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In this paper we give subdifferential formulas of some convex deviation measures using their conjugate
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derive other formulas according to a paper of Ruszczyski and Shapiro and the subdifferential of some
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1 Introduction
The subdifferential is a generalization of the classical derivation. It can be used in convex optimization
to formulate sufficient and necessary optimality conditions.
onvex deviation measures can be used for portfolio optimization problems, where the risk of a portfolio
return is measured. They were introduced in 2002 by Rockafellar et al. (cf. [9]) as a consequence of
coherent risk measures introduced first by Artzner et al. in 1999 (cf. [1]) and convex risk measures
introduced by Föllmer and Schied in 2002 (cf. [6, 7]).
In order to calculate the subdifferential of deviation measures we consider their conjugate functions
and dual representations as given in [3]. Our aim is to give different formulas for the subdifferentials
and show how some results given by Ruszczynski and Shapiro in [12] and also some related results can
be derived.

The paper is organized as follows. In the following section we introduce some definitions and notations
from the convex analysis and stochastic theory we use within the paper. In section 3 we give subdiffer-
ential formulas for some basic functions, namely || · ||p, || ·− ||p and || ·+ ||p. Further, we consider some
deviation measures and calculate their subdifferentials. In the last section we consider risk functions
according to a paper by Ruszczynski and Shapiro and show how their results can be derived using
conjugate duality.

2 Notations and Preliminaries
Let X be a real Hausdorff locally convex space and X ∗ its topological dual space which we endow with
the weak∗ topology w∗ := w(X ∗,X ). We denote by 〈x∗, x〉 := x∗(x) the value of the linear continuous
functional x∗ ∈ X ∗ at x ∈ X . For X = Rn we have X = X ∗ and for x = (x1, . . . , xn)T ∈ Rn, x∗ =
(x∗1, . . . , x∗n)T ∈ Rn it holds 〈x∗, x〉 = (x∗)Tx =

∑n
i=1 x

∗
i xi.
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For f : X → R the (Fenchel-Moreau) conjugate function of f , f∗ : X ∗ → R is defined by

f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)}.

Similarly, the biconjugate function of f , f∗∗ : X → R is defined by

f∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − f∗(x∗)}.

Let K ⊆ X be a nontrivial convex cone. The dual cone K∗ ⊆ X ∗ is defined by

K∗ := {x∗ ∈ X ∗ : 〈x∗, x〉 ≥ 0, ∀x ∈ K}.

For a function f : X → R the effective domain is defined by dom(f) = {x ∈ X : f(x) < +∞}. Further
f is proper if dom(f) 6= ∅ and f(x) > −∞, ∀x ∈ X and f is called convex if for all x, y ∈ X and all
λ ∈ [0, 1] it holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).
The function f is lower semicontinuous at x ∈ X if lim infx→x f(x) ≥ f(x).
The following theorem holds (see [8]):

Theorem 2.1 (Fenchel-Moreau). Let f : X → R be a proper function. Then it holds f = f∗∗ if and
only if f is convex and lower semicontinuous. Consequently it follows:

f(x) = sup
x∗∈X∗

{〈x∗, x〉 − f∗(x∗)}. (1)

From formula (1) the so-called dual representation can be derived.

Remark 2.2. For f : X → R it always holds f∗ = f∗∗∗.

For f : X → R proper and f(x) ∈ R the subdifferential of f at x, introduced in [4], is given by

∂f(x) = {x∗ ∈ X ∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 , ∀y ∈ X}.

Otherwise, for f(x) = +∞, we assume by convention that ∂f(x) = ∅. With the help of conjugate
functions we get some necessary characterizations of the subdifferential (cf. [5]). For the function
f : X → R and x ∈ X , x∗ ∈ X ∗ it holds (cf. [2, Theorem 3.2.12])

x∗ ∈ ∂f(x) ⇔ f(x) + f∗(x∗) = 〈x∗, x〉 ⇔ f(x) + f∗(x) ≤ 〈x∗, x〉 . (2)

Remark 2.3. Let f : X → R be a proper function. As a consequence of the definition of the subdif-
ferential and the Fenchel-Moreau theorem we get the following:

x∗ ∈ ∂f∗∗(x) ⇔ f∗∗(x) + f∗(x∗) = 〈x∗, x〉
⇔ f∗∗(x) = 〈x∗, x〉 − f∗(x∗)
⇔ sup

y∗∈X∗
{〈y∗, x〉 − f∗(y∗)} = 〈x∗, x〉 − f∗(x∗)

⇔ x∗ ∈ arg max{〈·, x〉 − f∗(·)}.

It follows that
∂f∗∗(x) = arg max{〈·, x〉 − f∗(·)}.

If f is subdifferentiable at x we have ∂f∗∗(x) = ∂f(x) (cf. [2, Theorem 2.3.16]) and this gives another
characterization of the subdifferential of a function f , namely

∂f(x) = arg max{〈·, x〉 − f∗(·)}. (3)
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By BX (x, r) we denote the open ball with radius r > 0 and center x in X defined by

BX (x, r) = {y ∈ X : d(x, y) < r},

which is a special neighbourhood of x, where d : X ×X → R is the metric induced by the topology in
X . The closed ball BX (x, r) is defined by BX (x, r) := {y ∈ X : d(x, y) ≤ r}.
By L(X ,Y) we denote the set of linear continuous operators mapping from X into Y. For A ∈ L(X ,Y)
we denote the adjoint operator by A∗ ∈ L(Y∗,X ∗).
In the following we write min and max instead of inf and sup if we want to express that the infi-
mum/supremum of a scalar optimization problem is attained. By v(P ) we denote the optimal objective
value of the optimization problem (P ).

