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Abstract

Given a finitely generated amenable group we consider ergodic ran-
dom Schrodinger operators on a Cayley graph with random potentials and
random boundary conditions. We show that the normalised eigenvalue
counting functions of finite volume parts converge uniformly. The inte-
grated density of states as the limit can be expressed by a Pastur-Shubin
formula. The spectrum supports the corresponding measure and disconti-
nuities correspond to the existence of compactly supported eigenfunctions.
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1 Introduction

In this paper we study the integrated density of states for random Schrodinger
operators on Cayley graphs over a finitely generated amenable group G. As we
are concerned with the metric graph, the functions in question are defined on the
edges e of the graph. For such an edge e the operator acts as (H f). = —f/+V.f.,
where V, is a L>®-function. Selfadjointness of such an operator is obtained by
choosing appropriate boundary conditions. We will only deal with local boundary
conditions acting separately on each vertex v and taking into account only the
functions of the edges connected with v. Randomness occurs in the choice of
the potential and the boundary conditions. More precisely, given a finite set of
potentials and a finite set of boundary conditions, we may choose the potential
and the boundary conditions by random, such that the operator family (H,),cq
becomes ergodic, where (€2, A, P) is a probability space and a: G x Q — Q is an
ergodic group action on ).



The restriction of such an operator H,, to a finite subgraph has discrete spec-
trum and therefore possesses a well-defined eigenvalue counting function. By
increasing the finite subgraph, we study the question whether (and with respect
to which topology) the associated normalised eigenvalue counting functions con-
verge. The aim of this paper is to show uniform convergence. We furthermore
prove that the limit function, which is called integrated density of states (IDS),
can be expressed via a Pastur-Shubin formula.

In [3] the authors verified this for G = Z? with standard edges. The present
paper extends this to a large class of Cayley graphs over amenable groups. The
discrete case is treated in [9] and [12] where uniform convergence of the eigenvalue
counting functions is proven for operators on £2(Z?) and on combinatorial Cayley
graphs, respectively.

In section 2 we give some basic features on the geometric setting. Section 3
describes the operator families in question. Restrictions to finite subgraphs are
discussed in section 4, where we also state the main results. In section 5 we apply
an ergodic theorem obtained in [12] to a sequence of spectral shift functions for
an exhaustion of subgraphs. These results are used in section 6 to prove our main
theorem.

2 Metric Cayley graphs over amenable groups

Let G be a group, § C G a finite but not necessarily symmetric set of generators
and id € G the unit element. We define the distance between two elements
g,h € G to be the smallest number of elements in S U S~! one needs to turn h
into g by left multiplication, i.e.

d(g h)'_{min{k€N|Elsl,...,skESUS_lwithsl---skh:g} if g#h
o else.

We denote the set of all finite subsets of G by F. The diameter of a set Q) € F
is given by diam @) := max{d(g,h) | g,h € Q}. For a subset Q@ C G and g € G
we set d(g,Q) := min{d(g,h) | h € Q}. Given R € N and Q € F we define
Q={9eGlgeQ,dlg,G\Q)<Rorgé¢Q,d(g,Q) < R}. We assume that

G is amenable, i.e., there exists a sequence (Q,,)nen Of elements in F such that

tim 15@0\Qul _

n—o0 ‘Qn‘

Such a sequence (@) is called Fglner sequence. A Fglner sequence is said to be
tempered if there exists C' > 0 such that

n—1
U @r'@n| < C1Qu)
k=1
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holds for all n € N. We say that a set ) € F symmetrically tiles G with grid
T CGifT=T""1and G is the disjoint union of the sets Qg, g € T

Throughout the paper we assume that there exists a tempered Fglner sequence
(Qy) such that each @, symmetrically tiles G.

Remark 2.1. (a) It is easy to see that for a Fglner sequence (Q;,)nen

R
lim 07|

noo Q)
holds true for all R € N, c.f. [12].

=0

(b) Note that each Fglner sequence has a tempered subsequence, c.f. [13].

(¢) Let T be a finite index subgroup of G and @ an associated fundamental
domain, i.e. @ is a selection of representatives of the left cosets of T in
G. Then ) symmetrically tiles G with grid T. Therefore, each group with
a sequence of finite index subgroups (G, )nen and associated fundamental
domains F,,, n € N such that (F},),en is a Fglner sequence fits in our setting.
In [7] Krieger proved in a slight extension of a result of Weiss in [15] that
each residually finite, amenable group obeys such sequences.

