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Abstract. Supervised learning methods are powerful techniques to learn a function
from a given set of labeled data, the so-called training data. In this paper the sup-
port vector machines approach is applied to an image classification task. Starting with
the corresponding Tikhonov regularization problem, reformulated as a convex optimiza-
tion problem, we introduce a conjugate dual problem to it and prove that, whenever
strong duality holds, the function to be learned can be expressed via the dual optimal
solutions. Corresponding dual problems are then derived for different loss functions.
The theoretical results are applied by numerically solving the classification task using
high dimensional real-world data in order to obtain optimal classifiers. The results
demonstrate the excellent performance of support vector classification for this special
problem.
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1 Introduction
Supervised learning methods such as Support Vector Machines for classification and
regression belong to the class of kernel based methods that have become, especially in
the last decade, a popular approach for learning functions from a given set of labeled
data. They have wide fields of application such as image and text classification (cf. [4,6]),
computational biology (cf. [9]) or time series forecasting and credit scoring (cf. [7, 13])
and have proven to provide very good results.

This article originates from a real-world problem a supplier of the automotive indus-
try was faced with, namely the task of establishing a computer-aided quality control of
manufactured devices. These devices are photographed directly at the end of the man-
ufacturing process and the idea was to perform quality control based on these images.
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Due to the promising performance of Support Vector Machines in the field of classi-
fication tasks, we applied this approach for this concrete image classification problem
and, as we show here, we received excellent results concerning the test set classification
errors.

To this end we reformulate the general Tikhonov regularization problem (cf. [12]),
to which the supervised learning problem gives rise, as a convex (not necessarily differ-
entiable) optimization problem, construct a conjugate dual to it (see, for instance, [2]),
prove under suitable qualification conditions the existence of strong duality and express
the optimal solutions of the primal problem via the ones of the dual. This has as conse-
quence the formulation of the decision function to be learned by means of the optimal
solutions of the dual. Hence for the specific learning task one only has to numerically
solve the dual problem, which, different to the primal one, can be mainly equivalently
formulated as a convex differentiable optimization problem.

The paper is organized as follows. In Section 2 the general regularization problem
is introduced and it is stated as an equivalent convex optimization problem. A Fenchel-
type dual problem to it is provided and, under a suitable weak qualification condition,
the existence of strong duality for this primal-dual pair is proved, which gives rise to the
formulation of necessary and sufficient optimality conditions. In Section 3 the general
theory from the previous section is employed for several particular loss functions. An
application of the theoretical results to a high dimensional image classification task
is done in Section 4, allowing an analysis of the opportunity of choosing one of the
considered loss functions for this particular problem. A conclusive section closes the
paper.

2 Theoretical considerations
Given a set of training data X = {x1, . . . , xn} ⊂ Rd and corresponding labels
yi ∈ {−1,+1}, i = 1, . . . , n, grouping the data into two different classes, a common
approach for learning a classifier based on the Structural Risk Minimization Principle
is to apply Support Vector Machines (SVM) techniques for classification. These su-
pervised learning methods were investigated in detail by Vapnik in [14]. Considering
D = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × {+1,−1} the training set, the aim of the SVM
approach is to find a function f belonging to F , a space of real-valued functions defined
on Rd enhanced with some a priori information, that correctly classifies new data into
one of the two classes.

A so-called loss function v : R × R → R = R ∪ {±∞}, assumed to be proper and
convex in its first variable, enables to impose a penalty for predicting f(xi), where the
true value is yi, for i = 1, ..., n. One of the common assumptions on f is smoothness,
which guarantees that two similar inputs correspond to two similar outputs. In order to
control it, one needs to consider a smoothness functional Ω : F → R (cf. [12]), having
the desired characteristic of taking high values for non-smooth functions and low values
for smooth functions.

