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1 Parameter estimation problem

Let the dimension d ∈ N and a positive integer M ∈ N \ {1} be given. We consider a
d-variate exponential sum of order M that is a linear combination

h(x) :=

M∑
j=1

cj eifj ·x (x = (xl)
d
l=1 ∈ Rd) (1.1)

of M complex exponentials with complex coefficients cj 6= 0 and pairwise different fre-
quency vectors f j = (fj,l)

d
l=1 ∈ Td ∼= [−π, π)d. Here the torus T is identified with the

interval [−π, π). Further the dot in the exponent denotes the usual scalar product in
Rd. Then the d-variate function (1.1) is infinitely differentiable and bounded on Rd. If
h is real–valued, then we can represent (1.1) as linear combination of ridge functions

h(x) =
M∑
j=1

|cj | cos
(
f j · x+ ϕj

)
with cj = |cj | eiϕj . Assume that the frequency vectors f j ∈ Td (j = 1, . . . ,M) fulfill the

gap condition on Td

dist(f j ,f l) := min{‖(f j + 2πk)− f l‖∞ : k ∈ Zd} ≥ q > 0

for all j, l = 1, . . . ,M with j 6= l. Let N ∈ N with N ≥ 2M + 1 be given. Suppose that
perturbed sampled data

h̃(n) := h(n) + e(n), ‖e(n)‖2 ≤ ε1

of (1.1) for all n ∈ K ⊆ ZdN := [−N,N ]d ∩Zd are given, where the error terms e(n) ∈ C
are bounded by certain accuracy ε1 > 0.
Then we consider the following parameter estimation problem for the d–variate exponen-
tial sum (1.1): Recover the pairwise different frequency vectors f j ∈ [−π, π)d and the
complex coefficients cj in such a way that

|h̃(n)−
M∑
j=1

cj eifj ·n| ≤ ε (n ∈ K) (1.2)

for very small accuracy ε > 0 and for minimal order M . With other words, we are
interested in sparse approximate representations of the given noisy data h̃(n) ∈ C by
sampled data h(n) ∈ C (n ∈ K) of the exponential sum (1.1), where the condition (1.2)
is fulfilled.

The approximation of data by finite linear combinations of complex exponentials has a
long history, see [17, 18]. There exists a variety of applications, such as fitting nuclear
magnetic resonance (NMR) spectroscopic data [16] or the annihilating filter method
[24, 6, 23]. Recently, the reconstruction method of [3] was generalized to bivariate
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exponential sums in [1]. In contrast to [3] we introduce a sparse approximate Prony
method, where we use only some data sampled along few lines. Further we remark the
relation to a reconstruction method for sparse multivariate trigonometric polynomials,
see Remark 5.4 and [12, 10, 25].

In this paper, we extend the approximate Prony method (see [21]) to multivariate expo-
nential sums. First we discuss the stability of the multivariate exponentials. Based on
Ingham–type inequalities (see [13, 14]), we prove the Riesz stability of finitely many mul-
tivariate exponentials under some mild conditions in the squared norm (see Lemma 2.1)
and more important for the applications in the uniform norm (see Corollary 2.3). Fur-
thermore we present a result for the converse assertion, i.e., if finitely many d–variate ex-
ponentials are Riesz stable, then the corresponding frequency vectors are well–separated
(see Lemma 2.2). In Section 3, we extend these stability results to draw conclusions for
discrete norms. Further we prove that the condition number of a rectangular Fourier–
type matrix is bounded. In Section 4 we give a short description of the approximative
Prony method in the one–dimensional setting, and we extend this method to the mul-
tivariate case in Section 5. Here we suggest a new sparse approximative Prony method
(SAPM). The main idea is to project the multivariate reconstruction problem to sev-
eral one–dimensional problems and combine finally the one–dimensional results. We use
only few data sampled along some lines in order to reconstruct a multivariate exponential
sum. Finally, various numerical examples for the reconstruction of d–variate exponential
sums with d ∈ {2, 3, 4} are presented in Section 6.

2 Stability of exponentials

In this section, we discuss the stability of finitely many multivariate exponentials. We
start with a generalization of the known Ingham inequalities (see [9]):

Lemma 2.1 (see [13, pp. 153− 156]). Let d ∈ N, M ∈ N \ {1} and T > 0 be given. If
the frequency vectors f j ∈ Rd (j = 1, . . . ,M) fulfill the gap condition on Rd

‖f j − fk‖∞ ≥ q >
√
d π

T
(j, k = 1, . . . ,M ; j 6= k),

then the exponentials eifj ·(·) (j = 1, . . . ,M) are Riesz stable in L2([−T, T ]d), i.e., for all
complex vectors c = (cj)

M
j=1

α ‖c‖22 ≤ ‖
M∑
j=1

cj eifj ·(·)‖22 ≤ β ‖c‖22 (2.1)

with some positive constants α, β, independent of the particular choice of the coefficients
cj. Here ‖c‖2 denotes the Euclidean norm of c ∈ CM and

‖f‖2 :=
( 1

(2T )d

∫
[−T,T ]d

|f(x)|2 dx
)1/2

(f ∈ L2([−T, T ]d)) .
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For a proof see [13, pp. 153 – 156]. Note that for d = 1, we obtain exactly the classical
Ingham inequalities (see [9]).
For pairwise different frequency vectors f j ∈ Rd (j = 1, . . . ,M), the existence of a lower

Riesz bound for the exponentials eifj ·(·) (j = 1, . . . ,M) in L2([−T, T ]d) implies that the
frequency vectors are well–separated and that this system of exponentials is Riesz stable
in L2([−T, T ]d). The following lemma generalizes a former result [15] for univariate
exponentials.

Lemma 2.2 Let d ∈ N, M ∈ N \ {1} and T > 0. Further let f j ∈ Rd (j = 1, . . . ,M) be
given. If there exists a constant α > 0 such that

α ‖c‖22 ≤ ‖
M∑
j=1

cj eifj ·(·)‖22

for all complex vectors c = (cj)
M
j=1, then the frequency vectors f j are well–separated by

‖f j − fk‖∞ ≥
1

d T
ln(
√

2α+ 1)

for all j, k = 1, . . . ,M (j 6= k). Moreover the exponentials eifj ·(·) (j = 1, . . . ,M) are
Riesz stable in L2([−T, T ]d).

