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Abstract

Given a finitely generated amenable group we consider ergodic ran-
dom Schrödinger operators on a Cayley graph with random potentials and
random boundary conditions. We show that the normalised eigenvalue
counting functions of finite volume parts converge uniformly. The inte-
grated density of states as the limit can be expressed by a Pastur-Shubin
formula. The spectrum supports the corresponding measure and disconti-
nuities correspond to the existence of compactly supported eigenfunctions.
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1 Introduction

In this paper we study the integrated density of states for random Schrödinger
operators on Cayley graphs over a finitely generated amenable group G. As we
are concerned with the metric graph, the functions in question are defined on the
edges e of the graph. For such an edge e the operator acts as (Hf)e = −f ′′e +Vefe,
where Ve is a L∞-function. Selfadjointness of such an operator is obtained by
choosing appropriate boundary conditions. We will only deal with local boundary
conditions acting separately on each vertex v and taking into account only the
functions of the edges connected with v. Randomness occurs in the choice of
the potential and the boundary conditions. More precisely, given a finite set of
potentials and a finite set of boundary conditions, we may choose the potential
and the boundary conditions by random, such that the operator family (Hω)ω∈Ω

becomes ergodic, where (Ω,A,P) is a probability space and α : G × Ω→ Ω is an
ergodic group action on Ω.
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The restriction of such an operator Hω to a finite subgraph has discrete spec-
trum and therefore possesses a well-defined eigenvalue counting function. By
increasing the finite subgraph, we study the question whether (and with respect
to which topology) the associated normalised eigenvalue counting functions con-
verge. The aim of this paper is to show uniform convergence. We furthermore
prove that the limit function, which is called integrated density of states (IDS),
can be expressed via a Pastur-Shubin formula.

In [3] the authors verified this for G = Zd with standard edges. The present
paper extends this to a large class of Cayley graphs over amenable groups. The
discrete case is treated in [9] and [12] where uniform convergence of the eigenvalue
counting functions is proven for operators on `2(Zd) and on combinatorial Cayley
graphs, respectively.

In section 2 we give some basic features on the geometric setting. Section 3
describes the operator families in question. Restrictions to finite subgraphs are
discussed in section 4, where we also state the main results. In section 5 we apply
an ergodic theorem obtained in [12] to a sequence of spectral shift functions for
an exhaustion of subgraphs. These results are used in section 6 to prove our main
theorem.

2 Metric Cayley graphs over amenable groups

Let G be a group, S ⊆ G a finite but not necessarily symmetric set of generators
and id ∈ G the unit element. We define the distance between two elements
g, h ∈ G to be the smallest number of elements in S ∪ S−1 one needs to turn h
into g by left multiplication, i. e.

d(g, h) :=

{
min{k ∈ N | ∃s1, . . . , sk ∈ S ∪ S−1 with s1 · · · skh = g} if g 6= h

0 else.

We denote the set of all finite subsets of G by F . The diameter of a set Q ∈ F
is given by diamQ := max{d(g, h) | g, h ∈ Q}. For a subset Q ⊆ G and g ∈ G
we set d(g,Q) := min{d(g, h) | h ∈ Q}. Given R ∈ N and Q ∈ F we define
∂RQ = {g ∈ G | g ∈ Q, d(g,G \Q) ≤ R or g /∈ Q, d(g,Q) ≤ R}. We assume that
G is amenable, i. e., there exists a sequence (Qn)n∈N of elements in F such that

lim
n→∞

|SQn \Qn|
|Qn|

= 0.

Such a sequence (Qn) is called Følner sequence. A Følner sequence is said to be
tempered if there exists C > 0 such that∣∣∣∣∣

n−1⋃
k=1

Q−1
k Qn

∣∣∣∣∣ ≤ C|Qn|
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holds for all n ∈ N. We say that a set Q ∈ F symmetrically tiles G with grid
T ⊆ G if T = T−1 and G is the disjoint union of the sets Qg, g ∈ T .

Throughout the paper we assume that there exists a tempered Følner sequence
(Qn) such that each Qn symmetrically tiles G.

Remark 2.1. (a) It is easy to see that for a Følner sequence (Qn)n∈N

lim
n→∞

|∂RQn|
|Qn|

= 0

holds true for all R ∈ N, c.f. [12].

(b) Note that each Følner sequence has a tempered subsequence, c.f. [13].

(c) Let T be a finite index subgroup of G and Q an associated fundamental
domain, i.e. Q is a selection of representatives of the left cosets of T in
G. Then Q symmetrically tiles G with grid T . Therefore, each group with
a sequence of finite index subgroups (Gn)n∈N and associated fundamental
domains Fn, n ∈ N such that (Fn)n∈N is a Følner sequence fits in our setting.
In [7] Krieger proved in a slight extension of a result of Weiss in [15] that
each residually finite, amenable group obeys such sequences.

