at σ + 1.

We split the verification of (E2) into the three cases v ∈ V \VJ [η] , v ∈ VJ [η] \V [η] and
v ∈ V [η]. If v ∈ V \VJ [η] then the dependency update (4.29) and (4.30) do not change
J
{σ}
v and thus J{σ}v = J

{σ+1}
v . Furthermore definition (3.3) implies J{σ+1}

v ∩J [η] = ∅.
If v ∈ VJ [η] \ V [η] then the dependency update (4.29) and (4.30) together with the
successful test (4.34) ensure J{σ}v = J

{σ+1}
v and J

{σ+1}
v ∩ J [η] = ∅ as well. The

induction hypothesis for (E2) asserts the existence of a x̂v ∈ Argmax{hv(xv) −
(ŷ
{σ}
J
{σ}
v

)TA
J
{σ}
v ,v

xv : xv ∈ Ωv} with Aj,vx̂v = 0 for j ∈ M \ J{σ}v = M \ J{σ+1}
v .

Regarding J
{σ}
v = J

{σ+1}
v , J{σ+1}

v ∩ J [η] = ∅ and the update (4.27) the relevant
multipliers have not changed, i. e. ŷ{σ}

J
{σ}
v

= ŷ
{σ+1}
J
{σ+1}
v

, and x̂v remains a valid witness
for the correctness of (E2) at σ + 1.

The case v ∈ V [η] will be useful in further proofs, as well:

Claim: For a good process η stopped by (StopD’) and v ∈ V [η] the point x̂[η]
v is a

valid witness for J
{η}
v to be (ŷ{σ+1}, v)-consistent with A

M\J{σ+1}
v ,v

x̂
[η]
v = 0.

Indeed, update (4.29) in (d) to J{σ+1}
v includes all indices j ∈ Jv\J{σ}v with Aj,vx̂

[η]
v 6=

0, so Aj,vx̂
[η]
v = 0 for j ∈ Jv \ J{σ+1}

v . Next we proof that (C2) holds. We have to

show that ŷ{σ+1}
j Aj,vxv ≥ 0 for all xv ∈ Ωv and all j ∈ Jv \ J

{η}
v .

• If j ∈ (Jv\J
{η}
v)\J [η] then ŷ{σ}j = ŷ

{σ+1}
j by (4.27) and the induction hypothesis

for (viii) for σ = η and π = η implies the assertion.

• If j ∈ (Jv\J{σ+1}
v)∩J [η] then the dependency update (4.29) implies the assertion.

• If j ∈ (J
{σ+1}
v \J{η}v)∩J [η] then the consistency test (4.31) implies the assertion.

Putting all together (C2) holds. Similarly, the dependency update (4.29) together
with the successful tests (4.32) and (4.33) certify that x̂[η]

v satisfies (C1) for J
{η}
v .

31

Finally regarding the choice of x̂[η] ∈ Argmax{L[η](xv, ŷ
[η]) : xv ∈ Ωv} and the facts

ŷ
{σ+1}
J [η] = ŷ[π] by (4.36) and ŷ{σ+1}

J̄
[η]
v

= ŷ
{η}

J̄
[η]
v

by (4.27) and (iv), (4.20) establishes that

x̂
[η]
v satisfies (C3), i. e., x̂[η]

v is a witness for J
{η}
v to be (ŷ{σ+1}, v)-consistent. This

completes the proof of the claim.

Now Observation 20 allows to conclude that J{σ+1}
v is (ŷ{σ+1}, v)-consistent with

witness x̂[η]
v and (E2) holds.

(viii): Fix π′ ∈ Π{σ+1} and v ∈ V [π′]. By induction there exists a witness x̂v with

A
M\J{π

′}
v ,v

x̂v = 0 for J{π
′}

v to be (ŷ{σ}, v)-consistent and we show that step (d) of η

does not invalidate this witness. In view of (iv) and J
{π′}
v ⊆ J̄ [π′] ∪ J [π′] by (4.5),

(C3) holds because x̂v satisfies (C1) trivially. By (3.1) process η has no influence on
the validity of (C2) unless there is some j ∈ J [η] ∩ Jv, in this case v ∈ VJ [η] \ V [η] by
(ii). If the value ŷ[η]

j leads to a violation of (C2) for any such j, this j is included

in J{σ+1}
v in the corresponding update (4.30) in step (d), the subsequent test (4.34)

fails and renders η a bad process resulting in ŷ{σ+1} = ŷ{σ}, which satisfies (C2) by
induction.

(ix): Fix π′ ∈ Π{σ+1} and v ∈ V [π′]. By (iv) we know x̄
{π′}
v = x̄

{σ+1}
v and applying (E3)

for σ = π′ implies the assertion by induction. �

The inductive properties allow to clarify the development of the global values relevant
for a process during its running time.

Lemma 31 Given π ∈ Π
{∞} assume f{π}

V [π] = fV [π](ŷ{π}). Then for all σ ∈ {π, . . . , π}

ŷ
{π}
J [π]∪J̄ [π] = ŷ

{σ}
J [π]∪J̄ [π] , f

[π]

V [π](ŷ
{σ}
J [π]) = f

{π}
V [π] = f

{σ}
V [π] = fV [π](ŷ{σ}), (4.39)

(l̄
{π}
V [π] , x̄

{π}
V [π]) = (l̄

{σ}
V [π] , x̄

{σ}
V [π]), f̂

[π]

(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ
{σ}
J [π]) = f̂

(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ}) (v ∈ V [π]), (4.40)

and

ŷ
{π+1}
M\J [π] = ŷ

{π}
M\J [π] , (l̄

{π+1}
V \V [π] , x̄

{π+1}
V \V [π]) = (l̄

{π}
V \V [π] , x̄

{π}
V \V [π]), f

{π+1}
V \V [π] = f

{π}
V \V [π] , (4.41)

in particular,

ŷ
{π}
J̄
[π]
v

= ŷ
{σ}
J̄
[π]
v

for all v ∈ V [π], σ ∈ {π, . . . , π + 1}. (4.42)

Furthermore, if π is bad,

ŷ
{π+1}
J [π] = ŷ

{π}
J [π] , f

{π+1}
V [π] = fV [π](ŷ{π+1}), (4.43)

(l̄
{π+1}
V [π] , x̄

{π+1}
V [π]) = (l̄

{π}
V [π] , x̄

{π}
V [π]). (4.44)

Otherwise π is good and with ŷ[π] ∈ RJ [π] and (l̄[π], x̄[π]) ∈ convW [π] being the final values
of π in step (d), it satisfies for v ∈ V [π]

ŷ
{π+1}
J [π] = ŷ[π], f [π]

v (ŷ[π]) = f{π+1}
v = fv(ŷ

{π+1}), (4.45)

(l̄{π+1}
v , x̄{π+1}

v) = (l̄[π]
v , x̄[π]

v), f̂
[π]

(l̄
[π]
v ,x̄

[π]
v),v

(ŷ[π]) = f̂
(l̄
{π+1}
v ,x̄

{π+1}
v),v

(ŷ{π+1}), (4.46)

g[π](x̄
{σ}
V [π]) = g(x̄{σ})J [π] for σ ∈ {π, . . . , π + 1}. (4.47)

32

Proof. First consider(4.39) and (4.40) for σ = π. At π the process π executed the step
(a) and by (4.26) we have ŷ{π+1} = ŷ{π}, x̄{π+1}

v = x̄
{π}
v and J

{π+1}
v = J

{π}
v for all

v ∈ V , so with π ∈ Π{π+1} items (viii),(ix) of Lemma 30 also hold for π at σ = π,
thus Observation 26 together with the assumption f{π}

V [π] = fV [π](ŷ{π}) proves f [π]
v (ŷ

{π}
J [π]) =

fv(ŷ
{π}) and Observation 27 proves f̂ [π]

(l̄
{π}
v ,x̄

{π}
v),v

(ŷ
{π}
J [π]) = f̂

(l̄
{π}
v ,x̄

{π}
v),v

(ŷ{π}) for v ∈ V [π].

