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1 Introduction

The so-called gap function approach allows to reduce the investigation of
variational inequalities into the study of optimization problems. Let us men-
tion several papers which are devoted to the study of set-valued gap functions
for vector variational inequalities. Specially, the generalizations of Auslen-
der’s and Giannessi’s gap functions for vector variational inequalities have
been introduced in [5]. More recently, a conjugate duality approach to the
construction of a gap function has been applied to vector variational inequal-
ities (see [2]).

On the other hand, scalarization techniques in vector optimization have
been applied to the construction of a gap function for vector variational
inequalities. For instance, we refer to [3], [11], [13], [17] for vector variational
inequalities, to [12] for generalized vector variational inequalities and to [15]
for set-valued vector variational-like inequalities.

∗This research was partially supported by Deutsche Forschungsgemeinschaft.

1



This paper concentrates on scalar-valued gap functions for vector varia-
tional inequalities on the basis of the oriented distance function and the
approach presented in [14]. For some investigations dealing with the oriented
distance function we refer to [6], [8], [7], [9], [10], [16] and [18]. The oriented
distance function allows us to extend some results dealing with gap functions
for vector variational inequalities from the literature (cf. [11], [12], [13], [15]
and [17]).

The paper is organized as follows. In Section 2 we recall some preliminary
results dealing with the oriented distance function. The section 3 is devoted
to introduce gap functions for vector variational inequalities. Moreover, we
suggest another type of gap functions, which are based on dual problems.
For this purpose, we use the powerful approach of the perturbation theory
of the conjugate duality. We conclude our paper with the extension to some
set-valued problems in section 4.

2 Mathematical preliminaries

Let X be a Hausdorff locally convex space. The dual space of X is denoted
by X∗. For x ∈ X and x∗ ∈ X∗, let 〈x∗, x〉 := x∗(x) be the value of the linear
continuous functional x∗ at x. For a subset A ⊆ X we define the indicator
function δA : X → R = R ∪ {±∞} by

δA(x) :=

{
0, if x ∈ A,
+∞, otherwise.

For a given function h : X → R the effective domain is

dom h := {x ∈ X : h(x) < +∞}.

The function h is called proper if dom h 6= ∅ and h(x) > −∞ for all x ∈ X.
For a nonempty subset E ⊆ X we define the conjugate function of h by

h∗E : X∗ → R, h∗E(p∗) = (h+ δE)∗(p∗) = sup
x∈E
{〈x∗, x〉 − h(x)}.

When E = X, one can see that h∗E turns into the classical Fenchel-Moreau
conjugate function of h denoted by h∗.
Let Y be a real Banach space partially ordered by a closed convex pointed
cone C with nonempty interior, i.e. intC 6= ∅. A weak ordering in Y is
defined by

y ≺ x⇔ x− y ∈ intC and y ⊀ x⇔ x− y /∈ intC, x, y ∈ Y.
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Let C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, ∀y ∈ C} be the dual cone of C. The
space of the linear continuous mappings from X to Y is denoted by L(X, Y ).
Moreover, let SY := {y ∈ Y : ‖y‖ = 1} and S(M) := {y ∈ M : ‖y‖ =
1}, M ⊆ Y.
Further, we consider a Hausdorff locally convex vector space Z and a non-
empty convex cone D ⊆ Z, which induces on Z a partial ordering 5D, i.e.
for x, y ∈ Z it holds x 5D y ⇔ y − x ∈ D. We attach to Z a greatest
and a smallest element with respect to “5D”, denoted by +∞D and −∞D,
respectively, which do not belong to Z and denote Z = Z∪{±∞D}. Besides,
we define x ≤D y if and only if x 5D y and x 6= y. For all x ∈ Z it holds
−∞D 5D x 5D +∞D and for all x ∈ Z it holds −∞D ≤D x ≤D +∞D.
In this paper, we consider on Z the following operations and conventions
(cf. [4]): x + (+∞D) = (+∞D) + x := +∞D ∀x ∈ Z ∪ {+∞D}, x +
(−∞D) = (−∞D) +x := −∞D ∀x ∈ Z ∪{−∞D}, λ · (+∞D) := +∞D ∀λ ∈
(0,+∞], λ · (+∞D) := −∞D ∀λ ∈ [−∞, 0), λ · (−∞D) := −∞D ∀λ ∈
(0,+∞], λ · (−∞D) := +∞D ∀λ ∈ [−∞, 0), (+∞D) + (−∞D) = (−∞D) +
(+∞D) := +∞D, 0(+∞D) := +∞D and 0(−∞D) := 0. Further, define
〈z∗,+∞D〉 := +∞D for z∗ ∈ D∗.
For a vector function g : X → Z the domain is the set dom g := {x ∈ X :
g(x) 6= +∞D}. If g(x) 6= −∞D for all x ∈ X and dom g 6= ∅, then the vector
function g is called proper.
When g(λx+ (1− λ)y) 5D λg(x) + (1− λ)g(y) holds for all x, y ∈ X and all
λ ∈ [0, 1] the vector function g is said to be D-convex.