For a given group G and a finite set of generators S we denote the induced
(directed) metric Cayley graph by Γ = Γ(G,S) = (V , E , γ), i.e., V = G is the
vertex set, E the set of edges and γ = (γ0, γ1) : E → V×V associates to each edge
e ∈ E the starting vertex γ0(e) and the end vertex γ1(e). There will be an edge
e from v to w if there exists s ∈ S such that w = sv. Every edge e ∈ E will be
identified with the interval [0, 1].

Example 2.2. Let G = Z2 and set

S1 = {(1, 0), (0, 1)} and S2 = {(0, 0), (1, 1), (1, 0), (−1, 0)}.

Then S1 and S2 are generating systems for G. We denote the corresponding
metric Cayley graphs by Γ1 = Γ1(G,S1) and Γ2 = Γ2(G,S2). Note that while Γ1

is the usual graph of Z2 with standard edges, Γ2 contains multiple edges as well
as loops.

3 Random Schrödinger Operators on graphs

Let B ⊆ L∞(0, 1) be a finite subset. For e ∈ E let Ve ∈ B. In the Hilbert space

HΓ :=
⊕
e∈E

L2(0, 1)
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Figure 1: Illustration of Γ1(G,S1) and Γ2(G,S2) from Example 2.2

we define the maximal operator

D(Ĥ) :=
⊕
e∈E

W 2,2(0, 1),

(Ĥf)e := −f ′′e + Vefe (e ∈ E).

In order to obtain selfadjoint realisations we need to impose boundary condi-
tions at the vertices. We will not consider the most general boundary conditions,
but rather restrict ourselves to so-called local boundary conditions.

For v ∈ V ,
Ev,j := {e ∈ E | γj(e) = v} (j = 0, 1)

describe the sets of all edges starting or ending at v, respectively, and

Ev :=
(
Ev,0 × {0}

)
∪
(
Ev,1 × {1}

)
encodes all edges connected with v (where loops are counted twice).

For f ∈ D(Ĥ) and v ∈ V we define the trace mapping (or boundary value
mapping) trv f ∈ KEv by

(trv f)(e, j) := fe(j) ((e, j) ∈ Ev).

Furthermore, define the signed trace strv f
′ ∈ KEv by

(strv f
′)(e, j) := (−1)jf ′e(j) ((e, j) ∈ Ev).

Remark 3.1. (a) Note that W 2,2(0, 1) ⊆ C1[0, 1] by standard Sobolev argu-
ments and hence for f ∈ D(Ĥ) the vectors trv f and strv f

′ are well-defined
(v ∈ V).

(b) The definition of the signed trace gives that the orientation of the edges
plays a minor role. In particular only the boundary conditions take into
account the direction of the edges.

Definition (local boundary conditions). Let v ∈ V . Local boundary conditions
at v are encoded in a subspace Uv ⊆ KEv ⊕KEv with dimUv = |Ev| such that

(f ′1 | f2)− (f1 | f ′2) = 0 ((f1, f
′
1), (f2, f

′
2) ∈ Uv),

4



where (· | ·) denotes the usual inner product in KEv . We say that f ∈ D(Ĥ)
satisfies the local boundary condition Uv at v ∈ V , if (trv f, strv f

′) ∈ Uv. Local
boundary conditions are a family U := (Uv)v∈V of local boundary conditions for
each vertex v ∈ V .

For a local boundary condition U the operator

D(H) :=
{
f ∈ D(Ĥ) | (trv f, strv f ′)v∈V ∈ U

}
,

(Hf)e := (Ĥf)e = −f ′′e + Vefe (e ∈ E)

is selfadjoint; cf. [6, 5, 8, 3].

Example 3.2. (a) Dirichlet boundary conditions. Let UD
v := {0}Ev ⊕KEv . Then

UD
v encodes Dirichlet boundary conditions at v, since trv f = 0 (f ∈ D(H)).

(b) Neumann boundary conditions. Let UN
v := KEv⊕{0}Ev . Then UN

v encodes
Neumann boundary conditions at v, since strv f

′ = 0 (f ∈ D(H)).

Example 3.3 (Dirichlet-Laplacian). Let Ve = 0 for all e ∈ E . Then the operator
H with Dirichlet boundary conditions (UD

v ) is called Dirichlet Laplacian and is
denoted by −∆D. We have

D(−∆D) =
⊕
e∈E

W 1,2
0 ∩W 2,2(0, 1),

(−∆Df)e = −f ′′e (e ∈ E).

Now, we want to introduce randomness in the choice of potentials and bound-
ary conditions.