Hence, the desired function f will be the optimal solution of the Tikhonov regular-
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ization problem

inf
f∈F

{
C

n∑
i=1

v(f(xi), yi) + 1
2Ω(f)

}
, (1)

where C > 0 is the so-called regularization parameter controlling the tradeoff between
the loss function and the smoothness functional (see [3]). In the following, the function
f is assumed to be an element of the Reproducing Kernel Hilbert Space (RKHS) Hk
induced by a continuous kernel function k : Rd × Rd → R (cf. [1]), which we assume
to be symmetric and finitely positive definite. The kernel k is said to be symmetric if
k(x, y) = k(y, x) for all x, y ∈ Rd. A symmetric kernel function k : Rd×Rd → R, which
for all m ≥ 1 and all finite sets {x1, . . . , xm} ⊂ Rd fulfills

∑m
i,j=1 aiajk(xi, xj) > 0 for

every arbitrary a ∈ Rd \ {0}, is called finitely positive definite (cf. [11]).
Hence, the kernel function k can be decomposed as k(x, y) = 〈φ(x), φ(y)〉k, where

〈·, ·〉k denotes the inner product of Hk and φ : Rd → Hk is a so-called feature map. The
representer theorem (cf. [16]) ensures that for every minimizer f of (1) there exists a
vector c = (c1, . . . , cn)T ∈ Rn such that

f(·) =
n∑
i=1

cik(·, xi). (2)

For i = 1, ..., n the vectors xi with the property that the corresponding coefficient ci is
not equal to zero are the so-called support vectors. The classification is realized by the
sign-function, i.e. for a given data point x the predicted value is equal to the sign of
f(x) for f(x) 6= 0, whereas for f(x) = 0 we have to specify the allocation to one of the
two classes.

The existence of such a representation is essential for the purpose of this paper.
Finally, we define the smoothness functional Ω to be Ω(f) = ‖f‖2k for f ∈ Hk, where
‖·‖k denotes the norm onHk. The Gram matrix of k with respect to the set {x1, . . . , xn}
is denoted by K ∈ Rn×n, being the matrix with entries Kij := k(xi, xj), i, j = 1, . . . , n.
Obviously, K is symmetric and positive definite. Taking c ∈ Rn to be the vector
corresponding to representation (2), the smoothness functional becomes Ω(f) = ‖f‖2k =
cTKc and for i = 1, ..., n it holds f(xi) =

∑n
j=1 cjKij = (Kc)i. Thus we can rewrite

optimization problem (1) equivalently as

(Pgen) inf
c∈Rn

{
C

n∑
i=1

v
(
(Kc)i, yi

)
+ 1

2c
TKc

}
. (3)

Due to the nature of the loss function, this problem is mainly a convex and not
necessarily differentiable optimization problem. In order to overcome this disadvantage,
we provide a conjugate dual problem to it, prove the existence of strong duality and
express the optimal solutions of (Pgen) via the ones of the dual. These considerations
make much sense, especially when the dual problem is easier to solve than the primal
one, which is actually the case for the majority of the loss functions used for supervised
classification problems.

In order to make the paper self-contained, we introduce first some notions and
results.
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On Rd we consider the Euclidean norm, while for two vectors x, y ∈ Rd we denote
by xT y their scalar product, where the upper index T transposes a column vector into
a row one and viceversa. For a nonempty set D ⊆ Rn we denote by ri(D) the relative
interior of the set D, that is the interior of D relative to its affine hull. The indicator
function of D is defined as

δD : Rn → R, δD(x) =
{

0, if x ∈ D,
+∞, otherwise.

For a function f : Rn → R we denote its effective domain by dom f = {x ∈ Rn : f(x) <
+∞} and say that f is proper if dom f 6= ∅ and f > −∞. The (Fenchel-Moreau)
conjugate function of f is f∗ : Rn → R, defined by f∗(p) = supx∈Rn{pTx − f(x)}. For
all x, p ∈ Rn we have the following relation, known as the Young-Fenchel inequality,
f(x) + f∗(p) − pTx ≥ 0. For x ∈ Rn with f(x) ∈ R we denote by ∂f(x) := {p ∈ Rn :
f(y)− f(x) ≥ pT (y− x) ∀y ∈ Rn} the (convex) subdifferential of f at x. Otherwise, we
assume by convention that ∂f(x) = ∅. For x ∈ Rn with f(x) ∈ R, one has that

p ∈ ∂f(x)⇔ f(x) + f∗(p) = pTx.

The epigraph of f is epi f = {(x, r) ∈ Rn × R : f(x) ≤ r} and f is said to be convex, if
epi f is a convex set, while f is said to be lower semicontinuous, if epi f is a closed set.
Having a convex set D and a function f : D → R, we say that f is strictly convex on
D, if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) ∀x, y ∈ D,x 6= y, ∀λ ∈ (0, 1)

and that f is strongly convex on D, if there exists µ > 0 such that

f(λx+ (1− λ)y) + λ(1− λ)µ‖x− y‖2 ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ D ∀λ ∈ (0, 1).