Definition 2.1 Let M ⊆ Y. Then the function ∆M : Y → R defined by

∆M(y) := dM(y)− dMc(y), y ∈ Y,

is called the oriented distance function, where dM(y) = inf
z∈M
‖y − z‖ is the

distance function from the point y ∈ Y to the set M and M c := Y \M.

The oriented distance function was introduced by Hiriart-Urruty ([9], [10]) in
order to investigate optimality conditions in nonsmooth optimization. The
main properties of ∆M can be summarized as follows.

Proposition 2.1 ([18]) Let M ⊆ Y be an nontrivial subset of Y, i.e.,
M 6= ∅ and M 6= Y. Then

(i) ∆M is real-valued;

(ii) ∆M is Lipschitz function with constant 1;
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(iii) ∆M(y) =


< 0, ∀y ∈ intM,
= 0, ∀y ∈ ∂M,
> 0, ∀y ∈ intM c;

(iv) if M is closed, then it holds that M := {y : ∆M(y) ≤ 0};

(v) if M is convex, then ∆M is convex;

(vi) if M is a cone, then ∆M is positively homogeneous;

(vii) if M is a closed convex cone, then ∆M is nonincreasing with respect to
the ordering relation induced on Y, i.e., if y1, y2 ∈ Y, then

y1 − y2 ∈M ⇒ ∆M(y1) ≤ ∆M(y2);

if intM 6= ∅, then

y1 − y2 ∈ intM ⇒ ∆M(y1) < ∆M(y2).

Proposition 2.2 ([14]) Let M ⊆ Y be convex and ri(M) 6= ∅. Then ∆M

can be represented as

∆M(y) = sup
x∗∈SY ∗

inf
x∈M
〈x∗, y − x〉, ∀y ∈ Y,

where ri (M) :=

{
rint M, if aff(M) is closed,
∅, otherwise

and by rint M we denote

the interior of M with respect to affine hull aff(M).

Remark: The above mentioned canonical representation of a convex set has
been investigated also in [6], [7] and [8].

Corollary 2.1 ([14]) For a convex cone C with intC 6= ∅, we have that

∆C(y) = sup
x∗∈S(C∗)

〈−x∗, y〉, ∀y ∈ Y.

Let M ⊆ Y be a given set. Then one can introduce the function ξ defined
by

ξM,C(y) := − inf
z∈M

∆C(y − z), ∀y ∈ Y.

Proposition 2.3 (cf. [14]) The following assertions are true.

(i) ξM,C(y) = sup
x∈M

inf
x∗∈S(C∗)

〈x∗, y − x〉, ∀y ∈ Y ;
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(ii) ξM,C(y) ≥ 0, ∀y ∈M.

Proof:

(i) This formula follows directly from Corollary 2.1 and the Definition of
ξM,C .

(ii) For y ∈M there is

ξM,C(y) = sup
x∈M

inf
x∗∈S(C∗)

〈x∗, y − x〉 ≥ inf
x∗∈S(C∗)

〈x∗, y − y〉 = 0.

�

3 Gap functions for vector variational inequa-

lities

Let X be a Hausdorff locally convex space and Y be a real Banach space,
K ⊆ X be a nonempty set and F : K → L(X, Y ) be a given mapping.
We consider the weak vector variational inequality which consists in finding
x̄ ∈ K such that

(WV V I) 〈F (x̄), y − x̄〉 ⊀ 0, ∀y ∈ K,

where 〈F (x̄), y − x̄〉 ∈ Y denotes the image of y − x̄ ∈ X under the linear
continuous mapping F (x̄) ∈ L(X, Y ), we use this notation synonymously
with F (x̄)(y − x̄).
In this section we concentrate on the investigation of scalar-valued gap func-
tions for the problem (WV V I) on the basis of the oriented distance function.
Recently a similar approach was applied to vector optimization in [14]. Let
us recall the definition of a gap function for (WV V I).

Definition 3.1 A function γ : K → R is said to be a gap function for the
problem (WV V I) if it satisfies the following properties

(i) γ(x) ≥ 0, ∀x ∈ K;

(ii) γ(x̄) = 0 if and only if x̄ solves the problem (WV V I).

Additionally, we want to consider another type of gap functions which have
weaker properties as the gap functions defined above. These functions are
called weak gap functions.
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Definition 3.2 A function γ : K → R is said to be a weak gap function for
the problem (WV V I) if it satisfies the following properties

(i) γ(x) ≥ 0, ∀x ∈ K;

(ii) γ(x̄) = 0⇒ x̄ solves the problem (WV V I).

Let us introduce with

F (x)K := {z ∈ Y : ∃w ∈ K such that z = 〈F (x), w〉}

(notice again that 〈F (x), w〉 stands for F (x)w and F (x) ∈ L(X, Y )) the
function (setting M = F (x)K for any x ∈ K)

γF∆,x(y) : = ξF (x)K,C(y) = − inf
z∈F (x)K

∆C(y − z)

= − inf
w∈K

∆C(y − 〈F (x), w〉), ∀y ∈ Y.

