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Abstract. In this paper we study the spectrum of long-range percolation graphs. The
underlying geometry is given in terms of a finitely generated amenable group. We prove
that the integrated density of states (IDS) or spectral distribution function can be approx-
imated uniformly in the energy variable. Using this, we are able to characterize the set of
discontinuities of the IDS.

1. Introduction

In this paper we study spectral properties of random graphs given by long-range percolation
models. The underlying geometry is induced by a finitely generated amenable group. We
measure the distance of the elements in the group in terms of the word metric with respect
to some finite and symmetric set of generators. While the vertex set of the graph under
consideration consists of all elements of the group and hence is deterministic, the edges are
inserted randomly and mutually independently. The probability of the existence a certain
edge [x, y] is given by p(xy−1) where p is an `1-function on the set of vertices. Therefore
this probability tends to zero, if the distance between the vertices (measured in terms of
the word metric) increases. This gives a percolation model which allows edges of arbitrary
length, however long edges are very unlikely. Notice that for long-range percolation graphs
the Laplace operator ∆ω is almost surely unbounded and not of finite hopping range. Here
we say that an operator is of finite hopping range if there is constant R such that the matrix
elements of the operator equal zero if their distance to the diagonal is larger than R.

We are interested in the spectrum of ∆ω respectively in properties of the corresponding
integrated density of states (IDS), also known as the spectral distribution function. More
precisely we ask whether this function can be approximated via finite volume analogues. Let
us describe in more detail the problem under consideration. It is well known, that amenability
is equivalent to the existence of a Følner sequence (Qj), cf. [Ada93]. Restricting the Laplacian
∆ω to an element Qj gives a finite dimensional matrix, denoted by ∆ω[Qj ]. The distribution
of the eigenvalues of ∆ω[Qj ] is encoded in the function n(∆ω[Qj ]) : R→ R which maps each
E ∈ R to the number of eigenvalues of ∆ω[Qj ] not exceeding E. This is called an eigenvalue
counting function. Given this construction it is natural to ask whether (and with respect to
which topology) the eigenvalue counting functions converge when j tends to infinity.

Before further elaborating on this question, let us briefly describe the content of the paper.
The next section is devoted to give precise definitions of the geometric and probabilistic
setting. In fact we present the details of the mentioned long-range percolation model and
introduce the class of groups which our theory applies to. An important property that is
required is the existence of a Følner sequence (Qj) such that each Qj is a monotile of the
group. In Section 3 we prove a result from the theory of large deviations, namely a Bernstein
inequality for random variables. This is used to estimate the number of “long” edges (i.e.
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edges of length longer than some constant R) which are incident to a certain set of vertices. We
are interested in the convergence of functions which describe the spectra of operators restricted
to elements of a Følner sequence (Qj). Therefore it is useful to prove that boundary effects
caused by this restriction either vanish for increasing j or appear only with small probability.
This is done Section 4 where we use the mentioned estimate on the number of “long” edges
to verify a weak form of additivity for the eigenvalue counting functions. This will be one of
the key tools in the proof of our main result, namely Theorem 5.3. A special version of this
reads as follows

Theorem. Let (Qn) be a strictly increasing and tempered Følner sequence of monotiles and
Fω(Q) = n(∆ω[Q]) the eigenvalue counting function. Then there exists a distribution function
N : R→ [0, 1] such that ∥∥∥∥N − Fω(Qn)

|Qn|

∥∥∥∥
∞
→ 0, n→∞

for almost all ω ∈ Ω. The function N is called the integrated density of states of ∆ω.

Hence we give an answer to the above formulated question concerning the convergence of the
eigenvalue counting functions. Notice that as we consider the supremum norm this theorem
proves uniform convergence, which goes far beyond the usually shown pointwise convergence.
Another important feature of this result is that the limit-function is non-random. This is not
surprising once one notes that there is an ergodic theorem in the background. In the last
section Theorem 5.3 is applied to investigate the points of discontinuity of the IDS.

Now we compare the content of this paper to results of previous ones. We start with work
where properties of long-range percolation graphs have been studied. In [AB87] and [AV08a]
the authors investigated the size of percolation clusters in the subcritical phase. While the
first considered a model on Zd, the latter focused on the more general class of quasi-transitive
graphs. Work which is closely related to ours was done in [AV08b], where the asymptotic
behavior of the IDS was analyzed. In fact it was shown that the IDS (corresponding to
the graph Laplacian) exhibits exponential behavior at the bottom of the spectrum. Another
approach to the study of spectral properties of a related family of random matrices was chosen
by Ayadi in [Aya09a, Aya09b]. He investigates the limit of spectral distribution functions
of certain scaled random matrices with random band width. For this ensemble he obtains
a semicircle law and studies the resolvent in order to obtain detailed information about the
correlation function of the normalized trace of the resolvent. Furthermore there exist other
approaches in the sense of asymptotic expansions. In [SS85, PS10] the authors give examples
of operators in the continuum where one obtains infinite asymptotic expansions of a spectral
asymptotic.

The approximability of the integrated density of states is studied in various instances in
the literature. The first seminal results where obtained by Pastur [Pas71] and Shubin [Shu79]
who proved pointwise convergence of the finite volume approximants in the context of ergodic
random operators and almost periodic operators defined on the Euclidean space. Based on
these results it is nowadays well known that operators defined on Rd or Zd obeying a certain
kind of ergodicity give rise to pointwise convergent sequence of approximating functions.
Beside this many similar results have been obtained for more complex geometric settings and
operators. See for instance [Szn89, Szn90, AS93, PV02, LPV04], where periodic Laplace and
Schrödinger operators on manifolds have been investigated. Related work in the context of
periodic graphs has been done in [MY02, MSY03, DLM+03, Ves05].
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In the topology of pointwise convergence the existence of the IDS has been mostly obtained
for operators of finite hopping range but also for operators which do not obey this property.
See for instance [PF92] and references therein, where the authors prove pointwise convergence
of the eigenvalue counting functions for certain random, symmetric operators on `2(Zd) which
are not necessarily of finite hopping range.

Note that in all of the above mentioned cases the authors obtained either pointwise conver-
gence on the whole real axis or pointwise convergence at continuity points of the IDS. Both
types are much weaker than the convergence with respect to the supremum norm. This is
of special interest in the context of quasi-periodic and percolation models where it is known
(see [KLS03] respectively [CCF+86, Ves05]) that the set of points of discontinuity of the IDS
is usually very large and can even be dense in the spectrum.

Recently uniform convergence has been shown for several types of operators and geometries.
In [LV09] the authors present a method which applies to a large class of discrete models.
Among these are Anderson and quantum percolation models, quasi-crystal Hamiltonians on
Delone sets, Harper operators, random hopping models as well as Hamiltonians associated
to percolation on tilings. However, the ideas they use are based on the assumption that the
underlying operator is of finite hopping range. Another method to obtain uniform existence
of the IDS has been invented in [LS06] for Delone dynamical systems and the associated
random operators. Here an ergodic theorem for certain Banach space valued functions has
been established. This is applicable for eigenvalue counting functions of finite hopping range
operators and leads to their convergence with respect to the supremum norm. These ideas
have been adapted to the case where the underlying space equals Zd in [LMV08] and later on
for Cayley graphs given through amenable groups [LSV10]. The considered operators therein
fulfill certain ergodicity properties and are assumed to be of finite hopping range as well.
Applying the results from [LMV08] the authors of [GLV07] proved uniform convergence of
the approximating functions for operators on metric graphs over Zd.

The last mentioned papers are closely related to the present one as we make use of an
ergodic theorem as well and study the same underlying geometry as in [LSV10]. However we
go beyond these results in several ways. The most important difference is that we are able to
treat operators which are not of finite hopping range. This property has been used in various
instances in the above mentioned papers [LS06, LMV08, LV09, LSV10], as many estimates
therein are based on rank estimates for restrictions of the operator in question. To verify
similar results for the present model, it proved to be useful to apply ideas from the theory of
large deviations, namely a Bernstein inequality. Roughly speaking this Bernstein inequality
makes it possible to show that appropriate rank estimates hold with high probability. Another
advantage is that we are able to give characterization the set of points of discontinuity. In
fact we prove that this set consists of all eigenvalues of all finite graphs and hence does not
contain a transcendental number.

In summary, it can be said that there are several results which prove uniform existence of
the IDS for models with finite hopping range operators and there are results where pointwise
convergence is shown for operators which are not necessarily of finite hopping range. To the
best of our knowledge, this is the first work where uniform convergence of the eigenvalue
counting functions is shown for operators which are not of finite hopping range. Though we
will always speak about a general group G, the presented main result, is valid and already
new for the case where the group equals Zd. We recommend to keep this example in mind
during the lecture of this paper.
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2. The model

In this paper we consider long-range percolation models on amenable groups. Firstly we
describe the group as a metric space and introduce certain definitions. Afterwords we give
the details of the random process which generates the graph Γω.