Note that G acts on Γ in the following way: For e ∈ E and g ∈ G there is also
a unique edge e ◦ g ∈ E connecting γ0(e)g−1 and γ1(e)g−1. Shorthand, we can
therefore write

γ(e ◦ g) = (γ0(e)g−1, γ1(e)g−1).

Let (Ω,A,P) be a probability space and let G act ergodically on (Ω,A,P),
i. e., if α : G × Ω → Ω is the group action on Ω, then every subset of Ω which is
invariant under (αg)g∈G has measure either zero or one. Additionally we want α
to act measure preserving, i. e. P(A) = P(αg(A)) for all g ∈ G and all A ∈ A.

A random potential is a map V : Ω→
∏

e∈E B satisfying

V (αg(ω))e◦g = V (ω)e (g ∈ G, e ∈ E). (1)

Since a Cayley graph is very regular (i. e. every vertex has the same degree
and for two vertices there exists a bijective mapping between the adjacent edges
at these vertices), we can choose local boundary conditions Uid at id ∈ V and
then shift these boundary conditions to an arbitrary v ∈ V to obtain a local
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boundary condition at v. Hence we can choose random boundary conditions in
the following way:

Let U be a finite set of local boundary conditions at id. A random boundary
condition is a map U : Ω→

∏
v∈V U satisfying

U(αg(ω))v = U(ω)vg (g ∈ G, v ∈ V). (2)

The family of random Schrödinger operators (Hω)ω∈Ω on HΓ is defined by

D(Hω) :=
{
f ∈ D(Ĥ) | (trv f, strv f ′)v∈V ∈ U(ω)

}
, (3)

(Hωf)e := −f ′′e + V (ω)efe (e ∈ E), (4)

for ω ∈ Ω. For each ω ∈ Ω, Hω is selfadjoint and semibounded from below. More
precisely, there is C ≥ 0 such that Hω + C ≥ 0 for all ω ∈ Ω.

4 Restrictions to finite subsets

Let Q ⊆ G be a finite subset. The associated subgraph ΓQ = (VQ, EQ, γQ) of Γ is
defined as follows:

EQ :=
⋃
v∈Q

Ev,0, VQ := Q ∪ SQ, γQ := γ|EQ .

We also define inner vertices V iQ and boundary vertices V∂Q by

V iQ := {v ∈ VQ | Ev,0 ∪ Ev,1 ⊆ EQ} , V∂Q := VQ \ V iQ,

and accordingly inner edges E iQ and boundary edges E∂Q by

E iQ :=
{
e ∈ EQ | γ0(e), γ1(e) ∈ V iQ

}
, E∂Q := EQ \ E iQ.

We define the restriction HQ
ω of Hω to ΓQ on

HΓQ =
⊕
e∈EQ

L2(0, 1)

by

D(HQ
ω ) :=

{
f ∈

⊕
e∈EQ

W 2,2(0, 1) | (trv f, strv f ′) ∈ U(ω)v (v ∈ V iQ),

(trv f, strv f
′) ∈ UD

v (v ∈ V∂Q)
}
,

(HQ
ω f)e := −f ′′e + V (ω)efe (e ∈ EQ).
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This operator is again selfadjoint and semibounded from below. Furthermore,
HQ
ω has purely discrete spectrum; cf. [8, Theorem 18].

Let us enumerate the eigenvalues (λn(HQ
ω ))n∈N as an increasing sequence,

counting their multiplicities. The eigenvalue counting function nQω : R → N0 is
defined by

nQω (λ) := |
{
n ∈ N | λn(HQ

ω ) ≤ λ
}
| = Tr 1(−∞,λ](H

Q
ω ).

Then nQω is monotone increasing and right continuous, i.e. a distribution function.
The volume-scaled version of nQω will be denoted by NQ

ω , i. e.,

NQ
ω (λ) :=

1

|EQ|
nQω (λ) (λ ∈ R).

It is associated to a pure point measure µQω . Note that |EQ| = |S| |Q|.
We now state the main theorem of this paper.

Theorem 4.1. Let (Ql)l∈N be a Følner sequence in G. Then there is N : R → R
monotone increasing and right continuous (i. e. a distribution function), such that

lim
l→∞

∥∥NQl
ω −N

∥∥
∞ = 0

for P-a. a. ω ∈ Ω. In particular, NQl
ω → N pointwise for P-a. a. ω ∈ Ω.

Furthermore, for λ ∈ R and Q ⊆ G finite

N(λ) =
1

|EQ|

∫
Ω

Tr
(
1EQ1(−∞,λ](Hω)

)
dP(ω). (5)

Note that N(λ) does not depend on the choice of Q.

