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Abstract

In this paper we consider an iterative regularization scheme for linear ill-posed
equations in Banach spaces. As opposite to other iterative approaches, we deal with
a general penalty functional from Tikhonov regularization and take advantage of the
properties of the regularized solutions which where supported by the choice of the
specific penalty term. We present convergence and stability results for the presented
algorithm. Additionally, we demonstrate how these theoretical results can be applied
to L'- and T'V-regularization approaches and close the paper with a short numerical
example.

1 Introduction

Let X and Y denote real Banach spaces with topological dual spaces X* and )*, respec-
tively. We consider the linear ill-posed operator equation

Az =y, reX, (1)

where A : X — ) describes a linear continuous operator with non-closed range R(A) :=
{Az € Y :xz € X}, ie. R(A) # R(A). Additionally we assume that only noisy data
v’ € Y with ||y’ —y|| <J,8 >0, and y € Y is given. Consequently, we have to apply a

regularization strategy.

The certainly most popular stabilization approach is Tikhonov regularization. Motivated
by its successful employment in various applications, the theory and the numerics of
Tikhonov regularization with general residual and penalty terms have become fields of
active research in the recent years; see, for example, |22, 7, 5, 6, 15, 12, 4, 20| for some
theoretical results as well as for some applications in image and sparse reconstruction.
This variational approach represents nowadays a standard technique in the approximate
determination of, in particular, non-smooth parameters and images. On the other hand,
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the use of Tikhonov regularization for identification problems has a major drawback: as
opposite to control problems, the choice of the regularization parameter is crucial for the
quality of the reconstructed solution. In order to apply a parameter choice strategy the
Tikhonov functional has to be minimized several times for different regularization param-
eters. In particular, very small regularization parameters have to be taken into account,
leading to increasing numerical instabilities and costs. Therefore, iterative regularization
methods seem to be a promising alternative: instead of solving several (non-quadratic
and ill-conditioned) minimization problems exactly, we apply an iterative minimization
process for the residual term and stop the algorithm whenever some stopping criterion is
satisfied. Hence, numerically, only one minimization problem has to be solved inexactly,
a fact which promises much less computational costs. However, the theoretical treat-
ment of such processes in the context of inverse problems is much more difficult. This
has as consequence the fact that the literature on this topic is limited and it is mainly
restricted to the case of quadratic penalty terms (Hilbert space norms and semi-norms),
see [10, 11, 16]. Recently, some first iterative variants were developed in Banach spaces,
by taking norms as penalty functionals, see [24, 23, 17, 13, 14].

In this paper, an iterative regularization approach for solving (1) is investigated. In
particular, motivated by [13|, we deal for all § > 0 with the following iterative scheme:
for a starting point zf, € X* we set x§ := G(z}) and iterate for n > 0:

0p = Ay Az, —y);
Ty = T — by
mfb—f—l = Glagp).

As usual for iterative regularization schemes, the process is terminated with an appropriate
stopping criterion, which will be specified later on. Here we use the following notation:

o A*:Y* — X* denotes the adjoint operator of A, i.e.

(Aty*,x) = (y", Ax), Ve eX y ey

e For given 1 < p < 400 the operator J, : Y — Y* denotes the duality mapping with
gauge function ¢ — tP~1. Hence, when ) is additionally assumed to be smooth, ¢
is the Gateaux gradient of the functional z — %HAx —4°||? at the element 2° € X
for all n > 0.

e G :D(G) C X* — X describes an operator which transports z € X* back into
the original space X'. Its proper choice and the investigation of its influence on the
outcomes of the iterative regularization scheme represent the main purpose of this

paper.

e In order to achieve a tolerable speed of convergence for the presented algorithm, a
good choice of the step size p,, > 0 for n > 0 has to be taken into account.

Furthermore, for § > 0, let N(§,y°) denote the index where the iteration process is
stopped, assuming that this happens. Then x?v(a ) is referred to as the regularized

solution of (1). For § = 0 we omit writing the upper index for the sequence {x°},>¢



and let 4 := y. The main goal of this article is to present a general framework for the
employment of this approach concerning convergence and regularization. Nevertheless,
we also suggest, how to apply this method to some particular penalty functionals, beyond
the ones considered in classical Tikhonov regularization.

The paper is organized as follows: sections 2 and 3 motivate and give analytical back-
ground for the specific choice of the operator G. This preliminary work is followed in
Section 4 by a detailed specification of the iterative scheme under consideration. In
Section 5 convergence and regularization properties of the algorithm are proved. An ad-
ditional accelerated iterative scheme, obtained via an improved choice of the step size, is
given in Section 6. Finally, an application of the proposed method to regularization with
L'- and T'V-penalty terms is given in Section 7, along with a short numerical example.

2 Motivation — Tikhonov regularization

In order to get an idea about the choice of the operator G, we briefly consider Tikhonov
regularization with a general penalty functional P : X — R U {400} assumed to be
proper (i.e., its effective domain dom P := {z € X : P(zx) < 400} is supposed to be
nonempty), convex and lower semicontinuous.