Then setting y = 〈F (x), x〉 in γF∆,x(y) we define for x ∈ K

γF∆(x) := γF∆,x(〈F (x), x〉) = ξF (x)K,C(〈F (x), x〉)
= − inf

w∈K
∆C(〈F (x), x− w〉)

= − inf
w∈K

sup
y∗∈S(C∗)

〈−y∗, 〈F (x), x− w〉〉

= sup
w∈K

inf
y∗∈S(C∗)

〈y∗, 〈F (x), x− w〉〉

because of Corollary 2.1.

Theorem 3.1 γF∆ is a gap function for (WV V I).

Proof:

(i) By Proposition 2.3(ii) it holds γF∆(x) = ξF (x)K,C(〈F (x), x〉) ≥ 0, since
〈F (x), x〉 ∈ F (x)K for any x ∈ K.

(ii) Let x ∈ K be fixed. Then γF∆(x) > 0 if and only if ∃x̃ ∈ K such that

∆C(〈F (x), x− x̃〉) < 0 ⇔ 〈F (x), x− x̃〉 ∈ intC.

This equivalently means that 〈F (x), x̃−x〉 ≺ 0, i.e., x is not a solution
to (WV V I). Consequently, taking (i) into account, for some x ∈ K it
holds γF∆(x) = 0 if and only if x is a solution to (WV V I). �
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In order to suggest some other gap functions, let us consider optimization
problems having the composition with a linear continuous mapping in the
objective function and formulate some duality results. As mentioned in the
introduction we use for our investigations the perturbation theory (cf. [4]),
where to a general primal problem

(P ) inf
x∈X

Φ(x, 0),

with the perturbation function Φ : X × Y → R, the conjugate dual problem
is defined by:

(D) sup
p∗∈Y ∗

{−Φ∗(0, p∗)}.

Assume that f : Y → R and g : X → Z are proper functions, S ⊆ X a
nonempty set and A ∈ L(X, Y ) fullfilling (y−A−1(dom f))∩g−1(−D)∩S 6=
∅. Consider the following primal optimization problem

(PC) inf
x∈K

f(A(y − x))

K = {x ∈ S : g(x) ∈ −D},

where y ∈ K is fixed and S ⊆ X.
The first dual problem of interest is the well-known Lagrange-dual problem:

(DCL) sup
z∗∈D∗

inf
x∈S
{f(A(y − x)) + 〈z∗, g(x)〉}.

To construct another dual problem we introduce the following perturbation
function ΦCF : X × Y → R,

ΦCF (x, p) :=

{
f(A(y − x) + p), if x ∈ S, g(x) ∈ −D,
+∞, otherwise,

where p ∈ Y is the perturbation variable. The perturbation function can be
written as

ΦCF (x, p) = f(A(y − x) + p) + δK(x).
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For the formula of the conjugate function (ΦCF )∗ : X∗ × Y ∗ → R of ΦCF we
get for all (x∗, p∗) ∈ X∗ × Y ∗ :

(ΦCF )∗(x∗, p∗) = sup
x∈X,p∈Y

{〈x∗, x〉+ 〈p∗, p〉 − ΦCF (x, p)}

= sup
x∈X,p∈Y

{〈x∗, x〉+ 〈p∗, p〉 − f(A(y − x) + p)− δK(x)}

= sup
x∈X,r∈Y

{〈x∗, x〉+ 〈p∗, r − A(y − x)〉 − f(r)− δK(x)}

= sup
x∈X,r∈Y

{〈x∗, x〉+ 〈p∗, r〉 − 〈p∗, Ay〉+ 〈p∗, Ax〉 − f(r)−

δK(x)}
= sup

x∈X
{〈x∗ + A∗p∗, x〉 − δK(x)}+ sup

r∈Y
{〈p∗, r〉 − f(r)} −

〈A∗p∗, y〉
= δ∗K(x∗ + A∗p∗) + f ∗(p∗)− 〈A∗p∗, y〉.

This leads to the following dual problem to (PC):

(DCF ) sup
p∗∈Y ∗

{〈A∗p∗, y〉 − δ∗K(A∗p∗)− f ∗(p∗)},

which can be interpreted as a Fenchel dual problem. As the above construc-
tion shows it applies also if K is any nonempty set not necessarily given in
the form as in (PC).

Remark: From the calculations we made above for the Fenchel dual prob-
lem, we can easily conclude that to the primal problem

(P ) inf
x∈X
{f(A(y − x)) + g(x)},

where A ∈ L(X, Y ) and f : Y → R and g : X → R are proper functions
fullfilling (y−A−1(dom f))∩ dom g 6= ∅, the Fenchel dual problem looks like

(D) sup
p∗∈Y ∗

{〈A∗p∗, y〉 − g∗(A∗p∗)− f ∗(p∗)}.