For a given group G and a finite set of generators & we denote the induced
(directed) metric Cayley graph by I' = I'(G,S) = (V,&,7), i.e, V = G is the
vertex set, £ the set of edges and v = (79, 71): € — V x V associates to each edge
e € £ the starting vertex ~g(e) and the end vertex ~;(e). There will be an edge
e from v to w if there exists s € § such that w = sv. Every edge e € £ will be
identified with the interval [0, 1].

Example 2.2. Let G = Z? and set

S ={(1,0),(0,1)} and Sy ={(0,0),(1,1),(1,0),(=1,0)}.
Then &; and S, are generating systems for G. We denote the corresponding
metric Cayley graphs by I'y = T'1(G,S1) and T'y = I'3(G, Ss). Note that while T'y

is the usual graph of Z? with standard edges, I'y contains multiple edges as well
as loops.

3 Random Schrodinger Operators on graphs

Let B C L*(0,1) be a finite subset. For e € £ let V. € B. In the Hilbert space

Hr =P L0, 1)

eef
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Figure 1: Hlustration of I'1(G, S;) and I'y(G, Ss) from Example 2.2

we define the maximal operator

D(H) := PW>*(0,1),

ec&

(Hf)e = —fl+Vofe (e€E).

In order to obtain selfadjoint realisations we need to impose boundary condi-
tions at the vertices. We will not consider the most general boundary conditions,
but rather restrict ourselves to so-called local boundary conditions.

For v € V,

Evji=lecllyle)=vr (=01

describe the sets of all edges starting or ending at v, respectively, and
E, = (Su,o X {O}) U (Ev,l X {1})

encodes all edges connected with v (where loops are counted twice).

~

For f € D(H) and v € V we define the trace mapping (or boundary value
mapping) tr, f € K& by

(tro f)(e, 7) := fe(d)  ((e,) € &v).
Furthermore, define the signed trace str, f' € K& by

(stro f)(e, ) = (1) f(5)  ((e.)) € &)

Remark 3.1. (a) Note that W??(0,1) € C'[0,1] by standard Sobolev argu-
ments and hence for f € D(H) the vectors tr, f and str, f” are well-defined
(veV).

(b) The definition of the signed trace gives that the orientation of the edges
plays a minor role. In particular only the boundary conditions take into
account the direction of the edges.

Definition (local boundary conditions). Let v € V. Local boundary conditions
at v are encoded in a subspace U, C K& @ K® with dim U, = |&,| such that

(f11f2) = (fil f2) =0 ((fr, f1), (f2 f5) € Ub),



where (-]-) denotes the usual inner product in K&. We say that f € D(H)
satisfies the local boundary condition U, at v € V, if (tr, f,str, f') € U,. Local
boundary conditions are a family U := (U,),ey of local boundary conditions for
each vertex v € V.

For a local boundary condition U the operator

D(H) := { € D(H) | (tr, fstr, [ oev € U},
(Hf)e:=(Hf)e=—f!+Vof. (e€€)
is selfadjoint; cf. [6, 5, 8, 3.

Example 3.2. (a) Dirichlet boundary conditions. Let UP := {0}** @ K. Then
UP encodes Dirichlet boundary conditions at v, since tr, f =0 (f € D(H)).

(b) Neumann boundary conditions. Let UY := ng@{O}‘S”. Then UY encodes
Neumann boundary conditions at v, since str, f' =0 (f € D(H)).

Example 3.3 (Dirichlet-Laplacian). Let V, = 0 for all e € £. Then the operator
H with Dirichlet boundary conditions (UP) is called Dirichlet Laplacian and is
denoted by —Ap. We have

D(=Ap) = P Wy nW*(0, 1),
ect

(=Apfle=—f (e€&).

Now, we want to introduce randomness in the choice of potentials and bound-
ary conditions.

Note that G acts on I' in the following way: For e € £ and g € G there is also
a unique edge e o g € £ connecting o(e)g~' and v;(e)g~*. Shorthand, we can
therefore write

Y(eog) = (v(e)g " mle)g™).