Consider now the atomless probability space (Ω,F,P), where Ω is a basic space, F a σ-algebra on Ω
and P a probability measure on the measurable space (Ω,F).
For a random variable X : Ω→ R the expected value with respect to P is defined by

E(X) =
∫

Ω
X(ω)dP(ω).

Furthermore, for p ∈ (1,+∞) let Lp be the following space of random variables:

Lp := Lp(Ω,F,P,R) =
{
X : Ω→ R, X measurable,

∫
Ω
|X(ω)|pdP(ω) < +∞

}
.

The space Lp equipped with the norm ||X||p = (E(|X|p))
1
p , X ∈ Lp, is a Banach space. It is well-known

that the dual space of Lp is Lq := Lq(Ω,F,P,R), where q ∈ (1,+∞) fulfills 1
p + 1

q = 1.
For p ∈ (1,+∞), the cone

(Lp)+ = {X ∈ Lp : X ≥ 0 a.s.}

is inducing the partial ordering denoted by “≥”. The dual cone of (Lp)+ is (Lq)+. The partial ordering
induced by (Lq)+ is also denoted by “≥”. As these orderings are given in different linear spaces, no
confusion is possible.
For X ∈ Lp and X∗ ∈ Lq we have 〈X∗, X〉 :=

∫
ΩX

∗(ω)X(ω)dP(ω) = E(X∗X) as representation of
the linear continuous functional.
Equalities and inequalities between random variables are to be viewed in the sense of holding almost
surely (a.s.) regarding P. Thus for X,Y : Ω → R when we write “X = Y ” or “X ≥ Y ” we mean
“X = Y a.s.” or “X ≥ Y a.s.”, respectively.
For an arbitrary random variable X : Ω→ R, we also define X−, X+ : Ω→ R as being

X−(ω) := max(−X(ω), 0) ∀ω ∈ Ω,
X+(ω) := max(X(ω), 0) ∀ω ∈ Ω.

The essential supremum of X is essupX = inf{a ∈ R : P(ω : X(ω) > a) = 0}.

3 The Subdifferential of Deviation Measures
In this section we consider some special deviation measures that can be used for portfolio optimization
problems and calculate their subdifferential formulas. We give different possibilities to calculate the
subdifferential using conjugate functions and formulas for the subdifferential of composed functions,
respectively.
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3.1 Preliminary Facts and Basic Functions
In this first subsection we consider some basic facts and functions we need for the further calculations.
In order to get a formula for the subdifferential of the composition between a function f and a linear
continuous mapping T , ∂(f ◦T ), or between two functions g and h, ∂(g ◦h), we consider the following
theorems. X and Y are assumed to be real Hausdorff locally convex spaces.
We consider the following theorem (cf. [2, Theorem 3.5.7]):

Theorem 3.1. Let be T : X → Y a linear continuous mapping and f : Y → R a proper and convex
function. If the condition

(RC1) ∃x′ ∈ T−1(dom(f)) such that f is continuous at Tx′.

is fulfilled, then for all x ∈ X it holds ∂(f ◦ T )(x) = T ∗∂f(Tx).

Further we have, adapted from Theorem 2.8.10 in [13] and using Theorem 3.5.6 (b) in [2], the following:

Theorem 3.2. Let h : X → R be convex and g : R→ R be proper and convex such that g is increasing
on h(X ) + [0,+∞). Assume that the regularity condition

(RC2) ∃x′ ∈ X such that h(x′) ∈ dom(g) and g is continuous at h(x′) (4)

holds. Then for all x ∈ X it holds

∂(g ◦ h)(x) =
⋃

λ∈∂g(h(x))

∂(λh)(x).

In the following subsections we need formulas for the subdifferentials of some basic functions. These
are given in the following examples.

Corollary 3.3. Let be f1 : Lp → R defined by f1(X) = ||X||p. Then it holds for X ∈ Lp:

∂f1(X) = {X∗ ∈ Lq : 〈X∗, X〉 = ||X||p, ||X∗||q = 1}, X 6= 0, (5)
∂f1(0) = {X∗ ∈ Lq : ||X∗||q ≤ 1}. (6)

This is a classical result that will be proved here in a very short way by using the conjugate function
of f1 and using formula (2).

Proof. The subdifferential of the norm can be given using the conjugate function f∗1 : Lq → R taking
X∗ ∈ Lq given by (cf. [3])

f∗1 (X∗) =
{

0, X∗ ∈ BLq (0, 1),
+∞, otherwise. (7)

Using formula (2) it holds for X ∈ Lp, X 6= 0:

∂f1(X) = {X∗ ∈ Lq : f1(X) + f∗1 (X∗) = 〈X∗, X〉}
= {X∗ ∈ Lq : 〈X∗, X〉 = ||X||p, ||X∗||q ≤ 1}.

Because of the Cauchy–Schwarz inequality,

〈X∗, X〉 ≤ ||X∗||q · ||X||p, X ∈ Lp, X∗ ∈ Lq, (8)

follows ||X∗||q = 1 from 〈X∗, X〉 = ||X||p, ||X∗||q ≤ 1. From this formula (5) follows immediately.

