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Abstract. In the quadratic traveling salesman problem a cost is associ-
ated with any three nodes traversed in succession. This structure arises, e. g.,
if the succession of two edges represents energetic conformations, a change
of direction or a possible change of transportation means. In the symmet-
ric case, costs do not depend on the direction of traversal. We study the
polyhedral structure of a linearized integer programming formulation of the
symmetric quadratic traveling salesman problem. Our constructive approach
for establishing the dimension of the underlying polyhedron is rather involved
but offers a generic path towards proving facetness of several classes of valid
inequalities. We establish relations to facets of the boolean quadric poly-
tope, exhibit new classes of polynomial time separable facet defining inequal-
ities that exclude conflicting configurations of edges, and provide a generic
strengthening approach for lifting valid inequalities of the usual traveling
salesman problem to stronger valid inequalities for the symmetric quadratic
traveling salesman problem. Applying this strengthening to subtour elimi-
nation constraints gives rise to facet defining inequalities, but finding a max-
imally violated inequality among these is NP-complete. For the simplest
comb inequality with three teeth the strengthening is no longer sufficient to
obtain a facet. First computational results are presented to illustrate the
importance of the new inequalities.
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1 Introduction

The Traveling Salesman Problem (TSP) is one of the best studied combinatorial opti-
mization problems with many variations and well known to be NP-complete [5, 16, 19].
The Quadratic Traveling Salesman Problem (QTSP) differs from the TSP in that the
costs do not depend on two successive nodes, an edge, but on three successive nodes in
the tour. As such a sequence of three nodes arises if the two corresponding edges appear
in a tour we speak of a quadratic TSP. The problem was introduced by Jäger and Moli-
tor [10, 18] in the context of solving instances motivated by an application in biology.
Indeed, for the recognition of transcription factor binding sites in gene regulation, Zhao,
Huang and Speed [22] proposed permuted Markov and permuted variable length Markov
mixture models. These can be solved by an iterative algorithm that needs the solution
of a TSP and the solution of a QTSP.

By allowing this particular quadratic cost structure, the QTSP can be used to solve
instances of the Angular-Metric Traveling Salesman Problem (Angle-TSP) introduced
by Aggarwal et. al. [3] which is used for the optimization of robot paths with respect to
energetic aspects. Here the task is to find a tour over n points in the Euclidean space
minimizing the sum of the changes in direction, i. e., the costs depend on the angle of
a path from a point i to a point k over a point j. It also covers the extension of this
problem where the changes in direction are weighted against the length of the tour.
As a further problem class we can handle TSP with reload costs [4, 11, 12, 21], i. e.,
given an edge-colored graph find a tour minimizing the costs arising from (weighted)
color changes along the tour. These problems appear for example in the planning of
telecommunication networks whenever switching between two different technologies is
expensive or in freight transportation networks if the costs for loading processes are high
in comparison to transportation costs.

This paper investigates the polyhedral structure of the symmetric QTSP (SQTSP),
i. e., the QTSP where the direction of traversal of a tour is irrelevant. While formulating
the problem as an integer program is straight forward, determining the dimension of
the associated SQTSP polyhedron PSQTSPn

turns out to be surprisingly difficult, see
Section 2. One reason might be that the dimension grows irregularly up to n = 6
and reaches its canonical size only for n ≥ 7. Our proof of the dimension of PSQTSPn

gives an explicit construction of affinely independent tours that extend a constant initial
set of (e. g., 54) tours extracted by a computer algebra package from tours obtained by
complete enumeration of a fixed number (e. g., 5) of initial nodes. The initial enumerative
part seems to cover all cases with structural irregularities so that the remaining tours
can be generated following a rather natural scheme.

Due to this explicit form, the same proof technique allows to establish the property of
being facet defining for several classes of valid inequalities (Section 3). In particular, we
discuss facets related to the boolean quadric polytope (Section 3.1) and facets excluding
conflicting edges, i. e., edges that may not be selected at the same time (Section 3.2).
These include an exponential family of inequalities, that can be separated in polynomial
time. Section 3.3 is devoted to facets that may be interpreted as strengthenings of
TSP facets prohibiting subtours. We introduce a particular strengthening technique
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that can be used to lift any valid inequality for TSP to a stronger valid inequality
for SQTSP. This approach suffices to lift TSP subtour elimination constraints to facet
defining inequalities for SQTSP. Unfortunately, more is required for comb inequalities
and we present an SQTSP facet corresponding to the simplest comb with three teeth.
While TSP subtour elimination constraints can be separated in polynomial time, this no
longer seems to hold for their SQTSP equivalents. We prove that finding a maximally
violated SQTSP subtour elimination constraint is NP-complete.

In order to illustrate the usefulness of the new inequalities we conclude the paper
with some computational results in Section 4 comparing the basic integer programming
formulation against the formulation improved by the new cutting planes for rather small
random instances with general nonnegative cost structure, random Angle-TSP instances
in the plane, and random TSP instances with reload costs.

2 The Model and its Associated Polyhedron

A 2-graph G is a pair (V,E) consisting of a node set V = {1, . . . , n} and a set of
undirected 2-edges E to be defined as follows. A 2-edge 〈i, j, k〉 ∈ V 〈3〉 := {〈i, j, k〉 =
〈k, j, i〉 : i, j, k ∈ V, |{i, j, k}| = 3} consists of a sequence of three distinct nodes where
the reverse sequence is regarded as identical. Alternatively, it may be viewed as a path
consisting of two distinct incident edges {i, j}, {j, k} ∈ V {2} := {{i, j} : i, j ∈ V, i 6= j},
i 6= k, with the property that the direction of traversal is irrelevant. If there is no danger
of confusion we simply write ij instead of {i, j} and ijk instead of 〈i, j, k〉. We consider
the complete 2-graph on V with E := V 〈3〉.
A 2-cycle C of length k > 2 in a 2-graph G is a set of k 2-edges C = {v1v2v3, v2v3v4, . . . ,

vk−2vk−1vk, vk−1vkv1, vkv1v2} with pairwise distinct vi. The 2-edges ijk ∈ C induce a set
of edges C{2} := {ij ∈ V {2} : ijk ∈ C}.
We consider the problem of finding a 2-cycle C in a complete 2-graph G = (V,E) with

n = |V | nodes, called a tour, that minimizes the sum of given weights ce over all 2-edges
e ∈ C. Let Cn = {C : C 2-cycle in G, |C| = n} denote the set of all tours on n nodes,
then the optimization problem reads

min

{
c(C) :=

∑
e∈C

ce : C ∈ Cn

}
.