For i = 1, ..., n we denote by Pri : Rn → R the projection function defined as
Pri(x1, ..., xn) = xi. Further, for x ∈ R we define x+ := max{0, x}.

The dual problem to (Pgen) which we consider here is a Fenchel-type dual problem
(cf. [3]) and it is formulated as

(Dgen) sup
P∈Rn,

P=(P1,...,Pn)T

{
−C

n∑
i=1

(
v(·, yi)

)∗(
− Pi
C

)
− 1

2P
TKP

}
. (4)

Let us denote by v(Pgen) the optimal objective value of the primal problem (Pgen) and
by v(Dgen) the optimal objective value of its dual problem (Dgen). First of all, we show
that for the minimization problem (Pgen) and its dual problem (Dgen) weak duality
holds.

Theorem 1. For (Pgen) and (Dgen) weak duality holds, i. e. v(Pgen) ≥ v(Dgen).
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Proof. Let be c ∈ Rn and P = (P1, . . . , Pn)T ∈ Rn. Then it holds, according to Young-
Fenchel inequality and due to the positive definiteness of K, that

0 ≤ C
[
n∑
i=1

v
(
(Kc)i, yi

)
+

n∑
i=1

(
v(·, yi)

)∗(− Pi
C

)
+

n∑
i=1

(Kc)i
Pi
C

]

+ 1
2(c− P )TK(c− P )

= C
n∑
i=1

v
(
(Kc)i, yi

)
+ C

n∑
i=1

(
v(·, yi)

)∗(− Pi
C

)
+ P T (Kc)

+ 1
2c

TKc+ 1
2P

TKP − P T (Kc)

= C
n∑
i=1

v
(
(Kc)i, yi

)
+ 1

2c
TKc+ C

n∑
i=1

(
v(·, yi)

)∗(− Pi
C

)
+ 1

2P
TKP

and therefore

C
n∑
i=1

v
(
(Kc)i, yi

)
+ 1

2c
TKc ≥ −C

n∑
i=1

(
v(·, yi)

)∗(− Pi
C

)
− 1

2P
TKP,

i. e. v(Pgen) ≥ v(Dgen).

By introducing the functions vi : Rn → R, vi(z) = v(zi, yi), i = 1, . . . , n, the problem
(Pgen) can equivalently be written as

(Pgen) inf
c∈Rn

{
C

n∑
i=1

vi(Kc) + 1
2c

TKc

}
. (5)

In order to ensure strong duality for the primal-dual pair (Pgen) − (Dgen), we impose
the following qualification condition

(QC)
n⋂
i=1

ri(dom v(·, yi)) 6= ∅.

Theorem 2. If (QC) is fulfilled, then it holds v(Pgen) = v(Dgen) and (Dgen) has an
optimal solution.

Proof. We notice first that

v(Pgen) = inf
c∈Rn

{(
n∑
i=1

Cvi

)
(Kc) + 1

2c
TKc

}
.

Let be c′ ∈ R such that c′ ∈ ∩ni=1 ri(dom v(·, yi)), which means that for all i = 1, ..., n
it holds (c′, . . . , c′)T ∈ (Pri)−1(ri(dom v(·, yi))) 6= ∅. Thus, according to [10, Theorem
6.7], one has that ri(dom vi) = ri

(
(Pri)−1(dom v(·, yi))

)
= (Pri)−1( ri(dom v(·, yi))

)
for

all i = 1, ..., n, hence

(c′, . . . , c′)T ∈
n⋂
i=1

ri(dom vi) = ri
(

n⋂
i=1

dom vi

)
. (6)
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This means that v(Pgen) < +∞.
Since the conclusion is obvious if v(Pgen) = −∞ due to Theorem 1, we assume in

the following that v(Pgen) ∈ R. Denoting by g : Rn → R, g(c) = 1
2c
TKc, and by taking

into consideration that K is non-singular, we have

K(ri(dom g)) ∩ ri
(

n⋂
i=1

dom vi

)
= K(Rn) ∩ ri

(
n⋂
i=1

dom vi

)
= ri

(
n⋂
i=1

dom vi

)
6= ∅.