Let (22, A,P) be a probability space and let G act ergodically on (€2, 4, P),
i.e., if a: G x  — Q) is the group action on €2, then every subset of {2 which is
invariant under (oy)4eg has measure either zero or one. Additionally we want o
to act measure preserving, i.e. P(A) = P(ay(A)) for all g € G and all A € A.

A random potential is a map V': Q — ], . B satisfying

Vieg(W))eoy = V(w)e (9€G,e€f). (1)

Since a Cayley graph is very regular (i.e. every vertex has the same degree
and for two vertices there exists a bijective mapping between the adjacent edges
at these vertices), we can choose local boundary conditions Uy at id € V and
then shift these boundary conditions to an arbitrary v € V to obtain a local
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boundary condition at v. Hence we can choose random boundary conditions in
the following way:

Let U be a finite set of local boundary conditions at id. A random boundary
condition is a map U: Q — [], ., U satisfying

Ulag(w))e =U(w)oy (g€ G,veEV). (2)

The family of random Schrédinger operators (H,,),ecq on Hr is defined by
D(H,) = { Fe D) | (tro f,stry focy € U(w)} , (3)
(Hof)e :=—fl +V(w)efe (e€&), (4)

for w € Q. For each w € ), H, is selfadjoint and semibounded from below. More
precisely, there is C' > 0 such that H, + C' > 0 for all w € Q.

4 Restrictions to finite subsets

Let @ € G be a finite subset. The associated subgraph I'g = (Vg, &g, vg) of I is
defined as follows:

Eo:=J &0 Vo=QUSQ, 70:=1le,
ve@

We also define inner vertices Vé? and boundary vertices Vg by
Vé? ={veVo|&oU&E1 C &}, Vg =Vo \ Vé?,

and accordingly inner edges Eé and boundary edges 58 by
gh={ec&|wle)nle)eVy}t, &:==E\E&,.

We define the restriction HY of H, to I'g on

Hr, = € L*(0,1)

GESQ

D(HY) := {f e P W?*(0,1) | (tr, fostr, f) € Uw), (v € Vi),

ecéy
(tr, f,stry f)) € UP (v € vg)},
(H3f)e ==l +V(w)efe (e €&y).



This operator is again selfadjoint and semibounded from below. Furthermore,
HE has purely discrete spectrum; cf. [8, Theorem 18].
Let us enumerate the eigenvalues (\,(H9)).en as an increasing sequence,

counting their multiplicities. The eigenvalue counting function n%: R — Ny is
defined by

nZ(A\) == [{n e N| N (H?) <A} | =Tr Loy (HY).
Then n? is monotone increasing and right continuous, i.e. a distribution function.
The volume-scaled version of n@ will be denoted by N9, i.e.,

N\ = |g—1Q’ng()\) (A eR).

It is associated to a pure point measure u&. Note that |Eg| = |S||Q)|.
We now state the main theorem of this paper.

Theorem 4.1. Let (Q))en be a Folner sequence in G. Then there is N: R — R
monotone increasing and right continuous (i. e. a distribution function), such that

lim [|[N$' — N||_ =0
l—00 o0

for P-a. a. w € Q. In particular, N9' — N pointwise for P-a. a. w € Q.
Furthermore, for A € R and Q C G finite

N(\) = @ /Q Tr (Le, 1 oon(Ha)) dP(w). (5)

Note that N(\) does not depend on the choice of Q.

The distribution function N is called the integrated density of states (IDS).
Let p be the corresponding measure. Theorem 4.1 states that the IDS is the
uniform limit of the normalised eigenvalue counting functions on finite subgraphs
and can be expressed by a Pastur-Shubin trace formula in (5). The operator Tr
denotes the usual trace in L2

By ergodicity of (H,)weq we obtain the following Theorem, which is an ana-
logue of [3, Theorem 5]. For the proof we may apply the general framework of
[10, Theorem 5.1].

Theorem 4.2. There exist subsets ¥,3,,, Xsc, Yac, Ldises Less & R and Q' C Q
with P(Y) = 1 such that o(H,) = X and 0,(H,,) = Xe for all the spectral types
e ¢ {pp, sc,ac,disc,ess} and all w € V.