The last perturbation function we consider leads to the Fenchel-Lagrange
dual problem and is defined by ΦCFL : X × Y × Z → R,

ΦCFL(x, p, z) :=

{
f(A(y − x) + p), if x ∈ S, g(x) ∈ z −D,
+∞, otherwise,

where (p, z) ∈ Y × Z are the perturbation variables. We define (z∗g)(x) :=
〈z∗, g(x)〉 and obtain for the conjugate of ΦCFL , (ΦCFL)∗ : X∗×Y ∗×Z∗ → R,
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for all (x∗, p∗, z∗) ∈ X∗ × Y ∗ × Z∗:

(ΦCFL)∗(x∗, p∗, z∗) = sup
x∈X,p∈Y

z∈Z

{〈x∗, x〉+ 〈p∗, p〉+ 〈z∗, z〉 − ΦCFL(x, p, z)}

= sup
x∈X,(p,z)∈Y×Z

g(x)∈z−D

{〈x∗, x〉+ 〈p∗, p〉+ 〈z∗, z〉 −

f(A(y − x) + p)}
= sup

x∈S,r∈Y
s∈−D

{〈x∗, x〉+ 〈p∗, r − A(y − x)〉+

〈z∗, g(x)− s〉 − f(r)}
= sup

x∈S,r∈Y
s∈−D

{〈x∗, x〉+ 〈p∗, r〉 − 〈p∗, Ay〉+

〈p∗, Ax〉+ 〈z∗, g(x)〉+ 〈−z∗, s〉 − f(r)}
= sup

s∈−D
{〈−z∗, s〉}+ sup

r∈Y
{〈p∗, r〉 − f(r)}+

sup
x∈S
{〈x∗ + A∗p∗, x〉 − 〈−z∗, g(x)〉} − 〈A∗p∗, y〉

= δ−D∗(z
∗) + f ∗(p∗) + (−z∗g)∗S(x∗ + A∗p∗)− 〈A∗p∗, y〉.

As a consequence, the Fenchel-Lagrange dual problem is actually

(DCFL) sup
(p∗,z∗)∈Y ∗×D∗

{〈A∗p∗, y〉 − f ∗(p∗)− (z∗g)∗S(A∗p∗)}.

According to the general theory (cf. [4]) the weak duality is always full-
filled, i.e. v(DCL) ≤ v(PC), v(DCF ) ≤ v(PC) and v(DCFL) ≤ v(PC),
where v(PC), v(DCL), v(DCF ) and v(DCFL) are the optimal objective val-
ues of (PC), (DCL), (DCF ) and (DCFL), respectively.

We consider now for any x ∈ K the following optimization problem

(P F
x ) inf

y∈K
∆C(〈F (x), x− y〉),

where the ground set K is defined by

K = {y ∈ S : g(y) ∈ −D}.

It is easy to see that the optimal objective value v(P F
x ) = −γF∆(x) ≤ 0, ∀x ∈

K.
By using the calculations we made above we get for the dual problems of
(P F

x ):
(DFL

x ) sup
z∗∈D∗

inf
y∈S
{∆C(〈F (x), x− y〉) + 〈z∗, g(y)〉},
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(DFF
x ) sup

p∗∈Y ∗
{〈F (x)∗p∗, x〉 −∆∗C(p∗)− δ∗K(F (x)∗p∗)}

(here, K may be any nonempty set) and

(DFFL
x ) sup

p∗∈Y ∗,z∗∈D∗
{〈F (x)∗p∗, x〉 − (z∗g)∗S(F (x)∗p∗)−∆∗C(p∗)}.

It is well known that for any setA ⊆ X it holds that σA(x∗) = supx∈A〈x∗, x〉 =
σclcoA(x∗), whereas clcoA is the closed convex hull of the set A. Hence, for
a convex cone C with intC 6= ∅, by Corollary 2.1 it follows that ∆C(y) =
supy∗∈S(C∗)〈−y∗, y〉 = supy∗∈S(−C∗)〈y∗, y〉 = σS(−C∗)(y) = σclcoS(−C∗)(y), i.e.
∆C(y) = σclcoS(−C∗)(y) = δ∗clcoS(−C∗)(y). Further, since clcoS(−C∗) is a

closed convex set we have by the Fenchel-Moreau Theorem (cf. [4, The-
orem 2.3.6]) for the conjugate of the oriented distance function ∆∗C(y∗) =
δ∗∗clcoS(−C∗)(y

∗) = δclcoS(−C∗)(y
∗). As a result, the Fenchel dual problem and

the Fenchel-Lagrange dual problem can be written as

(DFF
x ) sup

p∗∈clcoS(−C∗)
{〈F (x)∗p∗x〉 − δ∗K(F (x)∗p∗)}

and
(DFFL

x ) sup
p∗∈clcoS(−C∗)

z∗∈D∗

{〈F (x)∗p∗, x〉 − (z∗g)∗S(F (x)∗p∗)}.