Let G be a finitely generated group, P a finite and symmetric set of generators and id the
unit element in G. Every element g ∈ G can be written as a product g = p1 · · · pL, where
pi ∈ P , i = 1, . . . , L. We say that the distance between two distinct elements g, h ∈ G equals
L if and only if L is the smallest number such there are elements p1, . . . , pL ∈ P satisfying
gh−1 = p1 · · · pL. This gives a metric which we will denote by d : G×G→ N0, i.e.

d(g, h) := min{L ∈ N | ∃p1, . . . , pL ∈ P such that p1 · · · pL = gh−1}

if g 6= h and d(g, g) = 0 for all g ∈ G. For a ball of radius R around an element x ∈ G we
write BR(x) := {g ∈ G|d(g, x) ≤ R} and BR := BR(id) if x equals the unit element id. The
set of all finite subsets of G is denoted by F(G). Given a set Q ∈ F(G) we define the diameter
by diam(Q) := max{d(g, h)|g, h ∈ Q} and use |Q| for the cardinality of Q. Furthermore we
introduce the following notation related to the boundary of a finite subset Q ⊂ G:

∂Rint(Q) := {x ∈ Q | d(x,G \Q) ≤ R}, ∂Rext(Q) := {x ∈ G \Q | d(x,Q) ≤ R},

∂R(Q) := ∂Rint(Q) ∪ ∂Rext(Q) and QR := Q \ ∂R(Q).
(1)

We use the notations (Qj) and (Qj)j∈N for a sequence of finite subsets of G, where the index
j takes values in N and for a fixed element Qj of such a sequence we write Qj,R instead of

(Qj)R = Qj \ ∂R(Qj). It is well known [Ada93], that amenability of G is equivalent to the
existence of a sequence (Qj)j∈N of finite subsets of G such that

lim
j→∞

|SQj \Qj |
|Qj |

= 0

holds. Such a sequence (Qj)j∈N is called Følner sequence. It is easy to show that

lim
j→∞

|∂RQj |
|Qj |

= lim
j→∞

|∂RintQj |
|Qj |

= lim
j→∞

|∂RextQj |
|Qj |

= lim
j→∞

1

|Qj |
= 0

holds for each Følner sequence (Qj) and R > 0. Given subsets Q,T ⊂ G such that Q is
finite, we say that {Qt | t ∈ T} is a symmetric tiling of the group G along the grid T , if G
is the disjoint union of the sets Qt, t ∈ T and T = T−1. In this situation we say that Q
symmetrically tiles G. An assumption on the group G will be the following: there exists a
Følner sequence (Qn) such that each element of the sequence symmetrically tiles G.

Remark 2.1. Let us briefly discuss this assumption. If G contains a sequence of finite index
subgroups (Gn) such that one can choose the sequence of associated fundamental domains
(Fn) (with respect to G) as Følner sequence, then obviously (Fn) fulfills the above condition.
In [Kri07] Krieger proved in a slight extension of a result of Weiss [Wei01] that such sequences
exist in any residually finite, amenable group. This implies particularly that any group of
polynomial growth fits in our framework. Furthermore as any matrix group over a commu-
tative field is residually finite, our theory applies to all such groups, which are additionally
amenable. Let as state a short list of important groups fulfilling our assumptions:

• Zd in any dimension d
• finitely generated abelian groups
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• discrete Heisenberg group Hd in any dimension d
• Grigorchuk group
• Lamplighter group

Here the last three examples show that we can treat groups from any growth regime.

A sequence of (Qn) of finite subsets of G is said to be tempered if for some C > 0 and all
n ∈ N ∣∣∣∣∣⋃

k<n

Q−1
k Qn

∣∣∣∣∣ ≤ C|Qn|
holds. It can be shown, that each Følner sequence has a tempered subsequence, see e.g.
[Lin01]. We call a sequence (Qn) strictly increasing if |Qn+1| > |Qn| for all n ∈ N. Again
one can show that each Følner sequence has a strictly increasing subsequence. As each
subsequence of a strictly increasing sequence is strictly increasing as well, this gives that
there is a strictly increasing tempered Følner sequence in each amenable group.

We continue with describing the randomness. Let the set of vertices V be given by the
elements of the group G and let E be the set of edges of the complete undirected graph
Γ = Γ(V,E). Thus an edge e ∈ E is an unordered pair of vertices x, y ∈ V which we will
denote by e = [x, y]. Let an arbitrary element p = (p(x))x∈G ∈ `1(G) satisfying

(2) 0 ≤ p(x) ≤ 1 and p(x) = p(x−1) for all x ∈ G

be given. In order to generate a random subset Eω ⊂ E by a percolation process we define
for each e ∈ E the probability that the edge e = [x, y] is an element of Eω to be equal to
p(xy−1).

More precisely we consider the following probability space: the sample space is given by
Ω = {0, 1}E the set of all possible configurations. We take A to be the σ-algebra of subsets of
Ω generated by the cylinder sets. Finally we define the product measure P =

∏
e∈E Pe where

for each e = [x, y] ∈ E the probability measure Pe on {0, 1} is given by

Pe(ω(e) = 1) = p(xy−1) and Pe(ω(e) = 0) = 1− p(xy−1).

Thus each ω ∈ Ω gives rise to a graph Γω = (V,Eω). Now we discuss an alternative definition
of the long-range percolation process.

Remark 2.2. We introduced the distribution of the probabilities via an arbitrary function
p ∈ `1(G) satisfying (2). There is an equivalent and in physical communities more common
way to do so.

For each pair of vertices x, y ∈ G let Jx,y be a real number such that

• Jxz,yz = Jx,y for all z ∈ G,
• J := Jx :=

∑
y∈G Jx,y is finite and independent of x ∈ G.

We fix β > 0 and declare an edge [x, y] to be open with probability 1 − e−βJx,y . To see the
equivalence to the above definition it suffices to show that

∑
x∈G p(x) <∞ holds if and only

if
∑

y∈G Jx,y < ∞, where p(xy−1) = 1 − e−βJx,y . Using that 1 − e−s ≤ s for all s ∈ R one
obtains ∑

x∈G
p(x) =

∑
y∈G

p(xy−1) =
∑
y∈G

1− e−βJx,y ≤ β
∑
y∈G

Jx,y.
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To prove the converse direction we apply Taylor’s formula, which shows that there exists a
constant T > 0 such that

1− e−βJx,y = βJx,y −
∞∑
k=2

(−βJx,y)k

k!
≥ 1

2
βJx,y

holds for all x, y ∈ G satisfying d(x, y) ≥ T . Thus we get∑
y∈G

Jx,y =
∑
y∈G

d(x,y)≤T

Jx,y +
∑
y∈G

d(x,y)>T

Jx,y ≤
∑
y∈G

d(x,y)≤T

Jx,y +
2

β

∑
y∈G

d(x,y)>T

(
1− e−βJx,y

)
≤ c

∑
x∈G

p(x)

for c > 0 large enough.

Note that by definition [x, y] = [y, x] and P([x, y] ∈ Eω) = P([xz, yz] ∈ Eω) = p(xy−1).
Furthermore we get for x ∈ G

(3) ε(R) :=
∑

y∈G\BR(x)

p(xy−1) =
∑

y∈G\BR

p(y)

and limR→∞ ε(R) = 0 since p ∈ `1(G). The next result shows that for almost all realizations
the graph Γω is locally finite. To this end we define for given x ∈ G and ω ∈ Ω the vertex
degree of x in Γω by

mω(x) := |{y ∈ G | [x, y] ∈ Eω}| ∈ [0,∞].

Lemma 2.3. There exists a set Ωlf ⊂ Ω of full measure such that mω(x) is finite for all
x ∈ G and all ω ∈ Ωlf .

Proof. Fix an element x ∈ G. For each y ∈ G we denote by Ay := {[x, y] ∈ Eω} the event
that x and y are adjacent. Since∑

y∈G
P(Ay) =

∑
y∈G

p(xy−1) <∞

we can apply the Borel-Cantelli Lemma which gives that there exists a set Ωx ⊂ Ω with
probability one such that mω(x) is finite for each ω ∈ Ωx. This implies

P({∃x ∈ G such that mω(x) =∞}) = P

(⋃
x∈G
{mω(x) =∞}

)
≤

∑
x∈G

P ({mω(x) =∞})

≤
∑
x∈G

P (Ω \ Ωx)

As G can have only countable many elements the claim follows. �

We go on defining certain random variables. Given an edge e ∈ E the random variable
Xe(ω) is equal to one if e is an element of Eω and zero otherwise. If an edge is given by a
pair of vertices [x, y] it is obvious that X[x,y] = X[y,x] and its distribution depends only on

the value xy−1.
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For fixed R ∈ N and a finite subset Q = {x1, . . . , x|Q|} ⊂ G we define random variables
Yi, i = 1, . . . , |Q| by

(4) Yi(ω) =
∑
y∈MR

i

X[xi,y](ω) where MR
i := {x ∈ G | d(x, xi) > R, x 6= xj ∀j < i}.

Thus, Yi is the random variable counting the edges of length larger than R, being incident
to xi and not counted by any Yj , j = 1, . . . , i− 1. Note that the variables Yi are independent
and Lemma 2.3 yields P(Yi =∞) = 0, i = 1, . . . , |Q|. Furthermore the distribution functions
for these random variables fulfill FY1(z) ≤ FYi(z) for all i ∈ {1, . . . , |Q|} and all z ∈ R. By
equation (3) the expectation value E(Y1) equals ε(R). We denote the centred random variable
Yi − E(Yi) by Ȳi for all i = 1, . . . , |Q| and set Y := Y1, Ȳ := Ȳ1. The aim of Lemma 2.4 is to
describe the distribution of the variables Yi.

Lemma 2.4. Let R ∈ N, Q = {x1, x2, . . . , x|Q|} ∈ F(G) and Yi, i = 1, . . . , |Q| be given as
above. Then the estimate

P(Yi ≥ t) ≤ ce−t

holds for all t ∈ N and all i = 1, . . . , |Q|, where c ∈ R is given by

c =
∏
y∈G

(1 + p(y)(e− 1)) .