As a consequence, we can relate the measure p with the P-a.s. spectrum X of
(Hy), cf. [10, 3].



Corollary 4.3. X is the topological support of .
Denote by

D= {fE@[P(O,l)|35’§5ﬁnite:f6:() (665\5')}

ec&
the set of compactly supported L?-functions on I'.

Corollary 4.4. Let
Yeomp = {X € R | for P-a. a. w € Q exists f, € D(H,) N D : H,f, = Af,}.

Then
Yeomp = {A € R| u({\}) > 0}.

Remark 4.5. (a) The set {A € R | u({\}) > 0} is the set of atoms of u and
equals the set of discontinuities of the IDS.
(b) The proof of Corollary 4.4 follows the lines of [3, Proof of Corollary 7].

5 Convergence of spectral shift functions

The next aim is the application of a Banach-space valued ergodic theorem given
in [12]. Therefore it is necessary to prove certain properties of the spectral shift
functions. Before this we introduce the notion concerning the colouring of the
Cayley graph I' = (V,&,~) associated to a given group G with finite set of
generators S.

Let A be an arbitrary finite set. A map C : V — A is called a colouring of T’
and a map P : D(P) — A, where D(P) € F, a pattern. Note that, as before, F
denotes the set of all finite subsets of G. We write P for the set of all patterns
and for given @) € F we define the set P(Q) := {P € P | D(P) = Q}. Given a
pattern P and a set () C D(P) the restriction of P on @ is the map P|g : Q) — A
with Plg(g) = P(g) for all ¢ € Q. Equivalently, the restriction of a colouring
C to a finite set Q € F is given by C|g : Q@ — A,C|g(g) = C(g) for all g € Q.
For P € P and z € G the translation of P by x is defined by Px : D(P)x — A,
(Pz)(g9) = P(gx~'). We say that two patterns P, P’ € P are equivalent (and
write P ~ P') if there exists x € G with D(P)x = D(P’) and (Pzx)(g9) = P'(g)
for all g € D(P'). The induced quotient set is denoted by P and the equivalence
class for given P € P by P € P. For given patterns Py, P, € P we set p, (P,) to
be the number of occurrences of P; in Ps, i.e.

tp(F) = {P €P|P~P,D(P)C D(P)}

Definition. A function b : F — [0, 00) is called boundary term if b(Q) = b(Qx)
for all Q € F and x € G, lim,, s |Q,]710(Q,,) = 0 for any Fglner sequence (Q,,)
and |Q|7'b(Q) is uniformly bounded for all Q € F.
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Definition. Let (X, ||-]|) be a Banach space and a function F' : F — X be given.
F is called

(i) almost additive if there exists a boundary term b : F — [0, 00) such that
for any pairwise disjoint subsets Qx, k =1,...,m

— > F(Q)

m

<> b(Q)

holds, where @ = [J,—, Q:
(ii) C-invariant if F(Q) = F(Qx) for all x € G and all Q) € F with Clg ~ C|ga-

For a givep almost additive and C-invariant function F : F — X we define a
function F' : P — X by setting

B(P _{F(Q) if 3Q € F such that C[g = P

0 else.
Note that this is well-defined by C-invariance of F'.

Theorem 5.1. Let G be an amenable group generated by a finite set S, I' =
(V,E,) the associated Cayley graph, A a finite set and C : V — A be an arbitrary
colouring. Assume that there exists a Folner sequence (@) in G such that each
Qn symmetrically tiles G. Let the frequencies vp = lim;_, |Q;|'p(Clg,) ewist
for all patterns P € \J, .y P(Qn). Furthermore let (X, | - ||) be a Banach-space
and F : F — X an almost additive and C-invariant mappmg. Then the limits

RQ)
Jim S = 2 o |@n|

PeP(Q )

exist and are equal.

See [12] for a proof of Theorem 5.1. Now we show that in our situation the
assumptions of the theorem are fulfilled almost surely. For w € ) define the map

C,:V— Aby
Co(v) == ((V(w)e)eee, o, Ulw)y)  where A= (Bece,y B) X U = (BsesB) x U.
(6)

To show the existence of the frequencies vp we need the following theorem, which
is a special case of the Lindenstrauss’ pointwise ergodic theorem in [13].