Proof. 1. The frequency vectors f j ∈ Rd (j = 1, . . . ,M) are pairwise different, because
from f j = fk for certain j 6= k it follows α = 0 by

2α = α (|1|2 + | − 1|2) ≤ ‖eifj ·(·) − eifk·(·)‖22 = 0 ,

which contradicts our assumption.
2. For the following proof we use similar arguments as in [5, Theorem 7.6.5]. We choose
cj = −ck = 1 for j 6= k. All the other coefficients are equal to 0. Then by the assumption,
we obtain

2α = α (|1|2 + | − 1|2) ≤ ‖eifj ·(·) − eifk·(·)‖22

=
1

(2T )d

∫
[−T,T ]d

|1− ei(fk−fj)·x|2 dx . (2.2)

Using the Taylor expansion of the exponential function and the triangle inequality, it
follows that for x ∈ [−T, T ]d

|1− ei (fk−fj)·x| = |
∞∑
n=1

1

n!
(i (fk − f j) · x)n|

≤
∞∑
n=1

1

n!
|(fk − f j) · x|n ≤

∞∑
n=1

1

n!
(T ‖fk − f j‖1)n

= eT ‖fk−fj‖1 − 1 .
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Here we have used the estimate

|(fk − f j) · x| ≤ ‖fk − f j‖1 ‖x‖∞ ≤ T ‖fk − f j‖1

for all x ∈ [−T, T ]d. Therefore (2.2) shows that

2α ≤ (eT ‖fk−fj‖1 − 1)2 .

Thus the frequency vectors f j are separated by

d ‖f j − fk‖∞ ‖f j − fk‖1 ≥
1

T
ln(
√

2α+ 1)

for all j, k = 1, . . . ,M (j 6= k).
3. Immediately we see that M is an upper Riesz bound for the exponentials eifj ·(·)

(j = 1, . . . ,M) in L2([−T, T ]d). By the Cauchy–Schwarz inequality we obtain

|
M∑
k=1

ck eifj ·x|2 ≤M ‖c‖22

for all c = (cj)
M
j=1 ∈ CM and all x ∈ [−T, T ]d such that

‖
M∑
k=1

ck eifj ·(·)‖22 ≤M ‖c‖22 .

This completes the proof.

Corollary 2.3 If the assumptions of Lemma 2.1 are fulfilled, then the exponentials
eifj ·(·) (j = 1, . . . ,M) are Riesz stable in C([−T, T ]d), i.e., for all complex vectors c =
(cj)

M
j=1 √

α

M
‖c‖1 ≤ ‖

M∑
j=1

cj eifj ·(·)‖∞ ≤ ‖c‖1

with the uniform norm

‖f‖∞ := max
x∈[−T,T ]d

|f(x)| (f ∈ C([−T, T ]d)).

Proof. Let h ∈ C([−T, T ]d) be defined by (1.1). Then ‖h‖2 ≤ ‖h‖∞ < ∞. Using the
triangle inequality, we obtain that

‖h‖∞ ≤
M∑
j=1

|cj | · 1 = ‖c‖1 .

From Lemma 2.1 and ‖c‖1 ≤
√
M ‖c‖2, it follows that√
α

M
‖c‖1 ≤

√
α ‖c‖2 ≤ ‖h‖2 .

5



This completes the proof.

Now we use the uniform norm of C([−T, T ]d) and estimate the error ‖h− h̃‖∞ between
the original exponential sum (1.1) and its reconstruction

h̃(x) :=
M∑
j=1

c̃j eif̃j ·x (x ∈ [−T, T ]d).

We obtain a small error ‖h− h̃‖∞ in the case
∑M

j=1 |cj− c̃j | � 1 and ‖f j− f̃ j‖∞ ≤ δ � 1
(j = 1, . . . ,M).

Theorem 2.4 Let M ∈ N \ {1} and T > 0 be given. Let c = (cj)
M
j=1 and c̃ = (c̃j)

M
j=1 be

arbitrary complex vectors. If f j, f̃ j ∈ Rd (j = 1, . . . ,M) fulfill the conditions

‖f j − fk‖∞ ≥ q >
3
√
dπ

2T
(j, k = 1, . . . ,M ; j 6= k),

‖f̃ j − f j‖∞ ≤ δ <

√
dπ

4T
(j = 1, . . . ,M),

then both

eifj ·(·) (j = 1, . . . ,M)

and

eif̃j ·(·) (j = 1, . . . ,M)

are Riesz stable in C([−T, T ]d). Further

‖h− h̃‖∞ ≤ ‖c− c̃‖1 + dδT ‖c‖1 .

Proof. 1. By the gap condition on Rd we know that

‖f j − fk‖∞ ≥ q >
3
√
dπ

2T
>

√
dπ

T
(j, k = 1, . . . ,M ; j 6= k).

Hence the original exponentials eifj ·(·) (j = 1, . . . ,M) are Riesz stable in C([−T, T ]d)
by Corollary 2.3. Using the assumptions, we conclude that

‖f̃ j − f̃k‖∞ ≥ ‖f j − fk‖∞ − ‖f̃ j − f j‖∞ − ‖fk − f̃k‖∞

≥ q − 2

√
dπ

4T
>

√
dπ

T
.

Thus the reconstructed exponentials

eif̃j ·(·) (j = 1, . . . ,M)
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are Riesz stable in C([−T, T ]d) by Corollary 2.3 too.
2. Now we estimate the normwise error ‖h − h̃‖∞ by the triangle inequality. Then we
obtain

‖h− h̃‖∞ ≤ ‖
M∑
j=1

(cj − c̃j) eif̃j ·(·)‖∞ + ‖
M∑
j=1

cj (eifj ·(·) − eif̃j ·(·))‖∞

≤
M∑
j=1

|cj − c̃j |+
M∑
j=1

|cj | max
x∈[−T,T ]d

|eifj ·x − eif̃j ·x| .

Since for dj := f̃ j − f j (j = 1, . . . ,M) and arbitrary x ∈ [−T, T ]d, we can estimate

|eifj ·x − eif̃j ·x| = |1− eidj ·x| =
√

2− 2 cos(dj · x)

= 2 | sin dj · x
2
| ≤ |dj · x| ≤ ‖dj‖∞ ‖x‖1 ≤ dδ T

such that we receive
‖h− h̃‖∞ ≤ ‖c− c̃‖1 + dδT ‖c‖1 .

This completes the proof.

3 Stability of exponentials on a grid

In the former section we have studied the stability of d–variate exponentials defined
on [−T, T ]d. Now we investigate the stability of d–variate exponentials restricted on a
uniform grid ZdN . First we will show that a discrete version of Lemma 2.1 is also true for
d–variate exponential sums (1.1). If we sample an exponential sum (1.1) on the uniform
grid ZdN , then it is impossible to distinct between the frequency vectors f j and f j +2πk

with certain k ∈ Zd, since by the periodicity of the complex exponential

eif̃j ·n = ei (f̃j+2πk)·n (n ∈ ZdN ) .

Therefore we assume in the following that f j ∈ [−π, π)d (j = 1, . . . ,M) and we mea-

sure the distance between two different frequency vectors f j , f l ∈ [−π, π)d (j, l =
1, . . . ,M ; j 6= l) by

dist(f j ,f l) := min{‖(f j + 2πk)− f l‖∞ : k ∈ Zd} .

Then the separation distance of the set {f j ∈ [−π, π)d : j = 1, . . . ,M} is defined by

min {dist(f j ,f l) : j, l = 1, . . . ,M ; j 6= l} ∈ (0, π].