Then, for given regularization parameter a > 0, a regularized approximate solution z° of
equation (1) is calculated as minimizer of the Tikhonov functional

1
T°: X — RU{+o0}, T.(z):= Z—9||Aa: —°||P + a P(x).

Assume ) to be smooth and P to be Gateaux differentiable on core(dom P), the algebraic
interior of dom P, and suppose further 2% € core(dom P). Writing down the necessary
optimality condition, we consequently have

VT, (2)) = A*J, (A2’ —y°) + aVP(z’) =0
or, equivalently,
VP(2) = —éA*Jp(A z% — ).
The above considerations suggest for an iterative scheme the choice
G:=(VP) !,

provided that the Gateaux gradient of P is invertible. However, the assumption of dif-
ferentiability of the penalty functional P seems to be too restrictive. In order to get
an iterative approach applicable to not necessarily differentiable penalty functionals, we
will make use of the notion of convex subdifferential. The convex subdifferential of P at
x € dom P is the set

OP(z) ={z e X" : P(Z)— Plx)—(z",z—x) >0VT € X},

while for ¢ dom P, OP(z) := (. Thus OP : X = X* represents a multi-valued operator
having as domain

D(OP):={x e X : OP(z) # 0} C dom P
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and as range

R(OP) := | ] 0P(x).

TeEX
Its inverse operator (OP)~! : X* = X is the operator defined as
z € (OP) '(z*) & 2% € OP(z).
Consequently, D((OP)™') = R(AP) and R((OP)~') = D(OP). Hence, for our iterative
scheme we will choose

G:R(OP)C X — X, G:=(0P)7}, (2)

after we will preliminarily guarantee that (9P)~! is single-valued on its domain. Moreover,
before proving convergence and stability results, we have to ensure that the sequences
{28 } >0, respectively, {z%},>0 are well-defined. In particular, the following questions
have to be taken into account:

1. How can one find an appropriate penalty functional P such that the operator G
defined in (2) is single-valued on R(0P)?

2. Can we, in this case, always ensure that =¥ € R(9P) for all n > 17 Or, even more,
under which conditions does R(0P) = X* hold?

3. How to choose the step size u, for all n > 07

The answers to these questions are given in the next sections.

3 Elements of convex analysis

Throughout the paper we suppose the space X to be a reflexive Banach space and X* its
topological dual space. We denote by w(X', X*) (for short, w) the weak topology on X
induced by X* and by w(X™*, X') (for short, w*) the weak* topology on X* induced by X.
We also denote by (x*, x) the value of the linear continuous functional z* € X* at © € X.
For a set S C X we denote by int S and by S its interior and closure, respectively. The
indicator function of S is defined as

0, ifxels,

400, otherwise,

dg : X — RU{+o0}, ds(x) = {

while the convex subdifferential of dg,

{zreXx*: (o, z—x)<0VzeS} ifzxes

No:d =47 Nslo) = { 0, otherwise,

is called the normal cone of the set S. When S is a linear subspace, then for all x € S,
Ng(z) = {z* € X*: (z*,5) = 0Vz € S} = S,

the latter denoting the orthogonal space of S.

An important role in the following will be played by the notion of conjugate functional.
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Definition 3.1. The conjugate functional of P : X — R U {+o0} is P* : X* —
R U {£o00} defined as

P*(z*) :=sup{{(z*,z) — P(x)}, e X"

TeEX

The conjugate of P is convex and weak* lower semicontinuous and in case, P is proper,
convex and lower semicontinuous, P* takes values in R U {400}, being proper. More
than that, according to the Theorem of Fenchel-Moreau (see, for instance, [27, Theorem
2.3.3]), one has under these hypotheses that P(x) = P**(x) for all z € X', where

P X — RU{£o0}, P™(z):= sup {(z*,z) — P*(2")}, vz € X,

TreX*

represents the biconjugate functional of P. As immediate consequence of the definition,
the following holds.

Lemma 3.1. For arbitrary x € X and x* € X* we have the so-called Young-Fenchel
mequality, 1.e.
(x",x) < P(x) + P*(x").

Moreover, equality holds, 1.e.
(z%,2) = P(x) + P"(z")

if and only if x* € OP(x).

The following result is of interest, too (see |27, Theorem 2.4.2 and Theorem 2.4.4]).

Proposition 3.1. Let P: X — RU {+o0} be given.
(1) It holds: x* € OP(x) = x € OP*(z").
(11) If P is proper, convezx and lower semicontinuous, then

z* € OP(x) & x € OP*(z").

According to statement (ii) of the above result, whenever P is proper, convex and lower
semicontinuous, one has that (OP)~! = 9P*. Hence, an appropriate choice for P is a
proper, convex and lower semicontinuous functional having as subdifferential of its conju-
gate a single-valued operator. This is obviously the case when P* is Gateaux differentiable,
a property which is definitively fulfilled for the class of functionals which we introduce in
the following |27, Section 3.5].

Definition 3.2. Let be s > 2. The functional P : X — R U {400} is called s-convex if
there ezists a constant G > 0 such that for p: Ry — Ry, p(t) := %ts, one has

P (1= Na+ A7)+ A1 - Np(l|lz — Z])) < (1 — \)P(z) + \P(%)

forall z,& € X and all X € (0,1).

The following characterization of s-convex functionals is taken from |27, Corollary 3.5.11].