Theorem 5.2. Let G act from the left on a measure space (2, A,P) by an er-
godic and measure preserving transformation « and let (Q);) be a tempered Folner
sequence. Then for any f € L*(P)

i o 37 o) = [ fle)ap)

9EQ;
holds for P-a. a. w € ).



Lemma 5.3. Let (Q;) be a Folner sequence and C, and A be given as in (6)
for allw € Q. Then there exists a set Q2 C Q with P(Q) = 1, such that for each
P € U,en P(Qn) and w € 2 the limit

Culo,
vp = lim tp(Culg;)

j=oo Q]
exists and is independent of w € Q.

Proof. Let P : Q) — A be given for some ) € F with diam @ = R. W.l.o.g. we
may assume that id € (), which is possible since we are interested in counting
translates of P. Obviously the following inequalities hold

> Law(9) <tp(Cul.) < D 1aw(g)
9EQR\OEQy, 9eQn
where A(w) := {g € G | P(v) = C,(vg) for all v € Q}. By the properties of U
and V given in (1) and (2) we have for given g,v € G, w € )
CW(UQ) = ((V(w)e)eegug,07 U(W)vg) = ((V(O‘g(w»e)ee&,m U(O‘g(w))v) = Cag(w) (U)

Therefore,

1A(w) (g) = 1{g€Q|P(v)=Cag(w)(v) for all veQ} (9) = fP(ag(W))a

where
1 if P(v) =C,(v) for all v € Q,
o= {1 A=
0 else,
and hence
> felagW) <8p(Culg.) < frlag(w
geQn\aRQn 9€Qn
This gives
. tr(Cola.)
lim sup ———* < limsup —— Z frlag(w))
n—o00 |Qn| n—00 |Qn|g€Qn
and
lim inf =———2"~ br(Cula.) > liminf —— Z fr(ay(w)) = liminf — Z frlag(w
il 5 £ > i o . it g Z

where we used that (Q,,) is a Folner sequence, cf. Remark 2.1. As « is an ergodic
an measure preserving action Theorem 5.2 yields a set {p C Q of full measure
such that the limits

i £2019) — iy 5 ol (@) = [ felw)dP

Jim B = 2

exist and are equal for all w € Qp. The desired set € is the (countable) intersec-
tion of these Qp for P € |, .y P(Qn). O
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We now focus on the spectral shift function. Since the operators HY are
unbounded, the eigenvalue counting functions n® are unbounded as well. How-
ever, the spectral shift function for two realisations H IQ and H2Q with different
boundary conditions is bounded, which will be shown in Lemma 5.4.

Definition. Let H be a Hilbert space and H;, Hy be selfadjoint, lowerbounded
operators with discrete spectra. Then the spectral shift function is defined by

S,y (A) = na,(A) = (V) (A € R).

Thus, to obtain properties of ngy, it suffices to study properties of ny, and
€H17H2'
Lemma 5.4. Let Hy be a densely defined, closed symmetric and lower bounded

operator with deficiency index k. Let Hy and Hy be two selfadjoint extensions of
Hy with discrete spectrum. Then

&1, | < K-
Proof. By the min-max principle, for any selfadjoint operator H we have
ng(A) = max{dim X | X C D(H) linear subspace, H|x < A} (A € R),
cf. [3]. Now, for A € R,

nm,(A) = max {dim X | X C D(H;) linear subspace, Ho|x < A}
< max{dim X | X C D(H,) linear subspace, Ha|x < A\} +k
= max {dim X | X C D(H,) linear subspace, Hi|x < A} + k
< max {dim X | X C D(H,;) linear subspace, Hy|x < A\} +k
=ng, (A + k. O

Changing the boundary conditions of a selfajoint operator on a graph at one
vertex v yields a perturbation of rank at most 2|&,|. Hence, the spectral shift
function of two selfadjoint operators H; and Hs on a graph which differ only by
the boundary conditions at a finite vertex set () satisfies

vEQR

In section 4 we defined the eigenvalue counting function n@ for the restriction
of the operator H, to the subgraph I'g generated by the set () € F. Similarly
we denote the eigenvalue counting function for the Dirichlet Laplacian —Ap
restricted to I'g by n%. The Dirichlet boundary conditions induce that n% decom-
poses into a sum of counting functions, i.e.,

nB(\) =Y np(\) = |Elnp(N) = [Q[ISInp(N), (8)