Example: Let X = Y = R2 be equipped with the Euclidean topology and
C = R2

+, then we have X∗ = Y ∗ = R2 also equipped with the Euclidean
topology and C∗ = R2

+. Let the ground set K ⊆ X be a nonempty set and
F : K → L(X, Y ) be a given mapping. For the set clcoS(−C∗) we get

clcoS(−C∗) = {p∗ = (p∗1, p
∗
2)T ∈ −R2

+ ∩B(0, 1) : p∗1 + p∗2 ≤ −1}
= {p∗ ∈ R2 : ‖p∗‖ ≤ 1, p∗1 + p∗2 ≤ −1},

where B(0, 1) = {p∗ ∈ R2 : ‖p∗‖ ≤ 1}. Therefore, the corresponding Fenchel
dual problem looks like

(D̃F
x ) sup

‖p∗‖≤1
p∗1+p∗2≤−1

{〈F (x)∗p∗, x〉 − δ∗K(F (x)∗p∗)}.

Remark: If the convex set C is not a cone with intC 6= ∅ we refer to [6] for
the conjugate of the oriented distance function.

By using the duals (DFL
x ), (DFF

x ) and (DFFL
x ) of the optimization problem
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(P F
x ), we introduce the following functions for x ∈ K:

γFL
∆ (x) : = − sup

z∗∈D∗
inf
y∈S
{∆C(〈F (x), x− y〉) + 〈z∗, g(y)〉}

= inf
z∗∈D∗

sup
y∈S
{−∆C(〈F (x), x− y〉)− 〈z∗, g(y)〉},

γFF
∆ (x) : = − sup

p∗∈clcoS(−C∗)
{〈F (x)∗p∗, x〉 − δ∗K(F (x)∗p∗)}

= inf
p∗∈clcoS(−C∗)

{δ∗K(F (x)∗p∗)− 〈F (x)∗p∗, x〉}

and

γFFL
∆ (x) : = − sup

p∗∈clcoS(−C∗)
z∗∈D∗

{〈F (x)∗p∗, x〉 − (z∗g)∗S(F (x)∗p∗)}

= inf
p∗∈clcoS(−C∗)

z∗∈D∗

{(z∗g)∗S(F (x)∗p∗)− 〈F (x)∗p∗, x〉}.

Remark: A similar approach was introduced in [1] in order to construct a
gap function for scalar variational inequalities.

Proposition 3.1 It holds that

γFFL
∆ (x) ≥ γFF

∆ (x), ∀x ∈ K.

Proof: We fix x ∈ K and p∗ ∈ Y ∗ and consider the following primal problem

(P 0) inf
y∈K
〈−F (x)∗p∗, y〉,

K = {y ∈ S : g(y) ∈ −D}.

The corresponding Lagrange dual problem is

(D0) sup
z∗∈D∗

{inf
y∈S
〈−F (x)∗p∗, y〉+ 〈z∗, g(y)〉}

= sup
z∗∈D∗

inf
y∈S
{−[〈F (x)∗p∗, y〉 − 〈z∗, g(y)〉]}

= sup
z∗∈D∗

− sup
y∈S
{〈F (x)∗p∗, y〉 − 〈z∗, g(y)〉}

= sup
z∗∈D∗

{−(z∗g)∗S(F (x)∗p∗)}.

By the weak duality it follows that

sup
z∗∈D∗

{−(z∗g)∗S(F (x)∗p∗)} ≤ inf
y∈K
{〈−F (x)∗p∗, y〉}
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or, equivalently,

− sup
z∗∈D∗

{−(z∗g)∗S(F (x)∗p∗)}+ δclcoS(−C∗)(p
∗)− 〈F (x)∗p∗, x〉 ≥

− inf
y∈K
{〈−F (x)∗p∗, y〉}+ δclcoS(−C∗)(p

∗)− 〈F (x)∗p∗, x〉.

Now we take the infimum over p∗ ∈ Y ∗ in both sides and get

γFFL
∆ (x) = inf

p∗∈clcoS(−C∗)
z∗∈D∗

{(z∗g)∗S(F (x)∗p∗)− 〈F (x)∗p∗, x〉}

≥ inf
p∗∈clcoS(−C∗)

{δ∗K(F (x)∗p∗)− 〈F (x)∗p∗, x〉} = γFF
∆ (x).

�

Proposition 3.2 It holds that

γFFL
∆ (x) ≥ γFL

∆ (x), ∀x ∈ K.

Proof: Let z∗ ∈ D∗ be fixed. Since

sup
p∗∈Y ∗

{−δclcoS(−C∗)(p
∗)− (z∗g)∗S(F (x)∗p∗) + 〈F (x)∗p∗, x〉}

is the Fenchel dual problem of the primal problem (cf. Remark for the Fenchel
dual problem)

inf
y∈X
{∆C(〈F (x), x− y〉) + ((z∗g) + δS)(y)} =

inf
y∈S
{∆C(〈F (x), x− y〉) + 〈z∗, g(y)〉},

we get by the weak duality

sup
p∗∈Y ∗

{−δclcoS(−C∗)(p
∗)− (z∗g)∗S(F (x)∗p∗) + 〈F (x)∗p∗, x〉〉} ≤

inf
y∈S
{∆C(〈F (x), x− y〉) + 〈z∗, g(y)〉}

or
inf

p∗∈Y ∗
{δclcoS(−C∗)(p

∗) + (z∗g)∗S(F (x)∗p∗)− 〈F (x)∗p∗, x〉〉} ≥

sup
y∈S
{−∆C(〈F (x), x− y〉)− 〈z∗, g(y)〉}.