The distribution function N is called the integrated density of states (IDS).
Let µ be the corresponding measure. Theorem 4.1 states that the IDS is the
uniform limit of the normalised eigenvalue counting functions on finite subgraphs
and can be expressed by a Pastur-Shubin trace formula in (5). The operator Tr
denotes the usual trace in L2.

By ergodicity of (Hω)ω∈Ω we obtain the following Theorem, which is an ana-
logue of [3, Theorem 5]. For the proof we may apply the general framework of
[10, Theorem 5.1].

Theorem 4.2. There exist subsets Σ,Σpp,Σsc,Σac,Σdisc,Σess ⊆ R and Ω′ ⊆ Ω
with P(Ω′) = 1 such that σ(Hω) = Σ and σ•(Hω) = Σ• for all the spectral types
• ∈ {pp, sc, ac, disc, ess} and all ω ∈ Ω′.

As a consequence, we can relate the measure µ with the P-a. s. spectrum Σ of
(Hω), cf. [10, 3].
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Corollary 4.3. Σ is the topological support of µ.

Denote by

D :=

{
f ∈

⊕
e∈E

L2(0, 1) | ∃ E ′ ⊆ E finite : fe = 0 (e ∈ E \ E ′)

}
the set of compactly supported L2-functions on Γ.

Corollary 4.4. Let

Σcomp := {λ ∈ R | for P-a. a. ω ∈ Ω exists fω ∈ D(Hω) ∩D : Hωfω = λfω} .

Then
Σcomp = {λ ∈ R | µ({λ}) > 0} .

Remark 4.5. (a) The set {λ ∈ R | µ({λ}) > 0} is the set of atoms of µ and
equals the set of discontinuities of the IDS.

(b) The proof of Corollary 4.4 follows the lines of [3, Proof of Corollary 7].

5 Convergence of spectral shift functions

The next aim is the application of a Banach-space valued ergodic theorem given
in [12]. Therefore it is necessary to prove certain properties of the spectral shift
functions. Before this we introduce the notion concerning the colouring of the
Cayley graph Γ = (V , E , γ) associated to a given group G with finite set of
generators S.

Let A be an arbitrary finite set. A map C : V → A is called a colouring of Γ
and a map P : D(P )→ A, where D(P ) ∈ F , a pattern. Note that, as before, F
denotes the set of all finite subsets of G. We write P for the set of all patterns
and for given Q ∈ F we define the set P(Q) := {P ∈ P | D(P ) = Q}. Given a
pattern P and a set Q ⊆ D(P ) the restriction of P on Q is the map P |Q : Q→ A
with P |Q(g) = P (g) for all g ∈ Q. Equivalently, the restriction of a colouring
C to a finite set Q ∈ F is given by C|Q : Q → A, C|Q(g) = C(g) for all g ∈ Q.
For P ∈ P and x ∈ G the translation of P by x is defined by Px : D(P )x → A,
(Px)(g) = P (gx−1). We say that two patterns P, P ′ ∈ P are equivalent (and
write P ∼ P ′) if there exists x ∈ G with D(P )x = D(P ′) and (Px)(g) = P ′(g)
for all g ∈ D(P ′). The induced quotient set is denoted by P̃ and the equivalence
class for given P ∈ P by P̃ ∈ P̃ . For given patterns P1, P2 ∈ P we set ]P1(P2) to
be the number of occurrences of P1 in P2, i. e.

]P1(P2) := |{P ∈ P | P ∼ P1, D(P ) ⊆ D(P2)}|.

Definition. A function b : F → [0,∞) is called boundary term if b(Q) = b(Qx)
for all Q ∈ F and x ∈ G, limn→∞ |Qn|−1b(Qn) = 0 for any Følner sequence (Qn)
and |Q|−1b(Q) is uniformly bounded for all Q ∈ F .
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Definition. Let (X, ‖·‖) be a Banach space and a function F : F → X be given.
F is called

(i) almost additive if there exists a boundary term b : F → [0,∞) such that
for any pairwise disjoint subsets Qk, k = 1, . . . ,m∥∥∥∥∥F (Q)−

m∑
k=1

F (Qk)

∥∥∥∥∥ ≤
m∑
k=1

b(Qk)

holds, where Q =
⋃m
k=1 Qk;

(ii) C-invariant if F (Q) = F (Qx) for all x ∈ G and all Q ∈ F with C|Q ∼ C|Qx.
For a given almost additive and C-invariant function F : F → X we define a

function F̃ : P̃ → X by setting

F̃ (P̃ ) =

{
F (Q) if ∃ Q ∈ F such that ˜C|Q = P̃ ,

0 else.

Note that this is well-defined by C-invariance of F .