Further for X = 0 it holds ∂f1(0) = {X∗ ∈ Lq : f1(0) + f∗1 (X∗) = 0} = {X∗ ∈ Lq : ||X∗||q ≤ 1}. This
follows directly from formula (7).
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Corollary 3.4. Let f2 : Lp → R be defined by f2(X) = ||X−||p. Then it holds for X ∈ Lp

∂f2(X) = {X∗ ∈ Lq : ||X−||p = 〈X∗, X〉 , X∗ ∈ BLq (0, 1) ∩ −(Lq)+}, X 6= 0, (9)
∂f2(0) = {X∗ ∈ Lq : X∗ ∈ BLq (0, 1) ∩ −(Lq)+}.

Proof. To get a formula for the subdifferential of f2 we consider the conjugate function f∗2 : Lq → R
given by (cf. [3])

f∗2 (X∗) =
{

0, if ||X∗||q ≤ 1, X∗ ≤ 0,
+∞, otherwise, (10)

=
{

0, if X∗ ∈ BLq
(0, 1) ∩ −(Lq)+,

+∞, otherwise.

It follows by means of formula (2) again:

∂f2(X) = {X∗ ∈ Lq : f2(X) + f∗2 (X∗) = 〈X∗, X〉}
= {X∗ ∈ Lq : ||X−||p = 〈X∗, X〉 , X∗ ∈ BLq

(0, 1) ∩ −(Lq)+}, X 6= 0,
∂f2(0) = {X∗ ∈ Lq : f2(0) + f∗2 (X∗) = 0} = {X∗ ∈ Lq : X∗ ∈ BLq

(0, 1) ∩ −(Lq)+}.

Corollary 3.5. Let f3 : Lp → R be given by f3(X) = ||X+||p. Then it holds for X ∈ Lp

∂f3(X) = {X∗ ∈ Lq : ||X+||p = 〈X∗, X〉 , X∗ ∈ BLq
(0, 1) ∩ (Lq)+}, X 6= 0,

∂f3(0) = {X∗ ∈ Lq : X∗ ∈ BLq
(0, 1) ∩ (Lq)+}.

Proof. In analogy with the proof of Corollary 3.4 the result follows immediately using formula (2) and
the conjugate function of f3, f∗3 : Lq → R, (cf. [3])

f∗3 (X∗) =
{

0, if X∗ ∈ BLq
(0, 1) ∩ (Lq)+,

+∞, otherwise. (11)

It holds:

∂f3(X) = {X∗ ∈ Lq : f3(X) + f∗3 (X∗) = 〈X∗, X〉}
= {X∗ ∈ Lq : ||X+||p = 〈X∗, X〉 , X∗ ∈ BLq (0, 1) ∩ (Lq)+}, X 6= 0,

∂f3(0) = {X∗ ∈ Lq : f3(0) + f∗3 (X∗) = 0} = {X∗ ∈ Lq : X∗ ∈ BLq (0, 1) ∩ (Lq)+}.

Since in the following subsections we will consider some convex deviation measures that were introduced
by Rockafellar and his coauthors (cf. [9]), we give here a definition:

Definition 3.6. The function d : Lp → R is called a convex deviation measure if the following
properties are fulfilled:
(D1) Translation invariance: d(X + b) = d(X), ∀X ∈ Lp, ∀b ∈ R;
(D2) Non-Negativity: d(X) ≥ 0, ∀X ∈ Lp;
(D3) Convexity: d(λX + (1− λ)Y ) ≤ λd(X) + (1− λ)d(Y ), ∀λ ∈ [0, 1],∀X,Y ∈ Lp.

The following theorem states the connection between convex risk and convex deviation measures (see
[9, 10, 11]).
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Definition 3.7. The function ρ : Lp → R is a convex risk measure if and only if d : Lp → R given by
d(X) = ρ(X) + E(X) for X ∈ Lp, is a convex deviation measure.

Having the subdifferential of any deviation measure d we can easily derive the one of the corresponding
risk measure. The following theorem holds.

Lemma 3.8. Assume that d : Lp → R is a convex deviation measure. For X ∈ Lp the subdifferential
of the corresponding risk measure ρ : Lp → R, ρ(X) = d(X)− E(X) is ∂ρ(X) = ∂d(X)− 1.

Proof. Since the function X 7→ E(X) = 〈1, X〉 , X ∈ Lp, is linear and continuous it holds ∂ρ(X) =
∂d(X)− ∂ 〈1, X〉. Further, since ∂ 〈1, X〉 = ∇〈1, X〉 = 1, it follows ∂ρ(X) = ∂d(X)− 1.

In the following sections we will only consider convex deviation measures. Here we first show some
examples.

Example 3.9. Some deviation measures.

For p ∈ (1,+∞) and a > 1 let the deviation measures di : Lp → R, i = 1, . . . , 5, be given as follows for
X ∈ Lp:

d1(X) = ||X − E(X)||p,
d2(X) = ||(X − E(X))−||p,
d3(X) = ||(X − E(X))+||p,
d4(X) = ||X − E(X)||ap,
d5(X) = ||(X − E(X))−||ap,

In case p = 1, d1, d2 and d3 are the so-called mean absolute deviation, and the lower and upper
semideviation, respectively.
For p = 2 the functions d2 and d3 become the standard lower and upper semideviation, respectively.
The case a = p = 2 leads to the variance for d4.

3.2 Subdifferentials of Convex Deviation Measures.
In this subsection we consider some deviation measures being the composition of the functions f1 and
f2 and the linear continuous functional A ∈ L(Lp, Lp) defined by AX = X − E(X). We calculate the
subdifferential formulas using Theorem 3.1 and the conjugate functions, respectively.