Theorem 3.1. Let P : X — RU{+o0} be a proper, conver and lower semicontinuous
functional and 1 < s* <2 < s < 400 with (s*)'+s71 = 1. Then the following statements
are equivalent:

(i) P is s-convex;
(ii) there exists Cy > 0 such that for all x € D(OP), 2* € OP(x) and all T € X we have

P() ~ P(x) ~ (a7~ ) > g~

(1) there exists Co > 0 such that for all x € D(OP), x* € OP(x) and all T* € X we

have
1—s*

PHE") — P (a") — (0, —a7) < 23" — 2|7 (3)

S*

(iv) dom P* = X*, P* is Fréchet differentiable on X* and there exists C5 > 0 such that

(®)

[

VP (@*) = VP (a")] < C5~

for all z*, 2" € X~*.

Remark 3.1. If P is s-convex with p : R, — R, p(t) := %ts in Definition 3.2, where
Gs > 0, then one can take in the previous result Cy = Cy := G4 and C3 := %

Example 3.1. Assume that X is a s-convex space for some s € [2,+00). Then P :
X — R, P(z) := L|z||* is a proper, lower semicontinuous and s-convez functional and
for all x* € X* one has P*(z*) = Si x*||*, where sT14(s*)7! = 1. These types of penalty
functionals P were considered in [13]. We also notice that Li-spaces, 1 < q < +00, are

s-conver with s = max{q, 2}.

4 Choice of the step size parameter and the algorithm

Before we present the algorithm in detail we summarize the basic assumptions which we
will consider in the subsequent analysis:

(A1) Y is a smooth space.
(A2) X is a reflexive Banach space.

(A3) The functional P : X — R U {+o00} is proper, lower semicontinuous and s-convex
(with p: Ry — Ry, p(t) = %ts) for some exponent 2 < s < +00.

(A4) There exists a solution 27 € dom P of equation (1), i.e. Az =y holds.

Due to Theorem 3.1, one has that for all z* € X*, (OP) (z*) = OP*(z*) = {VP*(z*)}
and thus the specific choice of G := (9P)~! = VP* from (2) provides a single-valued
operator on its domain, which is in this case the whole space X*. This means that, in
each iteration n > 0 of the regularization scheme, the element

T = VP (27, = pad})
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is well-defined for arbitrary choices i, € R and, according to Proposition 3.1(ii), it holds
LC; - ,un(b;kz € aP<fo+l)7

thus 2%, € D(OP).

We now introduce Bregman distances, which have become a standard tool for the conver-
gence analysis in Banach spaces.

Definition 4.1. For given z* € R(OP) we define the Bregman distance AL : X x
(OP) Y (x*) —> [0, 4+00] as being

AL (%, 2) == P(%) — P(x) — (2%, — ).

Using Proposition 3.1(ii) one has for all Z € X and all z € (OP)~!(2*) that
AL (%, x) = P(Z) + P*(x*) — (2", T).

Further, for § > 0 and n > 0, let the n-th iterate 2 := VP*(z7) be given. As seen above,
one has z7 € OP(x°). We introduce the notations

Ay = A (2l 27) = P(ah) + P*(a7) = (a7, 27) (5)

r'n

and, for pu > 0,

Ay = AL (@ VP (@, — ) = P(a’) + P*(a;, — nd}y) — (a5, — oy, al). (6)
In order to determine a proper step size u, > 0, we make the following evaluation:

Ay— AN, = Pz, —poy) — PH(a}) + pldh, of — ) + )
= Pz, —poy) — Pr(ay) + p(Jp(Ax) — o),y =y’ +4° — Ax)
gy, x))
< Px—peh) — Pr(x)) — p ([ Az —°IIP — |Az) — o |[P716)
(), 23).

The term on the right hand side of the above inequality can be seen as a function of pu.
Hence, a natural choice for the step size u, would be to take it as the minimum of the
function

fo iRy — RU{+oo},  fulp) = P*(a;, = nd},) — pCy + (@}, a7), (7)
in the case this exists, where
Cp = [[Aap — P — [|Azy, — o0,
We refer the reader to Section 6 for more details with respect to this idea.

On the other hand, we consider here a further estimate of A, — A, by utilizing the
s-convexity of P. More precisely, from Theorem 3.1 we get

A, — A, < Pral—pgh) — Pr(al) — pCo + (ugh, ol)
1—s*

Gs *||s*  s*
< —pCht = llonl e
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We further assume that C° > 0 and ¢* # 0 and consider the following upper bound of
G ol

* §— -1 ) 5
O [Ax —y

~ * pP—s
C? := max {G;_S or 571} >0,

where i € (0, 400] represents an a priori given upper bound for the step size. Hence, we
get the following estimate

Ay— A, <—pct+ o
s
while the step size we choose will be the unique minimizer of the function
) o 5 M A

This follows by an easy calculation and has the following formulation:

06 s—1 05 s—1 ) ) )
fin = C—’; = min (ﬁ) ,<ﬂﬁ|\z4wn—y

, oG, .
_ mm{gmgﬂ;—dmAxi—yw p}.