Proof. Let y ∈ G be arbitrary and set x := x1 as well as Y = Y1, then

E(eX[x,y]) = p(xy−1)e + (1− p(xy−1))e0 = 1 + p(xy−1)(e− 1)

holds. The independence of Xe, e ∈ E implies

E(eY ) =
∏

y∈G\BR(x)

E(eX[x,y]) =
∏

y∈G\BR(x)

(
1 + p(xy−1)(e− 1)

)
≤
∏
y∈G

(1 + p(y)(e− 1))

since Y =
∑

y∈G\BR(x)X[x,y]. The product converges to a finite number since

∏
y∈G

(1 + p(y)(e− 1)) = exp

∑
y∈G

ln(1 + p(y)(e− 1))

 ≤ exp

(e− 1)
∑
y∈G

p(y)

 <∞

holds by assumption on p. Now we use Markov’s inequality to obtain for given i ∈ {1, . . . , |Q|}

P(Yi ≥ t) ≤ P(Y ≥ t) ≤ e−tE(eY ),

which implies the claimed inequality with constant c not depending on R. �

Lemma 2.4 implies that for each k ∈ N and i ∈ {1, . . . , |Q|} the moments E(Y k
i ) and E(Ȳ k

i )
exist. This is clear from

|E(Y k
i )| =

∞∑
t=0

tkP(Yi = t) ≤
∞∑
t=0

tkP(Yi ≥ t) ≤ c
∞∑
t=0

tke−t <∞

and

|E(Ȳ k
i )| =

∣∣∣∣∣
∞∑
t=0

(t− E(Yi))
kP(Yi = t)

∣∣∣∣∣ ≤
∞∑
t=0

|t− E(Yi)|k P(Yi ≥ t) ≤ c
∞∑
t=0

|t− E(Yi)|ke−t <∞.
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3. Bernstein inequality

In this section we verify a Bernstein inequality for independent random variables ξi. This
is a result from the theory of large deviations. It estimates the probability that the sum of
the random variables differs too much from its expectation value. The proof follows ideas
from [AZ88] where similar estimates are shown.

Theorem 3.1 (Bernstein inequality). Let ξ1, . . . , ξn be independent random variables satis-
fying

(5) E(ξi) = 0 and |E(ξki )| ≤ 1

2
τk−2k!

for all i = 1, . . . , n, all k ∈ N \ {1} and some constant τ > 0. Then

P(S ≥ α) ≤

{
e−

α2

4n , 0 ≤ α ≤ n/τ
e−

α
4τ , α > n/τ

,

where S =
∑n

i=1 ξi.

Proof. For fixed i ∈ {1, . . . , n} and h ∈ (0, 1
2τ ] we have by assumption on ξi

E(ehξi) =
∞∑
k=0

E((hξi)
k)

k!
≤ 1 + h2

∞∑
k=2

hk−2 |E(ξki )|
k!

≤ 1 +
h2

2

∞∑
k=2

(hτ)k−2 ≤ 1 + h2 ≤ eh
2
.

Furthermore the independency of the random variables implies

E(ehS) =

n∏
i=1

E(ehξi) ≤
n∏
i=1

eh
2

= enh
2
.

Using this and Markov inequality we obtain

(6) P(S ≥ α) ≤ e−αhE(ehS) ≤ enh
2−αh

for each α > 0. In the case 0 < α ≤ n
τ set h = α

2n ≤
1
2τ . Then (6) can be written as

P(S ≥ α) ≤ e−
α2

4n .

If α ≥ n
τ we set h = 1

2τ and conclude

P(S ≥ α) ≤ e−
α
4τ ,

which proves the claimed estimate. �

The next Lemma shows that the variables Yi, i = 1, . . . , |Q| fulfill the conditions (5) with
some parameter τ > 0, which is independent of R and Q. This allows to apply Theorem 3.1
in order to prove an adapted inequality in Corollary 3.3.

Lemma 3.2. There exists an R0 ∈ N such that for each R ≥ R0 the following holds: for any
set Q = {x1, . . . , x|Q|} ∈ F(G) and associated random variables Yi, i = 1, . . . , |Q| given as in

(4) each Ȳi = Yi − E(Yi) satisfies the conditions (5) with τ = 6
∏
y∈G (1 + p(y)(e− 1)).

Proof. Notice that the existence of the moments E(Ȳ k
i ), k ∈ N, i ∈ {1, . . . , |Q|} is already

clear from Lemma 2.4. However it is not obvious that the conditions (5) hold with τ given
as above. Furthermore we see τ = 6c, where c is the constant given by Lemma 2.4. In the
special case where the second moment of Ȳi equals zero, the conditions (5) are clearly fulfilled
since then E(Ȳ k

i ) = 0 for all k ∈ N, i ∈ {1, . . . , |Q|}.
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Let Q = {x1, . . . , x|Q|} ∈ F(G), i ∈ {1, . . . , |Q|} and set x := x1. We first choose a certain

constant T ∈ N and give a condition for R0 and in order to prove that E(Ȳ 2
i ) does not exceed

one for all i = 1, . . . , n and all R ≥ R0. Let T ∈ N be such that

(7)
∞∑

t=T+1

t2e−t ≤ 1

3c
,

where c > 0 is the constant given by Lemma 2.4. Now choose R0 ∈ N such that

(8) ε(R) ≤ −1

2
ln

1−

(
3

T∑
t=1

t2

)−1


for all R ≥ R0. This choice implies

(9) E(Yi) ≤ E(Y ) = ε(R) ≤ 1

3
and p(y) ≤ 1

2
for all R ≥ R0, y ∈ G \BR0 .

Furthermore we get for R ≥ R0

P(Yi = 0) ≥ P(Y = 0) = P

 ∑
y∈G\BR(x)

X[x,y] = 0

 =
∏

y∈G\BR(x)

(1−p(xy−1)) =
∏

y∈G\BR

(1−p(y)).

Now we use the inequality 1− z ≥ e−2z which holds for all z ∈ [0, 0.5] and obtain

∏
y∈G\BR

(1− p(y)) = exp

 ∑
y∈G\BR

ln(1− p(y))

 ≥ exp

−2
∑

y∈G\BR

p(y)

 = exp (−2ε(R)) ,

which shows using (8)

(10) P(Yi ≥ 1) = 1− P(Yi = 0) ≤ 1− exp(−2ε(R)) ≤

(
3

T∑
t=1

t2

)−1

As E(Ȳ 2
i ) can be written as

E(Ȳ 2
i ) =

∣∣E ((Yi − E(Yi))
2
)∣∣ =

∞∑
t=0

(t− E(Yi))
2P(Yi = t)

the estimates in (7),(9),(10) and Lemma 2.4 imply

E(Ȳ 2
i ) ≤ (E(Yi))

2 +

T∑
t=1

(t− E(Yi))
2P(Yi = t) +

∞∑
t=T+1

(t− E(Yi))
2P(Yi = t)

≤ (ε(R))2 + P(Yi ≥ 1)
T∑
t=1

t2 +
∞∑

t=T+1

t2P(Yi ≥ t)

≤ 1

3
+

1

3
+

1

3
= 1.

Now let k ≥ 3. The k-th moment of Ȳi is by definition the k-th central moment of Yi thus
we get ∣∣∣E(Ȳ k

i )
∣∣∣ =

∣∣∣E((Yi − E(Yi))
k)
∣∣∣ =

∣∣∣∣∣
∞∑
t=0

(t− E(Yi))
kP(Yi = t)

∣∣∣∣∣ .
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Since 0 ≤ E(Yi) ≤ 1
3 , see (7) we have that∣∣∣∣∣

∞∑
t=0

(t− E(Yi))
kP(Yi = t)

∣∣∣∣∣ ≤ (E(Yi))
kP(Yi = 0) +

∞∑
t=1

tkP(Yi = t)

≤ (E(Yi))
k +

∞∑
t=1

tkP(Yi ≥ t)

holds. Using P(Yi ≥ t) ≤ P(Y ≥ t) and E(Yi) ≤ E(Y ), this implies∣∣∣E(Ȳ k
i )
∣∣∣ ≤ (E(Y ))k + c

∞∑
t=1

tke−t,

where the last inequality holds with constant c > 0 from the Lemma 2.4. The function
f : [0,∞]→ R, x 7→ xke−x takes its maximal value at the argument x = k. Therefore we get

∞∑
t=1

tke−t =
k−1∑
t=1

tke−t + kke−k +
∞∑

t=k+1

tke−t

≤
∫ k

0
xke−xdx+ kke−k +

∫ ∞
k

xke−xdx

=

∫ ∞
0

xke−xdx+ kke−k.

Partial integration leads to∫ ∞
0

xke−xdx =

∫ ∞
0

kxk−1e−xdx = · · · = k!

∫ ∞
0

e−xdx = k!

Now it is enough to show that

(11) 2(E(Y ))k + 2ck! + 2c

(
k

e

)k
≤ τk−2k!

holds for τ = 6c. To this end we consider the three summands separately. The first one gives
by (7) and as τ > 1

2(E(Y ))k

τk−2k!
≤ 1

3
.

The second summand gives
2ck!

τk−2k!
=

2c

(6c)k−2
≤ 1

3

and for the third summand we use the Stirling formula k! ≥ kke−k to obtain

2ckk

ekτk−2k!
≤ 2c

(6c)k−2
≤ 1

3
.