For σ ∈ {π + 1, . . . , π} we have π ∈ Π{σ}, hence, for these values of σ, Lemma 30
(iv) implies the first and third equation in (4.39), the first in (4.40) and (4.42). For the
remaining equations we may again use Lemma 30 (iv),(viii) together with (4.42) to invoke
Observation 26 and Observation 27 for ŷ{σ}. This completes (4.40) and for (4.39) we obtain

f{π}v = fv(ŷ
{π})

(4.22)
= f [π]

v (ŷ
{π}
J [π])

(4.39)
= f [π]

v (ŷ
{σ}
J [π])

(4.22)
= fv(ŷ

{σ}) for v ∈ V [π], σ ∈ {π, . . . , π}.

The values for σ = π+ 1 are set by π when executing step (d) at π, so (4.27) establishes
(4.41) and also completes the result for (4.42) because the definition (4.4) of J̄ [π] implies
J̄ [π] ⊆M \ J [π].

If π was stopped by (StopP’) then ŷ[π] = ŷ
{π}
J [π]

(4.39)
= ŷ

{π}
J [π] and in this case or if π is bad,

(4.38) sets ŷ{π+1}
J [π] = ŷ

{π}
J [π] and f

{π+1}
V [π] = f

{π}
V [π] , so (4.39) implies (4.43) if π is bad and (4.45)

if π is good but stopped by (StopP’). For (4.45) there remains to consider the case of π
being good and stopped by (StopD’). Then ŷ{π+1}

J [π] = ŷ[π] and f{π+1}
V [π] = f

[π]

V [π](ŷ
[π]) by (4.36)

and (4.37). The claim of the proof of Lemma 30 (vii) shows that for each v ∈ V [π] the
set J{π}v is (ŷ{π+1}, v)-consistent with witness x̂[π]

v . Thus, for v ∈ V [π], (4.42) allows to use
Observation 26 for proving f [π]

v (ŷ[π]) = fv(ŷ
{π+1}).

If π is identified as bad, (4.44) holds because the old primal aggregate is kept explicitly
in step (d), while for a good process the update (4.35) gives the first equation of (4.46).
The second equation follows from Observation 27 because by (4.42) and the successful
tests (4.32) and (4.33) the point x̄[π] satisfies (C1) for J{π}v and is therefore (ŷ{π+1}, J

{π}
v)-

consistent.
In order to see (4.47) for a good process π, we prove that (4.24) holds for x̄{σ}, σ ∈
{π, . . . , π + 1}, then the result follows from Observation 28. Consider a v ∈ Vj \ V [π]

j

for some j ∈ J [π]. The successful test (4.34) certifies j /∈ J{π+1}
v and J

{π+1}
v ⊇ J

{σ}
v by

Lemma 30 (v). By Lemma 30 (vii), (E3) holds at σ and implies Aj,vx̄
{σ}
v = 0. �

As for the basic version, the global data is consistent throughout and the arc set of the
dependency graph may only increase.

Lemma 32 For all σ ∈ Σ,

f
{σ}
V = fV (ŷ{σ}), (l̄{σ}, x̄{σ}) ∈ convW, (4.48)

∆{σ} = ∆(ŷ{σ}, (l̄{σ}, x̄{σ})), E{σ} ⊆ E{σ+1} ⊆ {(i, j) : i, j ∈M, i 6= j}.

Furthermore, ∆{σ} > ε(|f(ŷ{σ})|+ 1) for all σ ∈ Σ with σ + 1 ∈ Σ.

Proof. The proof is by induction on σ. For σ = 0 the claim holds by the initialization
step. Suppose now σ+1 ∈ Σ and the claim holds for σ ∈ Σ. If σ+1 is reached by a step (a)
then none of the involved variables are changed and the relations still hold. Otherwise σ+1
is reached by a step (d) executed by some process π with π = σ. If π is bad, none of the
data relevant for the claim is changed, so assume π is good, in which case J{π}v = J

{π+1}
v

33

for v ∈ V \ V [π]. For v ∈ V \ V [π] the successful test (4.34) asserts J{π+1}
v ⊆ M \ J [π]

and by (4.27) ŷ{π+1}
J
{π}
v

= ŷ
{π}
J
{π}
v

, f{π+1}
v = f

{π}
v and (l̄

{π+1}
v , x̄

{π+1}
v) = (l̄

{π}
v , x̄

{π}
v). Thus

(l̄
{π}
v , x̄

{π}
v) ∈ convWv holds by induction, while Lemma 30 (vii) implies the validity of

(E1) and (E2) for π and π + 1. Furthermore the witness x̂v of (E2) for π is also a witness
for π + 1 because J{π}v = J

{π+1}
v . Therefore it holds f{π}v = fv(ŷ

{π}) = fv(ŷ
{π+1}) via

Observation 21 and (4.1). For v ∈ V [π] the claim follows for (4.48) directly from (4.45)
and (4.46). The correctness of (4.48) for π + 1 implies the correctness of ∆{π+1} by
Observation 24. The claim for E{π+1} follows directly from step (d). Finally, for a bad
process π, ∆{π+1} = ∆{π} because none of the data involved is changed, and if π is good
∆{π+1} ≤ ε(|f(ŷ{σ})| + 1) leads to a termination for the algorithm in step (d) at π and
then π + 1 = max Σ. �

In the extended version, the algorithm may well happen to start a processes π on a
subspace J [π] with V [π] = ∅ and this will not cause any problems, because eventually the
constraint indices will be added to J{π+1}

v for the corresponding subproblems. We have
to make sure, however, that a gap between function value and linear minorant, f{σ}v >

f̂
(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ}), for some v ∈ V enables some process π to choose an index in j ∈ J{σ}v

so that v ends up in V [π].

Observation 33 For given σ ∈ Σ and v ∈ V , there holds f{σ}v ≥ f̂
(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ}) and if

f
{σ}
v > f̂

(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ}) then J{σ}v 6= ∅. A process π with J [π] = M satisfies ∆
{π}
π = ∆{π}.