The adjoint operator A∗ ∈ L(Lq, Lq) was given in [3] and for X∗ ∈ Lq it holds A∗X∗ = X∗ − E(X∗).
First let us consider the following:

Theorem 3.10. Let X ∈ Lp be fixed. Then for X∗ ∈ Lq it holds:

X∗ ∈ D1 := arg max
Y ∗∈Lq,
||Y ∗||q=1

〈Y ∗, X − E(X)〉

⇔ 〈X∗, X − E(X)〉 = ||X − E(X)||p and ||X∗||q = 1.

Proof. Taking X ∈ Lp we have ||X||p = supX∗∈Lq,||X∗||q=1 〈X∗, X〉 and hence ||X − E(X)||p =
supX∗∈Lq,||X∗||q=1 〈X∗, X − E(X)〉 and the result follows directly from the Cauchy–Schwarz inequality
given in formula (8).

It holds:
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Corollary 3.11. Let the function d1 : Lp → R be given by d1(X) = ||X − E(X)||p. Then it holds for
X ∈ Lp, X 6= 0:

∂d1(X) = {X∗ ∈ Lq : ||X − E(X)||p = 〈X∗, X〉 ,E(X∗) = 0,min
c∈R
||X∗ − c||q ≤ 1} (12)

= {X∗ − E(X∗) : X∗ ∈ Lq, ||X − E(X)||p = 〈X∗ − E(X∗), X〉 , ||X∗||q = 1} (13)
= {X∗ − E(X∗) : X∗ ∈ Lq, X∗ ∈ D1}, D1 = arg max

Y ∗∈Lq,
||Y ∗||q=1

〈Y ∗, X − E(X)〉 , (14)

and further

∂d1(0) = {X∗ ∈ Lq : E(X∗) = 0,min
c∈R
||X∗ − c||q ≤ 1} (15)

= {X∗ − E(X∗) : X∗ ∈ Lq, ||X∗||q ≤ 1}. (16)

Proof. The conjugate function of d1, d∗1 : Lq → R, is given by (cf. [3])

d∗1(X∗) =
{

0, if ∃Y ∗ ∈ Lq : Y ∗ − E(Y ∗) = X∗ and ||Y ∗||q ≤ 1,
+∞, otherwise. (17)

=
{

0, if E(X∗) = 0 and min
c∈R
||X∗ − c||q ≤ 1,

+∞, otherwise.
(18)

(a) Using the conjugate function as given in formula (18) and formula (2) we get the subdifferential as
in formula (12):

∂d1(X) = {X∗ ∈ Lq : d1(X) + d∗1(X∗) = 〈X∗, X〉}
= {X∗ ∈ Lq : ||X − E(X)||p = 〈X∗, X〉 ,E(X∗) = 0 and min

c∈R
||X∗ − c||q ≤ 1}, X 6= 0.

We further have

∂d1(0) = {X∗ ∈ Lq : d1(0) + d∗1(X∗) = 0}
= {X∗ ∈ Lq : E(X∗) = 0 and min

c∈R
||X∗ − c||q ≤ 1},

which is formula (15).

(b) A formula for the subdifferential of d1 can be given if we consider the composition d1 = f1 ◦ A,
where f1 is the norm function, whose subdifferential was given in Corollary 3.3, formula (5), and A is
defined as above.
Theorem 3.1 can be applied since A is linear and continuous, f1 is proper and convex and further the
composition f1 ◦ A is proper. The regularity condition (RC1) is fulfilled since f1 is continuous and it
holds for X ∈ Lp, X 6= 0:

∂d1(X) = ∂(f1 ◦A)(X) = A∗∂|| · ||p(AX)
= {A∗X∗ : X∗ ∈ Lq, ||AX||p = 〈X∗, AX〉 , ||X∗||q = 1}
= {X∗ − E(X∗) : X∗ ∈ Lq, ||X − E(X)||p = 〈X∗, X − E(X)〉 , ||X∗||q = 1}, (19)

which is equal to (13).
Further it holds using formula (6)

∂d1(0) = ∂(f1 ◦A)(0) = A∗∂|| · ||p(0) = {X∗ − E(X∗) : X∗ ∈ Lq, ||X∗||q ≤ 1},

which leads to formula (16).
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(c) Formula (14) arises by using Theorem 3.10.
Further, we get the same result using the conjugate function given in formula (17) and formula (3)
since d1 is subdifferentiable. This can be seen as follows:

∂d1(X) = arg max
X∗∈Lq

{〈X∗, X〉 − d∗1(X∗)}

= {Y ∗ ∈ Lq : sup
X∗∈Lq

{〈X∗, X〉 − d∗1(X∗)} = 〈Y ∗, X〉 − d∗1(Y ∗)}

= {Y ∗ ∈ Lq : sup
Z∗∈Lq :Z∗−E(Z∗)=X∗,

||Z∗||q≤1

〈X∗, X〉 = 〈Y ∗, X〉 , Y ∗ = W ∗ − E(W ∗), ||W ∗||q ≤ 1}

= {W ∗ − E(W ∗) : W ∗ ∈ Lq, sup
Z∗∈Lq,
||Z∗||q≤1

〈Z∗ − E(Z∗), X〉 = 〈W ∗ − E(W ∗), X〉 , ||W ∗||q ≤ 1}

= {W ∗ − E(W ∗) : W ∗ ∈ Lq,W ∗ ∈ arg max
Z∗∈Lq,
||Z∗||q≤1

〈Z∗ − E(Z∗), X〉 , ||W ∗||q = 1}.