Theorem 5.1. Let G be an amenable group generated by a finite set S, Γ =
(V , E , γ) the associated Cayley graph, A a finite set and C : V → A be an arbitrary
colouring. Assume that there exists a Følner sequence (Qn) in G such that each
Qn symmetrically tiles G. Let the frequencies νP := limj→∞ |Qj|−1]P (C|Qj) exist
for all patterns P ∈

⋃
n∈NP(Qn). Furthermore let (X, ‖ · ‖) be a Banach-space

and F : F → X an almost additive and C-invariant mapping. Then the limits

lim
j→∞

F (Qj)

|Qj|
= lim

n→∞

∑
P∈P(Qn)

νP
F̃ (P̃ )

|Qn|

exist and are equal.

See [12] for a proof of Theorem 5.1. Now we show that in our situation the
assumptions of the theorem are fulfilled almost surely. For ω ∈ Ω define the map
Cω : V → A by

Cω(v) :=
(
(V (ω)e)e∈Ev,0 , U(ω)v

)
where A := (⊕e∈Eid,0B)× U = (⊕s∈SB)× U .

(6)
To show the existence of the frequencies νP we need the following theorem, which
is a special case of the Lindenstrauss’ pointwise ergodic theorem in [13].

Theorem 5.2. Let G act from the left on a measure space (Ω,A,P) by an er-
godic and measure preserving transformation α and let (Qj) be a tempered Følner
sequence. Then for any f ∈ L1(P)

lim
j→∞

1

|Qj|
∑
g∈Qj

f(αg(ω)) =

∫
Ω

f(ω)dP(ω)

holds for P-a. a. ω ∈ Ω.
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Lemma 5.3. Let (Qj) be a Følner sequence and Cω and A be given as in (6)
for all ω ∈ Ω. Then there exists a set Ω̃ ⊆ Ω with P(Ω̃) = 1, such that for each
P ∈

⋃
n∈NP(Qn) and ω ∈ Ω̃ the limit

νP = lim
j→∞

]P (Cω|Qj)
|Qj|

exists and is independent of ω ∈ Ω̃.

Proof. Let P : Q→ A be given for some Q ∈ F with diamQ = R. W. l. o. g. we
may assume that id ∈ Q, which is possible since we are interested in counting
translates of P . Obviously the following inequalities hold∑

g∈Qn\∂RQn

1A(ω)(g) ≤ ]P (Cω|Qn) ≤
∑
g∈Qn

1A(ω)(g),

where A(ω) := {g ∈ G | P (v) = Cω(vg) for all v ∈ Q}. By the properties of U
and V given in (1) and (2) we have for given g, v ∈ G, ω ∈ Ω

Cω(vg) =
(
(V (ω)e)e∈Evg,0 , U(ω)vg

)
=
(
(V (αg(ω))e)e∈Ev,0 , U(αg(ω))v

)
= Cαg(ω)(v).

Therefore,

1A(ω)(g) = 1{g∈G|P (v)=Cαg(ω)(v) for all v∈Q}(g) = fP (αg(ω)),

where

fP (ω) =

{
1 if P (v) = Cω(v) for all v ∈ Q,
0 else,

and hence ∑
g∈Qn\∂RQn

fP (αg(ω)) ≤ ]P (Cω|Qn) ≤
∑
g∈Qn

fP (αg(ω)).

This gives

lim sup
n→∞

]P (Cω|Qn)

|Qn|
≤ lim sup

n→∞

1

|Qn|
∑
g∈Qn

fP (αg(ω))

and

lim inf
n→∞

]P (Cω|Qn)

|Qn|
≥ lim inf

n→∞

1

|Qn|
∑

g∈Qn\∂RQn

fP (αg(ω)) = lim inf
n→∞

1

|Qn|
∑
g∈Qn

fP (αg(ω)),

where we used that (Qn) is a Følner sequence, cf. Remark 2.1. As α is an ergodic
an measure preserving action Theorem 5.2 yields a set ΩP ⊆ Ω of full measure
such that the limits

lim
n→∞

]P (Cω|Qn)

|Qn|
= lim

n→∞

1

|Qn|
∑
g∈Qn

fP (αg(ω)) =

∫
Ω

fP (ω)dP(ω)

exist and are equal for all ω ∈ ΩP . The desired set Ω̃ is the (countable) intersec-
tion of these ΩP for P ∈

⋃
n∈NP(Qn).
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We now focus on the spectral shift function. Since the operators HQ
ω are

unbounded, the eigenvalue counting functions nQω are unbounded as well. How-
ever, the spectral shift function for two realisations HQ

1 and HQ
2 with different

boundary conditions is bounded, which will be shown in Lemma 5.4.