Proof. For v ∈ V , (4.48) asserts (l̄
{σ}
v , x̄

{σ}
v) ∈ convWv and

f{σ}v
(4.48)

= fv(ŷ
{σ})

(2.4)

≥ f̂
(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ}).

By Lemma 30 (v) the sets J{σ}v can only grow for increasing σ. We may have J{0}v = ∅
after initialization and we show that fv(ŷ{σ}) = f̂

(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ}) as long as J{σ}v = ∅.
Indeed, in this case v /∈ V [π] for any process π with π ≤ σ by (4.3). Then step (d) implies
(l̄
{σ}
v , x̄

{σ}
v) = (l̄

{0}
v , x̄

{0}
v) and f{σ}v = f

{0}
v . Furthermore, by Lemma 30 (vii) condition (E3)

ensures AJv ,vx̄{σ} = 0. Hence, together with the initialization step,

f̂
(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ})
(2.4)
= l̄{σ}v = l̄{0}v

(2.4)
= f̂

(l̄
{0}
v ,x̄

{0}
v),v

(ŷ{0}) = fv(ŷ
{0}) = f{σ}v .

For π with J [π] = M we obtain by (4.3) that v ∈ V [π] for all v with f{σ}v > f̂
(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ}),
and the result follows from the definitions (4.9) and (4.10). �

With this, we can establish again that at least one working process is started as long as
the stopping criterion is not met .

Observation 34 For σ ∈ Σ with Π{σ} = ∅ there holds Π{σ+1} = {π} for some π with
π = σ if and only if ∆{σ} > ε(|f(ŷ{σ})|+ 1).

Proof. Lemma 30 (i) asserts that Π{σ} = ∅ is equivalent to B{σ} = ∅ and B{σ}M = ∅. For
B{σ} = ∅ and B

{σ}
M = ∅ conditions [S1]–[S4] can always be satisfied. Indeed, choosing

J [π] = M satisfies [S1] because M trivially observes all dependencies of E{σ}, [S2] by
Observation 33, and [S3] as well as [S4] because the two blocking sets are empty. In

34

particular, the algorithm starts with setting σ = 0 and B{0} = ∅, B{0}M = ∅ and reaches
step (a) if and only if the stopping criterion is not satisfied in step 1. For 0 < σ ∈ Σ,
Π{σ} = ∅ requires Π{σ−1} = {π} for some process π with π = σ − 1 by Observation 29.
Thus, π executes a step (d) at σ−1. If π is bad we have ∆{π+1} = ∆{π} > ε(|f(ŷ{π+1})|+1)
by induction, and if π is good, the algorithm continues if and only if the stopping criterion
is not satisfied for the global data of σ. �

The following observation ensures that a subspace selection satisfying [S2] is even possible
with a selected subspace containing only one constraint.

Observation 35 For any π executing (a) at σ ∈ Σ there always exists a j ∈ M so that
J [π] = {j} yields ∆

{σ}
π ≥ 1

2∆{σ}min{ 1
m ,

1
|V |}.

Proof. Considering, for σ ∈ Σ, Observation 34 and the definition

∆{σ}
(4.9)
=

(∑
v∈V

[
f{σ}v − f̂

(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ})
])

+

 1
u

∑
j∈M

g(x̄{σ})2
j

 ,

at least one of both summands is greater than or equal to 1
2∆{σ} > 0. If it is true for the

second summand, at least one of the terms 1
ug(x̄{σ})2

j is greater than or equal to 1
2∆{σ} 1

m

and then choosing J [π] = {j} is sufficient. If this is true for the first one, at least one of
the terms f{σ}v − f̂

(l̄
{σ}
v ,x̄

{σ}
v),v

(ŷ{σ}) is greater than or equal to 1
2∆{σ} 1

|V | . In this case we

may choose a j ∈ J{σ}v 6= ∅ for such a v ∈ V by Observation 33 and J [π] = {j} satisfies the
requirement. �

Again, no process runs forever and, eventually, all required dependencies between sub-
spaces will be identified.

Lemma 36 For each σ ∈ Σ, each process π ∈ Π{σ} either stops at π < ∞ or it is
terminated by another process π′ executing step (d) at π′ <∞ with the global data of π′+1
satisfying the termination criterion.

Proof. Analogous to the proof of Lemma 11. �

Corollary 37 If |Σ| < ∞ then for σ = max Σ there holds ∆{σ} ≤ ε(|f(ŷ{σ})| + 1). If
|Σ| =∞ then Π{∞} = ∅, Π{∞} = Π

{∞}, and Σ =
⋃̇
π∈Π

{∞}{π, π}.

Proof. This follows from Observation 29, Observation 34, and Lemma 36. �

Observation 38 The number of bad processes π ∈ Π
{∞} is finite.

Proof. First note that by Lemma 30 (v) the sets J{σ}v ⊆ Jv can only grow for increasing
σ until J{σ}v = Jv, so only a finite number of processes enlarges the sets J{σ}v . For a bad
process π ∈ Π

{∞} one of the tests (4.31)–(4.34) failed. A failure in (4.31)–(4.33) requires
J
{π+1}
v \ J{π}v 6= ∅ for some v ∈ V [π] and a failed (4.34) implies J{π+1}

v \ J{π}v 6= ∅ for some
v ∈ VJ [π] \ V [π], because J{π}v ∩ J [π] = ∅ by (4.6). In consequence, there must have been
a process π′ (maybe π itself) with π < π′ ≤ π that modified J

{π′}
v 6= J

{π′+1}
v . Because

|Π{σ}| ≤ NΠ for all σ ∈ Σ, there can only be finitely many bad processes. �

It will be convenient to collect all good processes in the set

Γ = {π ∈ Π
{∞}

: π is good}.

35

4.7. Convergence Analysis

For the convergence analysis the same steps work out as for the first variant. In particular,
the global progress matches that of a single process.

Lemma 39 For π ∈ Γ

0 ≤ f [π](ŷ
{π}
J [π])− f [π](ŷ

{π+1}
J [π]) = f(ŷ{π})− f(ŷ{π+1}),

i. e., the global progress achieved when π stores its subspace solution in the global data is
exactly the progress made by π on J [π]. In particular, the sequence (f(ŷ{σ}))σ, σ ∈ Σ, is
non-increasing.

Proof. First observe that for π the initial value of the center ŷ[π] is ŷ{π}
J [π] by step (b) and

the final center is ŷ{π+1}
J [π] by (4.45), so the left hand inequality follows from the properties of

the bundle method employed in step (c) of π. By Lemma 32 the requirement for Lemma 31
is fulfilled, so we may use its results for proving the second equation,

0 ≤ f [π](ŷ
{π}
J [π])− f [π](ŷ

{π+1}
J [π])

(4.16)
= bT

J [π](ŷ
{π}
J [π] − ŷ

{π+1}
J [π]) +

∑
v∈V [π]

[
f [π]
v (ŷ

{π}
J [π])− f [π]

v (ŷ
{π+1}
J [π])

]
(4.39)

= bT
J [π](ŷ

{π}
J [π] − ŷ

{π+1}
J [π]) +

∑
v∈V [π]

[
f [π]
v (ŷ

{π}
J [π])− f [π]

v (ŷ
{π+1}
J [π])

]
(4.39),(4.41),(4.45)

= bT (ŷ{π} − ŷ{π+1}) +
∑
v∈V

[
fv(ŷ

{π})− fv(ŷ{π+1})
]

(2.2)
= f(ŷ{π})− f(ŷ{π+1}).