The separation distance can be interpreted as the smallest gap between two different
frequency vectors in the d–dimensional torus Td.
Since we restrict an exponential sum h on the grid ZdN , we use the norm

1

(2N + 1)d/2

( ∑
k∈Zd

N

|h(k)|2
)1/2

in the Hilbert space l2(ZdN ).
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Lemma 3.1 (see [14]). Let q ∈ (0, π] and M ∈ N\{1} be given. If the frequency vectors
fm ∈ (−π + q

2 , π −
q
2)d (m = 1, . . . ,M) satisfy

‖fm − fn‖∞ ≥ q >
√
dπ

N
(m, n = 1, . . . ,M ; m 6= n) , (3.1)

then the exponentials eifj ·(·) (j = 1, . . . ,M) are Riesz stable in l2(ZdN ), i.e., all complex
vectors c = (cj)

M
j=1 satisfy the following Ingham–type inequalities

α ‖c‖22 ≤
1

(2N + 1)d

∑
k∈Zd

N

|
M∑
j=1

cj eifj ·k |2 ≤ β ‖c‖22

with some positive constants α and β, independent of the particular choice of c.

Proof. 1. Note that fm ∈ (−π + q
2 , π −

q
2)d (m = 1, . . . ,M) with (3.1) implies

dist(fm,fn) > q

for all m,n = 1, . . . ,M with m 6= n. Thus the separation distance of the frequency
vectors is greater than q. Immediately we see that

1

(2N + 1)d

∑
k∈Zd

N

|
M∑
j=1

cj eifj ·k|2 ≤ β ‖c‖22

is valid for β = M , because by Cauchy–Schwarz inequality we obtain

|
M∑
j=1

cj eifj ·k|2 ≤M ‖c‖22 .

Thus we have to show only the existence of a constant α > 0.
2. As usual, the space H1

0 ((−q, q)d) consists of all functions (defined on (−q, q)d) in
the Sobolev space H1((−q, q)d) of order 1, whose trace is zero. Let ψ ∈ H1

0 ((−q, q)d)
be a given function which we extend by 0 continuously on Rd \ (−q, q)d. Assume that
ψ is infinitely differentiable outside the boundary of [−q, q]d. By π ≥ q, the Fourier
transform of ψ reads as follows

ψ̂(t) =

∫
Rd

ψ(x) e−i t·x dx =

∫
[−π, π]d

ψ(x) e−i t·x dx (t ∈ Rd).

Then we receive

ψ̂(j) =

∫
[−π, π]d

ψ(x) e−i j·x dx =

∫
[−q, q]d

ψ(x) e−i j·x dx (j ∈ Z).

Since ψ is infinitely differentiable in the cube [−q, q]d, it follows by repeated partial
integration that

lim
N→∞

∑
j∈Zd

N

|ψ̂(j)| <∞ .
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The exponential functions

2d

√
1

2π
ei j·x (j ∈ Z)

form an orthonormal basis in L2([−π, π]d). If

ψ2π(x) :=
∑
k∈Zd

ψ(x+ 2π k) (x ∈ Rd)

is the 2π–periodization of ψ, then the d–variate Fourier series of ψ2π (with square partial
sums) converges uniformly in Rd such that for all x ∈ Rd∑

j∈Zd

ψ̂(j) ei j·x := lim
N→∞

∑
j∈Zd

N

ψ̂(j) ei j·x = (2π)d ψ2π(x). (3.2)

Note that ψ2π(x) = ψ(x) for x ∈ [−π, π]d and ψ2π(x) = 0 if q < ‖x‖∞ < 2π − q. By
our assumptions concerning the frequencies fm, we see that in the case m 6= n

q < ‖fm − fn‖∞ ≤ ‖fm‖∞ + ‖fn‖∞ < 2
(
π − q

2

)
= 2π − q

and hence ψ2π(fm−fn) = 0. Thus for all x = fm−fn (m, n = 1, . . . ,M), the function
ψ2π is infinitely differentiable and the Fourier series (3.2) converges in these points. Then
from (1.1) and (3.2) it follows that

∑
j∈Zd

ψ̂(j) |h(j)|2 =
M∑

m,n=1

cm c̄n
∑
j∈Zd

ψ̂(j) ei (fm−fn)·j

= (2π)d
M∑

m,n=1

cm c̄n ψ2π(fm − fn)

= (2π)d ψ(0) ‖c‖22 . (3.3)

3. By ϕ we denote the following eigenfunction of the Laplacian operator −∆ in the
Sobolev space H1

0 ((− q
2 ,

q
2)d) corresponding to the first eigenvalue dπ2

q2
:

ϕ(x) :=

d∏
j=1

cos
π xj
q

(x ∈ (−q
2
,
q

2
)d).

Extending ϕ by zero on Rd \ (− q
2 ,

q
2)d, we obtain a continuous function on Rd, still

denoted by ϕ. We compute the Fourier transform

ϕ̂(t) :=

∫
Rd

ϕ(x) e−ix·t dx (t ∈ Rd)

by ∫ q/2

−q/2
cos

πxj
q

e−ixjtj dxj =
2π

q

cos
q tj
2

π2

q2
− t2j

(tj 6= ±
π

q
),
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where the limits of the right–hand side for tj → ±π
q are equal to q

2 . Thus we obtain

ϕ̂(t) =
(2π

q

)d d∏
j=1

cos
q tj
2

π2

q2
− t2j

(t = (tj)
d
j=1 ∈ Rd).

Let ψ := N2 (ϕ ∗ϕ) + ∆ (ϕ ∗ϕ). Then ψ satisfies the conditions of step 2 with ψ(0) > 0.
Further ψ is infinitely differentiable outside the boundary of [−q, q]d. By the properties
of the Fourier transform, we obtain

ψ̂(t) = (N2 − ‖t‖22)
(
ϕ̂(t)

)2
(t ∈ Rd).

Thus ψ̂ is bounded from above by some positive constant ν and ψ̂ ≤ 0 on Rd\BN , where
BN is the open ball of center 0 and radius N . Thus from (3.3) it follows that

(2π)d ψ(0)

ν
‖c‖22 ≤

∑
‖j‖2≤N

|h(j)|2 ≤
∑
j∈Zd

N

|h(j)|2 .

This completes the proof.

Lemma 3.2 Let d ∈ N, M ∈ N \ {1} and N ∈ N with N ≥ 2M + 1 be given. Further
let f j ∈ [−π, π)d (j = 1, . . . ,M). If there exists a constant α > 0 such that

α ‖c‖22 ≤
1

(2N + 1)d

∑
k∈Zd

N

|
M∑
j=1

cj eifj ·k|2

for all complex vectors c = (cj)
M
j=1, then the frequency vectors f j are well–separated by

dist(f j ,f l) ≥
1

dN
ln(
√

2α+ 1)

for all j, l = 1, . . . ,M with j 6= l. Moreover the exponentials eifj ·(·) (j = 1, . . . ,M) are
Riesz stable in l2(ZdN ).