Definition. Let H be a Hilbert space and H1, H2 be selfadjoint, lowerbounded
operators with discrete spectra. Then the spectral shift function is defined by

ξH1,H2(λ) := nH2(λ)− nH1(λ) (λ ∈ R).

Thus, to obtain properties of nH2 it suffices to study properties of nH1 and
ξH1,H2 .

Lemma 5.4. Let H0 be a densely defined, closed symmetric and lower bounded
operator with deficiency index k. Let H1 and H2 be two selfadjoint extensions of
H0 with discrete spectrum. Then

|ξH1,H2| ≤ k.

Proof. By the min-max principle, for any selfadjoint operator H we have

nH(λ) = max {dimX | X ⊆ D(H) linear subspace, H|X ≤ λ} (λ ∈ R),

cf. [3]. Now, for λ ∈ R,

nH2(λ) = max {dimX | X ⊆ D(H2) linear subspace, H2|X ≤ λ}
≤ max {dimX | X ⊆ D(H0) linear subspace, H2|X ≤ λ}+ k

= max {dimX | X ⊆ D(H0) linear subspace, H1|X ≤ λ}+ k

≤ max {dimX | X ⊆ D(H1) linear subspace, H1|X ≤ λ}+ k

= nH1(λ) + k.

Changing the boundary conditions of a selfajoint operator on a graph at one
vertex v yields a perturbation of rank at most 2 |Ev|. Hence, the spectral shift
function of two selfadjoint operators H1 and H2 on a graph which differ only by
the boundary conditions at a finite vertex set Q satisfies

|ξH1,H2| ≤ 2
⋃
v∈Q

|Ev| = 4 |Q| |S| . (7)

In section 4 we defined the eigenvalue counting function nQω for the restriction
of the operator Hω to the subgraph ΓQ generated by the set Q ∈ F . Similarly
we denote the eigenvalue counting function for the Dirichlet Laplacian −∆D

restricted to ΓQ by nQD. The Dirichlet boundary conditions induce that nQD decom-
poses into a sum of counting functions, i. e.,

nQD(λ) =
∑
e∈EQ

nD(λ) = |EQ|nD(λ) = |Q||S|nD(λ), (8)
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where nD is the eigenvalue counting function of the Dirichlet Laplacian on the
space L2(0, 1). We are interested in the spectral shift function

ξQω (λ) := nQω (λ)− nQD(λ) = |Q||S|(NQ
ω (λ)− nD(λ)). (9)

Denote the Banach space of the right-continuous, bounded functions f : R → R
equipped with supremum norm by B(R). We study the behaviour of the functions
ξQnω as n → ∞ as elements of B(R), where (Qn) is a Følner sequence. To this
end we prove that ξω : F → B(R), Q 7→ ξQω is almost additive and C-invariant,
which makes it possible to apply Theorem 5.1.

Lemma 5.5. Let ω ∈ Ω and ξω : F → B(R), Q 7→ ξQω , where ξQω is given as in
(9). Then ξω is almost additive and Cω-invariant.

Proof. Let ω ∈ Ω and Qi ∈ F , i = 1, . . . , k pairwise disjoint be given and set
Q :=

⋃k
i=1Qi. Then∥∥∥∥∥ξQω −

k∑
i=1

ξQiω

∥∥∥∥∥ =

∥∥∥∥∥nQω − nQD +
k∑
i=1

(nQiω − n
Qi
D )

∥∥∥∥∥
≤

∥∥∥∥∥nQω −
k∑
i=1

nQiω

∥∥∥∥∥+

∥∥∥∥∥nQD −
k∑
i=1

nQiD

∥∥∥∥∥
holds, where we denote by ‖ · ‖ the supremum norm. Equation (8) yields nQD =∑k

i=1 n
Qi
D , therefore it remains to prove almost additivity for nω : F → B(R),

Q 7→ nQω . Note that
∑k

i=1 n
Qi
ω is the eigenvalue counting function of the oper-

ator ⊕ki=1H
Qi
ω , which equals HQ

ω up to the boundary conditions on the vertices⋃k
i=1 V∂Qi . Now, (7) gives∥∥∥∥∥nQω −

k∑
i=1

nQiω

∥∥∥∥∥ ≤ 4 |S|

∣∣∣∣∣
k⋃
i=1

V∂Qi

∣∣∣∣∣ ≤ 4 |S| ·
k∑
i=1

|∂1Qi|

which proves almost additivity of ξQω with boundary term b(Qi) := 4 |S| |∂1Qi|.
The C-invariance of ξω follows directly from its definition.

Note that almost additivity and C-invariance easily imply boundedness, see
[12] for instance.