For any σ ∈ Σ without a π ∈ Γ satisfying π = σ there is either a process π with π = σ
which executes step (a) at π or a bad process π which executes step (d) at π = σ and in
both cases f{σ}V = f

{σ+1}
V and ŷ{σ} = ŷ{σ+1}. Therefore (2.2) and Lemma 32 guarantee

f(ŷ{σ}) = f(ŷ{σ+1}) for these σ, which establishes that (f(ŷ{σ}))σ is non-increasing. �

For the next step we first have to establish the required relations between the predicted
decrease of the global data and that of a process.

Observation 40 For π ∈ Γ

∆{π}π = ∆{π}π = ∆[π](ŷ{π}, (l̄
{π}
V [π] , x̄

{π}
V [π])), (4.49)

∆̄{π+1}
π = ∆̄{π}π , (4.50)

∆{π+1}
π = ∆[π](ŷ{π+1}, (l̄

{π+1}
J [π] , x̄

{π+1}
V [π])). (4.51)

Proof. By Lemma 32 we may use all results of Lemma 31 in the following.

∆{π}π
(4.10)

=
∑
v∈V [π]

[
f{π}v − f̂

(l̄
{π}
v ,x̄

{π}
v),v

(ŷ{π})
]

+ 1
u‖g(x̄{π})J [π]‖2

(4.39),(4.40),(4.47)
=
∑
v∈V [π]

[
f [π]
v (ŷ

{π}
J [π])− f̂

[π]

(l̄
{π}
v ,x̄

{π}
v),v

(ŷ
{π}
J [π])

]
+ 1

u‖g
[π](x̄

{π}
V [π])‖2

(4.39),(4.40),(4.47)
=
∑
v∈V [π]

[
f [π]
v (ŷ

{π}
J [π])− f̂

[π]

(l̄
{π}
v ,x̄

{π}
v),v

(ŷ
{π}
J [π])

]
+ 1

u‖g
[π](x̄

{π}
V [π])‖2

(4.39),(4.40),(4.47)
=
∑
v∈V [π]

[
f{π}v − f̂

(l̄
{π}
v ,x̄

{π}
v),v

(ŷ{π})
]

+ 1
u‖g(x̄{π})J [π]‖2

(4.10)
= ∆{π}π

36

To complete (4.49) note that by (4.19) the third line is in fact ∆[π](ŷ{π}, (l̄
{π}
V [π] , x̄

{π}
V [π])). In

order to prove (4.50) we first show (with Ĵ [π] as defined in (4.8))

Aj,vx̄
{π}
v = Aj,vx̄

{π+1}
v for j ∈M \ (J [π] ∪ Ĵ [π]), v ∈ V. (4.52)

For v ∈ V \V [π] this is an immediate consequence of (4.41). For v ∈ V [π] consider some fixed
j ∈M \(J [π]∪Ĵ [π]) and recall that, by (4.8) and Lemma 30 (v), J{π}v ⊆ J{π+1}

v ⊆ J [π]∪Ĵ [π]

for v ∈ V [π]. Using Lemma 30 (vii) we get Aj,vx̄
{π}
v

(E3)
= 0

(E3)
= Aj,vx̄

{π+1}
v . With (4.52) and by

recalling the definitions (4.11), (2.3) we obtain as a first ingredient for (4.50)

1
u‖g(x̄{π})M\(J [π]∪Ĵ [π])‖

2 = 1
u‖g(x̄{π+1})M\(J [π]∪Ĵ [π])‖

2.

Next, by definition (2.4), establishing

f̂
(l̄
{π}
v ,x̄

{π}
v),v

(ŷ{π}) = f̂
(l̄
{π+1}
v ,x̄

{π+1}
v),v

(ŷ{π+1}) for v ∈ V \ V [π]

requires to show l̄
{π}
v = l̄

{π+1}
v and (ŷ

{π}
Jv

)TAJv ,vx̄
{π}
v = (ŷ

{π+1}
Jv

)TAJv ,vx̄
{π+1}
v for v ∈

V \V [π]. By (4.41) the only possible difference might be caused by ŷ{π}j 6= ŷ
{π+1}
j for some

j ∈ J [π]. For a fixed j ∈ J [π] and v ∈ Vj \ V [π], however, the successful test (4.34) at
π, asserts j /∈ J

{π+1}
v ⊇ J

{π}
v . Therefore (E3) ensures Aj,vx̄

{π}
v = 0 = Aj,vx̄

{π+1}
v . The

final ingredient f{π}v = f
{π+1}
v for v ∈ V \ V [π] is contained explicitly in (4.41) and this

completes (4.50).
The last equation (4.51) is a direct consequence of the definitions (4.10) and (4.19)

together with (4.45)–(4.47). �

From now on, the analysis follows exactly the same path as that of the first variant, and
up to small adaptations due to the presence of bad processes the proofs match the first
ones verbatim.

Lemma 41 Suppose an infinite number of descent steps occurs and f is bounded from
below. Then

lim inf
σ∈N0

∆{σ} → 0.

Proof. Let π ∈ Γ be a good process for which a descent step occurs, i. e., π is stopped
because of condition (StopD’). By [S2] we have ∆{π} ≤ 1

τ1
∆
{π}
π . By Lemma 32 and

Lemma 31 (4.45),(4.46) the final predicted decrease of π that caused the descent step is
∆[π](ŷ

{π}
J [π] , (l̄

{π+1}
V [π] , x̄

{π+1}
V [π])). Because (StopD’) and not the preceding test (StopP’) has

caused π to stop, we have

τ2∆{π}π

(StopP ′)
≤ ∆[π](ŷ

{π}
J [π] , (l̄

{π+1}
V [π] , x̄

{π+1}
V [π]))

(StopD′)
≤ 1

ρ

(
f [π](ŷ

{π}
J [π])− f [π](ŷ

{π+1}
J [π])

)
.

Putting all together and using Lemma 39 we get

∆{π} ≤ 1

τ1
∆{π}π ≤ 1

τ1τ2ρ

(
f [π](ŷ

{π}
J [π])− f [π](ŷ

{π+1}
J [π])

)
=

1

τ1τ2ρ

(
f(ŷ{π})− f(ŷ{π+1})

)
.

Because f is bounded from below and the sequence (f(ŷ{σ}))σ is non-increasing by Lemma 39,
the right hand side of the inequality above converges to zero. �

37

Lemma 42 Assume there is only a finite number of descent steps and ε = 0, then

lim
σ∈Σ

∆{σ} = 0.