Hence, by denoting A, := A,,,, it holds

s—p\ Ss—1

1 §\s
Aot — Ay = A, — A, <~ LG)" (8)
s (Cp)s!

Let us now present the algorithm under consideration in detail.

Algorithm 4.1.
(S0) Initialization: choose the starting point x5 € X*, 1o = x§ := VP*(x}), an upper
bound i € (0,00] and a parameter T > 1. Set n := 0.

(S1) STOP: if for 6 > 0 the discrepancy criterion HA 70 — y5|| < 79 is fulfilled or we
have Ax, =1y for § = 0.

(52) Calculate

or = A J(Ax) —y);

Cp = [lAzy — |77t (|Ax), =yl = 6) ;
. [(Ca, .
o= in { 0 s - e
167
(S3) Calculate the new iterate

x2+1 =T, — @y
5 —
Tpy = VP (a5,)

Setn:=n+ 1 and go to step (S1).



Remark 4.1. One can notice that, if for n > 0 the stopping criterion ||[AxS —°|| < 79
for § > 0 and Ax, =y for 6 = 0 is not fulfilled, then we have C° > 0. Further, we
can choose T arbitrary close to one. Moreover, it holds ¢; # 0. Indeed, assuming the
contrary, one would have that x° € argmin%HA() —9°||P = argmin ||A(-) — y°||. Thus

Az —°|| < |Axt =) = |ly — 4°|| <6,

which contradicts the fact that ||[Ax® — y°|| > 79. Consequently, Algorithm 4.1 is well-
defined.

Further, for 6 > 0 we denote by N(6,%°) the index on which the iteration process stops,
namely
4250 — o <78 < [ A2S 4| for 0<n< N5y,
The existence of such an index, whenever § > 0, will be shown in the following.
One can also notice, that according to (8), whenever 0 < N(4,%°), one has for all 0 < n <
N(8,v°) that
A;]rj*H (xT7 n+l) AP ( ) fz) = Apy1 — Ay <0,
hence,
AL () < AT (a1, a8,
We want to emphasize, that this result holds for arbitrary solution x' of equation (1).
The proof of the following preliminary result follows in the lines of the one given for [13,
Lemma 4.1].

Lemma 4.1. Assume that (A1)-(A4) are fulfilled and that for § > 0 Algorithm 4.1 stops
with index N(8,4°) > 0. Then, for all 0 < n < N(6,1°), the following statements are
true:

(i) If § > 0, then

) 1— 7_—1 s— 1Gs B o

and

v

[in|| A2, — ||

1—71 1 -7 G, s
min { A bt

_9n<lun)

(ii) If § =0, then
. GS — — S—
Hn € {mm{ww}yﬂ] Az, =yl

1 1 G, .
—Gn(pin) > ;unHAxn ylIP > - mm{”AH ,u} Az —y|°.

and

We apply these results for proving the following.
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Lemma 4.2. Assume that (A1)-(A4) are fulfilled, let xf € X* be the starting point of
Algorithm 4.1 and let {22 },>0 be the sequence generated by it, for 6 > 0. The following
assertions are true:

(i) For § > 0 the algorithm stops after a finite number N (6,%°) of iterations and there
exists a constant C' > 0 (not depending on 0) such that

N(8,y%) < C'5°.

If N := N(8,y°) > 0, then there exist constants Cy,Cy > 0 such that
N-1 N-1 )
D ol Az =P < CAL (N x) and Y |Ax — o |I° < CAL (2T, 7).
n=0 n=0

(ii) For § =0, denoting by N := N(0,y) the index where Algorithm 4.1 stops (the value
N = 400 is here also allowed), if N > 0, there ezist constants Cy, Co > 0 such that

N-1 N-1
Nl Az, —ylP < CoAL (21 x9) and Y [[Az, — yll* < CoAL (2, xo).

n=0 n=0

PROOF. (i) Let be 6 > 0. Assuming that Algorithm 4.1 does not stop after a finite
number of iterations, one has for all £ > 0

Afg(ﬂaifg) 2 A53($Ta$g)_A§;(xTaxi)

k—1 k—1
= (Af:l («t,28) — AIPZ+1($T’5L'§L+1)> > =" gulin)- (9)
n=0 n=0

Using Lemma 4.1(i) one further gets for all k£ > 0

1—71 (1—-71)@
QP* T .0 > : s k7588
zo(x ,LU(]) = s mln{ ”AHS 7”} T )

which leads to a contradiction. Hence, N (§,4°) exists, it is finite and, for
1)
Afg (xT7 330)

1—7—1 . (1—7-1)s-1G,  — s
=T —min{ ~——ma——= T
s { TaE - oM

C =

the inequality N(4,7°) < C 6~ is fulfilled. Assuming that N = N(6,%°) > 0, from (9)
and Lemma 4.1(i) one also has

N-1 e
Aa]:jg(zTaxg) > — Zgn(ﬂn) > S Z ;LnHA:U;i - ?J(SHp
n=0 n=0
and
N—1
AR 2d) = = galin)
n=0
1— 13 1—77)1G, s
2 me{< - ,u} e
— |A]



which provides assertion (i).