Proof. 1. The frequency vectors f j ∈ [−π, π)d (j = 1, . . . ,M) are pairwise different,
because from f j = f l for certain j 6= l it follows α = 0 by

2α = α (|1|2 + | − 1|2) ≤ 1

(2N + 1)d

∑
k∈Zd

N

|eifj ·k − eif l·k|2 = 0 ,

which contradicts our assumption.
2. We choose cj = −cl = 1 for j 6= l. All the other coefficients are equal to 0. Then by
the assumption, we obtain

2α = α (|1|2 + | − 1|2) ≤ 1

(2N + 1)d

∑
k∈Zd

N

|1− ei(f l−fj)·k|2 . (3.4)
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Using the Taylor expansion of the exponential function and the triangle inequality, it
follows that for k ∈ ZdN

|1− ei (f l−fj)·k| = |
∞∑
n=1

1

n!
(i (f l − f j) · k)n|

≤
∞∑
n=1

1

n!
|(f l − f j) · k|n ≤

∞∑
n=1

1

n!
(N ‖f l − f j‖1)n

= eN ‖f l−fj‖1 − 1 .

Here we have used the estimate

|(f l − f j) · k| ≤ ‖f l − f j‖1 ‖k‖∞ ≤ N ‖f l − f j‖1

for all k ∈ ZdN . Therefore (3.4) shows that

2α ≤ (eN ‖f l−fj‖1 − 1)2 .

Thus the frequency vectors f j (j = 1, . . . ,M) are separated by

d ‖f j − f l‖∞ ≥ ‖f j − f l‖1 ≥
1

N
ln(
√

2α+ 1) .

By the periodicity of the exponential function, we can replace f j by f j + 2πn with

arbitrary n ∈ Zd. Then we obtain that

d ‖(f j + 2πn)− f l‖∞ ≥
1

N
ln(
√

2α+ 1)

such that

ddist(f j ,f l) ≥
1

N
ln(
√

2α+ 1)

for all j, l = 1, . . . ,M with j 6= l.
3. Immediately we see that M is an upper Riesz bound for the exponentials eifj ·(·)

(j = 1, . . . ,M) in l2(ZdN ), because by the Cauchy–Schwarz inequality we obtain

|
M∑
j=1

cj eifj ·k|2 ≤M ‖c‖22

for all c = (cj)
M
j=1 ∈ CM and all k ∈ ZdN and hence

1

(2N + 1)d

∑
k∈Zd

N

|
M∑
j=1

cj eifj ·k|2 ≤M ‖c‖22 .

This completes the proof.

Introducing the rectangular Fourier–type matrix

F := (2N + 1)−d/2
(
eifj ·k

)
k∈Zd

N , j=1,...,M
∈ C(2N+1)d×M ,

we improve the result of [20, Theorem 4.3].
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Corollary 3.3 Under the assumptions of Lemma 3.1, the rectangular Fourier–type ma-

trix F has a bounded condition number cond2(F ) for all integers N >
√
d π
q .

Proof. By Lemma 3.1, we know that for all c ∈ CM

α cHc ≤ cHFHF c ≤ β cHc (3.5)

with positive constants α, β. Let λ1 ≥ λ2 ≥ . . . ≥ λM ≥ 0 be the ordered eigenvalues of
FHF ∈ CM×M . Using the Rayleigh–Ritz Theorem and (3.5), we receive that

α cHc ≤ λM cHc ≤ cHFHF c ≤ λ1 cHc ≤ β cHc

and hence
0 < α ≤ λM ≤ λ1 ≤ β <∞ .

Thus FHF is positive definite and

cond2(F ) =

√
λ1
λM
≤
√
β

α
.

This completes the proof.

4 Approximate Prony method for d = 1

In this section we give a short description of the approximate Prony method (APM) in the
case d = 1. For details see [3, 21, 19]. Let M ∈ N \ {1} and N ∈ N with N ≥ 2M + 1 be
given. By ZN we denote the finite set [−N, N ]∩Z. We consider a univariate exponential
sum

h(x) :=

M∑
j=1

cj eifjx (x ∈ R)

with pairwise different, ordered frequencies −π ≤ f1 < f2 < . . . < fM < π and
nontrivial complex coefficients cj . Assume that these frequencies are well–separated in
the sense that

dist(fj , fl) := min{|(fj + 2πk)− fl| : k ∈ Z} > π

N

for all j, l = 1, . . . ,M with j 6= l. Suppose that noisy sampled data h̃(k) := h(k)+e(k) ∈
C (k ∈ ZN ) are given, where the magnitudes of the error terms e(k) are uniformly
bounded by a certain accuracy ε1 > 0. Then we consider the following nonlinear ap-
proximation problem: Recover the pairwise different frequencies fj ∈ [−π, π) and the
complex coefficients cj in such a way that

|h̃(k)−
M∑
j=1

cj eifjk| ≤ ε (k ∈ ZN )

for very small accuracy ε > 0 and for minimal number M of nontrivial summands. This
problem can be solved by the following algorithm.
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Algorithm 4.1 (APM)

Input: L, N ∈ N (3 ≤ L ≤ N , L is upper bound of the number of exponentials),
h̃(k) = h(k) + e(k) ∈ C (k ∈ ZN ) with |e(k)| ≤ ε1, accuracy bounds ε1, ε2 > 0.

1. Determine the smallest singular value σ̃ of the rectangular Hankel matrix

H̃ := (h̃(k + l))N−L,Lk=−N, l=0

and related right singular vector ũ = (ũl)
L
l=0 by singular value decomposition.

2. Compute all zeros z̃j (j = 1, . . . , L) of the polynomial
∑L

l=0 ũl z
l and determine

all that zeros z̃j (j = 1, . . . , M̃) with the property | |z̃j | − 1| ≤ ε2. Use here the QR
decomposition of the corresponding companion matrix. Note that L ≥ M̃ .
3. For w̃j := z̃j/|z̃j | (j = 1, . . . , M̃), compute c̃j ∈ C (j = 1, . . . , M̃) as least squares
solution of the overdetermined linear Vandermonde–type system

M̃∑
j=1

c̃j w̃
k
j = h̃(k) (k ∈ ZN ) .

For large M̃ and N , we can apply the CGNR method (conjugate gradient on the
normal equations), where the multiplication of the rectangular Fourier–type matrix

(w̃kj )N,M̃k=−N,j=1 is realized in each iteration step by the nonequispaced fast Fourier trans-
form (NFFT) (see [11]).
4. Delete all the w̃l (l ∈ {1, . . . , M̃}) with |c̃l| ≤ ε1 and denote the remaining entries by
w̃j (j = 1, . . . ,M) with M ≤ M̃ .
5. Repeat step 3 and compute c̃j ∈ C (j = 1, . . . , M̃) as least squares solution of the
overdetermined linear Vandermonde–type system

M∑
j=1

c̃j w̃
k
j = h̃(k) (k ∈ ZN )

with respect to the new set {w̃j : j = 1, . . . ,M} again. Set f̃j := Im (log w̃j) (j =
1, . . . ,M).

Output: The reconstructed parameters of h are M ∈ N, f̃j ∈ [−π, π), and c̃j ∈ C
(j = 1, . . . ,M).