Proof. If |Σ| < ∞, then the statement holds by Corollary 37. Therefore we may assume
|Σ| =∞.
Lemma 32 implies ∆{σ} > 0 for all σ ∈ Σ and that the dependency graph D{σ} can

only be increased. By Observation 38 and because M is a finite set there must be a
σ′ ∈ Σ such that for each σ ≥ σ′ we have E{σ} = E{σ

′} and all processes π = (π, π) with
π > σ := min{σ′, π′ : π′ ∈ Π{σ

′}} are good and do not perform a descent step.
Let σ > σ′, then by Corollary 37 there is a process π = (π, π) such that σ ∈ {π, π}. If

σ = π we know by (4.26) and Lemma 32 that ∆{π} = ∆{π+1}. So assume σ = π. Because
σ > σ′ we know that π satisfied condition (StopP’) and that

δ{π+1}
π − δ{π}π ≤ τ3∆{π}π .

Invoking Observation 24 twice for the subspace J [π] of π but once for the data of π and
once for π + 1 yields the relations

∆{π} = ∆{π}π + δ{π}π + ∆̄{π}π ,

∆{π+1} = ∆{π+1}
π + δ{π+1}

π + ∆̄{π+1}
π .

We claim that ∆{π+1} ≤ (1−τ)∆{π} for some constant 0 < τ < 1 independent of π. Indeed,
(4.49) implies ∆

{π}
π = ∆

{π}
π and (4.50) gives ∆̄

{π}
π = ∆̄

{π+1}
π . The subspace selection

condition [S2] asserts ∆
{π}
π ≥ τ1∆{π} and stopping condition (StopP’) (because π is good

and does not perform a descent step) implies ∆
{π+1}
π

(4.51)
= ∆[π](ŷ{π+1}, (l̄

{π+1}
J [π] , x̄

{π+1}
V [π])) <

τ2∆
{π}
π . This yields

∆{π} −∆{π+1} = (∆{π}π −∆{π+1}
π) + (∆̄{π}π − ∆̄{π+1}

π) + (δ{π}π − δ{π+1}
π)

= (∆{π}π −∆{π+1}
π) + (δ{π}π − δ{π+1}

π)

≥ (1− τ2 − τ3)∆{π}π

≥ τ1(1− τ2 − τ3)︸ ︷︷ ︸
=:τ∈(0,1)

∆{π}.

(4.53)

Note that this shows ∆{π} −∆{π+1} ≥ 0 for all π = σ ≥ σ. Together with ∆{π} = ∆{π+1}

(see above) we get therefore that the sequence (∆{σ})σ≥σ is non-increasing. Because π > σ′

we have π ≥ σ and thus ∆{π} ≥ ∆{π}. From (4.53) we obtain

∆{π} −∆{π+1} ≥ τ∆{π} ≥ τ∆{π}

and so
∆{π+1} ≤ (1− τ)∆{π}.

Together with the case σ = π above we get limσ∈N0 ∆{σ} = 0, which completes the proof.�

Corollary 43 If f is bounded from below and ε = 0, the predicted decrease ∆{σ} =
f(ŷ{σ})− f̂(l̄{σ},x̄{σ})(ŷ

{σ}) + 1
u‖g(x̄{σ})‖2 goes to zero for an appropriate subsequence Σ∗ ⊆

Σ. In particular, f(ŷ{σ}) − f̂(l̄{σ},x̄{σ})(ŷ
{σ}) and ‖g(x̄{σ})‖ go to zero, too, for the subse-

quence Σ∗.

38

Proof. Analogous to the proof of Corollary 16. �

Theorem 44 Suppose ∅ 6= Argmin f is bounded. Then for an appropriate subsequence
Σ∗ ⊆ Σ the sequences (ŷ{σ})σ∈Σ∗ and (x̄{σ})σ∈Σ∗ that are generated by the extended parallel
bundle algorithm have the following properties.

(i) each accumulation point of (ŷ{σ})σ∈Σ∗ is an optimal solution of (D),

(ii) each accumulation point of (x̄{σ})σ∈Σ∗ is an optimal solution of (convP).

Proof. Analogous to the proof of Theorem 17. �

5. Numerical Experiments

In this section we present first numerical results comparing the (Extended) Parallel Bundle
Method proposed in this paper with a standard proximal bundle algorithm. Note that
it is not the intent of this paper to provide an extensive numerical study. Indeed, the
experiments are very preliminary. The purpose of the tests is to show that there are
problems where the application of the parallel bundle method may give advantages over
the classical bundle method and may therefore be a valid alternative in future applications.
We used simple randomly generated test instances for the Train Timetabling Problem

(TTP), see, e. g., [4] for a full description of the problem. The task of the TTP is to find
a conflict free timetable for a set of trains in a given railway network. By conflict free we
mean that certain capacity restrictions in the stations as well as headway distances between
successive trains on the same track have to be fulfilled. In a real world TTP problem there
are often certain local areas with many local short distance trains (e. g., around big cities)
and a number of long distance and freight trains running through the whole network and
coupling those local areas. In order to mimic this structure, we generated in our tests a
random network as a subset of the two dimensional square grid graph which is further
divided into several (almost disjoint) subsquares. Those subsquares represent the local
areas and are filled each afterwards with a certain number of local trains with random routes
within that subsquare and random start time within a certain time window. Analogously
a certain number of global trains is generated which have random routes within the whole
network coupling the local areas. Each train has a running time of either 1 or 2 per arc
chosen randomly, all nodes in the network have a random capacity of either 1 or 2 and
all headway times are assumed to be one minute. Appendix A describes the generation
process of the test instances in more detail.
A typical model for the TTP, see [4], is based on time-expanded networks for each train.

In our case the network for each train is expanded up to twice its minimal running time
from its start to its end node. It is easy to see, that this model is indeed an instance of
(P) where each subproblem (Pv(y)) is a shortest-path-problem in one of the time expanded
train networks. Therefore the classical bundle method as well as the parallel bundle method
can be applied to solve the corresponding Lagrangian dual problem.
We ran 80 test instances with 4 × 4 subsquares, each of size 20 × 20, forming a large

square of size 80 × 80 and 60 local trains per subsquare starting randomly distributed
within three hours. The number of global trains that couple the local areas is increased
from 40 to 120 trains in steps of 20 and they are started within three hours, too.
Both algorithms, the classical bundle method and the parallel bundle method, have

been implemented in C++ and all tests were run on an Intel(R) Core(TM) i7 CPU with 8
processors and 12GB memory. We solved all instances up to a final termination precision

39

of 10−4. In a first test we solved all instances with the classical bundle method on one
core and with the parallel bundle method on one core with exactly one subprocess. In
the second test we ran the tests with the classical bundle method where the subproblem
evaluations were executed in parallel on 4 cores and the parallel bundle method with up
to 4 parallel processes. Figure 3 shows the results for the tests with one core. Denoting
the running times by tparallel for the parallel bundle method and tsingle for the classical
bundle method, diagram (a) shows minimum, the maximum, the 25%, 75% quantiles and
the median of the relative running times tsingle/tparallel over all instances with a certain
number of global trains. Diagram (b) shows the number of instances solved up to a certain
time for both algorithms. Figure 4 shows the analog results for the tests on four cores.