(1) Let be 6 = 0. In analogy to (9) one has for all £ > 0

k—1
A:Icg(*) (ajTa To) > — Z gn(:un)
n=0

and, via Lemma 4.1(ii), we further have

AP(x Zo) ZunHAxn yll?

and

1

From here the conclusion follows if, both, a finite Stoppmg index N = N(0,y) exists or if
the algorithm does not stop. B

Remark 4.2. Whenever in the previous result one has for § > 0 that N(6,y°) > 0, it
holds that Afg (zf,23) > 0. Indeed, otherwise one would have that zj, € OP(z') & xzf =

VP*(xf) = . In this case, for § > 0, the discrepancy criterion ||[A xS — 3°|| < 78 would
be fulfilled, while for 6 = 0 it would hold Axy = y. Hence, the algorithm would stop in
both cases with N(8,y°) = 0.

5 Convergence results

We discuss the convergence properties of the algorithm and start with the noiseless case
0 = 0. We omit giving the proof of the following result, as it follows in analogy to the
one of Theorem 5.1 in [13], by decisively using the s-convexity of the penalty functional
P and the statements in Lemma 4.1(ii).

Theorem 5.1. Assume that (A1)-(A4) are fulfilled and let 6 = 0. Then Algorithm 4.1
stops either after a finite number N := N(0,y) of iterations with xx satisfying Axy =y
or the sequence {x,}n>0 converges to a solution of (1).

Next we give a characterization of the limit point of the sequence {z,},>¢ generated by
Algorithm 4.1 when § = 0, in the case it does not stop after a finite number of iterations.
In the following result, N(A) := {z € X : Ax = 0} denotes the kernel of the linear
continuous operator A.

Theorem 5.2. Assume that (A1)-(A4) are fulfilled, take z§ € X* and xy := VP*(xf) €
X.

(i) The minimization problem
inf Aija (x,x0) subjectto Az =y (10)
has a unique optimal solution T which fulfills, if int(dom P)N{x € X : Az =y} # 0,
zh € OP(Z) + N(A)*. (11)

11



(i1) If, for 6 = 0, Algorithm 4.1 having as starting point x§ € X* does not stop after
a finite number of iterations and the sequence {x,}n>0 generated by it converges to
an element belonging to int(dom P), then this limit is nothing else than the unique
optimal solution of (10).

PROOF. (i) Denote by v := inf{Af8 (z,20) : Az = y} € [0,400). Then for all £k > 1
there exists 2z, € A such that A z;, = y and

1
v < Afg(zlmwo) <7+ E

By Theorem 3.1 one has that €|z, — zo||* < v+ 1 for all k > 1, thus {zj };>1 is bounded.
Then there exists a subsequence {2, };>1 which converges to z € X in the weak topology
on X and, since A ({y}) := {x € X : Ax =y} is convex and (weakly) closed, it follows
that Az = y. Using the (weak) lower semicontinuity of P, it holds

vo> hmlan (Zkl;xO)

l—+o00

= liminf (P(z,) — P(z0) — (2§, 25, — %0))
=400

> P(7) — Plwo) — (25, T — w0) = A5 (T, 20) = 7,

which means that z is an optimal solution of (10). The uniqueness of z follows from the
s-convexity of P. Thus

068<Af( To) + 041 {y}))()

Since int(dom Afé(" 7)) N A7 ({y}) = int (dom P)N A~ ({y}) # 0, by |3, Theorem 7.5],
one has, equivalently, that

0 € AL (-, 20)(Z) + Na-1((y) (%) = OP() — a5+ Na-1 (1) (2),
which is further equivalent to
5 € OP(Z) + Na-r(qyy (7),
For the normal cone Na-1(gyy)(Z) we have the following representation
N () = Noparia (@) = {2* € X2 (a*,2) <0, V2 € NA)} = N(A)*
and in this way relation (11), namely
zh € OP(7) + N(A)*,

follows. We proved actually more, namely that z € dom P N A~*({y}) is an optimal
solution of (10) if and only if (11) holds.

(i7) Let be € int(dom P) such that AZ = y and z, — T as n — +o00. According
to Algorithm 4.1, one has for all n > 0 that 2} — 25 € R(A*) and z, = VP*(z}),
which is equivalent to x} € OP(z,). Since Z € int(dom P), one has that 0P is locally
bounded in & (see [19]) and this means that {z}},>¢ is bounded. Thus there exists a
subsequence {z;, };>0, which converges to an element 7* € &A™ in the weak* topology of
X*. As OP is norm-to-weak® upper semicontinuous at Z (see [19]), it holds * € OP(Z).
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Thus #* — 2, € R(A*) = N(A)*, which implies that zj, € OP(Z) + N (A)*. According
to the proof of item (i), & is the unique optimal solution of (10). W

In order to show that Algorithm 4.1 describes in fact a regularization method we replace
the smoothness assumption on ) by the following stronger one:

(A1) The space Y is uniformly smooth.

Then we can prove the following.

Theorem 5.3. Assume that (A1°),(A2)-(A4) are fulfilled and that, for § =0, Algorithm
4.1 does not stop after a finite number of iterations and the sequence {x,}n>0 generated
by it converges to T € int(dom P). If {x°},>0 is the sequence generated by Algorithm 4.1
for d >0, then it holds va((s,y(;) — T as 0 — 0.