In the following we consider the function d2 : Lp → R given by d2(X) = ||(X − E(X))−||p. The
conjugate function of d2, d∗2 : Lq → R, is given by (cf. [3])

d∗2(X∗) =
{

0, if E(X∗) = 0, X∗ ≤ 1, || essupX∗ −X∗||q ≤ 1,
+∞, otherwise, (20)

=
{

0, if E(X∗) = 0 and ∃c ∈ R : 0 ≤ c ≤ 1, ||X∗ − c||q ≤ 1, X∗ ≤ c,
+∞, otherwise, (21)

=
{

0, if ∃Y ∗ ∈ Lq : Y ∗ − E(Y ∗) = X∗, Y ∗ ≤ 0, ||Y ∗||q ≤ 1,
+∞, otherwise, (22)

=
{

0, if ∃Y ∗ ∈ Lq : Y ∗ − E(Y ∗) = X∗, Y ∗ ∈ BLq (0, 1) ∩ −(Lq)+,
+∞, otherwise. (23)

We can prove the following theorem.

Theorem 3.12. Let X ∈ Lp be fixed. Then for X∗ ∈ Lq it holds:

X∗ ∈ D2 := arg max
Y ∗∈BLq (0,1)∩−(Lq)+

〈Y ∗, X − E(X)〉

⇔ 〈X∗, X − E(X)〉 = ||(X − E(X))−||p, and X∗ ∈ BLq
(0, 1) ∩ −(Lq)+.

Proof. Using Theorem 2.1 and formula (22) for the conjugate function of d2 we get for X ∈ Lp:

||(X − E(X))−||p = d2(X) = d∗∗2 (X)
= sup
X∗∈Lq

{〈X∗, X〉 − d∗2(X∗)} = sup
(X∗,Y ∗)∈Lq×Lq :
Y ∗−E(Y ∗)=X∗,
Y ∗≤0,||Y ∗||q≤1

〈X∗, X〉 ,

= sup
Y ∗∈BLq (0,1)∩−(Lq)+

〈Y ∗ − E(Y ∗), X〉 = sup
Y ∗∈BLq (0,1)∩−(Lq)+

〈Y ∗, X − E(X)〉 .

Assuming now that X∗ ∈ D2, which means that X∗ ∈ BLq
(0, 1) ∩ −(Lq)+ and

〈X∗, X − E(X)〉 = sup
Y ∗∈BLq (0,1)∩−(Lq)+

〈Y ∗, X − E(X)〉 ,
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it follows 〈X∗, X − E(X)〉 = ||(X − E(X))−||p and X∗ ∈ BLq
(0, 1) ∩ −(Lq)+.

On the other hand having X∗ ∈ BLq (0, 1) ∩ −(Lq)+ such that 〈X∗, X − E(X)〉 = ||(X − E(X))−||p.
Using formulas (23) and the fact that for a proper, convex and lower semicontinuous function f : Lp →
R it holds

f(X) = f∗∗(X) = sup
X∗∈Lq

{〈X∗, X〉 − f∗(X∗)} = sup
X∗∈Lq

{E(X∗X)− f∗(X∗)}, ∀X ∈ Lp, (24)

we get the following dual representation for d2, X ∈ Lp:

d2(X) = sup{E(X∗X) : X∗ ∈ Lq,∃Y ∗ ∈ Lq : Y ∗ − E(Y ∗) = X∗, Y ∗ ∈ BLq (0, 1) ∩ −(Lq)+}
= sup
Y ∗∈BLq (0,1)∩−(Lq)+

〈Y ∗ − E(Y ∗), X〉 = sup
Y ∗∈BLq (0,1)∩−(Lq)+

〈Y ∗, X − E(X)〉 .

Using this dual representation we get that X∗ ∈ D2 and this concludes the proof.

Corollary 3.13. Let d2 : Lp → R be given by d2(X) = ||(X − E(X))−||p. Then we have for X ∈
Lp, X 6= 0

∂d2(X)
= {X∗ ∈ Lq : ||(X − E(X))−||p = 〈X∗, X〉 ,E(X∗) = 0, X∗ ≤ 1, || essupX∗ −X∗||q ≤ 1} (25)
= {X∗ − E(X∗) : X∗ ∈ Lq, X∗ ∈ BLq

(0, 1) ∩ −(Lq)+, ||(X − E(X))−||p = 〈X∗ − E(X∗), X〉} (26)
= {X∗ − E(X∗) : X∗ ∈ Lq, X∗ ∈ D2}, D2 := arg max

Y ∗∈BLq (0,1)∩−(Lq)+

〈Y ∗, X − E(X)〉 . (27)

Further it holds:

∂d2(0) = {X∗ ∈ Lq : E(X∗) = 0, X∗ ≤ 1, || essupX∗ −X∗||q ≤ 1} (28)
= {X∗ − E(X∗) : X∗ ∈ BLq

(0, 1) ∩ −(Lq)+}. (29)

Proof. (a) Using the conjugate function of d2 given in formula (20) and formula (2) it holds for
X ∈ Lp, X 6= 0:

∂d2(X) = {X∗ ∈ Lq : d2(X) + d∗2(X∗) = 〈X∗, X〉}
= {X∗ ∈ Lq : ||(X − E(X))−||p = 〈X∗, X〉 ,E(X∗) = 0, X∗ ≤ 1, || essupX∗ −X∗||q ≤ 1}.