This shows that (11) holds, which finishes the proof. �

Given a finite set Q = {x1, . . . , x|Q|} ⊂ G we will use this result to show that the probability
that “too many long edges” are incident to a vertex in Q is very small. To be precise, let
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R ∈ N and δ > 0 be constants and set ε = ε(R) = E(Y ) as in (3). We decompose the
probability space Ω = Ω1(δ,R,Q) ∪ Ω2(δ,R,Q) by setting

(12) Ω1(δ,R,Q) :=

ω ∈ Ω

∣∣∣∣ |Q|∑
i=1

Yi(ω) ≥ |Q|(ε+ δ)

 and Ω2(δ,R,Q) := Ω \Ω1(δ,R,Q).

where Yi, i = 1, . . . , |Q| are given by (4). Thus the set Ω1(δ,R,Q) consists of all configurations
where the number of edges of length longer than R that are incident to at least one vertex in
Q is at least |Q|(ε(R) + δ).

Corollary 3.3. Let R0 and τ be as in Lemma 3.2, let δ > 0 and Q ∈ F(G) be given and
define Ω1(δ,R,Q) as above. Then the following inequality holds

(13) P(Ω1(δ,R,Q)) ≤

 exp
(
− δ2|Q|

4

)
, 0 ≤ δ ≤ 1

τ

exp
(
− δ|Q|

4τ

)
, δ > 1

τ

.

Proof. By definition of Yi, Ȳi and ε = ε(R) we have

P(Ω1(δ,R,Q)) = P

 |Q|∑
i=1

Yi ≥ |Q|(E(Y ) + δ)

 ≤ P

 |Q|∑
i=1

Ȳi ≥ |Q|δ

 .

As the variables Ȳi, i = 1, . . . , |Q| are independent and fulfill conditions (5) this term can be
estimated using Theorem 3.1. Setting α = δ|Q| we get

P(Ω1(δ,R,Q)) ≤

 exp
(
− δ2|Q|2

4|Q|

)
, 0 ≤ δ|Q| ≤ |Q|τ

exp
(
− δ|Q|

4τ

)
, δ|Q| > |Q|

τ

,

which gives the desired estimate. �

4. Counting eigenvalues

In this section we consider the Laplace operator ∆ω with respect to the random graph Γω
acting a domain Dω ⊂ `2(G). To define this operator in an appropriate sense we restrict
ourselves from now on to the set Ωlf ⊂ Ω with P(Ωlf) = 1 where Γω is a locally finite graph
for all ω ∈ Ωlf , cf. Lemma 2.3.

We denote by Cc(G) ⊂ `2(G) the dense subset of functions f : G→ C with finite support.

On this space we define the operator ∆̃ω : Cc(G)→ `2(G) by setting

∆̃ωf(x) := mω(x)f(x)−
∑

y:[x,y]∈Eω

f(y) =
∑

y:[x,y]∈Eω

(f(x)− f(y)) .

It is known that this operator is essentially selfadjoint, cf. [Jor08, Woj09, Web10]. Thus there

exists a domain Dω such that ∆ω : Dω → `2(G) is the unique selfadjoint extension of ∆̃ω. The
operator ∆ω will be called the Laplace operator. Similarly the Laplacian ∆S : `2(VS)→ `2(VS)
on a finite subgraph S = (VS , ES) of the complete graph Γ is given by

∆Sf(x) =
∑

y∈VS :[x,y]∈ES

(f(x)− f(y)) .

We denote the set of all finite subgraphs of the complete graph Γ by S. The subset of
S consisting of all subgraphs with vertex set Q ∈ F(G) is called S(Q). For a subgraph
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S = (VS , ES) of Γ and Q ⊂ VS the induced subgraph of S on Q is denoted by S[Q], i.e. S[Q]
is the graph on vertex set Q, where two vertices are adjacent in S[Q] if and only if they are
adjacent in S. Given a subgraph S = (VS , ES) of Γ and an element x ∈ G the translation of
S by x is the graph Sx whose vertex set is VSx = VSx = {yx ∈ G | y ∈ VS} and the edges are
ESx = {[y, y′] ∈ E | [yx−1, y′x−1] ∈ ES}.

In order to define the restriction of the Laplacian on a subset Q ⊂ G, we introduce mappings
pQ and iQ called projection and inclusion. The support of u ∈ `2(G) is the set of those x ∈ G,
such that u(x) 6= 0. We identify `2(Q) = {u : Q→ C|

∑
x∈Q |u(x)|2 <∞} with the subspace

of `2(G) consisting of all elements supported in Q. The map pQ : `2(G)→ `2(Q) is given by
u 7→ pQ(u), where pQ(u)(x) = u(x) for x ∈ Q. Similarly iQ : `2(Q)→ `2(G) is given by

iQ(u)(x) :=

{
u(x) if x ∈ Q
0 else

.

For given ω ∈ Ωlf and S = (VS , ES) ∈ S we will particularly be interested in restricted
operators pQ∆ωiQ : `2(Q) → `2(Q) and pU iVS∆SpVS iU : `2(U) → `2(U), where Q ⊂ G and
U ⊂ VS are finite. For this we will use the notation

∆ω[Q] := pQ∆ωiQ and ∆S [U ] := pU iVS∆SpVS iU .

Note that these operators are symmetric matrices with real entries, hence their eigenvalues
are a subset of the real axis. Particularly for given ω ∈ Ωlf , R ∈ N0 and Q ∈ F(G) we will be
interested in the difference

DR
ω (Q) := ∆Γω [Q][QR]−∆ω[QR].

Definition 4.1. Let B(R) be the Banach space of right-continuous, bounded functions f :
R→ R equipped with supremum norm. For a selfadjoint operator A on a finite dimensional
Hilbert space V we define its cumulative eigenvalue counting function n(A) ∈ B(R) by setting

n(A)(E) := |{i ∈ N | λi ≤ E}|

for all E ∈ R, where λi, i = 1, . . . ,dimV are the eigenvalues of A, counted according to their
multiplicity.

The next two lemmata are stated for completeness reason. Their proofs are to be found
for example in [LS06, LMV08, LSV10].

Lemma 4.2. Let A and C be selfadjoint operators in a finite dimensional Hilbert space, then
we have

|n(A)(E)− n(A+ C)(E)| ≤ rank(C)

for all E ∈ R.

Lemma 4.3. Let V be a finite dimensional Hilbert space and U a subspace of V . If i : U → V
is the inclusion and p : V → U the orthogonal projection, we have

|n(A)(E)− n(pAi)(E)| ≤ 4 · rank(1− i ◦ p)

for all selfadjoint operators A on V and all energies E ∈ R.

For given Q ∈ F(G), R ∈ N0, ω ∈ Ωlf and S = (VS , ES) ∈ S we define FRω , Fω : F(G) →
B(R) by

(14) FRω (Q) := n(∆ω[QR]) and Fω(Q) := F 0
ω(Q) = n(∆ω[Q]).
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as well as F̃R, F̃ : S → B(R) by

(15) F̃R(S) := n(∆S [(VS)R]) and F̃ (S) := F̃ 0(S) = n(∆S).

Lemma 4.4. Let R ∈ N0, ω ∈ Ωlf and the functions FRω : F(G)→ B(R) and F̃R : S → B(R)
be given as above. Then the following holds true:

(i) the functions FRω and F̃R are linearly bounded, in fact

‖FRω (Q)‖ ≤ |Q| and ‖F̃R(S)‖ ≤ |VS |

(ii) the function F̃R is invariant under translation, i.e. for any S ∈ S and x ∈ G we have

F̃R(S) = F̃R(Sx).

Proof. This follows easily from the definition. �

The next results are devoted to prove further properties of these functions for R ≥ R0 with
R0 from Lemma 3.2. We will not be able to prove these properties for all ω ∈ Ωlf but only
for all ω ∈ Ω̃ where

(16) Ω̃ := Ω̃(δ,R,Q) := Ω2(δ,R,Q) ∩ Ωlf and Ω2(δ,R,Q) given as in (12)

By Corollary 3.3 we have P(Ω̃) ≥ 1− exp(−δ2|Q|/4) for δ ≤ τ−1. The function FRω : F(G)→
B(R), Q 7→ FRω (Q) satisfies a weak form of additivity, described in the next

Lemma 4.5. Let Q ∈ F(G), R ≥ R0 and δ > 0 be given and set Ω̃ = Ω̃(δ,R,Q) as in (16)
and ε = ε(R) =

∑
y∈G\BR p(y) as in (3). Then for any disjoint sets Qi, i = 1, . . . k with

Q =
⋃
iQi the inequality∥∥∥∥∥FRω (Q)−

k∑
i=1

FRω (Qi)

∥∥∥∥∥ ≤ 4|Q|(ε+ δ) + 4
k∑
i=1

|∂R(Qi)|

holds for all ω ∈ Ω̃. Here R0 is the constant given in Lemma 3.2.

Proof. Let ω ∈ Ω̃ and disjoint sets Qi, i = 1, . . . k with Q =
⋃
iQi be given. During the proof

we will call the edges of length longer than R the long edges. For given U ∈ F(G) we define
an operator Lω[U ] : `2(U)→ `2(U) which does only respect the long edges by

(Lω[U ]f)(x) = −
∑

y∈U :[x,y]∈Eω
d(x,y)>R

f(y)

and use the notation

∆L
ω [U ] := ∆ω[U ]− Lω[U ].

As ω is an element of Ω2(δ,R,Q), the number of long edges in Γω which are incident to a
vertex in Q is less than |Q|(ε + δ). Hence the matrices Lω[Q] and Lω[QR] contain not more
than 2|Q|(ε+ δ) non-zero elements and we get

rank(Lω[Q]) ≤ 2|Q|(ε+ δ) and rank(Lω[QR]) ≤ 2|Q|(ε+ δ).