PROOF. We change the notation and write xjf for the iterates in X* when working with
noisy data y° and x* when working with exact data y. Since Jp is norm-to-norm uniformly
continuous on bounded subsets of ), one can see that for all n > 0, 22 — x,, and :c;*f — )
as 6 — 0. By assumptions, one has that N(8,3°) — 400 as 6 — 0. Let n > 0 be a fixed
index. Then for all § > 0 such that n < N(8,%°), one has, by Theorem 3.1, that

GS = 1 s P )
?Hx_xN((S,ya)H < Axﬁ(é’yé)@?xzv((s,yé))

n

< AP(3,20) = P(z) — P(a)) — (z}, . — ab).
Let 6 — 0 and, so,

lir? sup %Hx — a:‘]sv((;’y(;)Hs < P(z) — P(xy,) — (2, T — o). (12)
—0

Thus (12) holds for all n > 0. Further, as z € int(dom P) and 0P is locally bounded and
norm-to-weak® upper semicontinuous at z, there exists a subsequence {x:‘”}lzo converging
to * in the weak*-topology of X* such that z* € OP(z). Thus, due to (12), for all { > 0

. Gs\ s _ -
hmsup?Hx - x‘;v(é’y(g)H < P(Z) — P(xy,) — (2}, T — Ty,)-

6—0 "
We let [ converge to 400 which leads to

. Gs,_ 5
lim sup — 117 = 2 mI° < 0.

Consequently, x?v( 545y T @S 0 — 0. This concludes the proof. W

Example 5.1. Assume (A1) fulfilled, that X is a s—convex space for some 1 < s < 400
and that (1) has a solution. Then P : X — R, P(x) := %|lv — z4||* for x4 € X an
a priori guess, fulfills (A2). For all x* € X* it holds VP*(z*) = xy + JX (%), where
JX . X* — X denotes the corresponding duality mapping with gauge function t s t¥ 1

and s71 + (s*)71 = 1. We set af :== 0. Then xog = x4 and
1
A (x,20) = P(x) — P(x0) — (x5, & — x0) = P(z) = Sl =l

Hence, for § = 0, for this choice of the penalty functional the sequence {x,}n>0 converges
to the xy-minimum-norm solution of equation (1), provided the algorithm does not stop
after a finite number of iterations.
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6 On an accelerated approach

In this section we shortly discuss an accelerated version of Algorithm 4.1, for which the

choice of the step size is done by minimizing on a certain interval the function f, : Ry —
R

falp) = P*(x}, — ney,) — pCp + play, a,,),

already introduced in (7). This gives the rise to the following algorithm.

Algorithm 6.1.

(S0) Initialization: choose the starting point x5, € X*, 1o = a8 := VP*(x}), an upper
bound i € (0,400) and a parameter T > 1. Set n := 0.

(S1) STOP: when 6 > 0, if the discrepancy criterion ||A(7cf1 — y5|| < 790 s fulfilled or,
when 6 =0, if Ax, =vy.

(S2) Calculate

o = AJ(Axd — o),
Cp = Az =y 77" (A, — oIl - ) ;
o= AT =y
(S3) If fl(fin) < 0, set pi, := fin. Otherwise, take u, as being the greatest p € (0, fin]
such that f(u) = 0.
(S4) Calculate the new iterate

Tppr = Tp— Py
Tpp = VP (a5,).
Set n:=n+1 and go to step (S1).

Remark 6.1. Assuming that (A1)-(A4) are fulfilled, according to Remark 4.1, if forn > 0
Algorithm 6.1 does not stop, then C° > 0 and ¢7, # 0. For all u € R it holds

falu) = =67, VP (2, — poy) — a3) = Cp

and, so, f'(0) = —C° < 0, Due to the fact that VP* is Lipschitz continuous, f is
continuous and one can easily see that f! is increasing on [0, +00). Consequently, in (S3),
iy, 1S taken as minimizer of f, on [0, fi,]. It is worth to notice that, when f!(f,) > 0, the
function can have more than one minimum on this interval.

By denoting with f,, the minimizer of g, on [0, +00), which is in fact the step size con-
sidered in Algorithm 4.1, and noticing that f, € (0, fi,], one has

AL (ahaln) = AL ) < falia) = P(a})
< faliin) = P*(3) < guliin)-

Thus, according to Lemma 4.2, when 6 > 0 the algorithm stops after a finite number of
iterations N(d,y°), which fulfillers N(,4°) < C'd~* for a positive constant C' > 0, while
in the case N(d,7°) > 0, there exists a constant C, such that

(6,4°) 3
> A =y < CrAL (2, 1)),
n=0

14



When ¢ = 0, denoting by N := N(0,y) the index where Algorithm 6.1 stops (the value
N = +o0 is here also allowed), in the case N > 0, there exists a constant Cy > 0 such

that
N—1

S 1A, — yll* < CoAL (af ay).

n=0

Due to this fact, Theorems 5.1-5.3 remain valid for Algorithm 6.1, too.