Remark 4.2 The convergence and stability properties of Algorithm 4.1 are discussed in
[21]. In all numerical tests of Algorithm 4.1 (see Section 6 and [21, 19]), we have obtained
very good reconstruction results. All frequencies and coefficients can be computed such
that

max
j=1,...,M

|fj − f̃j | � 1,
M∑
j=1

|cj − c̃j | � 1 .
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We have to assume that the frequencies fj are well–separated, that |cj | are not too small,
that the number 2N + 1 of samples is sufficiently large, that a convenient upper bound
L of the number of exponentials is known, and that the error bound ε1 of the sampled
data is small. Up to now, useful error estimates of max |fj − f̃j | and

∑M
j=1 |cj − c̃j | are

unknown.

Remark 4.3 The above algorithm has been tested for M ≤ 100 and N ≤ 105 in
MATLAB with double precision. For fixed upper bound L and variable N , the arithmetic
cost of this algorithm are very moderate with about O(N logN) flops. In the step 1,
the singular value decomposition needs 14 (2N − L + 1)(L + 1)2 + 8 (L + 1)2 flops. In
the step 2, the QR decomposition of the companion matrix requires 4

3 (L + 1)3 flops

(see [8], p. 337). For large values N and M̃ , one can use the nonequispaced fast Fourier
transform iteratively in steps 3 and 5. Since the condition number of the Fourier–

type matrix (w̃kj )N,M̃k=−N,j=1 is uniformly bounded by Corollary 3.3, we need finitely many
iterations of the CGNR method. In each iteration step, the product between this Fourier–
type matrix and an arbitrary vector of length M̃ can be computed with the NFFT by
O(N logN + L | log ε|) flops, where ε > 0 is the wanted accuracy (see [11]).

Remark 4.4 By similar ideas, we can reconstruct also all parameters of an extended
exponential sum

h(x) =

M∑
j=1

pj(x) ei fjx (x ∈ R) ,

where pj (j = 1, . . . ,M) is an algebraic polynomial of degree mj ≥ 0 (see [4, p.169]).
Then we can interpret the exactly sampled values

h(n) =
M∑
j=1

pj(n) znj (n ∈ ZN )

with zj := ei fj as a solution of a homogeneous linear difference equation

K∑
k=0

pk h(j + k) = 0 (j ∈ Z) , (4.1)

where pk (k = 0, . . . ,K) are defined by

M∏
j=1

(z − zj)mj+1 =

Mtotal∑
k=0

pk z
k , Mtotal :=

M∑
j=1

(mj + 1) .

Note that in this case zj is a zero of order mj of the polynomial and we can cover multiple
zeros with this approach. Consequently, (4.1) has the general solution

h(k) =
M∑
j=1

(

mj∑
l=0

cj,l k
l) zkj (k ∈ Z) .
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Then we determine the coefficients cj,l (j = 1, . . . ,M ; l = 0, . . . ,mj) in such a way that

M∑
j=1

(

mj∑
l=0

cj,l k
l) zkj ≈ h(k) (k ∈ ZN ) ,

where we assume that N ≥ 2Mtotal + 1. To this end, we compute the least squares
solution of the above overdetermined linear system.

5 Sparse approximative Prony method for d > 1

Let d, M ∈ N \ {1} and N ∈ N with N ≥ 2M + 1 be given. The aim of this section is to
present a new efficient parameter estimation method for a d–variate exponential sum of
order M using only O(N) sampling points. The main idea is to project the multivariate
reconstruction problem to several one–dimensional problems and to solve these problems
by methods from the previous Section 4. Finally we combine the results from the one–
dimensional problems. Note that it is not necessary to sample the d–variate function h
on the whole grid ZdN .
For simplicity, first we consider a bivariate exponential sum

h(x1, x2) =
M∑
j=1

cj ei (fj,1x1+fj,2x2) .

Assume that the frequency vectors f j = (fj,1, fj,2)
> ∈ [−π, π)2 (j = 1, . . . ,M) are

well–separated by

dist(f j ,fk) >

√
2π

N
.

Additionally we suppose that the components of the frequency vectors fulfill dist(fj,l, fk,l) >
π/N or fj,l = fk,l for all j, k = 1, . . . ,M and l = 1, 2. We solve the corresponding param-
eter estimation problem stepwise and denote this new procedure by sparse approximate
Prony method (SAPM). Here we use only values h(n, 0), h(0, n), h(n, αn+ β) (n ∈ ZN )
sampled along straight lines, where α ∈ Z \ {0} and β ∈ Z are conveniently chosen.

First we consider the given noisy data h̃(n, 0) (n ∈ ZN ) of

h(n, 0) =

M∑
j=1

cj eifj,1n =

M1∑
j=1

cj,1 eif
′
j,1n , (5.1)

where 1 ≤ M1 ≤ M , f ′j,1 ∈ [−π, π) (j = 1, . . . ,M1) are the pairwise different values
of fj,1 (j = 1, . . . ,M) and cj,1 ∈ C are certain linear combinations of the coefficients
cj . Assume that cj,1 6= 0 (without cancellation). Using the Algorithm 4.1, compute the
pairwise different frequencies f ′j,1 ∈ [−π, π) (j = 1, . . . ,M1).

Analogously, we consider the given noisy data h̃(0, n) (n = −N, . . . , N) of

h(0, n) =
M∑
j=1

cj eifj,2n =

M2∑
j=1

cj,2 eif
′
j,2n, (5.2)
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where 1 ≤ M2 ≤ M , f ′j,2 ∈ [−π, π) (j = 1, . . . ,M2) are the pairwise different values of
fj,2 (j = 1, . . . ,M) and cj,2 ∈ C are certain linear combinations of the coefficients cj .
Assume that cj,2 6= 0 (without cancellation). Using the Algorithm 4.1, we compute the
pairwise different frequencies f ′j,2 ∈ [−π, π) (j = 1, . . . ,M2).

Then we form the Cartesian product

F = {(f ′j1,1, f
′
j2,2)

> ∈ [−π, π)2 : j1 = 1, . . . ,M1, j2 = 1, . . . ,M2} (5.3)

of the sets {f ′1,1, . . . , f ′M1,1
} and {f ′1,2, . . . , f ′M2,2

}. Now the question arises which (f ′k,1, f
′
k,2)
>

(k = 1, . . . ,M1M2) are approximations of the frequency vectors f j = (fj,1, fj,2)
> (j =

1, . . . ,M). Therefore we choose further parameters α ∈ Z \ {0}, β ∈ Z and consider the
given noisy data h̃(n, αn+ β) (n ∈ ZN ) of

h(n, αn+ β) =
M∑
j=1

cj eiβfj,2 ei(fj,1+αfj,2)n =

M3∑
j=1

cj,3 eifj(α)n, (5.4)

where 1 ≤ M3 ≤ M , fj(α) ∈ [−π, π) (j = 1, . . . ,M3) are the pairwise different values
of (fj,1 + αfj,2)2π (j = 1, . . . ,M). Here (fj,1 + αfj,2)2π is the symmetric residuum of
fj,1 + αfj,2 modulo 2π, i.e. fj,1 + αfj,2 ∈ (fj,1 + αfj,2)2π + 2π Z and (fj,1 + αfj,2)2π ∈
[−π, π). Note that fj(α) ∈ [−π, π) and that fj,1 + αfj,2 can be located outside of
[−π, π). The coefficients cj,3 ∈ C are certain linear combinations of the coefficients
cj eiβfj,2 . Assume that cj,3 6= 0 (without cancellation). Using the Algorithm 4.1, we
compute the pairwise different frequencies fj(α) ∈ [−π, π) (j = 1, . . . ,M3).