For a cycle C we define the incidence vector (xC , yC) ∈ {0, 1}V {2}∪V 〈3〉 by

∀ e ∈ V {2} : xCe =

{
1 if e ∈ C{2},
0 if e /∈ C{2},

and ∀ e ∈ V 〈3〉 : yCe =

{
1 if e ∈ C,
0 if e /∈ C.
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An integer programming formulation of all incidence vectors of 2-cycles is given by∑
j : ij∈V {2}

xij = 2, i ∈ V, (1)

xij =
∑

k : ijk∈V 〈3〉
yijk =

∑
k : kij∈V 〈3〉

ykij, ij ∈ V {2}, (2)

∑
ij∈V {2} :

i∈S,j∈V \S

xij ≥ 2, S ⊂ V, 2 ≤ |S| ≤ n− 2, (3)

xij ∈ {0, 1}, yijk ∈ [0, 1], ij ∈ V {2}, ijk ∈ V 〈3〉. (4)

The degree constraints (1) ensure that each node is visited exactly once. Equations (2)
may be seen as a kind of flow conservation for each ij ∈ V {2}, because the sum of the in-
flow into ij via 2-edges kij ∈ V 〈3〉 has to be the same as the out-flow out of ij via 2-edges
ijk ∈ V 〈3〉. The constraints (3) are the well known subtour elimination constraints [8].
That this is indeed a formulation follows from combining the well known formulation
for the Symmetric Traveling Salesman Polytope [8]

PSTSPn := conv{xC ∈ {0, 1}V {2} : C ∈ Cn} = conv
{
x ∈ {0, 1}V {2} : (1), (3)

}
with the coupling constraints (2). In fact, the model above is a linearization of the
quadratic integer program

min{
x∈{0,1}V {2} :(1),(3)

} ∑
ij,jk∈V {2} : ijk∈V 〈3〉

cijkxijxjk, (5)

because the integrality of yijk, ijk ∈ V 〈3〉, follows from the integrality of the x-variables.
For this, we have to check that xijxjk = yijk for all ij, jk ∈ V {2} with ijk ∈ V 〈3〉 and
integral x. For xij = 0 equations (2) imply yijk = 0 for all ijk ∈ V 〈3〉, so consider the
case xij = xjk = 1. Assume yijk < 1, then there exists ijl ∈ V 〈3〉, l 6= k, with yijl > 0 by
(2) which implies xjl = 1 (again by (2)). This contradicts

∑
jm∈V {2} xjm = 2.

Remark 2.1 Note that the variables xij are easily eliminated by (2). E. g., the degree
constraints then read ∑

ijk∈V 〈3〉
yijk = 1 for j ∈ V. (6)

However, in our experience, the classical xij variables improve readability and facilitate
the presentation.

Our main object of study is the polytope arising as the convex hull of all incidence
vectors of 2-cycles, the Symmetric Quadratic Traveling Salesman Polytope

PSQTSPn
:= conv

{
(xC , yC) : C ∈ Cn

}
= conv

{
(x, y) ∈ {0, 1}V {2}∪V 〈3〉 : (1), (2), (3)

}
.

In order to determine the dimension of PSQTSPn
we first calculate the rank of the cor-

responding constraint matrix.
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Lemma 2.2 The constraint matrix corresponding to equality constraints (1) and (2) has
full row rank for all n ≥ 4.

Proof. The rows belonging to the degree constraints (1) are linearly independent, as
in the STSP-case [14], because the node-edge incidence matrix of the complete graph
Kn, n ≥ 3, has full row rank. Let A(i,j,1),• be the row of constraint xij =

∑
〈i,j,k〉∈V 〈3〉 y〈i,j,k〉

and A(i,j,2),• the row of constraint xij =
∑
〈k,i,j〉∈V 〈3〉 y〈k,i,j〉. Our aim is to show that if∑

i<j(α(i,j,1)A(i,j,1),• + α(i,j,2)A(i,j,2),•) = 0 we have α(i,j,m) = 0 for all i, j ∈ V, i < j,m =
1, 2. Considering, w. l. o. g., the columns belonging to y〈i,j,k〉, y〈i,j,l〉, y〈k,j,l〉, i < j < k < l,
we get

y〈i,j,k〉 y〈i,j,l〉 y〈k,j,l〉
(i, j, 1) 1 1 0
(j, k, 2) 1 0 1
(j, l, 2) 0 1 1

Because all other entries of these three columns are zero and this small matrix has full
row rank, α(i,j,1) has to be zero. With the same argument we get α(i,j,m) = 0 for all
i < j,m = 1, 2. �

This proves that the dimension of PSQTSPn
is at most f(n) := 3 ·

(
n
3

)
+
(
n
2

)
−n2, because

there are 3
(
n
3

)
+
(
n
2

)
variables and n2 equality constraints. That it is exactly f(n) for

n ≥ 7 is shown next. The construction is surprisingly involved but as subsequent facet
proofs build upon it, it is worth to present it in detail.

Theorem 2.3 The dimension of PSQTSPn
equals f(n) for all n ≥ 7.