Corollary 5.6. Let G be an amenable group generated by a finite set S, Γ =
(V , E , γ) the associated Cayley graph, (Qn) a tempered Følner sequences such
that each Qn symmetrically tiles G. Then the limit

lim
j→∞

ξ
Qj
ω

|Qj||S|

exists in B(R) for almost all ω ∈ Ω and is independent of ω.

12



6 Proof of main theorem

We now prove our main Theorem.

Proof of Theorem 4.1. (i) First, we show convergence of (|EQl |
−1 nQlω )l∈N. By

Corollary 5.6, the sequence (|EQl |
−1 ξQlω )l∈N converges uniformly. Hence, there

is N : R → R such that

1

|EQl |
nQlω =

1

|EQl |
ξQlω + nD → N as l→∞

uniformly P-a. s.
(ii) Let Q ⊆ G finite. Define Ñ : R → [0,∞] by

Ñ(λ) :=
1

|EQ|

∫
Ω

Tr
(
1EQ1(−∞,λ](Hω)

)
dP(ω).

We show independence of Ñ of the choice of Q: by the invariance assumptions,
we obtain that

1∣∣E{x}∣∣
∫

Ω

Tr
(
1E{x}1(−∞,λ](Hω)

)
dP(ω) =

1

|S|

∫
Ω

Tr
(
1E{x}1(−∞,λ](Hω)

)
dP(ω)

does not depend on x. Hence, independence of Q follows.
(iii) We show the equality (5), i. e., Ñ = N . Let λ ∈ R and Q ⊆ G finite.

Then

Ñ(λ) =
1

|EQ|

∫
Ω

Tr
(
1EQ1(−∞,λ](Hω)

)
dP(ω)

= lim
l→∞

1

|EQl |

∫
Ω

Tr
(
1EQl1(−∞,λ](Hω)

)
dP(ω),

and

N(λ) = lim
l→∞

1

|EQl |
Tr
(
1(−∞,λ](H

Ql
ω )
)

=

∫
Ω

lim
l→∞

1

|EQl |
Tr
(
1(−∞,λ](H

Ql
ω )
)
dP(ω)

= lim
l→∞

1

|EQl |

∫
Ω

Tr
(
1(−∞,λ](H

Ql
ω )
)
dP(ω),

since Ñ does not depend on the choice of Q, P is a probability measure and N is
the uniform limit P-a. s.
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It suffices to show that the measures associated with N and Ñ , respectively,
are equal, which in turn follows by vague convergence of the approximating mea-
sures (µλl )l∈N and (µ̃λl )l∈N, respectively, defined by〈

f, µλl
〉

:=
1

|EQl |

∫
Ω

Tr
(
f(HQl

ω )
)
dP(ω),〈

f, µ̃λl
〉

:=
1

|EQl |

∫
Ω

Tr
(
1EQlf(Hω)

)
dP(ω),

for f ∈ C0(R).
By the Stone-Weierstraß Theorem ([2, Theorem A.10.1]) it suffices to show

that ∫
Ω

1

|EQl |
Tr
(
1EQlf(Hω)− f(HQl

ω )
)
dP(ω)→ 0 as l→∞

for all f of the form f(t) := (t− z)−1 with z ∈ C \ R, since

lin
{
t 7→ (t− z)−1; z ∈ C \ R

}
is dense in C0(R).

For l ∈ N we can split Γ into ΓQl and ΓG\Ql . Then Hω and HQl
ω ⊕H

G\Ql
ω differ

only by the boundary conditions on the set V∂Ql . Thus, by the second resolvent
identity,

D := f(Hω)− f(HQl
ω ⊕HG\Qlω )

is an operator of rank at most 4 |S|
∣∣V∂Ql∣∣. Moreover, D is bounded by 2 |Im z|−1,

since f is bounded by |Im z|−1. Therefore,∣∣∣Tr
(
1EQlf(Hω)− f(HQl

ω )
)∣∣∣ =

∣∣∣Tr
(
1EQl

(
f(Hω)− f(HQl

ω ⊕HG\Qlω )
))∣∣∣

≤ 8 |S|
|Im z|

∣∣V∂Ql∣∣ .
As (Ql) is a Følner sequence, V∂Ql ⊆ ∂1Ql and |EQl | = |S||Ql| we obtain

1

|EQl |

∣∣∣Tr
(
1EQlf(Hω)− f(HQl

ω )
)∣∣∣ ≤ 8 |S|

|Im z|

∣∣V∂Ql∣∣
|EQl |

=
8
∣∣V∂Ql∣∣

|Im z| |Ql|
→ 0 as l→∞.

As P is a probability measure, Lebesgue’s dominated convergence theorem yields
the assertion.