This combined with Lemma 4.2 gives

(17) ‖n(∆ω[QR])− n(∆L
ω [QR])‖ ≤ rank(Lω[QR]) ≤ 2|Q|(ε+ δ)
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which immediately implies∥∥∥∥∥n(∆ω[QR])−
k∑
i=1

n(∆ω[Qi,R])

∥∥∥∥∥ ≤ 2|Q|(ε+ δ) +

∥∥∥∥∥n(∆L
ω [QR])−

k∑
i=1

n(∆ω[Qi,R])

∥∥∥∥∥ .
Here the last term can be estimated by∥∥∥∥∥n(∆L

ω [QR])−
k∑
i=1

n(∆ω[Qi,R])

∥∥∥∥∥ ≤

∥∥∥∥∥n(∆L
ω [QR])−

k∑
i=1

n(∆L
ω [Qi,R])

∥∥∥∥∥
+

∥∥∥∥∥
k∑
i=1

(
n(∆L

ω [Qi,R])− n(∆ω[Qi,R])
)∥∥∥∥∥ .

We apply again Lemma 4.2 and the fact that
∑

i rank(Lω[Qi,R]) is bounded by the number
of non-zero elements in Lω[Q] as well. This proves the inequality

(18)

∥∥∥∥∥n(∆ω[QR])−
k∑
i=1

n(∆ω[Qi,R])

∥∥∥∥∥ ≤ 4|Q|(ε+ δ) +

∥∥∥∥∥n(∆L
ω [QR])−

k∑
i=1

n(∆L
ω [Qi,R])

∥∥∥∥∥ .
Now we use a decoupling argument. By definition of ∆L

ω [·] and Lω[·] we get

∆L
ω

[
k⋃
i=1

Qi,R

]
=

k⊕
i=1

(
∆L
ω [Qi,R]

)
.

Therefore we can count the eigenvalues of ∆L
ω [Qi,R] for i = 1, . . . , k separately

n

(
∆L
ω

[
k⋃
i=1

Qi,R

])
=

k∑
i=1

n
(
∆L
ω [Qi,R]

)
.

Now we apply Proposition 4.3 with V = `2(QR) and U = `2(
⋃k
i=1Qi,R). Hence we get∥∥∥∥∥n(∆L

ω [QR])−
k∑
i=1

n(∆L
ω [Qi,R])

∥∥∥∥∥ =

∥∥∥∥∥n(∆L
ω [QR])− n

(
∆L
ω

[
k⋃
i=1

Qi,R

])∥∥∥∥∥ ≤ 4
k∑
i=1

|∂RQi|

This together with (18) finishes the proof. �

The next lemma shows that the functions FRω and F̃R act similarly with high probability.

Lemma 4.6. Let Q ∈ F(G), R ≥ R0 and δ > 0 be given and set Ω̃ = Ω̃(δ,R,Q) as in (16)
and ε = ε(R) =

∑
y∈G\BR p(y) as in (3). Then∥∥∥FRω (Q)− F̃R(Γω[Q])

∥∥∥ ≤ |Q|(ε+ δ)

holds for all ω ∈ Ω̃. Here R0 is the constant given in Lemma 3.2.

Proof. Let ω ∈ Ω̃ be given. By definition of F̃R, FRω and DR
ω (·)∥∥∥FRω (Q)− F̃R(Γω[Q])

∥∥∥ =
∥∥n(∆ω[QR])− n(∆Γω [Q][QR])

∥∥
=

∥∥n(∆ω[QR])− n(∆ω[QR] +DR
ω (Q))

∥∥
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holds. Lemma 4.2 yields that∥∥n(∆ω[QR])− n(∆ω[QR] +DR
ω (Q))

∥∥ ≤ rank(DR
ω (Q)) ≤

∑
x∈QR

|DR
ω (Q)(x, x)|

Note that (−DR
ω (Q)) : `2(QR)→ `2(QR) is a diagonal matrix where the entry at (x, x) denotes

the number of edges in Γω from x ∈ QR to G \Q. The sum of these entries is bounded from
above by the number of all edges of length longer than R which are incident to some x ∈ QR.
Therefore the last term is not larger then |Q|(ε+ δ) as ω is an element of Ω2. �

5. Uniform approximation

At the beginning of this section we introduce some notation concerning frequencies of
finite subgraphs in infinite graphs. For two graphs S, S′ ∈ S the number of occurrences of
translations of the graph S in S′ is denoted by

]S(S′) := |{x ∈ G | VSx ⊂ VS′ , S′[VSx] = Sx}|.

Counting occurrences of graphs along a Følner sequence (Uj)j∈N leads to the definition of
frequencies. Let S ∈ S, (Uj)j∈N be a Følner sequence and let Γ′ = (V,E′) be a subgraph of
Γ on the full vertex set V . If the limit

νS(Γ′) := lim
j→∞

]S(Γ′[Uj ])

|Uj |

exists we call νS(Γ′) the frequency of S in the graph Γ′ along (Uj)j∈N. Similarly frequencies can
be defined for subgraphs which are not (or sparsly) connected to the rest of the graph. Given
R ∈ N and a graph Γ′ = (V,E′) on the full vertex set V , we say that a graph S = (VS , ES) is
R-isolated in Γ′ if Γ[VS ] = S and [g, h] /∈ E′ for all g ∈ VS , h ∈ G \ VS satisfying d(g, h) ≥ R.
Therefore a 1-isolated graph S has no edge connecting it with the rest of the graph. For a
given graph S = (VS , ES) ∈ S, a set Q ∈ F(G), R ∈ N and Γ′ as above we write

]S,R(Γ′, Q) :=
∣∣{x ∈ G | VSx ⊂ Q and Sx is R-isolated in Γ′}

∣∣
for the number of occurrences of R-isolated copies of S in Q. The frequency of an R-isolated
graph S along a Følner sequence (Uj) in Γ′ is defined by

νS,R(Γ′) := lim
j→∞

]S,R(Γ′, Uj)

|Uj |
,

if the limit exists. In the following the graph Γ′ will always be given by percolation graph Γω,
ω ∈ Ω. However Lemma 5.1 will show that the frequencies νS(Γω) will coincide for almost all
ω ∈ Ω. The same will hold true for the frequencies νS,R(Γω).

We define the action T of G on (Ω,A,P) by

(19) T : G× Ω→ Ω, (g, ω) 7→ Tg(ω) := ωg−1

where ωg−1 ∈ Ω is given pointwise by

ωg−1([x, y]) = ω([xg, yg]) for all x, y ∈ G.

Note that T is an ergodic and measure preserving left-action on (Ω,A,P).
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Lemma 5.1. Given R ∈ N and a tempered Følner sequence (Qn), there exists a set Ωfr ⊂ Ω
of full measure such that the frequencies νS(Γω) and νS,R(Γω) along (Qn) exist for all S =
(VS , ES) ∈ S and all ω ∈ Ωfr, in particular

νS := νS(Γω) =
∏

[x,y]∈ES

p(xy−1) ·
∏

[x,y]/∈ES
x,y∈VS

(1− p(xy−1))

νS,R := νS,R(Γω) =
∏

[x,y]∈ES

p(xy−1) ·
∏

[x,y]/∈ES
x,y∈VS

(1− p(xy−1)) ·
∏

[x,y]∈E,x∈VS,
y/∈VS,d(x,y)≥R

(1− p(xy−1))

holds and the values of νS and νS,R do not depend on the specific choice of (Qn).

To prove this Lemma we cite a special case of a pointwise Ergodic Theorem due to Lin-
denstrauss (Theorem 1.2 in [Lin01])

Theorem 5.2. Let G act from the left on a measure space (Ω,A,P) by an ergodic and
measure preserving transformation T an let (Qn) be a tempered Følner sequence. Then for
any f ∈ L1(P)

lim
n→∞

1

|Qn|
∑
g∈Qn

f(Tgω) =

∫
Ω

f(ω)dP(ω)

holds almost surely.

Proof of Lemma 5.1. Let S = (VS , ES) ∈ S be a graph such that id ∈ VS . We define AS =
{ω ∈ Ω | Γω[VS ] = S} to be the subset of Ω consisting of all configurations where Γω coincides
with S on VS and we denote the indicator function of AS by fS . The number of occurrences
of S in the graph Γω[Qn] can be estimated by

(20)
∑

g∈Qn,diam(VS)

fS(ωg−1) ≤ ]S(Γω[Qn]) ≤
∑
g∈Qn

fS(ωg−1).

This proves on the one hand that

lim sup
n→∞

]S(Γω[Qn])

|Qn|
≤ lim sup

n→∞

1

|Qn|
∑
g∈Qn

fS(ωg−1)

holds. Using the fact

1

|Qn|
∑

g∈∂RintQn

fS(ωg−1) ≤ |∂
R
intQn|
|Qn|

→ 0, n→∞

for all R > 0, (20) also implies

lim inf
n→∞

]S(Γω[Qn])

|Qn|
≥ lim inf

n→∞

1

|Qn|
∑

g∈Qn,diam(VS)

fS(ωg−1) = lim inf
n→∞

1

|Qn|
∑
g∈Qn

fS(ωg−1).

Consequently νS(Γω) = limn→∞ ]S(Γω[Qn])/|Qn| exists. The left action T of G on (Ω,A,P)
is given by (19), thus it is measure preserving and ergodic. Therefore Theorem 5.2 gives

νS(Γω) = lim
n→∞

1

|Qn|
∑
g∈Qn

fS(ωg−1) = lim
n→∞

1

|Qn|
∑
g∈Qn

fS(Tgω) = E(fS) a.s.
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The expectation value E(fS) can be computeted via the probabilities given by p ∈ `1(G) in
(2):

E(fS) = P(fS(ω) = 1) =
∏

[x,y]∈ES

p(xy−1) ·
∏

[x,y]/∈ES
x,y∈VS

(1− p(xy−1)).