Proof. We want to show that the dimension of PSQTSPn
equals f(n) = 3

(
n
3

)
+
(
n
2

)
−n2 =

1
2
n3 − 2n2 + 1

2
n for n ≥ 7. The idea is to construct, in dependence of a fixed small

parameter n̄, a set of affinely independent tours C n̄
dim = C n̄,1

dim∪̇C
n̄,2
dim∪̇C

n̄,3
dim ⊂ Cn and to

prove that |C n̄
dim| = f(n) + 1. We use three main steps for building the following matrix

structure where each row is the incidence vector of a tour. In step 1 we determine the
rank of some specially structured tours C̄ n̄,1

dim and take the largest affinely independent
subset C n̄,1

dim ⊂ C̄ n̄,1
dim. Next we iteratively build tours so that each tour contains at least

one 2-edge that is not contained in any tour constructed before. This is achieved by
ordering the tours appropriately and by using a restricted set of new 2-edges in each
iteration of the step. Finally, in step 3, unused 2-edges that contain the nodes n− 1 or
n are employed to form the remaining tours.
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Tour 1

Tour f(n) + 1

O O

O

∗ ∗

∗∗
∗

1

1

|C n̄,1
dim| (step 1)

|C n̄,2
dim| (step 2)

|C n̄,3
dim| (step 3)

ye1
n̄+1

yenn−2
n−2

. . . ye1
L
. . . yenL

L

1. Fix a small n̄ ∈ N, n̄ ≤ n− 2 (for this proof n̄ = 5 is sufficient, in later proofs we
will use n̄ = 6, 9, as well) and collect in the set C̄ n̄,1

dim all tours with fixed consecutive
ordering of the nodes (n̄ + 1) to n but with an arbitrary permutation of the first
n̄ nodes, C̄ n̄,1

dim = {C ∈ Cn : {〈n̄ + 1, n̄ + 2, n̄ + 3〉, 〈n̄ + 2, n̄ + 3, n̄ + 4〉, . . . , 〈n −
2, n − 1, n〉} ∈ C}. Because n̄ is small and fixed the rank rn̄ of the incidence
vectors of these tours is independent of n ≥ n̄ + 2 and easy to determine once
and for all, e. g., by some algebra package. The ranks needed in this paper are
r5 = 54, r6 = 98 and r9 = 350. Pick rn̄ tours t ∈ C̄ n̄,1

dim whose corresponding
incidence vectors are linearly independent and collect these tours in the set C n̄,1

dim

with C n̄,1
dim ⊂ C̄ n̄,1

dim : |C n̄,1
dim| = rn̄.

2. In the second step we form C n̄,2
dim =

⋃
n̄<k<n−1 Tk by iteratively constructing sets

of tours Tk = {t1k, . . . , t
nk
k }, n̄ < k < n − 1, so that specific coordinates of the

corresponding incidence vectors, which are zero in all incidence vectors of tours
t ∈ C n̄,1

dim, form a lower triangular matrix, establishing the affine independence of
the respective tours. We obtain this structure for each k by ordering the tours
as presented next. During the following five steps each new tour tik, i = 1, . . . , nk,
contains a 2-edge eik that fulfills

eik /∈ C for all C ∈

(
C n̄,1

dim ∪

( ⋃
n̄<h<k

Th

)
∪

( ⋃
1≤h<i

{thk}

))
. (7)

Within block k the iteration steps (Ij) below should be considered as appending
new rows of incidence vectors of tours in sequence of increasing j. In this sequence
the columns corresponding to underlined 2-edges of the tours tik ∈ Tk form a lower
triangular matrix. The order within an iteration step (Ij) is arbitrary.

Consider a fixed k with n̄ < k < n − 1. In order to simplify the presentation we
only specify the relevant parts of the tours in a condensed form. In particular, the
(possibly empty) fixed node sequence (k + 2) (k + 3) . . . (n− 2) (n− 1) is denoted
by the symbol $k and nodes that are not listed may appear in any order within
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the parts denoted by “ . . . ”. The decisive 2-edge eik that determines the triangle
structure is marked by underlining the corresponding three nodes. Each 2-edge eik
has one of the four types

(Type-I1) 〈a, k, b〉, a, b ∈ {1, . . . , k − 1}, a < b,

(Type-I2) 〈k, a, k + 1〉, a ∈ {2, . . . , k − 1},
(Type-I3) 〈a, b, k + 1〉, a, b ∈ {1, . . . , k − 1}, a 6= b.

(Type-I4) 〈n, a, k〉, 〈n, k, a〉, a ∈ {1, . . . , k − 1}.
The only exceptional 2-edge is 〈k, 1, k + 1〉, it is not used for forming the key
segment of the lower triangular matrix but will be needed for patching.

The tours of C n̄,2
dim are built during five iteration steps:

(I1) . . . a k 1 (k + 1)$k n . . ., for a ∈ {2, . . . , k − 1}
(the 2-edge 〈k, 1, k + 1〉 is not used as an eik),

(I2) . . . 1 k a (k + 1)$k n . . ., for a ∈ {2, . . . , k − 1},
(I3) . . . a k b (k + 1)$k n . . ., for a, b ∈ {2, . . . , k − 1}, a < b,

(I4) . . . k a b (k + 1)$k n . . ., for a, b ∈ {1, . . . , k − 1}, a 6= b,

(I5) . . . (k + 1)$k n a b . . . , for a, b ∈ {1, . . . , k}, a 6= b, k ∈ {a, b}.
Claim 1 The 2-edges eik, i = 1, . . . , nk, underlined above fulfill condition (7).
Proof of Claim 1. By construction, edge {k, k + 1} is contained in all tours t ∈
C n̄,1

dim∪
(⋃

n̄<j<k Tj

)
and edge {k+1, k+2} is in each tour up to and including this

iteration. Thus, the 2-edges of (Type-I1)–(Type-I3) have not been used before.
Likewise, n and k are separated by node k + 1 on one side and by k − 1 nodes
on the other side in each tour up to this iteration, so the 2-edges of (Type-I4)
are unused. An underlined 2-edge eik of iteration step (Ij) is not in conflict with a
further eı̂k of the same iteration step because at most one of these 2-edges can be
present in a tour. It remains to show that a 2-edge eik chosen in iteration step (Ij)
is not contained in a tour of a previous iteration step (Il), l < j.