Then we form the subset F̃ ⊂ F of all those (f ′k,1, f
′
k,2)
> ∈ F (k = 1, . . . ,M1M2) such

that there exists a frequency fj(α) with

|fj(α)− (f ′k,1 + αf ′k,2)2π| < ε1 ,

where ε1 > 0 is an accuracy bound. It depends on the problem how often we have to
repeat the last step with different parameters α and β to obtain a small set F̃ := {f̃ j =

(f̃j,1, f̃j,2)
> : j = 1, . . . , |F̃ |}. Finally we compute the coefficients c̃j (j = 1, . . . , |F̃ |) as

least squares solution of the overdetermined linear system

|F̃ |∑
j=1

c̃j eif̃j ·n = h̃(n) (n ∈ I) . (5.5)

With other words, this linear system (5.5) reads as follows

|F̃ |∑
j=1

c̃j eif̃j,1n = h̃(n, 0) (n ∈ ZN ) ,

|F̃ |∑
j=1

c̃j eif̃j,2n = h̃(0, n) (n ∈ ZN ) ,

|F̃ |∑
j=1

c̃j eiβf̃j,2 ei(f̃j,1+αf̃j,2)n = h̃(n, αn+ β) (n ∈ ZN ) .
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Unfortunately, these three system matrices can possess equal columns. Therefore we
represent these matrices as products F lM l (l = 1, 2, 3), where F l is a nonequispaced
Fourier matrix with pairwise different columns and where all entries of M l are equal
to 0 or 1 and only one entry of each column is equal to 1. By [20, Theorem 4.3] the
nonequispaced Fourier matrices F l (l = 1, 2, 3) possess left inverses Ll. If we introduce
the vectors h̃1 := (h̃(n, 0))Nn=−N , h̃2 := (h̃(0, n))Nn=−N , h̃3 := (h̃(n, αn + β))Nn=−N ,

c̃ := (c̃j)
|F̃ |
j=1, and the diagonal matrix D := diag (exp(iβf̃j,2))

|F̃ |
j=1, we obtain the linear

system  M1

M2

M3D

 c̃ =

 L1 h̃1

L2 h̃2

L3 h̃3

 . (5.6)

By a convenient choice of the parameters α, β, the rang of the above system matrix
is equal to |F̃ |. If this is not the case, we can use sampled values of h along another
straight line. In our numerical experiments we have used only the values h̃ sampled on
grid points of the straight lines. We summarize:

Algorithm 5.1 (SAPM for d = 2)
Input: h̃(n, 0), h̃(0, n) ∈ C (n ∈ ZN ), accuracies ε1, ε2 > 0.
m number of additional straight lines, parameters α = (α1, . . . , αm) ∈ Rm, β =
(β1, . . . , βm) ∈ Rm, h̃(n, αln+ βl) ∈ C (n ∈ ZN ; l = 1, . . . ,m)

Step 1. From the noisy data h̃(n, 0) (n ∈ ZN ) and h̃(0, n) (n ∈ ZN ) compute by
Algorithm 4.1 the pairwise different frequencies f ′j,1 ∈ [−π, π) (j = 1, . . . ,M1) in (5.1)
and f ′j,2 ∈ [−π, π) (j = 1, . . . ,M2) in (5.2), respectively. Set I := {(n, 0) : n ∈ ZN} ∪
{(0, n) : n ∈ ZN}.
Step 2. Form the Cartesian product (5.3).

Step 3. For l = 1, . . . ,m do:

From the noisy data h̃(n, αln+ βl) (n ∈ ZN ), compute the pairwise different
frequencies fj(αl) ∈ [−π, π) (j = 1, . . . ,M3) in (5.4) by Algorithm 4.1. Form
the subset F ′ := {f ′j : j = 1, . . . , |F ′|} of F of all those (f ′k,1, f

′
k,2)
> ∈ F

(k = 1, . . . , |F |) such that there exists a frequency fj(αl) with

|fj(αl)− (f ′k,1 + αf ′k,2)2π| < ε1 .

Set I := I ∪ {(n, αln+ βl) : n ∈ ZN}.

Step 4. Compute the least squares solution of the overdetermined linear system

|F ′|∑
j=1

c′j eif
′
j ·n = h̃(n) (n ∈ I)

for the frequency set F ′.

17



Step 5. Form the subset F̃ = {f̃ j : j = 1, . . . ,M} of F ′ of all those f ′k ∈ F ′ (k =
1, . . . , |F ′|) with |c′k| > ε2.
Step 6. Compute the least squares solution of the overdetermined linear system (5.5)
corresponding to the new frequency set F̃ .

Output: M := |F̃ | ∈ N, f̃ j ∈ [−π, π)2, c̃j ∈ C (j = 1, . . . ,M).

Note that it can be useful in some applications to choose the straight lines αln + βl
(n ∈ ZN ) at random.

In the following we extend the Algorithm 5.1 to the case d > 2. To this end, we add a di-
mension step by step. More precisely, in order to solve the parameter estimation problem
for d = 3, we use Algorithm 5.1 with given values h̃(n, 0, 0), h̃(0, n, 0), h̃(n, α(1)n+β(1), 0)
(n ∈ ZN ). Then we compute from the noisy data h̃(0, 0, n) (n ∈ ZN ) of

h(0, 0, n) =
M∑
j=1

cj eifj,3n =

M3∑
j=1

cj,3 eif
′
j,3n,

where 1 ≤ M3 ≤ M , f ′j,3 ∈ [−π, π) (j = 1, . . . ,M3) the pairwise different values of
fj,3 (j = 1, . . . ,M3) and cj,3 ∈ C are certain linear combinations of the coefficients cj .
Assume that cj,3 6= 0 (without cancellation). Using the Algorithm 4.1, we compute the
pairwise different frequencies f ′j,3 ∈ [−π, π) (j = 1, . . . ,M3) and form the Cartesian
product

F = {(f ′k,1, f ′k,2, f ′j,3)> ∈ [−π, π)3 : k = 1, . . . ,K, j = 1, . . . ,M3}

of the sets {(f ′1,1, f ′1,2)>, . . . , (f ′K,1, f ′K,2)>} and {f ′1,3, . . . , f ′M3,3
}, where the set

{(f ′k,1, f ′k,2)> ∈ [−π, π)2 : k = 1, . . . ,K}

is the corresponding set after Step 5 of Algorithm 5.1. Now we form a subset of F by
using further straight lines. We denote by mr the number of straight lines to restrict
the set F for the dimension r (r = 2, . . . , d). We describe this lines by the parameters

α(r) =


α
(r)
1,1 · · · α

(r)
1,r−1

...
. . .