7 Applications and numerical results

Taking a closer look at Algorithm 4.1, one can see, that, for 6 > 0, the determination in
step (S3) of 20, via
xfwrl = VP (27,1), (13)

for n > 0, implies the knowledge of the conjugate functional P* and of its Gateaux
gradient VP*. Alternatively, one can try to calculate 22 4 as follows. One has
k) [ x * 1
Thiy = VP (25,,) & a4 €0P(z) )
& 0€d (P — (@41, >) (mfwrl)
& 20, =argmin {P(z) — (2. 7)}.
Thus, 22, can be determined as the unique minimizer of the functional

w = P(x) = (2540, 0) = P(2) = (25, 2) + pn (¢}, 7).

Remark 7.1. Assume 6 = 0. By considering the finite dimensional setting X = R™ and
Y = R¥ with m > k, and constant step size ju,, = 1, the determination of T, as the
unique minimizer of

1
— P . * -z, 2
v P(2) ~ (@h0,0) + 5o = ol

for o > 0, (see for instance [26] and the references therein) gives rise to the so-called
linearized Bregman method for solving the constraint minimization problem

inf P(z) subject to Az =y.

For a more involved version of this we refer to [25], where an additional control of the
step size , was applied.

We consider next two examples which are of interest in the field of application of regular-
ization approaches.

7.1 Sparse reconstruction

For € R? a bounded domain and X := L?*(Q) one can consider as penalty functional
Ps: L2(Q) — R,

1
Pa(x) = ||zl 2oy + %Hxﬂiz(m, (14)
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where 3 > 0. Obviously, P is 2-convex with Gy = 7!, As seen above, for 2* € L*(Q)
one has that

. . 1 )
vR) = g in el + 5 llele - o)}

. 1 *
= arg min {5y|g;HL1(m+§|!x—ﬁx Him)}

z€L2(Q)
Blx*(t) —1), ifz*(t)>1
= 0, if ()] <1  ae. on Q.

Blx*(t) +1), ifa*(t)<-—1

The operator V Pj is a version of the so-called soft-threshold (shrinkage) operator, which
has been applied in several applications for sparse reconstruction.

Remark 7.2. Assuming additionally that Y is a Hilbert space, via

1 k *
xfz—i—l = vaﬁ (xfl —A (Axi - yd)) )
one introduces the so-called iterative soft-threshold algorithm (see [9]), which is widely
used in sparse reconstruction for minimizing the Tikhonov functional

1
5 5
Ts(w) =5l Az =y’ IIP + Bllz] s )-
This corresponds to step (S3) in Algorithm 4.1, by identifying x* with x° and by taking
as step size i, = 1, forn > 0. The sequence {x°},>0 converges to a minimizer x° of T?,
even if the constant step size provides slow convergence for this algorithm.

The above remark points out the following: instead of minimizing a Tikhonov functional
several times for different regularization parameters o > 0, we suggest here an iterative
regularization scheme with almost the same numerical amount in each iteration step,
which promises faster convergence because of the step size control and for which only one
incomplete minimization is applied. This observation emphasizes the chances of saving
numerical costs by applying the presented iterative regularization approach.

7.2 TV-regularization

For  C R? a bounded domain we denote by TV : L*(Q) — RU {400} the extension of
the total variation from BV (Q2) (see [1]) to X := L*(Q), by defining it as being equal to
+o0 for x € L*(Q)\ BV (). For 3 > 0, the penalty functional Pg : L?(2) — RU{+o00},

1
Py(x) =TV (z) + %Hm”%%mv (15)

fits into the framework considered in this paper, being proper, lower semicontinuous and
2-convex with G = 371. As opposite to the previous example, V P is here not explicitly
known. Nevertheless, as seen above, one can determine x9 41, for 6 > 0and n > 0 as
being

. 1 .
28, — argmin {Tv<x> + ol l - <xn+1>m>} |
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which is again equivalent to
) . 1 * 2
z,_ , =argmin < STV (x) + §||ac — By llT2@) ¢ - (16)

This is the well-known ROF model (see [21]) in image denoising, while for the solving this
minimization problem there exist a various number of algorithms, like, for example, the
projected gradient method of [8] and its acceleration FPG [2]. On the first glance, it seems
to be not very attractive to apply the minimization (16) in each iteration step. However,
first of all, one can notice that the operator A does not occur in this minimization problem,
which means that the numerical effort for solving it is not that high. On the other hand,
even modern algorithms such as ISTA (see [9]) and its acceleration FISTA (see [2]) for
determining a minimizer of the Tikhonov functional

1
T5(x) == BTV (x) + JlAz— vlI?,

for 5 > 0, apply a solution of the ROF-model (16) in each iteration step.

7.3 Numerical results

We shortly recall the situation. Motivated by the above considerations we set X =) =
L?(0,1) and deal with the linear benchmark operator of integration, e.g. A : X — Y is

given as
t

[Az](t) := /ZL‘(T) dr, t €[0,1].

We set p = 2 and apply an equidistant discretization with K = 1000 subintervals. Let
©j = Xt;_1t;), 1 < J < K, with t; := j/K, 0 < j < K, describe the piecewise constant
ansatz functions. Then we approximate

z(t) ~ Z%’%’(t) and  y(t) ~ Zyj%'(t), t€[0,1].