We get the subdifferential formula (25). Further we get formula (28) by

∂d2(0) = {X∗ ∈ Lq : d2(0) + d∗2(X∗) = 0}
= {X∗ ∈ Lq : E(X∗) = 0, X∗ ≤ 1, || essupX∗ −X∗||q ≤ 1}.

(b) Using formula (23) we get the second subdifferential formula (26) for X ∈ Lp, X 6= 0:

∂d2(X) = {Y ∗ ∈ Lq : d2(X) + d∗2(Y ∗) = 〈Y ∗, X〉}
= {Y ∗ ∈ Lq : ||(X − E(X))−||p = 〈Y ∗, X〉 ,∃X∗ ∈ Lq : X∗ − E(X∗) = Y ∗, X∗ ≤ 0, ||X∗||q ≤ 1}
= {X∗ − E(X∗) : X∗ ∈ Lq, X∗ ∈ BLq

(0, 1) ∩ −(Lq)+, ||(X − E(X))−||p = 〈X∗ − E(X∗), X〉}.

We get the same result by considering the composition f2 ◦A, where f2 and its subdifferential is given
as in Corollary 3.4. We can apply Theorem 3.1 since the regularity condition (RC1) is fulfilled (f2 is
continuous). Thus for all X ∈ Lp it holds using formula (9):

∂d2(X) = ∂(f2 ◦A)(X) = A∗∂f2(AX)
= A∗{X∗ ∈ Lq : ||AX−||p = 〈X∗, AX〉 , X∗ ∈ BLq

(0, 1) ∩ −(Lq)+}
= {X∗ − E(X∗) : X∗ ∈ Lq, X∗ ∈ BLq

(0, 1) ∩ −(Lq)+, ||(X − E(X))−||p = 〈X∗, X − E(X)〉}. (30)
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Further we get formula (29) by

∂d2(0) = {Y ∗ ∈ Lq : d2(0) + d∗2(Y ∗) = 〈Y ∗, 0〉}
= {Y ∗ ∈ Lq : ∃X∗ ∈ Lq : X∗ − E(X∗) = Y ∗, X∗ ≤ 0, ||X∗||q ≤ 1}
= {X∗ − E(X∗) : X∗ ∈ BLq (0, 1) ∩ −(Lq)+}.

(c) Using Theorem 3.12 we get from formula (30), where the set D2 is given as above. This formula
can also be given by using the arguments in the proof of Corollary 3.11, part (c).

The next function we consider is d3 : Lp → R given by d3(X) = ||(X − E(X))+||p. The conjugate
function of d3 is given (use d∗3(X∗) = d∗2(−X∗), cf. [3])

d∗3(X∗) =
{

0, E(X∗) = 0, X∗ ≥ −1, || essupX∗ −X∗||q ≤ 1,
+∞, otherwise, (31)

=
{

0, ∃Y ∗ ∈ Lq : Y ∗ − E(Y ∗) = X∗, Y ∗ ∈ BLq ∩ (Lq)+,
+∞, otherwise. (32)

In analogy to Theorem 3.12 one can prove the following theorem by making use of the two formulas.

Theorem 3.14. Let X ∈ Lp be fixed. For all X∗ ∈ Lq it holds:

X∗ ∈ D3 := arg max
Y ∗∈BLq (0,1)∩(Lq)+

〈Y ∗, X − E(X)〉

⇔ 〈X∗, X − E(X)〉 = ||(X − E(X))+||p, X∗ ∈ BLq
(0, 1) ∩ (Lq)+.

Corollary 3.15. Let d3 : Lp → R be given by d3(X) = ||(X − E(X))+||p. Then it holds for X ∈
Lp, X 6= 0:

∂d3(X)
= {X∗ ∈ Lq : ||(X − E(X))+||p = 〈X∗, X〉 ,E(X∗) = 0, X∗ ≥ −1, || essupX∗ −X∗||q ≤ 1} (33)
= {X∗ − E(X∗) : X∗ ∈ Lq, X∗ ∈ BLq

(0, 1) ∩ (Lq)+, ||(X − E(X))+||p = 〈X∗ − E(X∗), X〉} (34)
= {X∗ − E(X∗) : X∗ ∈ Lq, X∗ ∈ D3},D3 := arg max

Y ∗∈BLq (0,1)∩(Lq)+

〈Y ∗, X − E(X)〉 (35)

and further

∂d3(0) = {X∗ ∈ Lq : E(X∗) = 0, X∗ ≥ −1, || essupX∗ −X∗||q ≤ 1} (36)
= {X∗ − E(X∗) : X∗ ∈ Lq, X∗ ∈ BLq

(0, 1) ∩ (Lq)+}. (37)

Proof. (a) By using the formula for the conjugate function given in formula (31) and formula (2) we
get for X ∈ Lp, X 6= 0 by

∂d3(X) = {X∗ ∈ Lq : d3(X) + d∗3(X∗) = 〈X∗, X〉}
= {X∗ ∈ Lq : ||(X − E(X))+||p = 〈X∗, X〉 ,E(X∗) = 0, X∗ ≥ −1, || essupX∗ −X∗||q ≤ 1}

the subdifferential formula (33). Further it holds:

∂d3(0) = {X∗ ∈ Lq : d3(0) + d∗3(X∗) = 0}
= {X∗ ∈ Lq : E(X∗) = 0, X∗ ≥ −1, || essupX∗ −X∗||q ≤ 1}.
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(b) By formula (32) we get formula (34).