We then have (see [2, Theorem 2.1]) that there exists a P̄ ∈ Rn such that

v(Pgen) = sup
P∈Rn

{
−
( n∑
i=1

Cvi
)∗

(−P )− g∗(KP )
}

= −
(
C

n∑
i=1

vi
)∗

(−P̄ )− 1
2(−KP̄ )TK−1(KP̄ )

= −C
(

n∑
i=1

vi

)∗ (
− 1
C
P̄

)
− 1

2 P̄
TKP̄ .

As from (6) ∩ni=1 ri(dom vi) 6= ∅, it follows (cf. [10]) that there exist P̄ i ∈ Rn, i = 1, ..., n,
with

∑n
i=1 P̄

i = P̄ , such that(
n∑
i=1

vi

)∗ (
− 1
C
P̄

)
=

n∑
i=1

v∗i

(
− 1
C
P̄ i
)

and, therefore,

v(Pgen) = −C
n∑
i=1

v∗i

(
− 1
C
P̄ i
)
− 1

2

(
n∑
i=1

P̄ i
)T

K

(
n∑
i=1

P̄ i
)
.

Further, for all i = 1, . . . , n, it holds

v∗i

(
− 1
C
P̄ i
)

= sup
z∈Rn

{
− 1
C

(P̄ i)T z − v(zi, yi)
}

=


(
v(·, yi)

)∗(
− P̄ i

i
C

)
, if P̄ ij = 0, ∀j 6= i,

+∞, otherwise.

Since the optimal objective value of (Pgen) is finite, by defining P̄i := P̄ ii for i = 1, ..., n,
one has

∑n
i=1 P̄

i = (P̄1, . . . , P̄n)T ∈ Rn and

v(Pgen) = −C
n∑
i=1

(
v(·, yi)

)∗(
− P̄i
C

)
− 1

2 P̄
TKP̄ ,

where P̄ := (P̄1, . . . , P̄n)T . This, along with the weak duality theorem, provides the
desired result, P̄ being an optimal solution to (Dgen).

The next theorem furnishes the necessary and sufficient optimality conditions for
the primal-dual pair (Pgen)− (Dgen).

Theorem 3. Let (QC) be fulfilled. Then c̄ ∈ Rn is an optimal solution for (Pgen) if
and only if there exists an optimal solution P̄ ∈ Rn to (Dgen) such that
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(i) − P̄i
C ∈ ∂v(·, yi)((Kc̄)i), i = 1, . . . , n;

(ii) c̄ = P̄ .

Proof. From Theorem 2 we get the existence of an optimal solution P̄ ∈ Rn to (Dgen)
such that

C

[
n∑
i=1

v
(
(Kc̄)i, yi

)
+

n∑
i=1

(
v(·, yi)

)∗(
− P̄i
C

)
+

n∑
i=1

(Kc̄)i
P̄i
C

]

+1
2 c̄

TKc̄+ 1
2 P̄

TKP̄ − P̄ TKc̄ = 0.

This is equivalent to{
v((Kc̄)i, yi) +

(
v(·, yi)

)∗( P̄i
C

)
= (Kc̄)i P̄i

C ∀i = 1, . . . , n,
1
2(c̄− P̄ )TK(c̄− P̄ ) = 0,

and further to, since K is positive definite,{
− P̄i
C ∈ ∂v(·, yi)((Kc̄)i), i = 1, . . . , n,

c̄ = P̄ .

The opposite direction follows analogously.

Remark 1. Since K is positive definite, the function g is strongly convex (on Rn).
Consequently, if ∩ni=1 dom v(·, yi) 6= ∅ and v(·, yi), i = 1, . . . , n, are, additionally, lower
semicontinuous, the optimization problem (Pgen) has a unique optimal solution (see, for
instance, [5, Satz 6.33]). Further, due to the fact that P 7→ 1

2P
TKP is strictly convex

(on Rn), one can see that the dual problem (Dgen) has at most one optimal solution.

Remark 2. Due to Remark 1 and Theorem 3, if (QC) is fulfilled and v(·, yi), i =
1, . . . , n, are lower semicontinuous, it follows that, in order to solve (Pgen) one can
equivalently solve (Dgen) which in this case has an unique optimal solution P̄ , this
being also the unique optimal solution of (Pgen).

3 Some classical loss functions as particular cases
In this section we deal with particular instances of the general model described in the
previous one and construct, for three particular loss functions, the corresponding dual
problems. We employed the three dual problems in concretely solving a classification
problem on a data set of images, as we will show in Section 4.