Taking the infimum over z∗ ∈ D∗ in both sides yields the desired result

γFFL
∆ (x) = inf

p∗∈clcoS(−C∗)
z∗∈D∗

{(z∗g)∗S(F (x)∗p∗)− 〈F (x)∗p∗, x〉} ≥

inf
z∗∈D∗

sup
y∈S
{−∆C(〈F (x), x− y〉)− 〈z∗, g(y)〉} = γFL

∆ (x).

�
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Proposition 3.3 It holds for all x ∈ K that

γF∆(x) ≤ γFL
∆ (x), γF∆(x) ≤ γFF

∆ (x) and γF∆(x) ≤ γFL
∆ (x).

Proof: Let x ∈ K. Since γF∆(x) = −v(P F
x ), γFL

∆ (x) = −v(DFL
x ), γFF

∆ (x) =
−v(DFF

x ) and γFFL
∆ (x) = −v(DFFL

x ) the assertions follow from the weak du-
ality between (P F

x ) and the corresponding different dual problems. �

Remark: By the last three propositions we obtain the following relations
between the introduced functions

γFFL
∆ (x) ≥ γFL

∆ (x)

γFF
∆ (x)

≥ γF∆(x) ∀x ∈ K,

which is equivalent to

v(P F
x ) ≥ v(DFL

x )
v(DFF

x )
≥ v(DFFL

x ) ∀x ∈ K.

Remark: The relations in the Remark above show that if strong duality for
the pair (P F

x ) − (DFFL
x ) holds, then strong duality holds also for the pairs

(P F
x )− (DFL

x ) and (P F
x )− (DFF

x ).

Proposition 3.4 γFL
∆ , γFF

∆ and γFFL
∆ are weak gap functions for the problem

(WV V I) where K = {y ∈ S : g(y) ∈ −D} 6= ∅. Concerning γFF
∆ , K may be

any nonempty set.

Proof:

(i) By Theorem 3.1 and Propositions 3.1, 3.2 and 3.3 it holds that

γFFL
∆ (x) ≥ γFL

∆ (x)

γFF
∆ (x)

≥ γF∆(x) ≥ 0 ∀x ∈ K.

(ii) Let γFL
∆ (x̄) = 0 for some x̄ ∈ K. Then we obtain by (i) that γF∆(x̄) = 0.

From Theorem 3.1 we have that x̄ solves the problem (WV V I).
For γFF

∆ and γFFL
∆ it follows analogously. �

In order to guarantee the strong duality between the primal problem (PC)
and the corresponding dual problems (DCL), (DCF ) and (DCFL) we assume
for the rest of this chapter that S is a convex set, f is a convex function and
g is a D-convex function.
First, we state a strong duality proposition for the primal-dual pair (PC)−
(DCL), which is a direct conclusion of [4, Theorem 3.2.1].
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Proposition 3.5 If there exists x′ ∈ (y−A−1(dom f))∩S such that g(x′) ∈
− intD, then v(PC) = v(DCL) and v(DCL) has an optimal solution.

In the case where f = ∆C and A = F (x), we have (notice that x and y are
changed in (P F

x ) compared with (PC))

y′ ∈ (x− F (x)−1(dom ∆C)) ∩ S
⇔ y′ ∈ (x− F (x)−1(Y )) ∩ S
⇔ y′ ∈ (x−X) ∩ S
⇔ y′ ∈ S.

Therefore we have for the pair (P F
x ) − (DFL

x ), x ∈ K, the following strong
duality proposition.

Proposition 3.6 If there exists y′ ∈ S such that g(y′) ∈ − intD, then
v(P F

x ) = v(DFL
x ) and (DFL

x ) has an optimal solution.

Next, we give for any convex set K 6= ∅ a strong duality proposition for the
primal-dual problems (PC)− (DCF ) by using [4, Theorem 3.2.1] again.

Proposition 3.7 If there exists x′ ∈ (y − A−1(dom f)) ∩ K such that f is
continuous at A(y − x′), then v(PC) = v(DCF ) and v(DCF ) has an optimal
solution.

Since ∆C is a Lipschitz function, i.e. ∆C is also continuous everywhere on
Y , the Proposition 3.7 can be rewritten for the pairs (P F

x )− (DFF
x ), x ∈ K,

as follows.

Proposition 3.8 If K 6= ∅ is any convex set, then v(P F
x ) = v(DFF

x ) and
(DFF

x ) has an optimal solution.

Remark: Note that in this case there is no regularity condition needed.

Finally, we state a strong duality proposition for the primal-dual pair (PC)−
(DCFL) which also follows as a simple conclusion of [4, Theorem 3.2.1].