• Tours in step (I2): all tours created in (I1) contain a 2-edge 〈k, 1, k + 1〉 and
by (1), (2) no 2-edge 〈k, a, k + 1〉, a ∈ {2, . . . , k − 1}.
• Tours in step (I3): all tours created in (I1)–(I2) contain an edge {1, k} which

conflicts with 2-edges 〈a, k, b〉, a, b ∈ {2, . . . , n− 1}, by (1), (2).

• Tours in step (I4): all tours created in (I1)–(I3) contain a 2-edge 〈k, a, k +
1〉, a ∈ {1, . . . , k− 1} and the edge {k+ 1, k+ 2}, i. e., until this step at most
one node has been between k and k+1. It follows by (1), (2) that all variables
of type (Type-I3) have not been used in (I1)–(I3).

• Tours in step (I5): in (I1)–(I4) the nodes n and k are separated by node k+1
on one side and by at least n− 5− |$k| = n− 5− (n− k− 2) = k− 3 nodes
on the other side. For k > n̄ ≥ 5 these are at least 3 nodes.

This completes the proof of Claim 1.
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3. Because all tours constructed so far contain the edge {n− 1, n}, we have

C n̄,1
dim ∪ C

n̄,2
dim ⊂

{
C ∈ Cn : {n− 1, n} ∈ C{2}

}
. (8)

It remains to build tours in which n − 1 and n do not lie next to each other.
Therefore we have three possible types for eiL, i = 1, . . . , nL :

(Type-L1) 〈a, n− 1, b〉, a, b ∈ {1, . . . , n− 2}, a < b,

(Type-L2) 〈a, n, b〉, a, b ∈ {1, . . . , n− 2}, a < b,

(Type-L3) 〈n− 1, a, n〉, a ∈ {1, . . . , n− 2}.
All of these 2-edges except for one are used as eiL during the construction.

Again the order of the tours is chosen so that the underlined 2-edge eiL of each
tour tiL, i = 1, . . . , nL, fulfills

eiL /∈ C for all C ∈ C n̄,1
dim ∪ C

n̄,2
dim ∪ {t

1
L, . . . , t

i−1
L }. (9)

The tours of step (Lj) are all created before the start of steps (Ll), l > j, and the
order within each step is arbitrary.

In the following, let w1, w2, w3 ∈ {1, . . . , n− 2} be three arbitrary but fixed nodes
with |{w1, w2, w3}| = 3 (this could be the nodes 1, 2, 3; the additional freedom
allows to reuse this part in later proofs).

(L1) . . . a (n− 1) bw1 nw2 . . . , for a, b ∈ {1, . . . , n− 2} \ {w1, w2}, a < b

(the 2-edge 〈w1, n, w2〉 is not used as an eiL),

(L2)
{
. . .m (n− 1) ow1 nw3 . . . ,
. . .m (n− 1) ow2 nw3 . . . ,

withm, o ∈ {1, . . . , n−2}\{w1, w2, w3},m 6= o,

(L3) . . . a (n− 1)w1w2 nw3 . . . , for a ∈ {1, . . . , n− 2} \ {w1, w2, w3},
(L4) . . . a (n− 1)w2w1 nw3 . . . , for a ∈ {1, . . . , n− 2} \ {w1, w2, w3},
(L5) . . . a n bm (n−1) o . . . , for a, b ∈ {1, . . . , n−2}, a < b, |{a, b}∩{w1, w2, w3}| =

1, with m, o ∈ {1, . . . , n− 2}, {m, o} * {w1, w2, w3}, |{a, b,m, o}| = 4,

(L6)


. . . nw3w1 (n− 1)w2 . . . ,

. . . nw2w1 (n− 1)w3 . . . ,

. . . nw1w2 (n− 1)w3 . . . ,

(L7) . . . a n bm (n − 1) . . . , for a, b ∈ {1, . . . , n − 2} \ {w1, w2, w3}, a < b, with
m ∈ {1, . . . , n− 2}, |{a, b,m}| = 3,

(L8) . . . (n− 1) a n . . . , for a ∈ {1, . . . , n− 2}.
Claim 2 Whenever (8) holds, then for any fixed choice w1, w2, w3 ∈ {1, . . . , n−2}
with |{w1, w2, w3}| = 3 and any feasible realization of tour tiL ∈ C n̄,3

dim according
to (L1)–(L8) the corresponding underlined 2-edge eiL fulfills condition (9) for i =
1, . . . , nL.
Proof of Claim 2. Note that each step (Lj) belongs to one of the types (Type-
L1)–(Type-L3). For all C ∈ (C n̄,1

dim∪C
n̄,2
dim) there holds eiL /∈ C because the 2-edges
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of (Type-L1)–(Type-L3) are in conflict with edge {n − 1, n}, which is contained
in all previous tours by (8). Next, an underlined 2-edge eiL of step (Lj) does not
conflict with an eı̂L, i 6= ı̂, of the same step because at most one of these 2-edges
can be present in a tour by (1), (2). It remains to show (9) for the tours (Lj) with
increasing j.