3.1 Hinge loss

The first loss function we consider here is the hinge loss vhl : R× R→ R, defined as

vhl(a, y) = (1− ay)+ , (7)
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which is a proper, convex and lower semicontinuous function in its first component,
while (QC) is obviously fulfilled. The primal optimization problem (Pgen) becomes in
this case

(Phl) inf
c∈Rn

{
C

n∑
i=1

(
1− (Kc)iyi

)
+

+ 1
2c

TKc

}
.

To obtain the dual problem (Dhl) of (Phl) (cf. (4)) for this special loss function, we
use the Lagrange technique in order to calculate the conjugate function of vhl(·, yi), for
i = 1, ..., n. For z ∈ R and i = 1, ..., n we have

−
(
vhl(·, yi)

)∗(z) = − sup
a∈R
{za− (1− ayi)+} = inf

a,t∈R,
t≥0, t≥1−ayi

{−za+ t}

= sup
k≥0, r≥0

{
inf
a,t∈R

{
− za+ t+ k(1− ayi − t)− rt

}}
= sup

k≥0, r≥0

{
inf
a∈R
{−za− kayi}+ inf

t∈R
{t− kt− rt}+ k

}

= sup
k≥0, r≥0,
k+r=1,
z+kyi=0

k = sup
k∈[0,1],
k=−zyi

k =
{
−zyi, if zyi ∈ [−1, 0],
−∞, otherwise.

Note that in the calculations above we used the fact that the labels yi, i = 1, . . . , n, can
only take the values +1 or -1 for the binary classification task we consider in this paper
(cf. Section 4). With the above formula we obtain the following dual problem

(Dhl) sup
P∈Rn,

Piyi∈[0,C], i=1,...,n

{
n∑
i=1

Piyi −
1
2P

TKP

}

or, equivalently,

(Dhl) inf
P∈Rn,

Piyi∈[0,C], i=1,...,n

{
1
2P

TKP −
n∑
i=1

Piyi

}
. (8)

By defining the vector α = (α1, . . . , αn)T ∈ Rn, αi := Piyi, i = 1, . . . , n, the dual
problem can equivalently be written as

(Dhl) inf
αi∈[0,C], i=1,...,n

1
2

n∑
i,j=1

αiαjyiyjKij −
n∑
i=1

αi

 ,
a representation which is recognized to be the commonly used form of the dual problem
to (Phl) in literature.

3.2 Generalized hinge loss

Beside the hinge loss, the binary image classification task has been performed for two
other loss functions, as we point out in Section 4. They both represent particular
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instances of the generalized hinge loss vughl : R× R→ R,

vughl(a, y) = (1− ay)u+, (9)

where u > 1. The generalized hinge loss function is proper, convex and lower semi-
continuous in its first component, too, while the qualification condition (QC) is again
obviously fulfilled. The primal problem this loss function gives rise to reads

(P ughl) inf
c∈Rn

{
C

n∑
i=1

(1− (Kc)iyi)u+ + 1
2c

TKc

}
.

To obtain its dual problem we need the conjugate function of vughl(·, yi) for i = 1, ..., n.
For all z ∈ R and all i = 1, ..., n we have

−
(
vughl(·, yi)

)∗(z) = − sup
a∈R

{
za− (1− ayi)u+

}
= inf

a,t∈R,
t≥1−ayi

{
−za+ tu + δ[0,+∞)(t)

}
.

By taking into account that the function t 7→ tu + δ[0,+∞)(t) is convex, we can make
again use of Lagrange duality, which provides the following formula for the conjugate
of vughl(·, yi) for i = 1, ..., n and z ∈ R

−
(
vughl(·, yi)

)∗(z) = sup
k≥0

{
inf

a∈R, t≥0

{
− za+ tu + k(1− ayi − t)

}}
= sup

k≥0

{
inf
a∈R
{−za− kayi}+ inf

t≥0
{tu − kt}+ k

}

= sup
k≥0,

k=−zyi

{
(1− u)

(
k

u

) u
u−1

+ k

}

=

(1− u)
(
−zyi
u

) u
u−1 − zyi, if zyi ≤ 0,

−∞, otherwise.

Hence, the corresponding dual problem to (P ughl) looks like

(Du
ghl) sup

Pi∈R,
Piyi≥0,i=1...,n

{
1− u

(Cuu)
1

u−1

n∑
i=1

(Piyi)
u

u−1 +
n∑
i=1

Piyi −
1
2P

TKP

}
.