For the discretization of the data y € ) we can choose the function values of y € ) at
the right-end points of the K subintervals, i.e. we set y; := y(¢;), 1 <j < K. In order to
simulate noisy date we perturb the exact data with random Gaussian noise for different
relative noise levels 8, = 1074 ...1072.

We consider the sample functions

g’ i: [[825604?}7]7 3, tel0.15,0.3],
T ._ ) <, VeI, T o _
x)(t) == L tefroT] and  z)(t) := 5, t€]0.55,0.75],
0, else.
0, else.
In particular, xj, 1 = 1,2, are chosen such that no discretization error occurs. For the

discrepancy criterion we set 7 := 1.2 and z, = 0 is taken starting point (hence, we get
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g=1 B =100 B = 10000

8 —a! 0 — 20—
57‘61 N<57 yé) H ‘]‘v THIH N(57 yé) ” |]|v T”l” N((sv y6) ” f|\7 T”l”
L | Ty

0.01 759 0.2115 1528 0.1901 | 134352 | 0.4391
1073 8203 0.0596 12314 | 0.0581 || 260545 | 0.0639
107 || 20217 | 0.0070 30803 | 0.0069 | 239080 | 0.0071

Table 1: Reconstruction errors for sample function x];

=1 B =100 £ = 10000

) N(§ yé) =% —=1]] N (s y(s) |25, —=]]| N5 yé) 25—
rel ; ) ”x’lr” ) ”331”

B
0.01 132 0.1668 213 0.1623 3613 | 0.1223
1073 1380 0.0725 1116 | 0.0714 || 10164 | 0.0559
1074 || 19327 | 0.0175 | 10608 | 0.0161 | 25246 | 0.0139

Table 2: Reconstruction errors for sample function 93;

1o = ) = 0 for both situations considered here). The number of iterations was limited
by Nmas = 10°.

For the approximate determination of .T]; we apply the penalty Ps from (14) with different
choices for the parameter 3. The needed iteration numbers N (4,7°) as well as the relative
error of the regularized solutions can be found in Table 1. In particular, for 5 = 10000
the iteration number is much higher than in the other two cases. This fact is devoted
to a phenomenon called stagnation: even if x},,, # x}, in each iteration, because of the
structure of the shrinkage operator, it might happen that z° 1= 2° . To avoid such
effects a technique called kicking (see [18]) can be applied, which is not done here. In
Figure 1 we see the reconstruction of JZJ{ on the interval [0.22,0.3] for d,,; = 1072 and the
different values for the parameter 3. Here, the influence of the choice of 3 can be described
as follows: the larger (3, the sharper the zero part of the function :EJ{ to be reconstructed,
the price to be paid for it, being given by the lard oscillations on the non-zero part. This
is a well-known effect of the L'-regularization.

We now turn to the second sample function :1:2 and apply the penalty functional Ps from
(15). Here, for solving the ROF-model, the FPG algorithm [2] is applied. Additionally,
in order to save numerical costs, we store the final primal and dual variables inside of the
FPG algorithm and use them as (good) initial guess in the next iteration step for solving
the new ROF-model. The numerical results for different noise levels 9,.; and different 3 are
presented in Table 2. Based on the specific structure of x; one can notice an increased
quality of the reconstructed solutions with growing [, combined with higher costs for
solving the ROF-models in the first iteration steps (this is, because x} is multiplied by
and hence it becomes larger when [ is increased). An illustration of this observation is
given in Figure 2. Here, the reconstruction of ) on the intervals [0.25,0.35] and [0.5, 0.6]
for §,¢; = 1072 depending on /3 is shown. As we can see, the identification of the jumps is
sharper the larger we choose 3.

Summarizing these numerical results, we observe that our iterative regularization method
for specific penalty terms points out the same properties of a solution of equation (1)
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6 exact solution |
—6— B=10000

5t S —+—p=100 8
—— =1

4l 4

3l 4

0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

Figure 1: exact vs. regularized solution of x]; on the interval [0.22,0.3]

35
exact solution :
—6— B=10000 exact solution
25 B=100 —o&— B=10000
Bt —+— B=100
—— p=1
ol
151
1k
051
ok
_05 . . . . . . . . . . . . . . . . . .
025 026 027 028 029 03 031 032 033 034 035 05 051 052 053 054 055 056 057 058 059 06

Figure 2: exact vs. regularized solution of 2}, on [0.25,0.35] (left) and on [0.5,0.6] (right)
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as when we apply a Tikhonov regularization strategy with the same penalty functional.
Hence, because of the expected less numerical costs, the application of such iterative
approaches is quite promising from the numerical point of view.

8 Summary

Motivated by the chances of reducing numerical costs, we presented an iterative regular-
ization approach which can be considered as alternative to Tikhonov regularization with
s-convex penalty terms. Convergence and regularization properties were shown, as well
as some applications in image and sparse reconstruction were provided. Since the pre-
sented algorithm is closely related to well-established methods for minimizing non-smooth
Tikhonov functionals, we understand our presentation also as a motivation for consider-
ing the following question: whenever an algorithm minimizes a (non-smooth) Tikhonov
functional, does this approach (with possible small modifications) have potential of being
itself an iterative regularization scheme? The answer of this question seems to be of high
interest for further numerical applications.
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