This procedure works in the same way for νS,R(Γω). Defining

AS,R = {ω ∈ Ω | Γω[VS ] = S and S is R-isolated in Γω}
and fS,R to be its indicator function, we get

νS,R(Γω) = E(fS,R) =
∏

[x,y]∈ES

p(xy−1) ·
∏

[x,y]/∈ES
x,y∈VS

(1− p(xy−1)) ·
∏

[x,y]∈E,x∈VS,
y/∈VS,d(x,y)≥R

(1− p(xy−1)).

Here the last product is finite since p ∈ `1(G). �

Theorem 5.3. Let G be a finitely generated, amenable group and let (Qn) and (Uj) be Følner
sequences fulfilling

(a) (Uj) is strictly increasing and tempered;
(b) each Qn symmetrically tiles G.

Let the functions Fω : F(G) → B(R) and F̃ : S → B(R) be given as in (14) and (15). Then
the following limits

(21) N := lim
j→∞

Fω(Uj)

|Uj |
= lim

n→∞

∑
S∈S(Qn)

νS
F̃ (S)

|Qn|

exist and are equal almost surely and furthermore do not depend on the specific choice of (Qn)
and (Uj). The function N is called integrated density of states.

Remark 5.4. Given a group G and Følner sequences with the above properties, the theorem
ensures the existence of a set Ω′ of measure one, such that the limits (21) exist for all ω ∈ Ω′.
However, it is not possible to find a set Ω′′ of full measure, such that the limit exists for all
Følner sequences satisfying (a) and (b). This is due to the fact that for almost all ω ∈ Ω we
can construct (by translation) Følner sequences such that the associated sequences in (21) do
not converge.

A similar and well known phenomenom occurs in the theory of Lebesgue measurable func-
tions. Here one identifies functions which agree up to a set of measure zero, however it is not
possible to state a set of full measure such that all functions in the same equivalence class are
equal on this set.

The proof of Theorem 5.3 is based on the following Lemma.

Lemma 5.5. Let G be a finitely generated, amenable group and let (Uj) be a strictly increas-
ing, tempered Følner sequence and let (Qn) be a Følner sequence such that each Qn symmet-
rically tiles G. Let j ∈ N, R ≥ R0 and 0 < δ ≤ τ−1 be given, where R0 and τ are constants
given by Lemma 3.2. Set ε = ε(R) =

∑
y∈G\BR p(y) as in (3) and Ωj = Ω̃(δ,R, Uj) ∩ Ωfr,

where Ω̃(δ,R, Uj) is as in (16) and Ωfr as in Lemma 5.1. The functions FRω : F(G) → B(R)

and F̃R : S → B(R) are defined as in (14) and (15). Then the difference

Dω(j, n,R) :=

∥∥∥∥∥∥F
R
ω (Uj)

|Uj |
−

∑
S∈S(Qn)

νS
F̃R(S)

|Qn|

∥∥∥∥∥∥ .
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satisfies the estimate

Dω(j, n,R) ≤ 4
|∂RQn|
|Qn|

+

(
4
|∂RQn|
|Qn|

+ 1

)
|∂diamQnUj |
|Uj |

+ 5(ε+ δ) +
∑

S∈S(Qn)

∣∣∣]S(Γω[Uj ])

|Uj |
− νS

∣∣∣
for all ω ∈ Ωj and all n ∈ N.

Proof. Let n ∈ N and ω ∈ Ωj be given. By inserting zeros we estimate the difference
Dω(j, n,R) in the following way

Dω(j, n,R) ≤

∥∥∥∥∥∥∥∥
FRω (Uj)

|Uj |
−

∑
g∈G

Qng⊂Uj

FRω (Qng)

|Uj | · |Qn|

∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥
∑
g∈G

Qng⊂Uj

FRω (Qng)

|Uj | · |Qn|
−

∑
S∈S(Qn)

]S(Γω[Uj ])

|Uj |
F̃R(S)

|Qn|

∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑

S∈S(Qn)

]S(Γω[Uj ])

|Uj |
F̃R(S)

|Qn|
−

∑
S∈S(Qn)

νS
F̃R(S)

|Qn|

∥∥∥∥∥∥
With another application of the triangle inequality this gives

Dω(j, n,R) ≤ D(1)
ω (j, n,R) +D(2)

ω (j, n,R) +D(3)
ω (j, n,R),

where

D(1)
ω (j, n,R) :=

1

|Uj | · |Qn|

∥∥∥∥∥ ∑
x∈Qn

FRω (Uj)−
∑
g∈G

Qng⊂Uj

FRω (Qng)

∥∥∥∥∥
D(2)
ω (j, n,R) :=

1

|Uj | · |Qn|

∥∥∥∥∥ ∑
g∈G

Qng⊂Uj

FRω (Qng)−
∑

S∈S(Qn)

]S(Γω[Uj ])F̃
R(S)

∥∥∥∥∥
D(3)
ω (j, n,R) :=

∑
S∈S(Qn)

∣∣∣∣]S(Γω[Uj ])

|Uj |
− νS

∣∣∣∣ ‖F̃R(S)‖
|Qn|

.

We use the boundedness of F̃R(S), see Lemma 4.4 to obtain

(22) D(3)
ω (j, n,R) ≤

∑
S∈S(Qn)

∣∣∣∣]S(Γω[Uj ])

|Uj |
− νS

∣∣∣∣ .
To estimate the other terms we make use of the tiling property of the set Qn, which gives

us that there exists a set Tn = T−1
n ⊂ G such that G is the disjoint union of the sets Qnt,

t ∈ Tn. For fixed x ∈ G we shift the grid Tnx
−1 = {tx−1 | t ∈ Tn} and get

G = Gx−1 =
⋃
t∈Tn

Qntx
−1 =

⋃
t∈Tnx−1

Qnt
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and Qnt ∩Qnt′ = ∅ for distinct t, t′ ∈ T−1. This shows that {Qnt | t ∈ Tnx−1} is a tiling of
G as well. Given a set U ∈ F(G) and an element x ∈ G, we set

W (U, x, n) := {g ∈ Tnx−1 | Qng ∩ U 6= ∅}

and distinguish two types of elements in W (U, x, n)

I(U, x, n) := {g ∈ Tnx−1 | Qng ⊂ U} and ∂(U, x, n) := W (U, x, n) \ I(U, x, n).

Therefore translations of Qn by elements of I(U, x, n) are completely contained in U whereas
translations of Qn by elements of ∂(U, x, n) have non-empty intersections with both U and
G \ U . By construction we have the following equality

(23) {g ∈ G | Qng ⊂ Uj} =
⋃̇

x∈Qn
I(Uj , x, n).

Here, one inclusion is obvious. To obtain the other one, take an element g and choose x ∈ Qn
and t ∈ Tn such that g−1 = xt. This gives g = t−1x−1 ∈ Tx−1 as T is symmetric. In order to
show that the union in (23) is disjoint, let x, y ∈ Qn with x 6= y be given. Then xTn∩yTn = ∅
and again by symmetry of Tn we have Tnx

−1 ∩ Tny−1 = ∅, which proves (23). We use the

invariance of F̃R under translation, see Lemma 4.4 and then (23) to obtain

D(2)
ω (j, n,R) =

1

|Uj | · |Qn|

∥∥∥∥∥ ∑
g∈G

Qng⊂Uj

(
FRω (Qng)− F̃R(Γω[Qng])

)∥∥∥∥∥
≤ 1

|Uj | · |Qn|
∑
x∈Qn

∑
g∈I(Uj ,x,n)

∥∥∥FRω (Qng)− F̃R(Γω[Qng])
∥∥∥ .

As ω ∈ Ω̃(δ,R, Uj) and as Qng ∩Qnh = ∅ for distinct g, h ∈ I(Uj , x, n), Lemma 4.6 leads to

(24) D(2)
ω (j, n,R) ≤ 1

|Uj | · |Qn|
∑
x∈Qn

∑
g∈I(Uj ,x,n)

|Qn|(ε+ δ) ≤ ε+ δ.

To estimate D
(1)
ω (j, n,R) firstly note that the disjointness of the translates and the fact

that Qng ⊂ ∂diamQnUj holds for all g ∈ ∂(Uj , x, n) imply the following inequalities:

(25) |∂(Uj , x, n)| · |Qn| ≤ |∂diamQnUj | and |I(Uj , x, n)| · |Qn| ≤ |Uj |.

We use again (23) to obtain

(26) D(1)
ω (j, n,R) ≤ 1

|Uj | · |Qn|
∑
x∈Qn

∥∥∥∥∥FRω (Uj)−
∑

g∈I(Uj ,x,n)

FRω (Qng)

∥∥∥∥∥
and analyse one summand

ARω (Uj , x, n) :=

∥∥∥∥FRω (Uj)−
∑

g∈I(Uj ,x,n)

FRω (Qng)

∥∥∥∥ =

∥∥∥∥FRω (Uj)−
∑

g∈I(Uj ,x,n)

FRω ((Qng) ∩ Uj)
∥∥∥∥

≤
∥∥∥∥FRω (Uj)−

∑
g∈W (Uj ,x,n)

FRω ((Qng) ∩ Uj)
∥∥∥∥+

∥∥∥∥ ∑
g∈∂(Uj ,x,n)

FRω ((Qng) ∩ Uj)
∥∥∥∥
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where the last inequality holds since W (Uj , x, n) is the disjoint union of ∂(Uj , x, n) and
I(Uj , x, n). Next we use the weak form of additivity given by Lemma 4.5. This is appli-

cable since ω ∈ Ωj ⊂ Ω̃(δ,R, Uj) and gives together with the boundedness of FRω see Lemma
4.4 the following

ARω (Uj , x, n) ≤ 4

( ∑
g∈I(Uj ,x,n)

|∂R(Qng)|+
∑

g∈∂(Uj ,x,n)

|∂R((Qng) ∩ Uj)|+ |Uj |(ε+ δ)

)
+

∑
g∈∂(Uj ,x,n)

|Qng|.