...

α
(r)
mr,1

· · · α
(r)
mr,r−1

 ∈ Rmr×(r−1) ,

β(r) =


β
(r)
1,1 · · · β

(r)
1,r−1

...
. . .

...

β
(r)
mr,1

· · · β
(r)
mr,r−1

 ∈ Rmr×(r−1) (r = 2, . . . , d),

where α
(r)
k,1, . . . , α

(r)
k,r−1 and β

(r)
k,1, . . . , β

(r)
k,r−1 are the parameters for the k-th line (k =

1, . . . ,mr) for the restriction in dimension r (r = 2, . . . , d).

Thus we obtain the following algorithm:
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Algorithm 5.2 (SAPM for d > 2)
Input: h̃(n, 0, . . . , 0), h̃(0, n, 0, . . . , 0), . . . , h̃(0, . . . , 0, n) (n ∈ ZN ), accuracies ε1, ε2 > 0.
mr number of straight lines for dimension r = 2, . . . , d, parameters of straight lines α(r),
β(r) ∈ Rmr×(r−1).

Step 1. From the noisy data h̃(n, 0, . . . , 0), h̃(0, n, 0, . . . , 0), . . ., h̃(0, . . . , 0, n)
(n ∈ ZN ) compute by Algorithm 4.1 the pairwise different frequencies f ′j,1 ∈ [−π, π)
(j = 1, . . . ,M1), f

′
j,2 ∈ [−π, π) (j = 1, . . . ,M2), . . ., f

′
j,d ∈ [−π, π) (j = 1, . . . ,Md).

Set I := {(n, 0, . . . , 0) : n ∈ ZN} ∪ · · · ∪ {(0, . . . , n) : n ∈ ZN}.
Step 2. Set F := {f ′j,1 : j = 1, . . . ,M1}.
Step 3. For r = 2, . . . , d do:

Form the Cartesian product

F := F×{f ′j,r : j = 1, . . . ,Mr} = {(f>l , f ′j,r)> : l = 1, . . . |F |, j = 1, . . . ,Mr} .

For l = 1, . . . ,mr do:

For the noisy data

h̃(n, α
(r)
n,1n+ β

(r)
n,1, . . . , α

(r)
n,r−1n+ β

(r)
n,r−1, 0, . . . , 0) (n ∈ ZN ) ,

compute the pairwise different frequenciesG := {fj(α(r)
n )′ ∈ [−π, π) (j =

1, . . . ,Mr)} by Algorithm 4.1. Form the subset F̃ of F of all those
(fn1,1, fn2,2, . . . , f

′
nr,r)

> ∈ F such that there exists a frequency

fj(α
(r)
n )′ ∈ G with

|fj(α(r)
n )′ − (fn1,1 + α

(r)
n,1fn2,2 + · · ·+ α

(r)
n,r−1f

′
nr,r)2π| < ε1 .

Set F := F̃ and I := I ∪{(n, α(r)
n,1n+β

(r)
n,1, . . . , α

(r)
n,r−1n+β

(r)
n,r−1, 0, . . . , 0) :

n ∈ ZN}.

Step 4. Compute the least squares solution of the overdetermined linear system

|F |∑
j=1

c̃j eifj ·n = h̃(n) (n ∈ I) (5.7)

for the frequency set F .
Step 5. Form the set F̃ := {f̃ j : j = 1, . . . , |F̃ |} of all those fk ∈ F (k = 1, . . . , |F |) with
|c̃k| > ε2.
Step 6. Compute the least squares solution of the overdetermined linear system

|F̃ |∑
j=1

c̃j eif̃j ·n = h̃(n) (n ∈ I) (5.8)

corresponding to the new frequency set F̃ .

Output: M := |F̃ | ∈ N, f̃ j ∈ [−π, π)d, c̃j ∈ C (j = 1, . . . ,M).
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Remark 5.3 Note that we solve the overdetermined linear systems (5.7) and (5.8) only
by using the values h̃(n) (n ∈ I), which we have used to determine the frequencies f̃ j .

If more values h̃(n) available, clearly one can use further values as well in the final step
to ensure a better least squares solvability of the linear systems, see (5.6) for the case
d = 2 and Corollary 3.3. In addition we mention that there are variety of possibilities
to combine the different dimensions, see e.g. Example 6.4.

Remark 5.4 Our method can be interpreted as a reconstruction method for sparse
multivariate trigonometric polynomials from few samples, see [12, 10, 25] and the ref-
erences therein. More precisely, let Πd

N denote the space of all d–variate trigonometric
polynomials of maximal order N . An element p ∈ Πd

N can be represented in the form

p(y) =
∑
k∈Zd

N

ck e2πik·y (y ∈ [−1

2
,

1

2
]d)

with ck ∈ C. There exist completely different methods for the reconstruction of “sparse
trigonometric polynomials”, i.e., one assumes that the number M of the nonzero coeffi-
cients ck is much smaller than the dimension of Πd

N . Therefore our method can be used
with

h(x) := p(
x

2N
) =

M∑
j=1

cj eifj ·x (x ∈ [−N,N ]d),

and x = 2Ny and f j = πk/N if ck 6= 0. Using Algorithm 5.2, we find the frequency
vectors f j and the coefficients cj and finally set k := round(Nf j/π), ck := cj . By [7] one
knows sharp versions of L2–norm equivalences for trigonometric polynomials under the
assumption that the sampling set contains no holes larger than the inverse polynomial
degree, see also [2].

6 Numerical experiments

Finally, we apply the algorithms suggested in Section 5 to various examples. We have
implemented our algorithms in MATLAB with IEEE double precision arithmetic. We
compute the relative error of the frequencies given by

e(f) := max
l=1,...,d

max
j=1,...,M

|fj,l − f̃j,l|

max
j=1,...,M

|fj,l|
,

where f̃j,l are the frequency components computed by our algorithms. Analogously, the
relative error of the coefficients is defined by

e(c) :=

max
j=1,...,M

|cj − c̃j |

max
j=1,...,M

|cj |
,
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where c̃j are the coefficients computed by our algorithms. Further we determine the
relative error of the exponential sum by

e(h) :=
max |h(x)− h̃(x)|

max |h(x)|
,

where the maximum is built from approximately 10000 equispaced points from a grid of
[−N,N ]d, and where

h̃(x) :=
M∑
j=1

c̃j ef̃j ·x

is the exponential sum recovered by our algorithms. We begin with an example previ-
ously considered in [22].

Example 6.1 The bivariate exponential sum (1.1) taken from [22, Example 1] possesses
the following parameters

(f>j )3j=1 =

 0.48π 0.48π
0.48π −0.48π
−0.48π 0.48π

 , (cj)
8
j=1 =

 1
1
1

 .