• Tours in step (L2): all tours created in (L1) contain the 2-edge 〈w1, n, w2〉.
• Tours in step (L3), (L4): all tours created in (L1)–(L2) contain a 2-edge
〈a, n− 1, b〉, a, b ∈ {1, . . . , n− 2} \ {w1, w2}.
• Tours in step (L5): all tours created in (L1)–(L4) contain a 2-edge c ∈
{〈w1, n, w2〉, 〈w1, n, w3〉, 〈w2, n, w3〉}.
• Tours in step (L6): all tours created in (L1)–(L5) contain none of the three

2-edges 〈w1, n− 1, w2〉, 〈w1, n− 1, w3〉, 〈w2, n− 1, w3〉.
• Tours in step (L7): all tours created in (L1)–(L4) contain a 2-edge c ∈
{〈w1, n, w2〉, 〈w1, n, w3〉, 〈w2, n, w3〉}; the underlined 2-edges of (L7) are for-
bidden in (L5), (L6) because there n is adjacent to one of the nodes w1, w2, w3.

• Tours in step (L8): in all tours created in (L1)–(L7) there are at least two
nodes between nodes n− 1 and n.

This completes the proof of Claim 2.

Claim 3: For n̄ = 5, 6, 9 we have |C n̄
dim| = f(n) + 1.

Proof of Claim 3. We determine |C n̄
dim| = |C

n̄,1
dim∪̇C

n̄,2
dim∪̇C

n̄,3
dim| = |C

n̄,1
dim| + |C

n̄,2
dim| + |C

n̄,3
dim|

with

• |C n̄,1
dim| = rn̄,

• |C n̄,2
dim| =

n−2∑
k=n̄+1

|Tk| =
n−2∑

k=n̄+1

(
2(k − 2)︸ ︷︷ ︸
(I1)+(I2)

+

(
k − 2

2

)
︸ ︷︷ ︸

(I3)

+ (k − 1)(k − 2)︸ ︷︷ ︸
(I4)

+ 2(k − 1)︸ ︷︷ ︸
(I5)

)

=
n−2∑

k=n̄+1

(
3
2
k2 − 3

2
k − 1

)
= 1

2
n3 − 3n2 + 9

2
n− 1− 1

2
n̄3 + 3

2
n̄,

• |C n̄,3
dim| =

(
n− 4

2

)
︸ ︷︷ ︸

(L1)

+ 2︸︷︷︸
(L2)

+ 2(n− 5)︸ ︷︷ ︸
(L3)+(L4)

+ 3(n− 5)︸ ︷︷ ︸
(L5)

+ 3︸︷︷︸
(L6)

+

(
n− 5

2

)
︸ ︷︷ ︸

(L7)

+ (n− 2)︸ ︷︷ ︸
(L8)

= n2 − 4n+ 3

We get |C n̄
dim| = 1

2
n3 − 2n2 + 1

2
n + 2 + rn̄ − 1

2
n̄3 + 3

2
n̄ affinely independent tours for

n̄ ≥ 5, i. e., for n̄ ≥ 5 and n ≥ n̄+ 2 the described constructions are possible. Choosing
n̄ = 5, 6, 9 Claim 3 and Theorem 2.3 follow because in each case the constant term
evaluates to 1. Indeed, for r5 = 54 we get 2 + r5 − 1

2
· 53 + 3

2
· 5 = 2 + 54− 125

2
+ 15

2
= 1,

r6 = 98 yields 2 + 98− 108 + 9 = 1 and for r9 = 350 we obtain 2 + 350− 729
2

+ 27
2

= 1.�
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Figure 1: 2-edge disjoint Hamiltonian cycle decomposition of the complete 2-graph with
n = 6

For small values of n the dimensions of PSQTSPn
are 0 for n = 3, 2 for n = 4, 10

for n = 5 and 34 for n = 6. These values were calculated by means of a linear algebra
package.
As pointed out before, the proof is quite involved, but unfortunately, we did not

succeed in our attempts to adapt the idea used for proving the dimension of the STSPn-
polytope, v. [14]. On the one hand it is not clear if there exists a decomposition of the
complete 2-graph on n nodes into

(
n−1

2

)
Hamiltonian cycles which are disjoint regarding

all ijk ∈ V 〈3〉. Such a decomposition is shown in Figure 1 for n = 6. This statement
is related to a part of a conjecture by Bailey and Stevens [6], page 2 with k = 3, on
the decomposition of complete uniform hypergraphs into hyperedge-disjoint Hamiltonian
cycles. On the other hand, if we had this decomposition for n nodes, we could include
the new node n + 1 at each position of that smaller tours as done for the STSPn but
then the number of constructed cycles would be too small.

Remark 2.4 The Symmetric Quadratic Cycle Cover Problem SQCCn asks for a set
of cycles of length at least three covering all nodes of an undirected 2-graph G̃ =
(Ṽ , Ẽ), |Ṽ | = n. In comparison to SQTSPn, the subtour inequalities (3) are not needed.
SQCCn is NP-complete because the NP-complete problems of determining a minimum
angle cycle cover [3] and a minimum reload cost cycle cover [11] can be reduced to it.
Its corresponding polytope is

PSQCCn
:= conv

{
(x, y) ∈ RV {2}∪V 〈3〉 : (x, y) fulfills (1), (2), (4)

}
.

Lemma 2.2 and Theorem 2.3 also prove that the dimension of PSQCCn
equals f(n). By

similar arguments, all inequalities that are valid for PSQCCn
and facets of PSQTSPn

are
facets of PSQCCn

, too.

3 Valid inequalities and facets of PSQTSPn

In this section we present valid inequalities and facets of PSQTSPn
. We start with

inequalities that are related to the Boolean Quadric Polytope (BQP) [20]. After that we
present the exponential family of conflicting edges inequalities which can be separated

10



in polynomial time. Because PSTSPn is a projection of PSQTSPn
, valid inequalities for

PSTSPn remain valid for PSQTSPn
but typically they can be strengthened. For facets

corresponding to such a strengthening of the subtour elimination constraints of the
STSPn the problem of finding a maximally violated constraint is NP-complete. It is
also possible to find facets corresponding to strengthened comb-inequalities [7, 13, 14, 15].