The same formula for the subdifferential of d3 arises in analogy to the one in Corollary 3.13 using the
subdifferential of f3 and Theorem 3.1 (condition (RC1) is fulfilled). It holds for X ∈ Lp, X 6= 0:

∂d3(X) = ∂(f3 ◦A)(X) = A∗∂f3(AX)
= A∗{X∗ ∈ Lq : ||AX+||p = 〈X∗, AX〉 , X∗ ∈ BLq

(0, 1) ∩ (Lq)+}
= {X∗ − E(X∗) : X∗ ∈ Lq, X∗ ∈ BLq

(0, 1) ∩ (Lq)+, ||(X − E(X))+||p = 〈X∗, X − E(X)〉}.

Further it holds:

∂d3(0) = ∂(f3 ◦A)(0) = A∗∂f3(0)
= {X∗ − E(X∗) : X∗ ∈ Lq, X∗ ∈ BLq (0, 1) ∩ (Lq)+}.

(c) Formula (35) follows from Theorem 3.14. This formula can also be given by using the arguments
in the proof of Corollary 3.11, part (c).

Corollary 3.16. Let d4 : Lp → R be given by d4(X) = ||X − E(X)||ap (p ∈ (1,+∞), a > 1). Then it
holds for all X ∈ Lp, X 6= 0:

∂d4(X) (38)

=
{
X∗ ∈ Lq : ||X − E(X)||ap + min

c∈R

{
(a− 1)

∣∣∣∣∣∣∣∣1a (X∗ − c)
∣∣∣∣∣∣∣∣ a

a−1

q

}
= 〈X∗, X〉 ,E(X∗) = 0

}
. (39)

For all non-constant X ∈ Lp it holds:

∂d4(X)
= {X∗ ∈ Lq : a||X − E(X)||ap = 〈X∗, X〉 ,E(X∗) = 0,min

c∈R
||X∗ − c||q ≤ a||X − E(X)||a−1

p }. (40)

Proof. (a) Using the conjugate function of d4, d∗4 : Lq → R given by (cf. [3])

d∗4(X∗) =
{

min
c∈R

{
(a− 1)

∣∣∣∣ 1
a (X∗ − c)

∣∣∣∣ a
a−1
q

}
, if E(X∗) = 0,

+∞, otherwise,
(41)

we get the subdifferential formula (38).

(b) The function can be written as d4 = g ◦ d1, where g : R→ R is given by

g(x) =
{
xa, if x ≥ 0,
+∞, otherwise. (42)

Especially, the application of Theorem 3.2 is possible since g is convex, continuous, and increasing on
d1(Lp) + [0,+∞) = [0,+∞) and d1 is convex (especially (RC2) in formula (4) is fulfilled).
For X∗ ∈ Lq and λ > 0 we have

(λd1)∗(X∗) = λd∗1

(
X∗

λ

)
=
{

0, if E(X∗) = 0 and min
c∈R
||X∗ − c||q ≤ λ,

+∞, otherwise.

Since the function g is differentiable for all x > 0 it holds ∂g(x) = {axa−1}. Further, using the
conjugate function g∗ : R→ R given by

g∗(β) =
{

(a− 1)
(
β
a

) a
a−1

, if β ≥ 0,
0, otherwise,

(43)
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we have ∂g(0) = −R+, which follows by

x∗ ∈ ∂g(0) ⇔ g(0) + g∗(x∗) = 〈x∗, 0〉 ⇔ g∗(x∗) = 0 ⇔ x∗ ≤ 0,

and for x < 0 we have ∂g(x) = ∅ since g(x) = +∞. It finally holds

∂g(x) =

 axa−1, if x > 0,
−R+, if x = 0,
∅, if x < 0.

(44)

We get the following formula:

∂d4(X) = ∂(g ◦ d1)(X) =
⋃

λ∈∂g(d1(X))

∂(λd1)(X).

Let us assume that X is non-constant. Then it holds d1(X) > 0 and hence ∂g(d1(X)) = a(d1(X))a−1 =
a||X − E(X)||a−1

p .
It follows now:

∂d4(X)

=
⋃

λ=a||X−E(X)||a−1
p

∂(λd1)(X)

= {X∗ ∈ Lq : (λd1)(X) + (λd1)∗(X∗) = 〈X∗, X〉 , λ = a||X − E(X)||a−1
p }

= {X∗ ∈ Lq : λ||X − E(X)||p = 〈X∗, X〉 ,E(X∗) = 0,
min
c∈R
||X∗ − c||q ≤ λ, λ = a||X − E(X)||a−1

p }

= {X∗ ∈ Lq : a||X − E(X)||a−1
p ||X − E(X)||p = 〈X∗, X〉 ,E(X∗) = 0,

min
c∈R
||X∗ − c||q ≤ a||X − E(X)||a−1

p }

= {X∗ ∈ Lq : a||X − E(X)||ap = 〈X∗, X〉 ,E(X∗) = 0,min
c∈R
||X∗ − c||q ≤ a||X − E(X)||a−1

p },

which is formula (40).