 0

 5

 10

 15

 20

 25

 30

40 60 80 100 120

R
a
t
i
o

o
f

r
u
n
n
i
n
g

t
i
m
e
s

global trains

Running times

(a) minimum, maximum, 25%, 75% quantiles
and median of tsingle/tparallel

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500

#

I
n
s
t
a
n
c
e
s

Time

Solved within Time

parallel
single

(b) Performance profile

Figure 3: Running times for 80 test instances on 1 core.

 0

 2

 4

 6

 8

 10

 12

 14

40 60 80 100 120

R
a
t
i
o

o
f

r
u
n
n
i
n
g

t
i
m
e
s

global trains

Running times

(a) minimum, maximum, 25%, 75% quantiles
and median of tsingle/tparallel

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000

#

I
n
s
t
a
n
c
e
s

Time

Solved within Time

parallel
single

(b) Performance profile

Figure 4: Running times for 80 test instances on 4 cores.

The diagrams show that the parallel bundle method solves most instances within a
shorter time than the classical bundle method on one as well as on four cores. Further-
more, as the number of global trains is increased the advantage of the parallel bundle
method decreases. This matches expectations, because the classical bundle method has to
evaluate all subproblems equally often whereas the parallel bundle method may take ad-
vantage of the decoupled structure of the problem with some easy and some more difficult
areas. Therefore the parallel bundle method may evaluate certain subproblems less often
while focusing on the more difficult ones. When the number of global trains is increased,

40

coupling between the subproblems is increased as well, and hence most subproblems be-
come similarly difficult. In this case the parallel bundle method looses its advantage.
It may come as a surprise, however, that the improvement of using four cores instead of

one is not evident, not only for the parallel but also for the classical bundle method. A pos-
sible explanation might be that the parallel evaluation of a large number of combinatorial
subproblems on multicore machines with common main memory seems to cause significant
problems in accessing memory (cache) and the speedup in pure computing power is lost due
to competing memory accesses. Therefore much better implementations of the algorithms
are required in order to properly exploit the properties of modern hardware.
Still, the numerical results indicate that the proposed parallel bundle approach has the

potential for developing into a useful alternative for large scale applications with appropri-
ate structure.
Acknowledgment. This work was supported by the Bundesministerium für Bildung

und Forschung under grant 03MS640D. Responsibility for the content rests with the au-
thors.

41

A. Problem and model description of the TTP

A.1. Problem and model

One typical application for bundle methods is the solution of the Lagrangian relaxation of
very large scale instances of combinatorial optimization problems. In out tests we focused
on simple random instances of the Train Timetabling Problem (TTP), see, e. g., [4]. The
TTP can be roughly described as follows. Given an infrastructure network GI = (U I , AI)
and a set of trains V with predefined routes Uv = {uv1, . . . , uvkv} ⊂ U

I with (uvi , u
v
i+1) ∈ AI ,

i = 1, . . . , kv − 1, a starting time tv0 ∈ R+ and running time per arc tvi ∈ R+, the task is to
determine a feasible timetable, i. e., arrival and departure times for each train at each of
its stations. This timetable has to fulfill several constraints like capacity constraints in the
nodes (stations) and headway time constraints on the arcs. In detail, each node u ∈ U I
has a maximal capacity cu ∈ N, which means at most cu trains may be at node u at the
same time, and for each arc a ∈ AI there is a minimal headway time ha > 0 which means
that two trains may enter arc a at times t1 and t2, resp., if and only if |t1− t2| ≥ ha. Note
that in practical applications the headway times may also depend on train-length, speed
and other aspects.
A typical model for the TTP is as follows. First the time is discretized in a set T =
{1, 2, . . . , tmax} (e. g., in minutes). Then for each train v ∈ V there is a time-expanded
network GvT = (UvT , A

v
T) with node set

UvT =Uv × ({tv0, tv0 + 1, . . . , tvmax} ∪ {uvend})
and arc set

AvT ={((uvi , t), (uvi , t+ 1)) : uvi ∈ Uv, tv0 ≤ t < tvmax}
∪ {((uvi , t), (uvi+1, t+ tvi)) : uvi , u

v
i+1 ∈ Uv, tv0 ≤ t ≤ tvmax − tvi }

∪ {((uvi , t), uvend) : (uvi , t) ∈ UvT }.

The arc set of such a network consists of three classes of arcs: wait arcs of the form
((uvi , t), (u

v
i , t+ 1)), run-arcs of the form ((uvi , t), (u

v
i+1, t+ tvi)) and stop arcs ((uvi , t), u

v
end).

The latter will always be assigned high costs for uvi 6= uvkv and zero for uvi = uvkv , so the
train-route will have small costs if and only if the train reaches its destination in time.
Next we introduce binary variables xv : AvT → {0, 1} for the arcs in GvT and get for each
train v ∈ V the optimization problem

(TTPv)
maximize (−wv)Txv

subject to xv ∈ Ωv,

where
Ωv = {xv ∈ {0, 1}AvT : xv represents a (uv1, t

v
0)− uvend-path in GvT }.

Now we can write the capacity constraints as∑
v∈V

∑
e=((u′,t′),(u,t))∈AvT

xve ≤ cu, for all u ∈ U I , t ∈ T (A.1)

and the headway constraints as

∑
v∈V

t+ha−1∑
t=t0

∑
e=((u,t),(u′,t′))∈AvT

xve ≤ 1, for all (u, u′) = a ∈ AI and t0 ∈ T . (A.2)

42

Putting all together the optimization problem reads

(TTP)

maximize
∑
v∈V

(−wv)Txv

subject to Ax ≤ b
xv ∈ Ωv, v ∈ V,

where the linear constraints (A.1) and (A.2) are collected in the linear inequalities Ax ≤ b.
It is easy to see that this model is indeed an instance of (P) except that the constraints
are inequalities, but this has been implemented as well. The subproblems (Pv(y)) turn out
to be

(TTPv(y))
maximize (−wv)Txv − yTA•,vxv

subject to xv ∈ Ωv, v ∈ V,
which are simple shortest path problems in an acyclic network with a linear cost func-
tion. Therefore those subproblems are easy to solve and the problem (TTP) fits in our
framework.

A.2. Construction of test instances

Large scale real world instances of the TTP usually require much more fine grained models
than those described in the previous section and often more advanced techniques like cut-
ting plane approaches or dynamic graph generation [4] in order to be efficiently treatable.
The current prototype implementation of the parallel bundle algorithm cannot handle
these cases, yet, and therefore we restricted to randomly generated test instances. The
construction of those instances is described in this section.
We assume the following properties of typical TTP instances. In a railway network

there are some areas where many short distance local trains interact (e. g., around big
cities) and those areas overlap only slightly with other areas. Furthermore there are long-
distance and freight trains that run through the whole network coupling those local areas.
These assumptions are reasonable for large real world networks.
The node set is constructed as follows. Let nl, dl ∈ N two numbers. The node set consists

of nl × nl subsquares U Ii,j = {(u1, u2) : u1 ∈ {(i − 1)dl, . . . , idl}, u2 ∈ {(j − 1)dl, . . . , jdl}
and the full node set U I =

⋃nl
i,j=1 U

I
i,j . The arc set AI is generated by inserting randomly

a number of routes from a node of one border of the square node set to a node of the
opposite site. The detailed approach can be seen in Algorithm 45.