Formulated as an infimum problem, (Du
ghl) becomes

(Du
ghl) inf

Pi∈R,
Piyi≥0,i=1...,n

{
1
2P

TKP + u− 1
(Cuu)

1
u−1

n∑
i=1

(Piyi)
u

u−1 −
n∑
i=1

Piyi

}
,

while, by taking α = (α1, . . . , αn)T ∈ Rn, αi := Piyi, i = 1, . . . , n, one obtains for it the
following equivalent formulation

(Du
ghl) inf

αi≥0, i=1,...,n

1
2

n∑
i,j=1

αiαjyiyjKij + u− 1
(Cuu)

1
u−1

n∑
i=1

α
u

u−1
i −

n∑
i=1

αi

 .
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This problem give rise for u = 2 to

(D2
ghl) inf

αi≥0, i=1,...,n

1
2

 n∑
i,j=1

αiαjyiyjKij + 1
2C

n∑
i=1

α2
i

− n∑
i=1

αi


and for u = 3 to

(D3
ghl) inf

αi≥0, i=1,...,n

1
2

n∑
i,j=1

αiαjyiyjKij + 2√
27C

n∑
i=1

α
3
2
i −

n∑
i=1

αi

 ,
which are the situations that we employ, along the one corresponding to the hinge loss,
in Section 4 for solving the classification task.

Remark 3. The problems (Dhl) and (D2
ghl) are convex quadratic optimization problems

with affine inequality constraints and they can be solved by making use of one of the
standard solvers which exist for this class of optimization problems. This is not anymore
the case for (D3

ghl), which is however a convex optimization problem. Thus one can use
for solving it instead one of the standard solvers for convex differentiable optimization
problems with affine inequality constraints.

4 Application to image classification
In this section we describe the data for which the classification task, based on the
approach described above, has been performed. Furthermore, we illustrate how the
data has been preprocessed and give numerical results for the problems (Dhl), (D2

ghl)
and (D3

ghl) arising when considering the different loss functions investigated in Section
3.

4.1 Training data

The available data were photographs of components used in the automotive industry,
taken by a camera that is an internal part of the machine that produces these items. The
overall task is to decide whether a produced component is fine or has to be considered
as defective. In particular, a component is considered to be fine if a wire has been
brazed correctly onto an attachment and it is defective otherwise. Consequently, a
binary classification problem arises, where the label +1 denotes the class of components
that are fine and the label −1 denotes the class of components that are defective. In
other words, the goal of the classification task is to distinguish good joints from bad
joints.

There was a total number of 4740 photographs of the components available, repre-
sented as gray scale images of size 200 × 50 pixels. Consisting of 2416 images of class
+1 and 2324 images of class −1 the data set was nearly balanced. Since each pixel of
the 8-bit gray-scale image represents a specific shade of gray, we assigned to it a value
between 0 to 255, where the value equals 0 if the pixel is purely black and 255 if the
pixel is purely white, respectively. Figure 4.1 shows four example images, two of each
class.
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(a) (b) (c) (d)

Figure 4.1: Example images of good ((a), (b)) and bad ((c), (d)) joints.

4.2 Preprocessing

In order to be able to use the images for the classification task, we first transformed them
into vectors. First, each of the images has been represented as a matrix Mt ∈ R200×50,
Mt = (mt

i,j)
200,50
i,j=1 , t = 1, . . . , 4740, with entries mt

ij ∈ {0, 1, . . . , 255}, i = 1, . . . , 200,
j = 1, . . . , 50. By simply concatenating the rows of the matrixMt, we obtained a vector
mt representing image t, i. e.

mt = (mt
11, . . . ,m

t
1 200, . . . ,m

t
50 1, . . . ,m

t
50 200)T = (mt 1, . . . ,mt 10 000)T ∈ R10 000.

Denote by D = {(mt, yt), t = 1, . . . , 4740} ⊂ R10 000 × {−1,+1} the set of all data
available. Following [8], the data has been normalized by dividing each data point by the
quantity ( 1

4740
∑4740
t=1 ‖mt‖2)

1
2 , due to numerical reasons. Despite the fact that nowadays

computations can in fact be performed for 10 000−dimensional vectors, we found it
desirable to reduce their dimension to a dimension for which computations can be
performed comparatively fast, especially concerning the calculation of the kernel matrix
and the value of the decision function. For that reason, a so-called feature ranking was
performed, by assigning a score to each pixel indicating its relevance for distinguishing
between the two classes. Therefore, for the set of input data D = {m1, . . . ,m4740} we
defined the sets

D+ := {mt ∈ D : yt = +1 } and D− := {mt ∈ D : yt = −1}.