3.1 Inequalities related to the Boolean Quadric Polytope

In Section 2 we argued that PSQTSPn
arises as a linearization of the quadratic zero-one

problem (5). Therefore it is natural to consider inequalities that are known to be valid
for the BQP. The simplest ones are the sign constraints.

Corollary 3.1 For n ≥ 4 the inequalities

yijk ≥ 0

define facets of PSQTSPn
for all ijk ∈ V 〈3〉.

Proof. For 4 ≤ n ≤ 6 we verified the statement by determining the rank of the incidence
vectors of all tours not containing, w. l. o. g., 2-edge 〈1, 2, 3〉 by means of a computer
algebra package. For n ≥ 7 the result follows directly from the proof of Theorem 2.3.
Indeed, consider the 2-edge 〈n − 1, n − 2, n〉 (w. l. o. g.) and observe that it is only
used in step (L8) in the tour created last. Therefore the f(n) other tours are affinely
independent and do not contain 〈n− 1, n− 2, n〉. �

The next important class are the triangle inequalities of BQP [20]. In our notation
the relevant inequalities read −xij + yijk + ykij − yikj ≤ 0 for all ij ∈ V {2}, k ∈ V \ {i, j},
but this can be strengthened as follows.

Theorem 3.2 For n ≥ 5 the inequalities

yijk + ykij ≤ xij (10)

define facets of PSQTSPn
for all ij ∈ V {2} and all k ∈ V \ {i, j}.

Proof. The inequality is valid, because with yijk or ykij also xij must be one while the
sequences 〈i, j, k〉 and 〈k, i, j〉 cannot appear in any tour of length at least four at the
same time. We set, w. l. o. g., i = n − 2, j = n, k = n − 1. A tour satisfying (10) with
equality, y〈n−2,n,n−1〉+ y〈n−1,n−2,n〉 = x{n−2,n}, either does not contain the edge {n− 2, n}
or contains with this edge one of the edges {n − 1, n − 2}, {n, n − 1}. For n = 5, 6
we verified the statement by means of a computer algebra package and for n ≥ 7 the
construction of the f(n) affinely independent tours is similar to the construction in the
proof of Theorem 2.3. We only point out the differences.
Among all tours t ∈ C n̄,1

dim ∪ C
n̄,2
dim only those generated for k = n − 2 in (I5) may

contain the edge {n − 2, n} because otherwise n lies between node n − 1 and a node
c ∈ {1, . . . , n− 3}. If k = n− 2 in (I5), all tours with b = k = n− 2 do not contain the
edge {n−2, n}, and whenever a = n−2 the tour also contains the 2-edge 〈n−1, n, n−2〉.
So consider steps (L1)–(L8).

11



• (L1)–(L4): By choosing w1, w2, w3 ∈ {1, . . . , n−3} node n is not adjacent to n−2.

• (L5): We split this into two parts. First we restrict a, b to lie in {1, . . . , n− 3} so
that n and n−2 are separated. Second we replace the remaining tours by different
tours . . . a n (n− 2) (n − 1) . . . , a ∈ {w1, w2, w3}. These tours contain the 2-edge
〈n, n− 2, n− 1〉, so the corresponding eiL drops out of (L8).

• (L6): We slightly adapt this step in order to prevent the case n adjacent to n− 2,

. . .mnw3w1 (n− 1)w2 . . . , with m ∈ {1, . . . , n− 3} \ {w1, w2, w3},

. . .mnw2w1 (n− 1)w3 . . . , with m ∈ {1, . . . , n− 3} \ {w1, w2, w3},

. . .mnw1w2 (n− 1)w3 . . . , with m ∈ {1, . . . , n− 3} \ {w1, w2, w3}.

• (L7): Again we split the construction into two parts. First we restrict a, b to lie
in {1, . . . , n− 3} \ {w1, w2, w3} and build the tours as described before. Second we
create new tours . . . a n (n− 2) (n− 1) . . . , a ∈ {1, . . . , n− 3} \ {w1, w2, w3}.

• (L8): As pointed out in step (L5), we restrict a to {1, . . . , n − 3} and form
. . . (n− 1) a n . . .

This construction works out for n̄ = 5 and all n ≥ 7. All in all this generates exactly
one tour less than in the proof of Theorem 2.3 and so the inequality is facet defining for
PSQTSPn

, n ≥ 5. �

Inequalities (10) can also be interpreted as a special kind of subtour elimination con-
straint forbidding cycles of length three. This relation is not surprising, because, alterna-
tively, the constraint can be derived by multiplying (and thereby lifting) xij+xjk+xki ≤ 2
by xij and using the definition of the y-variables. Further inequalities known to be valid
for BQP are the cycle-inequalities [20]. Some of these can be visualized in our context,
see Figure 2. For {i, j, k} ⊂ V, |{i, j, k}| = 3, we get

∑
ijl∈V 〈3〉,l 6=k yijl +

∑
jkl∈V 〈3〉,l 6=i yjkl +∑

kil∈V 〈3〉,l 6=j ykil ≤ 1 because 2-edge positions in the shape of a T are not allowed. By
substituting (2) this simplifies to xij + xik + xjk − yijk − yikj − yjik ≤ 1, which is again a
triangle inequality (and a special cycle-inequality).

Theorem 3.3 For n ≥ 6 the inequalities

xij + xik + xjk − yijk − yikj − yjik ≤ 1 (11)

define facets of PSQTSPn
for all i, j, k ∈ V, |{i, j, k}| = 3.