Algorithm 45 (Generation of infrastructure arcs.)
1: Input: n
2: Output: AI ⊆ (U I)2

3: for k := 1 to n do
4: Choose a direction d ∈ {−e1, e1,−e2, e2} randomly.
5: Choose u0 ∈ U I with dTu0 minimal . i. e., u0 is a border node
6: i← 0.
7: while dTui not maximal do . i. e., ui has not reached the opposite border yet.
8: Choose ui+1 ∈ U with

‖ui+1 − ui‖ = 1,

(ui+1 − ui)Td ≥ 0,

i = 0 ∨ ui−1 6= ui+1

. i. e., not in backward direction.

43

9: AI ← AI ∪ {(ui, ui+1)}
10: i← i+ 1.
11: end while
12: end for

After the arc set is constructed a set of trains is constructed. For this a random border
node is chosen and from there a random path with the arc set until another border node is
reached. If a loop is created or the generated train route is too short the route is thrown
away and the procedure is restarted. Algorithm 46 is called nlocal times for each local area
und nglobal times for the whole network to generate local and global trains, resp..

Algorithm 46 (Generation of trains.)
1: Input: Subsquare G′ = (U ′, A′) with size n.
2: Output: Train route (u1, . . . , uk)
3: Choose random border node u0 ∈ U ′.
4: i← 0
5: repeat
6: i← i+ 1
7: Choose ui as random neighbor of ui−1

8: if ui ∈ {u0, . . . , ui−1} then
9: go to 3.

10: end if
11: until ui border node

In our test instances we chose nl = 20, dl = 4, nlocal = 60, and nglobal ∈ {40, 60, 80, 100,
120} to generate 16 instances per choice of nglobal.

44

B. Symbols

General symbols:
M = {1, . . . ,m} set of constraints
V = {1, . . . , ω} set of subproblems
Ωv ⊂ Rnv , v ∈ V ground set of v
Ω =

⊗
v∈V Ωv ⊂ Rn all ground sets

hv : Ωv → R objective function of subproblem v
A ∈ RM×n constraint matrix
b ∈ RM right-hand-side of the constraints
Lv(xv, y), v ∈ V Lagrangian associated with subproblem v ∈ V
fv(y), v ∈ V optimal value of subproblem v ∈ V with augmenting costs in-

duced by y
L(x, y) Lagrangian of full problem
f(y) value of dual function at y
g(x) subgradient generated x ∈ conv Ω
Wv set of linear minorants of fv generated by Ωv

W set of linear minorants of f generated by Ω

f̂wv ,v(y), v ∈ V , wv ∈Wv value of linear minorant wv ∈ convWv of fv at y
f̂w(y) value of linear minorant w ∈ convW of f at y
J ⊂M some subspace of Lagrange multipliers
Jv ⊂M , v ∈ V constraint interacting with v ∈ V
Vj ⊂ V , j ∈ J problems interacting with j ∈M
J̄ ⊂M constraints interacting with VJ but not contained in J
∆(y, w) predicted global decrease at y with aggregate minorant w
∆J(y, w) predicted decrease on subspace J
∆̄J(y, w) predicted decrease not influences by subspace J
δJ̄(w) predicted decrease influenced by J and by M \ J
ŷ ∈ RM center of stability
ȳ ∈ RM candidate point
(l̄, x̄) ∈ convW primal aggregate minorant
x̂ ∈ Ω optimal primal solution in center

Identifiers used in the standard parallel bundle algorithm in Section 3 denoting some
global algorithmic information have a superscript 〈σ〉.

Σ the set of all significant global steps
Π〈σ〉 the set of all processes started before σ ∈ N
Π
〈σ〉 the set of all processes finished before σ ∈ N

Π〈σ〉 the set of all processes running at σ ∈ N
ŷ〈σ〉 ∈ RM current global center
f
〈σ〉
v optimal value of fv in current center ŷ〈σ〉 of subproblem v ∈ V

(l̄〈σ〉, x̄〈σ〉) ∈ convW current global primal minorant
B〈σ〉 ⊆ V set of currently blocked subproblems
D〈σ〉 current dependency graph
∆〈σ〉 current predicted global decrease

Identifiers associated with the subspace problem optimized by a process π have a super-
script (π).

45

π, η processes
π global index at which π starts
π global index when π finishes
V (π) ⊆ V problems processed by π
J (π) ⊆M subspace processed by π
J̄ (π) ⊆M constraints not contained in J (π) but interacting with some v ∈

V (π)

Ω(π) =
⊗

v∈V (π) Ωv ground set of process π
ŷ(π) ∈ RM current local center of process π
c(π) augmented cost term of subspace problem processed by π
h(π) : Ω(π) → R local objective function of π
L

(π)
v (xv, y

(π)) local Lagrangian of process π associated with v ∈ V (π)

f (π)(y(π)) local dual function of process π
(l̄(π), x̄(π)) ∈ convW (π) local aggregate minorant of process π
x̂

(π)
v ∈ Ωv, v ∈ V (π) optimal primal solution in current center y(π)

W (π) linear minorants at f (π)

f̂
(π)
wv ,v(y

(π)) value of linear minorant wv ∈ convWv of f (π) at y(π)

g(π)(x(π)) subgradient of f (π) generated by x(π) ∈ conv Ω(π)

∆(π) predicted decrease in subspace problem of process π

In Section 4 for identifiers associated with the global states of the extended algorithm
have a superscript {σ}, those associated with a process have a superscript [π]. The cor-
responding identifiers have the same meaning as in Section 3, the following additional
identifiers appear:

J
{σ}
v current active constraints of problem v ∈ V
B
{σ}
M ⊆M currently blocked constraints

and
J

[π]
v constraints of v ∈ V [π] that are assumed to be active by π
J̄

[π]
v active constraints of v ∈ V [π] but not contained in J [π]

V
[π]
j problems for which j ∈ J [π] is active when π starts

References

[1] F. Babonneau, O. Du Merle, and J.-P. Vial. “Solving large-scale linear multicom-
modity flow problems with an active set strategy and proximal-ACCPM.” In: Oper.
Res. 54.1 (2006), pp. 184–197.

[2] J. F. Bonnans et al. Numerical Optimization. Springer, 2003.

[3] M. C. Ferris and O. L. Mangasarian. “Parallel Variable Distribution”. In: SIAM
Journal on Optimization 4.4 (1994), pp. 815–832. url: http://link.aip.org/
link/?SJE/4/815/1.