6€5Q
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where np is the eigenvalue counting function of the Dirichlet Laplacian on the
space L%(0,1). We are interested in the spectral shift function

20N = n2(\) —nF(\) = QIISI(NI(N) — np(N)). (9)

Denote the Banach space of the right-continuous, bounded functions f : R — R
equipped with supremum norm by B(R). We study the behaviour of the functions
€9 as n — oo as elements of B(R), where (Q,,) is a Fglner sequence. To this
end we prove that &, : F — B(R), Q — &9 is almost additive and C-invariant,
which makes it possible to apply Theorem 5.1.

Lemma 5.5. Let w € Q and &, : F — B(R), Q — &9, where £9 is given as in
(9). Then &, is almost additive and C,-invariant.

Proof. Let w € Q and Q; € F, 1 = 1,...,k pairwise disjoint be given and set
Q= Ule Q@;. Then

k

€9 - ¢

i=1

k

n% — ZnD"

=1

< ng—anl

holds, where we denote by || - || the supremum norm. Equation (8) yields n? =
Zle n%i, therefore it remains to prove almost additivity for n,: F — B(R),
Q — n¥%. Note that Zlf; n% is the eigenvalue counting function of the oper-

i=1"w
ator ®F | HY which equals H? up to the boundary conditions on the vertices

UL, V3, Now, (7) gives

k k
nff — Z nff U Vgi
i=1 i=1

which proves almost additivity of €9 with boundary term b(Q;) := 4|S|[0'Qs|.
The C-invariance of &, follows directly from its definition. ]

<418

k
< 41S|- Z ‘alQi|
i=1

Note that almost additivity and C-invariance easily imply boundedness, see
[12] for instance.

Corollary 5.6. Let G be an amenable group generated by a finite set S, I' =
(V,E,7) the associated Cayley graph, (Q,) a tempered Folner sequences such
that each Q, symmetrically tiles G. Then the limit

Qj
lim —2
i—oo |Q;]|S]

exists in B(R) for almost all w € 0 and is independent of w.
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6 Proof of main theorem
We now prove our main Theorem.
Proof of Theorem 4.1. (i) First, we show convergence of (|5Ql|71 n%)en. By

Corollary 5.6, the sequence (|5Ql|71 £9)en converges uniformly. Hence, there
is N: R — R such that

1
n@ = 9 +np - N as [ — o0
‘ngl |8Qz|

uniformly P-a.s.
(i) Let @ C G finite. Define N: R — [0, o0] by

N\ = @ /Q Tt (Ley 1(—oon)(Ha)) dP(w).

We show independence of N of the choice of Q: by the invariance assumptions,
we obtain that

—1 1
i ™t 0) ) = g7 [ (i1 1) P

does not depend on x. Hence, independegce of () follows.
(iii)) We show the equality (5), i.e., N = N. Let A € R and @ C G finite.
Then

N = |5_1Qy / Tr (1g, 1o (Ha)) dP(w)

_I%@/Tr Leg, 1(oe (H) ) dP(w),

and

1
N(A) = lm —— Tr (1o (HT))

I=r00 ’ng’

1
= [ lim —— Tr (1_ao (H?)) dP(w
/Qmoowm (Lo (L) dP(e)

= lim —/Tr —eop (HEY) dP(w),
I=00 ’ng’

since N does not depend on the choice of @, P is a probability measure and N is
the uniform limit P-a.s.
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It suffices to show that the measures associated with N and N, respectively,
are equal, which in turn follows by vague convergence of the approximating mea-
sures (p7)1en and (f7')ien, respectively, defined by

1

() = g [ T (e FUL)) PG,

for f € Co(R).
By the Stone-Weierstrafl Theorem ([2, Theorem A.10.1]) it suffices to show
that )
—— Tr(1e, f(H,) — f(H?)) dP(w) -0 as [ — oo
| gy ™ (160 1) - 1) Pl
for all f of the form f(t) := (t — z)~! with z € C \ R, since
lin {¢t— (t—2)""; 2 € C\R}

is dense in Cp(R).