Proposition 3.9 If there exists x′ ∈ (y − A−1(dom f)) ∩ S such that f is
continuous at A(y − x′) and g(x′) ∈ − intD, then v(PC) = v(DCFL) and
v(DCFL) has an optimal solution.

As application we can establish strong duality for (P F
x ) and (DFFL

x ), x ∈ K.

Proposition 3.10 If there exists y′ ∈ S such that g(y′) ∈ − intD, then
v(P F

x ) = v(DFFL
x ) and (DFFL

x ) has an optimal solution.
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Theorem 3.2 (i) γFF
∆ is a gap function for (WV V I) for any convex set

K 6= ∅.

(ii) If there exists y′ ∈ S such that g(y′) ∈ − intD then γFL
∆ and γFFL

∆ are
gap functions for (WV V I).

Proof:

(i) By Proposition 3.4, it follows that γFF
∆ is a weak gap function. For that

reason, we need only to prove that if x̄ ∈ K solves (WV V I), then it
holds that γFF

∆ (x̄) = 0. According to Theorem 3.1, for some x̄ ∈ K it
holds that γF∆(x̄) = 0 if and only if x̄ is a solution to (WV V I). That
means v(P F

x̄ ) = −γF∆(x̄) = 0. On the other hand, by Proposition 3.8
strong duality holds, i.e. if x̄ ∈ K solves (WV V I), then γFF

∆ (x̄) =
−v(DFF

x̄ ) = −v(P F
x̄ ) = 0.

(ii) This can be proved in a similar way taking into account Proposition
3.6 and Proposition 3.10 instead of Proposition 3.8 as in the proof of
i).

�

4 Extension to set-valued problems

In this section we discuss how the presented approach can be extended to
some variational inequalities with set-valued mappings investigated in the li-
terature (see [11], [12], [13], [15] and [17]). Let us notice that in all mentioned
works the space Y was supposed to be Euclidean one. Under compactness
assumptions we will extend above results in Banach spaces.

4.1 Vector variational inequalities with set-valued map-
pings

Let X, Y be real Banach spaces, Y be partially ordered by a closed convex
pointed cone C with intC 6= ∅ and ∅ 6= K ⊆ X be a compact set. Further let
T : K ⇒ L(X, Y ) be a set-valued mapping, where L(X, Y ) is equipped with
the usual operator norm, i.e. (L(X, Y ), ‖ · ‖) is a Banach space. We consider
the vector variational inequality with set-valued mapping which consists in
finding x̄ ∈ K such that

(SV V I) ∃t̄ ∈ T (x̄) : 〈t̄, y − x̄〉 ⊀ 0, ∀y ∈ K.
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Let us introduce the function

γTS (x) = − sup
t∈T (x)

inf
y∈K

∆C(〈t, x− y〉)

= inf
t∈T (x)

sup
y∈K
{−∆C(〈t, x− y〉)}, x ∈ K.

Theorem 4.1 Assume that for each x ∈ K, T (x) is nonempty and compact.
Then γTS is a gap function for (SV V I).

Proof: Let x ∈ K and t ∈ T (x). Then, from Proposition 2.3(ii) follows

ξtK,C(〈t, x〉) : = − inf
z∈tK

∆C(〈t, x〉 − z) (set z := 〈t, y〉, y ∈ K)

= − inf
y∈K

∆C(〈t, x〉 − 〈t, y〉)

= − inf
y∈K

∆C(〈t, x− y〉) ≥ 0.

Consequently, we have

γTS (x) = inf
t∈T (x)

ξtK,C(〈t, x〉) ≥ 0.

Since K and T (x) are compact and ∆C is continuous, then by standard argu-
ments (uniform continuity), we obtain that the function supy∈K{−∆C(〈t, x−
y〉)} is continuous with respect to t ∈ T (x). Moreover, the function γTS is well
defined and can be written as

γTS (x) = min
t∈T (x)

sup
y∈K
{−∆C(〈t, x− y〉)}

(the infimum is attained). For some x̄ ∈ K it holds γTS (x̄) = 0 if and only if
∃t̄ ∈ T (x̄) such that

sup
y∈K
{−∆C(〈t̄, x̄− y〉)} = 0

or
∆C(〈t̄, x̄− y〉) ≥ 0, ∀y ∈ K.

This equivalently means (cf. Proposition 2.1) that

〈t̄, x̄− y〉 /∈ intC ⇔ 〈t̄, y − x̄〉 ⊀ 0, ∀y ∈ K,

i.e., x̄ is a solution to (SV V I). �

Example: If Y = Rm, C = Rm
+ , then Y ∗ = Y, C∗ = Rm

+ . Let x, y ∈ K.
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Then T (x) =
m∏
i=1

Ti(x), Ti : K ⇒ X∗. For any t ∈ T it holds t = (t1, ..., tm)

and
〈t, x− y〉 = (〈t1, x− y〉, ..., 〈tm, x− y〉).