[4] F. Fischer and C. Helmberg. Dynamic Graph Generation for Large Scale Opera-
tional Train Timetabling. Preprint 2011-10. D-09107 Chemnitz, Germany: Technis-
che Universität Chemnitz, Fakultät für Mathematik, 2011. url: http://www.tu-
chemnitz.de/mathematik/preprint/2011/PREPRINT_10.pdf.

[5] M. L. Fisher. “The Lagrangian Relaxation Method for Solving Integer Programming
Problems”. In: Manage. Sci. 50.12 Supplement (2004), pp. 1861–1871. issn: 0025-
1909. url: http://dl.acm.org/citation.cfm?id=1245920.1245938.

46

http://link.aip.org/link/?SJE/4/815/1
http://link.aip.org/link/?SJE/4/815/1
http://www.tu-chemnitz.de/mathematik/preprint/2011/PREPRINT_10.pdf
http://www.tu-chemnitz.de/mathematik/preprint/2011/PREPRINT_10.pdf
http://dl.acm.org/citation.cfm?id=1245920.1245938

[6] M. Fukushima. “Parallel Variable Transformation in Unconstrained Optimization”.
In: SIAM J. on Optimization 8.3 (1998), pp. 658–672. issn: 1052-6234. url: http:
//dl.acm.org/citation.cfm?id=588907.589327.

[7] D. Goldfarb and S. Ma. Fast Alternating Linearization Methods for Minimizing the
Sum of Two Convex Functions. Tech. rep. arXiv:0912.4571. 2009. url: http://www.
optimization-online.org/DB_HTML/2009/12/2502.html.

[8] D. Goldfarb and S. Ma. Fast Multiple Splitting Algorithms for Convex Optimization.
Tech. rep. arXiv:0912.4570. 2009. url: http://www.optimization-online.org/
DB_HTML/2009/12/2501.html.

[9] B. He, T. Min, and X. Yuan. A splitting method for separate convex programming
with linking linear constraints. Tech. rep. 2008. url: http://www.optimization-
online.org/DB_HTML/2010/06/2665.html.

[10] C. Helmberg and K. C. Kiwiel. “A Spectral Bundle Method with Bounds”. In:
Math. Programming 93.2 (2002), pp. 173–194.

[11] C. Helmberg and S. Röhl. “A Case Study of Joint Online Truck Scheduling and
Inventory Management for Multiple Warehouses”. In: Operations Research 55.4 (July
2007), pp. 733–752.

[12] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algo-
rithms I. Vol. 305. Grundlehren der mathematischen Wissenschaften. Berlin, Heidel-
berg: Springer, 1993.

[13] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algo-
rithms II. Vol. 306. Grundlehren der mathematischen Wissenschaften. Berlin, Hei-
delberg: Springer, 1993.

[14] C. Lemaréchal and A. Renaud. “A geometric study of duality gaps, with applications”.
In:Mathematical Programming 90.3 (2001), pp. 399–427. issn: 0025-5610. url: http:
//dx.doi.org/10.1007/PL00011429.

[15] C. Lemaréchal. “Lagrangian Relaxation”. In: Computational Combinatorial Opti-
mization. Ed. by M. Jünger and D. Naddef. Vol. 2241. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2001, pp. 112–156. isbn: 978-3-540-42877-0.
url: http://dx.doi.org/10.1007/3-540-45586-8_4.

[16] C. Lemaréchal. “The omnipresence of Lagrange”. In: Annals of Operations Research
153.1 (2007), pp. 9–27. issn: 0254-5330. url: http://dx.doi.org/10.1007/s10479-
007-0169-1.

[17] D. Medhi. “Parallel bundle-based decomposition for large-scale structured mathe-
matical programming problems”. In: Ann. Oper. Res. 22.1-4 (1990), pp. 101–127.
issn: 0254-5330. url: http://portal.acm.org/citation.cfm?id=85598.85620.

[18] F. Meng et al. “Lagrangian-Dual Functions and Moreau–Yosida Regularization”. In:
SIAM Journal on Optimization 19.1 (2008), pp. 39–61. url: http://link.aip.org/
link/?SJE/19/39/1.

[19] M. Nayakkankuppam. “Solving large-scale semidefinite programs in parallel”. In:
Mathematical Programming 109.2 (2007), pp. 477–504. issn: 0025-5610. url: http:
//dx.doi.org/10.1007/s10107-006-0032-1.

[20] I. Necoara and J. Suykens. “Interior-Point Lagrangian Decomposition Method for
Separable Convex Optimization”. In: Journal of Optimization Theory and Applica-
tions 143.3 (2009), pp. 567–588. issn: 0022-3239. url: http://dx.doi.org/10.
1007/s10957-009-9566-8.

47

http://dl.acm.org/citation.cfm?id=588907.589327
http://dl.acm.org/citation.cfm?id=588907.589327
http://www.optimization-online.org/DB_HTML/2009/12/2502.html
http://www.optimization-online.org/DB_HTML/2009/12/2502.html
http://www.optimization-online.org/DB_HTML/2009/12/2501.html
http://www.optimization-online.org/DB_HTML/2009/12/2501.html
http://www.optimization-online.org/DB_HTML/2010/06/2665.html
http://www.optimization-online.org/DB_HTML/2010/06/2665.html
http://dx.doi.org/10.1007/PL00011429
http://dx.doi.org/10.1007/PL00011429
http://dx.doi.org/10.1007/3-540-45586-8_4
http://dx.doi.org/10.1007/s10479-007-0169-1
http://dx.doi.org/10.1007/s10479-007-0169-1
http://portal.acm.org/citation.cfm?id=85598.85620
http://link.aip.org/link/?SJE/19/39/1
http://link.aip.org/link/?SJE/19/39/1
http://dx.doi.org/10.1007/s10107-006-0032-1
http://dx.doi.org/10.1007/s10107-006-0032-1
http://dx.doi.org/10.1007/s10957-009-9566-8
http://dx.doi.org/10.1007/s10957-009-9566-8

[21] A. Nedić, D. Bertsekas, and V. Borkar. “Distributed asynchronous incremental sub-
gradient methods”. In: Inherently Parallel Algorithms in Feasibility and Optimization
and their Applications. Ed. by Y. C. Dan Butnariu and S. Reich. Vol. 8. Studies
in Computational Mathematics. Elsevier, 2001, pp. 381–407. url: http://www.
sciencedirect.com/science/article/pii/S1570579X01800239.

[22] C. A. Sagastizábal and M. V. Solodov. “Parallel Variable Distribution for Constrained
Optimization”. In: Comput. Optim. Appl. 22.1 (2002), pp. 111–131. issn: 0926-6003.
url: http://dl.acm.org/citation.cfm?id=584529.584535.

[23] R. Schultz. “Stochastic programming with integer variables”. In: Math. Programming
97.1-2 (2003), pp. 285–309.

48

http://www.sciencedirect.com/science/article/pii/S1570579X01800239
http://www.sciencedirect.com/science/article/pii/S1570579X01800239
http://dl.acm.org/citation.cfm?id=584529.584535