For | € N we can split I into I'g, and 'g\g,. Then H,, and H?' & HI\? differ
only by the boundary conditions on the set ng' Thus, by the second resolvent
identity,

D= f(H,) — f(HI & H])
is an operator of rank at most 4 |S]| |ng|' Moreover, D is bounded by 2 |Im z| ",
since f is bounded by |Im z|~". Therefore,

T (Leq, f(H) = J(HD)) | = T (e, (F(H) = F(HE @ HE)) )|

81S[ 11,0
= |Im 2| |VQ1|‘
As (Qy) is a Folner sequence, V3 C 9'Q; and |Eg,| = |S]|Qi| we obtain
81| Vol _ _8Val

—0 as [ — oo

- _ Qi
g |1 (e () = £0H2) | < e = o

As P is a probability measure, Lebesgue’s dominated convergence theorem yields
the assertion. O

7 Application to Heisenberg group

In the following we discuss the above results in the case where G equals the
discrete Heisenberg group Hj, which consists of the elements

1 00
(a,b,c):=|a 1 0], (abc€eZ)
c b 1
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The group action is induced by the usual matrix multiplication. Hj is an example
of a non-abelian group, which is of polynomial growth. Therefore it is amenable
as well as residually finite. One can show, see [12], that Hj is generated by

S ={(1,0,0),(0,1,0)} and that for each n € N the set
Qn = {(a,b,c) |0<a,b<n,0<c<n?}

symmetrically tiles Hz with grid T,, = {(a,b,c) | a,b € nZ,c € n*Z}. Further-
more (Q,) is a Fglner sequence. We denote the associated metric Cayley graph
by I' =T(G,S) = (V,&,7).

Let (,.A,P) be a probability space and (H,),ecq a random Schrodinger op-
erator on Hr = @, L*(0,1) defined as in (3) and (4).

Then Theorem 4.1 proves that for increasing n the eigenvalue counting func-
tions N9 given by

NY(\) = |51| n@(\) = & ‘|{ZEN|)\( ) <A} (AeR,Q € F).

converge for P-a.a. w € 2 uniformly in the energy variable to the integrated
density of states N : R — R defined by

N(\) = !S_IQI /Q Tr (Ley 1 won(H.)) dB(w) (A€ R),

where Q C G is an arbitrary finite set. Note that for Q € F as usual (\;(H?)):en
is the increasing sequence of eigenvalues of HY counted by multiplicity.

A Trace class operators on L(Hr)

We show that the integral in the Pastur-Shubin formula is finite, i.e., that the
operator ngl(_ooj,\](Hw) is trace class for all w € ().

Let H be a selfadjoint and semibounded Schrédinger operator on Hr as in
section 3. Let Q C G be finite. Since H? @ H9\? — H is of finite rank (they differ
only on the boundary conditions at Vg), also

(H+c¢) ' = (HQ@HQ\Q—i—c)’l = (H+c¢) Y (H - H® EBHQ\Q)(HQ@HQ\Q—i—c)’l
has finite rank for sufficiently large ¢ > 0. Hence,
le,(H+ce) ™ = (H?® HI\? +¢)7h)

has finite rank and is therefore trace class.

By [11, Proposition 5.3 (ii)], (H? + ¢)~'/2 is a continuous linear mapping
from Hr, to P.ee, L(0,1) for sufficiently large ¢ > 0. Hence, by [14, Satz
6.14], 1¢,(H? + ¢)~'/% is Hilbert Schmidt. But

(Leg (HO +¢)71%)" = (H? + ¢) 7/ 1,
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is again Hilbert-Schmidt, so
Loy (HO 4 ¢) Mg, = 15, (HY + o)V (HQ + C)_1/215Q

is trace class and therefore also trace class on Hr.
Since

Leg(HY @ HO\Y + o) = 1o (HY +¢) V2 (H? + ¢) 7?1,
we conclude that
leg(H+ o) =1g,(H+c)' = (H? @ HO9 + ¢) ™) + 1, (H? & HI\? + ¢)™*

is trace class.
Now,

Lo, L(—oon(H) = 1gy(H + )" (H + )L (—oo\no(mn) (H)
=1go(H+0)7 (2= (2 + (oo (2)) (H).

Since (z — (2 + c)l(_oo,)\]mU(H)(z)) is bounded, this operator is trace class as well.
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