According to Corollary 2.1 and Proposition 3(iv) in [14], we have

∆C(〈t, x− y〉) = sup
z∈Rm

+

‖z‖=1

〈−z, 〈t, x− y〉〉 = max
1≤i≤m

〈ti, y − x〉.

Consequently, we get

γTS (x) = inf
t∈T (x)

sup
y∈K

min
1≤i≤m

〈ti, x− y〉

which is nothing else than the gap function for (SV V I) investigated in [13]
and [17].

4.2 Vector variational-like inequalities with set-valued
mappings

Under the general assumptions of section 4.1 let η : K×K → X be a vector-
valued mapping such that η(x, x) = 0, ∀x ∈ K, which is continuous with
respect to the first variable for any fixed second variable in K. Then the
vector variational-like inequality with set-valued mapping consists in finding
x̄ ∈ K such that

(SV V LI) ∃t̄ ∈ T (x̄) : 〈t̄, η(y, x̄)〉 ⊀ 0, ∀y ∈ K.

Let us introduce the function

γLS (x) = − sup
t∈T (x)

inf
y∈K

∆C(−〈t, η(y, x)〉)

= inf
t∈T (x)

sup
y∈K
{−∆C(−〈t, η(y, x)〉)}, x ∈ K,

and verify the following assertion.

Theorem 4.2 Assume that for each x ∈ K, T (x) is nonempty and compact.
Then γLS is a gap function for (SV V LI).

Proof: First we prove that γLS (x) ≥ 0 ∀x ∈ K. It holds η(x, x) = 0 ∀x ∈ K
and hence 〈t, η(x, x)〉 = 0 ∀x ∈ K, t ∈ T (x). Further we have by Corol-
lary 2.1 that supx∗∈S(C∗)〈−x∗,−〈t, η(x, x)〉〉 = 0 ∀x ∈ K, t ∈ T (x), i.e.
∆C(−〈t, η(x, x)〉) = ∆C(0) = 0 ∀x ∈ K, t ∈ T (x). By taking the infimum
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over y ∈ K we get infy∈K ∆C(−〈t, η(y, x)〉) ≤ 0 ∀x ∈ K, t ∈ T (x), which is
equivalent to supy∈K{−∆C(−〈t, η(y, x)〉)} ≥ 0 ∀x ∈ K, t ∈ T (x). Finally, it
follows that

γLS (x) = inf
t∈T (x)

sup
y∈K
{−∆C(−〈t, η(y, x)〉)} ≥ 0 ∀x ∈ K.

Next, we show that γLS (x̄) = 0 if and only if x̄ solves (SV V LI). As in the proof
of Theorem 4.1 it follows that supy∈K{−∆C(−〈t, η(y, x)〉)} is a continuous
function with respect to t ∈ T (x). Moreover, from the assumption for T (x),
the function γLS is well defined and can be formulated as

γLS (x) = min
t∈T (x)

sup
y∈K
{−∆C(−〈t, η(y, x)〉)}.

Further, let x̄ ∈ K, then γLS (x̄) = 0 if and only if ∃t̄ ∈ T (x̄) such that

sup
y∈K
{−∆C(−〈t̄, η(y, x̄)〉)} = 0

and hence follows

∆C(−〈t̄, η(y, x̄)〉) ≥ 0 ∀y ∈ K.

This implies

−〈t̄, η(y, x̄)〉 /∈ intC ⇔ 〈t̄, η(y, x̄)〉 ⊀ 0, ∀y ∈ K,

which means that x̄ is a solution to (SV V LI). �

Remark: As mentioned before, if Y = Rm, C = Rm
+ , then it can be shown

that γLS reduces to the gap function investigated in [15].

4.3 Generalized vector variational-like inequalities with
set-valued mappings

Under the general suppositions as given in section 4.1 let η : K×K → X and
h : K × K → Y be two vector-valued mappings satisfying η(x, x) = 0 and
h(x, x) = 0, ∀x ∈ K, which are continuous with respect to the first variable
for any fixed second variable in K. Let us consider the generalized vector
variational-like inequality with set-valued mapping which consists in finding
x̄ ∈ K such that

(SGV V LI) ∃t̄ ∈ T (x̄) : 〈t̄, η(y, x̄)〉+ h(y, x̄) ⊀ 0, ∀y ∈ K
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and introduce the function

γGL
S (x) = − sup

t∈T (x)

inf
y∈K

∆C(−〈t, η(y, x)〉 − h(y, x))

= inf
t∈T (x)

sup
y∈K
{−∆C(−〈t, η(y, x)〉 − h(y, x))}, x ∈ K.

Analogously, we can verify the following assertion.

Theorem 4.3 Assume that for each x ∈ K, T (x) is nonempty and compact.
Then γGL

S is a gap function for (SGV V LI).

Proof: The proof is similary to the proof of Theorem 4.2. �

Remark: If Y = Rm, C = Rm
+ , then it is easy to verify that γGL

S can
be reduced to the gap function investigated in [12].

Remark: For the readers who are interested in the existence of solutions to
vector variational inequalities, we refer to [12] and [17].
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