Proof. Validity holds, because not all three x-variables can be one and if two are one,
so is exactly one of the y-variables. We set, w. l. o. g., i = 1, j = n− 1, k = n. Equality
holds, x{1,n−1} + x{1,n} + x{n−1,n} − y〈1,n−1,n〉 − y〈1,n,n−1〉 − y〈n−1,1,n〉 = 1, if and only if
exactly one or two of the three edges {1, n − 1}, {1, n}, {n − 1, n} are contained in the
tour. For n = 6 we verified the statement by means of a computer algebra package
and for n ≥ 7 the construction of the f(n) affinely independent tours is similar to the
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construction in the proof of Theorem 2.3. Therefore we use the same notation and only
mention the differences.

All tours t ∈ C n̄,1
dim ∪ C

n̄,2
dim contain the edge {n− 1, n}. So it remains to look at steps

(L1)–(L8). For this we set w1 = 1 and w2, w3 ∈ {2, . . . , n− 2}, w2 6= w3.

• (L1): Using the same construction, the nodes w1 = 1 and n are adjacent.

• (L2): We only build the tour . . .m (n−1) ow1 nw3 . . . with m, o ∈ {1, . . . , n−2}\
{w1, w2, w3},m 6= o, i. e., the 2-edge 〈w2, n, w3〉 is not used as an eiL here.

• (L3): The edge {w1, n− 1} is contained in the tour.

• (L4), (L6): In the standard construction one of the edges {w1, n − 1}, {w1, n} is
contained in the tours.

• (L5): We distinguish two cases. Either w1 /∈ {a, b} then we set m = w1, which
implies an edge {w1, n− 1}, or w1 ∈ {a, b}, which implies an edge {w1, n}.

• (L7): We build tours . . . a n bw1 (n−1) . . . , a, b ∈ {1, . . . , n−2}\{w1, w2, w3}, a < b
which contain an edge {w1, n− 1}.

• (L8): If a = w1 the tour contains both edges {w1, n − 1}, {w1, n}. In all other
cases we can position node w1 next to node n.

This construction works for n̄ = 5 and all n ≥ 7 and creates exactly one tour less than
in the proof of Theorem 2.3. Thus, the inequality defines a facet of PSQTSPn

, n ≥ 6. �

Generalizing the idea of conflicting T-structures along a cycle Ik = {i1, . . . , ik} ⊂ V of
odd length |Ik| = k leads to

k−2∑
l=1

∑
ilil+1m∈V 〈3〉

m 6=il+2

yilil+1m +
∑

ik−1ikm∈V 〈3〉
m6=i1

yik−1ikm +
∑

iki1m∈V 〈3〉
m 6=i2

yiki1m ≤
⌊
k

2

⌋
.

Via (2) these correspond to the following cycle-inequalities.

Observation 3.4 For n ≥ 3 the inequalities∑
ij∈C{2}

xij −
∑
ijk∈C

yijk ≤
⌊
|C|
2

⌋
(12)

are valid for PSQTSPn
for all 2-cycles C ⊂ V 〈3〉, |C| ≥ 3.

Proof. For any two consecutive x-variables that have value one, the corresponding y-
variable also has value one. �
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i

j

k

Figure 2: Visualization of certain cycle-inequalities

Remark 3.5 For |C| = 5 and n ≥ 5, inequality (12) defines a facet of PSQTSPn
; a

proof of this is given in the appendix. For |C| ≥ 6, however, inequality (12) can
be strengthened and is thus not facet defining. Indeed, for a 2-cycle C = {i1i2i3,
i2i3i4, . . . , i|C|i1i2}, |C| ≥ 6, adding the variable y〈i1,i4,i|C|〉 to the left hand side of the
inequality preserves validity for PSQTSPn

, because the presence of 〈i1, i4, i|C|〉 in a tour
excludes the use of edges {i1, i|C|}, {i3, i4}, {i4, i5} so that the remaining edges of C{2} can
be grouped into two paths, one corresponding to x{i1,i2}+ x{i2,i3}− y〈i1,i2,i3〉 ≤ 1 and one
to
∑|C|−1

k=5 x{ik,ik+1}−
∑|C|−1

k=6 y〈ik−1,ik,ik+1〉 ≤
⌈
|C|−5

2

⌉
. Hence, whenever 〈i1, i4, i|C|〉 is in the

tour, the strengthened left hand side sums to at most 1 + 1 +
⌈
|C|−5

2

⌉
=
⌈
|C|−1

2

⌉
=
⌊
|C|
2

⌋
.

The inequality remains valid if all edges and 2-edges of the induced subgraph are
employed.

Observation 3.6 For n ≥ 3 the inequalities∑
ij∈S{2}

xij −
∑

ijk∈S〈3〉
yijk ≤

⌊
|S|
2

⌋
(13)

are valid for PSQTSPn
for all S ⊂ V .

Proof. Whenever two x-variables indexed by incident edges within S{2} have value one,
the corresponding y-variable is also one. Intersecting a tour with S{2} decomposes the
tour into at most

⌊
|S|
2

⌋
paths of at least one edge and only such path segments contribute

one unit to the left hand side. �

In fact, inequalities (13) define facets for all odd m ≥ 3 with S ⊂ V,m = |S| for
n ≥ 3

2
(m+ 1). We defer the proof of this to the appendix.
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3.2 Conflicting edges inequalities

The conflicting edges inequalities presented next forbid subtours and T-structures. In
the simplest case a subtour is implied if there is more than one path of length less or
equal to two between two nodes i, j ∈ V, i 6= j, i. e., an edge {i, j} ∈ V {2} or a 2-edge
〈i, k, j〉 ∈ V 〈3〉.

Theorem 3.7 For n ≥ 6 the inequalities

xij +
∑

ikj∈V 〈3〉
yikj ≤ 1 (14)

define facets of PSQTSPn
for all ij ∈ V {2}.

Proof. For n = 6, 7 we verified the statement by means of a linear algebra package and
for n ≥ 8 the proof is similar to the proof of Theorem 2.3 but this time we need to adapt
the n̄-permutation-block used for C̄ n̄,1

dim as well as the iterative steps of C n̄,2
dim. For the

tours of C n̄,3
dim we only have to show that the desired structure can be achieved.