For both of these data sets, we calculated the mean µi,

µi(D+) = 1
|D+|

∑
mj∈D+

mji, µi(D−) = 1
|D−|

∑
mj∈D−

mji, i = 1, . . . , 10 000,

and the variance σ2
i ,

σ2
i (D+) = 1

|D+|
∑

mj∈D+

(mji − µi(D+))2, σ2
i (D−) = 1

|D−|
∑

mj∈D−
(mji − µi(D−))2,

i = 1, . . . , 10 000, for each separate pixel of the images in the sets D+ and D−. The
score Si for the i−th pixel has been then calculated by

Si(D) = (µi(D+)− µi(D−))2

σ2
i (D+) + σ2

i (D−)
for i = 1, . . . , 10 000.
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By applying this approach to the data set of images (cf. Figure (4.1)), we determined a
score for each pixel, indicating its relevance for the classification task. Figure 4.2 plots
the scores that have been assigned to the separate pixels. Finally, we have chosen only
the pixels with a score greater or equal 0.1 in order to reduce the dimension of the input
data. This approach provided a number of 4398 pixel relevant for the classification task.

Figure 4.2: Visualization of the scores of the pixels.

4.3 Numerical results

To obtain a classifier numerical tests were performed for the three choices of the loss
function discussed in the previous section, namely the hinge loss vhl(a, y) = (1 − ay)+
and the generalized hinge loss vughl(a, y) = (1 − ay)u+ for u = 2 and u = 3 and the
corresponding three dual problems (Dhl), (D2

ghl) and, respectively, (D3
ghl) were used.

As kernel function the Gaussian kernel function

k(x, y) = exp
(
−‖x− y‖

2

2σ2

)

was chosen. Since the regularization parameter C and the kernel parameter σ were
unknown and had to be determined by the user, a 10-fold cross validation was performed
for each of the three loss functions and for each combination (C, σ) from a given set of
values for each parameter. The whole data set was split into ten disjoint and equally
sized subsets resulting in ten folds, each of them consisting of 474 input data points.
The average classification error over all ten test folds for each parameter combination
and for each loss function was computed, giving information about the corresponding
best combination of parameters C and σ. Table 4.1 shows the average classification
errors over ten folds for a selection of tested parameter combinations.

As one can see, the classification errors are remarkably small for all loss functions and
for nearly all combinations of the kernel parameter σ and the regularization parameter
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loss function C σ

0.1 0.5 1 10

hinge loss

1 0.2321 0.3376 0.4220 49.030
10 0.1899 0.2321 0.3165 0.6752
100 0.1899 0.1688 0.2532 0.4220

1000 0.1899 0.2110 0.3587 0.2954

1 0.2110 0.2743 0.3376 2.1100
quadratic 10 0.2110 0.2110 0.2532 0.4642
hinge loss 100 0.1899 0.1688 0.2954 0.3587

1000 0.1899 0.2110 0.3165 0.3376

1 0.2110 0.2532 0.2954 1.0972
cubic 10 0.1899 0.2321 0.3376 0.4431
hinge loss 100 0.1899 0.1899 0.3165 0.3376

1000 0.1899 0.2110 0.3165 0.3587

Table 4.1: Average classification errors over ten folds in percentage of the number of
images contained in the test sets.

C. There is an average misclassification rate of only up to 1% of the images contained
in the test sets. The smallest errors occur for the combination C = 100 and σ = 0.5 for
all loss functions. Taking this parameter combination as the optimal one, one obtains a
number of 151 support vectors for the hinge loss function, i. e. only 3.2% of the images
of the whole training data set are needed for the decision function. Concerning the
quadratic hinge loss, we obtained 178 support vectors which is just a little more than
for the usual hinge loss function. For the cubic hinge loss a total of 2207 support vectors
was obtained, which is nearly the half of the full training set.

5 Conclusions
This paper aimed at solving an image classification task involving high dimensional
real-world data. For this purpose, starting with the general Tikhonov regularization
problem, reformulated as a convex optimization problem, we introduced a Fenchel-
type dual problem for it and proved the existence of strong duality. This gave us the
possibility to express the decision function for the classification problem via the dual
optimal solutions. For three particular loss functions the corresponding dual problems
have been calculated and for each of them numerical test have been performed. The
obtained results reveal the applicability of the support vector technique for classification
tasks based on real-world data.
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