We sample this exponential sum (1.1) at the nodes h(k, 0), h(0, k) and h(k, αk + β),
(k ∈ ZN ), where α, β ∈ Z are given in Table 6.1. Then we apply our Algorithm 5.1
for exact sampled data and for noisy sampled data h̃(k) = h(k) + 10−δ ek, where ek is
uniformly distributed in [−1, 1]. The notation δ = ∞ means that exact data are given.
We present the results in Table 6.1. It is remarkable that we obtain very precise results
even in the case, where the unknown number M = 3 is estimated by L.

L N ε1 α β δ e(f) e(c) e(h)

5 6 10−4 1 0 ∞ 1.7e−15 5.9e−14 3.2e−13

10 20 10−4 1 0 ∞ 5.4e−15 4.5e−14 4.5e−14

5 25 10−3 1 0 6 5.6e−09 1.6e−07 2.5e−07

5 25 10−3 1, 2 0, 0 6 1.0e−08 5.9e−07 7.4e−07

5 25 10−3 1 0 5 1.7e−08 1.2e−06 1.3e−06

Table 6.1: Results of Example 6.1.

Example 6.2 We consider the bivariate exponential sum (1.1) with following parame-
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ters

(f>j )8j=1 =



0.1 1.2
0.19 1.3
0.3 1.5
0.35 0.3
−0.1 1.2
−0.19 0.35
−0.3 −1.5
−0.3 0.3


, (cj)

8
j=1 =



1 + i
2 + 3 i
5− 6 i
0.2− i
1 + i

2 + 3 i
5− 6 i
0.2− i


.

For given exact data, the results are presented in Table 6.2. The dash − means that we
are not able to reconstruct the signal.
Then we use noisy sampled data h̃(k) = h(k)+10−δ ek, where ek is uniformly distributed
in [−1, 1]. Instead of predeterminated values α and β, we choose these values randomly.
We use only one additional line for sampling and present the results in Table 6.3, where
e(f), e(c) and e(h) are the averages of 100 runs.

L N ε1 α β e(f) e(c) e(h)

8 15 10−4 1 0 2.7e−09 5.7e−09 3.4e−09

8 15 10−4 1, 2, 3 0, 1, 2 2.7e−09 5.9e−09 3.3e−09

15 30 10−4 1 0 1.4e−13 3.4e−13 6.5e−13

15 30 2 · 10−1 1 0 – – –

15 30 2 · 10−1 1, 2 0, 0 1.4e−13 4.0e−13 6.0e−13

15 80 2 · 10−1 1 0 3.5e−15 3.2e−14 7.5e−14

Table 6.2: Results of Example 6.2 with exact data.

L N ε1 δ e(f) e(c) e(h)

8 35 10−3 6 1.4e−06 3.9e−06 5.5e−06

15 30 10−3 6 1.2e−05 3.9e−05 5.3e−05

15 50 10−3 5 4.0e−07 4.1e−06 3.8e−06

15 50 10−3 6 3.8e−08 3.6e−07 3.3e−07

Table 6.3: Results of Example 6.2 with noisy data.

Example 6.3 We consider the trivariate exponential sum (1.1) with following parame-
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ters

(f>j )8j=1 =



0.1 1.2 0.1
0.19 1.3 0.2
0.4 1.5 1.5
0.45 0.3 −0.3
−0.1 1.2 0.1
−0.19 0.35 −0.5
−0.4 −1.5 0.25
−0.4 0.3 −0.3


, (cj)

8
j=1 =



1 + i
2 + 3 i
5− 6 i
0.2− i
1 + i

2 + 3 i
5− 6 i
0.2− i


.

and present the results in Table 6.4.

L N ε1 α(1) α(2) β(1) β(2) δ e(f) e(c) e(h)

8 15 10−4 (1)
(
1 1

)
(0)

(
0 0

)
∞ 1.5e–10 1.7e–10 8.2e–11

8 15 10−4 (1)
(
1 1

)
(1)

(
1 1

)
∞ 1.5e–10 1.7e–10 8.1e–11

10 30 10−3 (1)
(
1 1

)
(0)

(
0 0

)
6 8.7e–07 1.5e–06 2.9e–06

10 30 10−3 (1)

(
1 1
1 2

)
(0)

(
0 0
0 0

)
6 7.8e–08 1.1e–06 1.5e–06

10 30 10−3 (1)

(
1 1
1 2

)
(0)

(
0 0
0 0

)
5 4.5e–06 1.0e–05 1.6e–05

10 30 10−3 (1)

(
1 1
1 2

)
(0)

(
0 0
0 0

)
4 1.2e–05 2.5e–05 5.2e–05

Table 6.4: Results of Example 6.3.

Example 6.4 Now we consider the 4–variate exponential sum (1.1) with following pa-
rameters

(f>j )8j=1 =



0.1 1.2 0.1 0.45
0.19 1.3 0.2 1.5
0.3 1.5 1.5 −1.3
0.45 0.3 −0.3 0.4
−0.1 1.2 0.1 −1.5
−0.19 0.35 −0.5 −0.45
−0.4 −1.5 0.25 1.3
−0.4 0.3 −0.3 0.4


, (cj)

8
j=1 =



1 + i
2 + 3 i
5− 6 i
0.2− i
1 + i

2 + 3 i
5− 6 i
0.2− i


.

Instead of using Algorithm 5.2 directly, we apply the Algorithm 5.1 for the first two
variables and then for the last variables with the parameters α(2) and β(2). Then we take
the tensor product of the obtained two parameter sets and use the additional parameters
from α(4) and β(4) in order to find a reduced set. Finally we solve the overdetermined
linear system. The results are presented in Table 6.5.
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L N ε1 α(2) α(4) β(2) β(4) δ e(f) e(c) e(h)

8 15 10−4 1
(
1 1 1

)
0

(
0 0 0

)
∞ 1.7e-10 2.5e-11 1.6e-10

8 15 10−4 1
(
1 1 1

)
1

(
1 1 1

)
∞ 1.7e-10 2.4e-11 1.6e-10

15 30 10−4 1
(
1 1 1

)
0

(
0 0 0

)
∞ 1.3e-14 6.4e-15 8.8e-14

15 30 10−3 1
(
1 1 1

)
0

(
0 0 0

)
6 1.0e-06 3.2e-07 3.0e-06

15 30 10−3 1
(
1 1 1

)
0

(
0 0 0

)
5 1.3e-05 3.4e-06 4.2e-05

15 30 10−3

(
1
−1

) (
1 1 1
−1 1 −1

) (
0
0

) (
0 0 0
0 0 0

)
6 1.1e-06 2.7e-07 3.9e-06

15 30 10−3

(
1
−1

) (
1 1 1
−1 1 −1

) (
0
0

) (
0 0 0
0 0 0

)
5 8.8e-06 1.9e-06 3.3e-05

15 50 10−3

(
1
−1

) (
1 1 1
−1 1 −1

) (
0
0

) (
0 0 0
0 0 0

)
5 4.5e-07 1.2e-07 1.6e-06

15 50 10−3

(
1
−1

) (
1 1 1
−1 1 −1

) (
0
0

) (
0 0 0
0 0 0

)
4 8.0e-07 2.4e-07 1.1e-05

Table 6.5: Results of Example 6.4.
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