Corollary 3.17. Let d5 : Lp → R be given by d5(X) = ||(X − E(X))−||ap (p ∈ (1,+∞), a > 1). Then
it holds for all X ∈ Lp:

∂d5(X) =
{
X∗ ∈ Lq : ||X − E(X)||ap + (a− 1)

∣∣∣∣1
a

(essupx∗ − x∗)
∣∣∣∣ a

a−1
q

= 〈X∗, X〉 ,E(X∗) = 0
}
.

(45)

Proof. Using the conjugate function of d5, d∗5 : Lp → R given by (cf. [3])

d∗5(X∗) =
{

(a− 1)
∣∣∣∣ 1
a (essupX∗ −X∗)

∣∣∣∣ a
a−1
q

, if E(X∗) = 0,
+∞, otherwise,

(46)

we get the subdifferential formula (45).

4 Risk Functions in Portfolio Optimization Problems
In a paper of Ruszczyński and Shapiro [12] some risk functions and their subdifferentials are considered.
Our aim is to rediscover these results by using conjugate duality techniques as done in the above section
and to extend them to other functions.
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An uncertain outcome is represented by the random variable X ∈ Lp. Ruszczyński and Shapiro assume
that the smaller the values of X the better. Thus, their aim is to minimize a so-called risk function of
the form

E(X) + cd(X),

where d : Lp → R is any deviation measure and c ∈ R+.

As we will see in the next chapter in portfolio optimization problems we minimize the risk of the
portfolio and maximize its expected return. Thus risk functions r : Lp → R we consider in our
framework have the form

r(X) = λd(X)− E(X),

where λ > 0. This results in a different sign and other weights (c and λ) in the subdifferential formulas
in contrast to the one in [12]. For some risk functions the subdifferential formulas are given in the
following corollaries. The notation is used according to [12].

Corollary 4.1 (Mean-deviation risk function). Let r1 : Lp → R be the risk function given by r1(X) =
λd1(X)− E(X) = λ||X − E(X)||p − E(X) for λ > 0. Then it holds for X ∈ Lp, X 6= 0

∂r1(X) = {X∗ − E(X∗)− 1 : X∗ ∈ Lq, X∗ ∈ D1′}, (47)
D1′ = arg max

X∗∈Lq,
||X∗||q=λ

〈X∗, X − E(X)〉 (48)

and further

∂r1(0) = {X∗ − E(X∗)− 1 : X∗ ∈ Lq, ||X∗||q ≤ λ} (49)

Proof. It holds ∂r1(X) = λ∂d1(X) − 1 (see Lemma 3.8). We use Corollary 3.11, formula (14) to get
the following for X ∈ Lp, X 6= 0:

∂r1(X) = {λ(X∗ − E(X∗))− 1 : X∗ ∈ Lq, X∗ ∈ D1},
D1 := arg max

X∗∈Lq,
||X∗||q=1

〈X∗, X − E(X)〉 .

By setting λX∗ =: X∗ we get formula (47).

Further it holds:

∂r1(0) = λ∂d1(0)− 1
= λ{X∗ − E(X∗) : X∗ ∈ Lq, ||X∗||q ≤ 1} − 1
= {λ(X∗ − E(X∗))− 1 : X∗ ∈ Lq, ||X∗||q ≤ 1}
= {X∗ − E(X∗)− 1 : X∗ ∈ Lq, ||X∗||q ≤ λ}

Remark 4.2. Ruszczyński and Shapiro give a formula for the subdifferential of the risk function
E(X) + c||X − E(X)||p at zero, called Ap (cf. [12, formula (4.7)]), namely (using our notations)

Ap = {X∗ − E(X∗) + 1 : Z∗ ∈ Lq, ||X∗||q ≤ c}.

We get the same result from formula (49).
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Corollary 4.3 ((Lower) Mean-semideviation risk measure). Let the risk function r2 : Lp → R be given
by r2(X) = λd2(X)− E(X) = λ||(X − E(X))−||p − E(X) for λ > 0. Then it holds for X ∈ Lp:

∂r2(X) = {X∗ − E(X∗)− 1 : X∗ ∈ Lq, X∗ ∈ D2′} , (50)
D2′ = arg max

X∗∈BLq (0,λ)
∩−(Lq)+

〈X∗, X − E(X)〉 . (51)

Proof. As in the latter example we have ∂r2(X) = λ∂d2(X)− 1 (see Lemma 3.8) and using Corollary
3.13, formula (27) and get

∂r2(X) = {λ(X∗ − E(X∗))− 1 : X∗ ∈ Lq, X∗ ∈ D2} ,
D2 = arg max

X∗∈BLq (0,1)
∩−(Lq)+

〈X∗, X − E(X)〉 .

By setting λX∗ =: X∗ we get formula (50) and this concludes the proof.

Corollary 4.4 ((Upper) Mean-semideviation risk measure). Let the risk function r3 : Lp → R be
given by r3(X) = λd3(X)− E(X) = λ||(X − E(X))+||p − E(X) for λ > 0. Then it holds for X ∈ Lp:

∂r3(X) = {X∗ − E(X∗)− 1 : X∗ ∈ Lq, X∗ ∈ D3′} , (52)
D3′ = arg max

X∗∈BLq (0,λ)
∩(Lq)+

〈X∗, X − E(X)〉 . (53)

Proof. In analogy with Corollary 4.3 we get formula (52) by using Corollary 3.15, formula (35).

Remark 4.5. Formula (52) is identical to the formula that was given in [12, formula (4.12)].
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[12] A. Ruszczyński and A. Shapiro. Optimization of convex risk functions. Mathematics of Operations
Research, 31(3):433–452, 2006.
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