The invariance of ∂R(·) and | · | under translation and the inequalities (25) yield

ARω (Uj , x, n) ≤ 4|∂RQn||I(Uj , x, n)|+ 4|∂RQn||∂(Uj , x, n)|+ |Qn||∂(Uj , x, n)|+ 4|Uj |(ε+ δ)

≤ 4|∂RQn|
|Uj |
|Qn|

+ 4|∂RQn|
|∂diamQnUj |
|Qn|

+ |∂diamQnUj |+ 4|Uj |(ε+ δ)

which we plug in at (26) and obtain

D(1)
ω (j, n,R) ≤ 1

|Uj |

(
4|∂RQn|

|Uj |
|Qn|

+

(
4
|∂RQn|
|Qn|

+ 1

)
|∂diamQnUj |+ 4|Uj |(ε+ δ)

)
= 4
|∂RQn|
|Qn|

+

(
4
|∂RQn|
|Qn|

+ 1

)
|∂diamQnUj |
|Uj |

+ 4(ε+ δ).(27)

The combination of the estimates in (22), (24) and (27) gives

Dω(j, n,R) ≤ 4
|∂RQn|
|Qn|

+

(
4
|∂RQn|
|Qn|

+ 1

)
|∂diamQnUj |
|Uj |

+ 5(ε+ δ) +
∑

S∈S(Qn)

∣∣∣]S(Γω[Uj ])

|Uj |
− νS

∣∣∣
which proves the desired estimate on Dω(j, n,R). �

Proof of Theorem 5.3. For given j, n ∈ N, R ≥ R0, 0 < δ ≤ τ−1 and ω ∈ Ωj := Ω̃(δ,R, Uj) ∩
Ωfr we set

Bω(j, n,R, δ) := 4
|∂RQn|
|Qn|

+

(
4
|∂RQn|
|Qn|

+ 1

)
|∂diamQnUj |
|Uj |

+5(ε+δ)+
∑

S∈S(Qn)

∣∣∣]S(Γω[Uj ])

|Uj |
−νS

∣∣∣
i.e. the upper bound for Dω(j, n,R) given in the previous Lemma. In the following we explain
how to choose the mutual dependences of the parameters j, n,R, δ in order to obtain sufficient
control on Bω(j, n,R, δ) and P(Ωj) and be able to conclude the statement of the theorem.

Since (Qn) is a Følner sequence we have for all R ∈ N that limn→∞ |Qn|−1|∂RQn| = 0.
The function R(n) is defined inductively in the following way: for all k ∈ N we choose nk to
be the smallest natural number such that |Qn|−1|∂kQn| ≤ k−1 for all n ≥ nk. Now we set
R(n) = R0 for all n < nR0 and R(n) = k for all nk ≤ n < nk+1, k ≥ R0. This gives a function
n 7→ R(n) satisfying

R(n) ≥ R0 for all n ∈ N, lim
n→∞

R(n) =∞ and lim
n→∞

|∂R(n)Qn|
|Qn|

= 0.
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Furthermore recall that ε = ε(R) =
∑

y∈G\BR p(y), as in (3). Thus we have limn→∞ ε(R(n)) =

0. Setting δ(j) := (j1/4τ)−1 implies for fixed n ∈ N
(28)

δ(j) ≤ τ−1 for all j ∈ N, lim
j→∞

δ(j) = 0 as well as exp

(
−δ(j)

2|Uj |
4

)
≤ exp

(
−j

1/2

4τ2

)
for all j ∈ N. Here we used j ≤ |Uj |, which holds since (Uj) is strictly increasing. Now for
j, n ∈ N Lemma 5.5 implies that

Dω(j, n) := Dω(j, n,R(n)) ≤ Bω(j, n,R(n), δ(j)) =: Bω(j, n)

holds for all ω ∈ Ωj := Ω̃(δ(j), R(n), Uj) ∩ Ωfr and P(Ωj) ≥ 1 − exp(−j1/2/4τ2) by (28) and
Corollary 3.3. Furthermore for each ω ∈ Ωj we have

lim
n→∞

lim
j→∞

Bω(j, n) = 0.

Given j, n ∈ N we set

A
(n)
j := {ω ∈ Ωlf ∩ Ωfr | Dω(j, n) > Bω(j, n)}.

Therefore P(A
(n)
j ) ≤ exp(−j1/2/4τ2) for all j ∈ N and hence

∑
j P(A

(n)
j ) <∞ holds. Applying

Borel-Cantelli lemma leads to

P(A(n)) = 0, where A(n) :=

∞⋂
k=1

∞⋃
j=k

A
(n)
j = {A(n)

j infinitely often }.

Thus we get

P
(
ω ∈ Ωlf ∩ Ωfr

∣∣∣ lim
j→∞

(Dω(j, n)−Bω(j, n)) ≤ 0

)
= 1

for all n ∈ N. And hence there exists a set Ω̃ ⊂ Ωlf ∩ Ωfr with P(Ω̃) = 1 such that

lim
n→∞

lim
j→∞

(Dω(j, n)−Bω(j, n)) ≤ 0 for all ω ∈ Ω̃

which implies by definition of Bω(j, n)

(29) lim
n→∞

lim
j→∞

Dω(j, n) = 0 for all ω ∈ Ω̃.

Let κ > 0 and ω ∈ Ω̃ arbitrary. There exists a natural number n0 = n0(ω, κ) satisfying
limj→∞Dω(j, n0) ≤ κ/8, thus there exists j0 = j0(ω, κ) ∈ N such that Dω(j, n0) ≤ κ/4 for all
j ≥ j0. Using triangle inequality gives that

∥∥∥∥∥FR(n0)
ω (Uj)

|Uj |
− F

R(n0)
ω (Qm)

|Qm|

∥∥∥∥∥ ≤

∥∥∥∥∥∥F
R(n0)
ω (Uj)

|Uj |
−

∑
S∈S(Qn0 )

νS
F̃R(n0)(S)

|Qn0 |

∥∥∥∥∥∥
+

∥∥∥∥∥∥F
R(n0)
ω (Qm)

|Qm|
−

∑
S∈S(Qn0 )

νS
F̃R(n0)(S)

|Qn0 |

∥∥∥∥∥∥
≤ Dω(j, n0) +Dω(m,n0) ≤ κ

2
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holds for all j,m ≥ j0. Furthermore we use Lemma 4.3 to obtain that there exists a j1 =
j1(κ) ∈ N such that

(30)

∥∥∥∥∥Fω(Uj)

|Uj |
− F

R(n0)
ω (Uj)

|Uj |

∥∥∥∥∥ =

∥∥∥∥n(∆ω[Uj ])− n(∆ω[Qj,R(n0)])

|Uj |

∥∥∥∥ ≤ 4|∂R(n0)Uj |
|Uj |

≤ κ

4

for all j ≥ j1. Now the triangle inequality yields∥∥∥∥Fω(Uj)

|Uj |
− Fω(Qm)

|Qm|

∥∥∥∥ ≤

∥∥∥∥∥Fω(Uj)

|Uj |
− F

R(n0)
ω (Uj)

|Uj |

∥∥∥∥∥+

∥∥∥∥∥FR(n0)
ω (Uj)

|Uj |
− F

R(n0)
ω (Qm)

|Qm|

∥∥∥∥∥
+

∥∥∥∥∥FR(n0)
ω (Qm)

|Qm|
− Fω(Qm)

|Qm|

∥∥∥∥∥
≤ κ

4
+
κ

2
+
κ

4
= κ

for all j,m ≥ max{j0, j1}, which implies that |Uj |−1Fω(Uj) is a Cauchy sequence and hence

convergent in the Banach space B(R) for all ω ∈ Ω̃. We denote the limit function by N .