7 Application to Heisenberg group

In the following we discuss the above results in the case where G equals the
discrete Heisenberg group H3, which consists of the elements

(a, b, c) :=

1 0 0
a 1 0
c b 1

 , (a, b, c ∈ Z)

14



The group action is induced by the usual matrix multiplication. H3 is an example
of a non-abelian group, which is of polynomial growth. Therefore it is amenable
as well as residually finite. One can show, see [12], that H3 is generated by
S = {(1, 0, 0), (0, 1, 0)} and that for each n ∈ N the set

Qn := {(a, b, c) | 0 ≤ a, b < n, 0 ≤ c < n2}

symmetrically tiles H3 with grid Tn = {(a, b, c) | a, b ∈ nZ, c ∈ n2Z}. Further-
more (Qn) is a Følner sequence. We denote the associated metric Cayley graph
by Γ = Γ(G,S) = (V , E , γ).

Let (Ω,A,P) be a probability space and (Hω)ω∈Ω a random Schrödinger op-
erator on HΓ =

⊕
e∈E L

2(0, 1) defined as in (3) and (4).
Then Theorem 4.1 proves that for increasing n the eigenvalue counting func-

tions NQn
ω given by

NQ
ω (λ) :=

1

|EQ|
nQω (λ) =

1

|EQ|
|
{
i ∈ N | λi(HQ

ω ) ≤ λ
}
| (λ ∈ R, Q ∈ F).

converge for P-a. a. ω ∈ Ω uniformly in the energy variable to the integrated
density of states N : R → R defined by

N(λ) :=
1

|EQ|

∫
Ω

Tr
(
1EQ1(−∞,λ](Hω)

)
dP(ω) (λ ∈ R),

where Q ⊆ G is an arbitrary finite set. Note that for Q ∈ F as usual (λi(H
Q
ω ))i∈N

is the increasing sequence of eigenvalues of HQ
ω counted by multiplicity.

A Trace class operators on L(HΓ)

We show that the integral in the Pastur-Shubin formula is finite, i. e., that the
operator 1EQ1(−∞,λ](Hω) is trace class for all ω ∈ Ω.

Let H be a selfadjoint and semibounded Schrödinger operator on HΓ as in
section 3. Let Q ⊆ G be finite. Since HQ⊕HG\Q−H is of finite rank (they differ
only on the boundary conditions at V∂Q), also

(H + c)−1− (HQ⊕HG\Q + c)−1 = (H + c)−1(H−HQ⊕HG\Q)(HQ⊕HG\Q + c)−1

has finite rank for sufficiently large c > 0. Hence,

1EQ((H + c)−1 − (HQ ⊕HG\Q + c)−1)

has finite rank and is therefore trace class.
By [11, Proposition 5.3 (ii)], (HQ + c)−1/2 is a continuous linear mapping

from HΓQ to
⊕

e∈EQ L
∞(0, 1) for sufficiently large c > 0. Hence, by [14, Satz

6.14], 1EQ(HQ + c)−1/2 is Hilbert Schmidt. But

(1EQ(HQ + c)−1/2)∗ = (HQ + c)−1/21EQ
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is again Hilbert-Schmidt, so

1EQ(HQ + c)−11EQ = 1EQ(HQ + c)−1/2(HQ + c)−1/21EQ

is trace class and therefore also trace class on HΓ.
Since

1EQ(HQ ⊕HG\Q + c)−1 = 1EQ(HQ + c)−1/2(HQ + c)−1/21EQ ,

we conclude that

1EQ(H + c)−1 = 1EQ((H + c)−1 − (HQ ⊕HG\Q + c)−1) + 1EQ(HQ ⊕HG\Q + c)−1

is trace class.
Now,

1EQ1(−∞,λ](H) = 1EQ(H + c)−1(H + c)1(−∞,λ]∩σ(H)(H)

= 1EQ(H + c)−1
(
z 7→ (z + c)1(−∞,λ]∩σ(H)(z)

)
(H).

Since
(
z 7→ (z + c)1(−∞,λ]∩σ(H)(z)

)
is bounded, this operator is trace class as well.
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grated Density of the States for combinatorial and metric Graphs over Zd.
Proc. Symp. Pure Math. 77, 87–108 (2008).

[5] V. Kostrykin and J. Potthoff and R. Schrader: Contraction semigroups on
metric graphs. Proc. Symp. Pure Math. 77, 423–458 (2008).

16



[6] V. Kostrykin and R. Schrader: Kirchhoff’s Rule for Quantum Wires. J. Phys.
A: Math. Gen. 32, 595–630 (1999).

[7] F. Krieger: Sous-décalages de Toeplitz sur les groupes moyennables résidu-
allement finis. J. London Math. Soc. 75(2), 447–462 (2007).

[8] P. Kuchment: Quantum graphs: I. Some basic structures. Waves Random Me-
dia 14, 107–128 (2004).
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