It remains to show that
∑

S∈S(Qn) νS
F̃ (S)
|Qn| converges to the same limit. Therefore we fix

ω ∈ Ω̃ and consider

lim
n→∞

∥∥∥∥∥∥N −
∑

S∈S(Qn)

νS
F̃ (S)

|Qn|

∥∥∥∥∥∥ = lim
n→∞

lim
j→∞

∥∥∥∥∥∥Fω(Uj)

|Uj |
−

∑
S∈S(Qn)

νS
F̃ (S)

|Qn|

∥∥∥∥∥∥ .
Adding zeros leads to the inequality

(31)

∥∥∥∥∥∥Fω(Uj)

|Uj |
−

∑
S∈S(Qn)

νS
F̃ (S)

|Qn|

∥∥∥∥∥∥ ≤
∥∥∥∥∥Fω(Uj)

|Uj |
− F

R(n)
ω (Uj)

|Uj |

∥∥∥∥∥
+

∥∥∥∥∥∥F
R(n)
ω (Uj)

|Uj |
−

∑
S∈S(Qn)

νS
F̃R(n)(S)

|Qn|

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑

S∈S(Qn)

νS
F̃R(n)(S)

|Qn|
−

∑
S∈S(Qn)

νS
F̃ (S)

|Qn|

∥∥∥∥∥∥ .
Now we take limn→∞ limj→∞ on both sides and obtain that the three summands on the right
vanish. The first one is zero by an estimate as in (30). Applying (29) gives that the second
summand vanishes. The third summand tends to zero since Lemma 4.3 yields∥∥∥∥∥∥

∑
S∈S(Qn)

νS
F̃R(n)(S)

|Qn|
−

∑
S∈S(Qn)

νS
F̃ (S)

|Qn|

∥∥∥∥∥∥ ≤
∑

S∈S(Qn)

νS

∥∥∥F̃R(n)(S)− F̃ (S)
∥∥∥

|Qn|

≤
∑

S∈S(Qn)

νS
4
∣∣∂R(n)Qn

∣∣
|Qn|

and for some fixed y ∈ Qn∑
S∈S(Qn)

νS = lim
j→∞

1

|Uj |
∑

S∈S(Qn)

|{x ∈ G | VSx ⊂ Uj , Γω[VSx] = Sx}|

≤ lim
j→∞

1

|Uj |
∑

S∈S(Qn)

|{z ∈ Uj | x := y−1z, Γω[VSx] = Sx}|
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= lim
j→∞

1

|Uj |

∣∣∣∣⋃̇S∈S(Qn)
{z ∈ Uj | x := y−1z, Γω[VSx] = Sx}

∣∣∣∣ ≤ 1.

This proves the claimed convergence for all ω ∈ Ω̃. Finally we need to show the independence
of the specific choice of the sequences. Therefore let (U ′j) and (Q′n) be two other Følner

sequences satisfying (a) respective (b). By Lemma 5.1 we know that the frequencies νS do
not depend on the choice of the Følner sequence. Hence we can repeat the arguments of this
proof once with the sequences (U ′j) and (Qn) and afterwords with (Uj) and (Q′m) to obtain

lim
j→∞

Fω(U ′j)

|U ′j |
= lim

n→∞

∑
S∈S(Qn)

νS
F̃ (S)

|Qn|
= N = lim

j→∞

Fω(Uj)

|Uj |
= lim

n→∞

∑
S∈S(Q′n)

νS
F̃ (S)

|Q′n|

almost surley. This finishes the proof �

6. Discontinuities

In this section we investigate the points of discontinuity of the integrated density of states.
We firstly prove a criteria that the IDS has a jump at λ ∈ R. Afterwords we characterize the
set of points of discontinuity as a large subset of the real axis. Note that in this section we
are always in the setting of Theorem 5.3.

Theorem 6.1. There exists a set Ω̃ ⊂ Ω of full measure such that for each ω ∈ Ω̃ and λ ∈ R
the following assertions are equivalent:

(a) λ is a point of discontinuity of N
(b) there exists a finitely supported eigenfunction corresponding to λ
(c) there exist infinitely many mutually independent finitely supported eigenvectors corre-

sponding to λ

Proof. Let (Qj) be a strictly increasing, tempered Følner sequence and Ω̃ ⊂ Ω a set of full

measure such that Theorem 5.3 holds for all ω ∈ Ω̃. Note that Ω̃ ⊂ Ωfr ∩ Ωlf , which implies
in particular that for an arbitrary graph S ∈ S and ω ∈ Ω̃ the frequency νS in Γω along (Qj)
exists. As p is assumed to be an element of `1(G) there exists R ∈ N such that p(xy−1) is
strictly smaller than 1 for all x, y ∈ G satisfying d(x, y) ≥ R. We fix this R ∈ N and some

ω ∈ Ω̃.
Let λ be a point of discontinuity of N . Theorem 5.3 yields that n(∆ω[Qj ])/|Qj | approxi-

mates the IDS N uniformly in the energy variable. Hence there exists a constant c > 0 such
that

dim(ker(∆ω[Qj ]− λ)) = lim
ε→0

(n(∆ω[Qj ])(λ+ ε)− n(∆ω[Qj ])(λ− ε)) ≥ c|Qj |.

for all j ∈ N. Since (Qj) is a Følner sequence, we have limj→∞ |∂RintQj |/|Qj | = 0, which
implies the existence of k ∈ N such that

dim(ker(∆ω[Qk]− λ)) ≥ c|Qk| > |∂RintQk| = dim(`2(∂RintQk))

holds. A well known dimension argument yields that there exists an element 0 6= u ∈ `2(Qk)
satisfying (∆ω[Qk]− λ)u = 0 and u ≡ 0 on ∂RintQk. Now we consider the subgraph

(32) S := (VS , ES) := Γω[Qk].
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Lemma 5.1 proves that the frequency of R-isolated occurrences of S in Γω along (Qj) is given
by

(33) νS,R =
∏

[x,y]∈ES

p(xy−1) ·
∏

[x,y]/∈ES
x,y∈VS

(1− p(xy−1)) ·
∏

[x,y]∈E,x∈VS,
y/∈VS,d(x,y)≥R

(1− p(xy−1))

Here the first two products have to be non-zero as S is a restriction of Γω. The positivity of
the infinite product follows from the choice of R and the summability condition on p. This
implies that there is an infinite set M ⊂ G such that Γω[Qkx] is an R-isolated copy of S for
each x ∈M . Furthermore there exists an infinite subset M ′ ⊂M such that Qkx∩Qky = for
all x, y ∈M ′. For x ∈M ′ we define ux ∈ `2(G) by setting

ux(g) =

{
u(gx−1) g ∈ Qkx
0 else.

Then ux, x ∈ M ′ are mutually independent, finitely supported eigenfunctions of ∆ω corre-
sponding to λ. This proves that (a) implies (c).

Obviously (c) implies (b), thus it remains to show that given a finitely supported eigen-
function u corresponding to λ ∈ R the IDS is discontinuous at λ. To this end let r > 0 be
large enough that supp(u) ⊂ Br. As ω ∈ Ωlf the graph Γω is locally finite. Therefore we find
s > r such that there are no edges connecting the sets Br and G \Bs in Γω. Now we consider
the graph S = (VS , ES) := Γω[Bt], where t := s+R. As S is a restriction of Γω the frequency
νS,R of R-isolated occurrences of S in Γω along (Qj) is strictly positive. Thus there exists a
constant c > 0 such that ]S,R(Γω, Qj) ≥ c|Qj | for j large enough.

For given Q ∈ F(G) each disjoint R-isolated copy of S in Γω[Q] adds a dimension to the

eigenspace of pQ∆ωiQ corresponding to λ. Therefore we define ]̇S,R(Γω, Q) to be the maximal
number of disjoint and R-isolated occurrences of the subgraph S in Γω[Q]. It is easy to verify

that in this situation the inequality |B3t|]̇S,R(Γω, Q) ≥ ]S,R(Γω, Q) holds. For each ε > 0 we
get

n(∆ω[Q])(λ− ε)
|Q|

≤
n(∆ω[Q])(λ+ ε)− ]̇S,R(Γω, Q)

|Q|
≤ n(∆ω[Q])(λ+ ε)

|Q|
−
]S,R(Γω, Q)

|B3t||Q|
.

Replacing Q by elements of the sequence (Qj) yields

n(∆ω[Qj ])(λ+ ε)

|Qj |
− n(∆ω[Qj ])(λ− ε)

|Qj |
≥
]S,R(Γω, Qj)

|B3t||Qj |
.

We let j tend to infinity and obtain

N(λ+ ε)−N(λ− ε) ≥
νS,R
|B3t|

,

which proves that λ is a point of discontinuity of N . �

Now we study the set of points of discontinuity, which obviously depends on the specific
choice of the function p ∈ `1(G). Here we consider the case where the given function p satisfies
not just (2) but even

(34) 0 < p(x) < 1 and p(x) = p(x−1)

for all x ∈ G and define the set

W = {λ ∈ R | ∃ S ∈ S with λ ∈ σ(∆S)}.
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Corollary 6.2. Let p ∈ `1(G) satisfying (34) and the associated probability space (Ω,A,P)
be given. Then the set of points of discontinuity of the IDS N equals W almost surley.

Proof. Let Ω̃ ⊂ Ωfr ∩ Ωlf be a set of full measure such that Theorem 5.3 holds for all ω ∈ Ω̃
and choose some ω ∈ Ω̃.

Let λ be a point of discontinuity of N . By Theorem 6.1 there is a finitely supported
eigenfunction u corresponding to λ. As in the proof of Theorem 6.1 we find r > 0 such that
supp(u) ⊂ Br and s > r such that there are no edges in Γω connecting Br with G \ Bs. We
set S = (VS , ES) = Γω[Bs]. Therefore λ is an eigenvalue of ∆S with eigenfunction pVSu.

Let λ be an element in W , i.e. there exists S = (VS , ES) ∈ S such that λ is an eigenvalue
of the associated Laplacian ∆S . Let u be an associated eigenfunction. By Lemma 5.1 the
frequency νS,1 is given by

νS,1 =
∏

[x,y]∈ES

p(xy−1) ·
∏

[x,y]/∈ES
x,y∈VS

(1− p(xy−1)) ·
∏

[x,y]∈E,x∈VS,
y/∈VS,d(x,y)≥1

(1− p(xy−1))

which is strictly positive by assumption on p. Thus there exists a x ∈ G such that Sx is a
1-isolated copy of S in Γω. Then u′ ∈ `2(G) given by

u′(g) =

{
u(gx−1) g ∈ VSx
0 else

is a finitely supported eigenfunction of ∆ω corresponding to λ. By Theorem 6.1 this implies
the discontinuity of N at λ. �
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