We set, w. l. o. g., i = 1, j = 2. In a tour satisfying x12 +
∑

1k2∈V 〈3〉 y1k2 = 1 either
nodes 1 and 2 are adjacent or there is exactly one node between them. Thus, C̄ n̄,1

dim is
formed for the choice of n̄ by all tours of the form{

. . . 1 2 . . . (n̄+ 1)$n̄ n . . . or

. . . 1h 2 . . . (n̄+ 1)$n̄ n . . . with h ∈ {3, . . . , n̄}. (15)

In comparison to taking all tours . . . (n̄+1)$n̄ n . . . as in the proof of Theorem 2.3 this
reduces the rank by two in the case n̄ = 5 and by one for n̄ = 6. Thus, for n̄ = 6 the
same approach still works if no more eik are lost in the remainder of the proof. Therefore,
we choose n̄ = 6, collect r6 − 1 linearly independent tours of C̄ n̄,1

dim in the set C̃ n̄,1
dim and

proceed in constructing C̃ n̄
dim = C̃ n̄,1

dim∪̇C̃
n̄,2
dim∪̇C̃

n̄,3
dim.

The set C̃ n̄,2
dim =

⋃
n̄<k<n−1 T̃k, T̃k = {t̃1k, . . . , t̃nk

n }, is built iteratively, similarly to C n̄,2
dim.

Again the aim is to construct tours during steps n̄ < k < n− 1 whose incidence vectors
are roots of (14) and form a lower triangular matrix on variables ẽik, i = 1, . . . , nk.
The adapted iterative steps for n̄ < k < n− 1 are:

(i1) . . . a k 3 (k + 1)$k n 1 2 . . . , for a ∈ {4, . . . , k − 1}
(2-edge 〈k, 3, k + 1〉 is not used as ẽik),

(i2) . . . 3 k a (k + 1)$k n 1 2 . . . , for a ∈ {4, . . . , k − 1},

(i3) . . . a k b (k + 1)$k n 1 2 . . . , for a, b ∈ {4, . . . , k − 1}, a < b,

(i4) . . . k a b (k + 1)$k n 1 2 . . . , for a, b ∈ {3, . . . , k − 1}, a 6= b,

(i5)
{
. . . (k + 1)$k n 2 1 k a . . . ,
. . . (k + 1)$k n 1 2 k a . . . ,

for a ∈ {3, . . . , k − 1},
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(i6)


. . . k 1 2 a (k + 1)$k n . . . ,

. . . k 2 1 a (k + 1)$k n . . . ,

. . . k 1 a 2 (k + 1)$k n . . . ,

. . . k 2 a 1 (k + 1)$k n . . . ,

for a ∈ {3, . . . , k − 1},

(i7)
{
. . . k 1 2 (k + 1)$k n . . . ,

. . . k 2 1 (k + 1)$k n . . . ,

(i8) . . . 1 k 2 3 (k + 1)$k n . . . ,

(i9)
{
. . . 2 k 1 (k + 1)$k n . . . ,

. . . 1 k 2 (k + 1)$k n . . . ,

(i10) . . . 1 2 (k + 1)$k n a b . . . , for a, b ∈ {3, . . . , k}, a 6= b, {a, b} ∩ {k} 6= ∅,

(i11)


. . . (k + 1)$k n k 1 2 . . . ,
. . . (k + 1)$k n k 2 1 . . . ,
. . . (k + 1)$k n 1 k 2 . . . ,
. . . (k + 1)$k n 2 k 1 . . . .

In each tour either node 1 is next to node 2 or there is exactly one node between them.
Claim 1: |C n̄,2

dim| = |C̃
n̄,2
dim|.

Proof of Claim 1.

|T̃k| = (k − 4)︸ ︷︷ ︸
(i1)

+ (k − 4)︸ ︷︷ ︸
(i2)

+

(
k − 4

2

)
︸ ︷︷ ︸

(i3)

+ (k − 3)(k − 4)︸ ︷︷ ︸
(i4)

+ 2(k − 3)︸ ︷︷ ︸
(i5)

+ 4(k − 3)︸ ︷︷ ︸
(i6)

+ 2︸︷︷︸
(i7)

+ 1︸︷︷︸
(i8)

+ 2︸︷︷︸
(i9)

+ 2(k − 3)︸ ︷︷ ︸
(i10)

+ 4︸︷︷︸
(i11)

= 3
2
k2 − 3

2
k − 1 = |Tk|,

hence |C n̄,2
dim| = |C̃

n̄,2
dim| and the claim is proved.

Claim 2: Each ẽik fulfills

ẽik /∈ C for all C ∈

(
C̃ n̄,1

dim ∪

( ⋃
n̄<h<k

T̃h

)
∪

( ⋃
1≤h<i

{t̃hk}

))
.

Proof of Claim 2. Consider a fixed k with n̄ < k < n − 1. In all previous tours
t ∈ C̃ n̄,1

dim ∪
(⋃

n̄<h<k T̃h

)
node k is adjacent to node k + 1 while node n is a neighbor of

node n − 1 and the next two nodes on the other side of n are out of {1, . . . , k − 1}, so
the underlined 2-edges have not appeared before. By construction, 2-edges ẽik and ẽı̂k,
i 6= ı̂, being built in the same step (ij) cannot be contained in the same tour. It remains
to show that a 2-edge ẽik chosen in iteration step (ij) is not contained in a tour of a
previous iteration step (il), l < j.
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• Tours in step (i2): all tours created in (i1) contain the 2-edge 〈k, 3, k + 1〉.

• Tours in step (i3): all tours created in (i1)–(i2) contain the edge {3, k}.

• Tours in step (i4): in all tours created in (i1)–(i3) there is exactly one node between
node k and node k + 1.

• Tours in step (i5): in all tours created in (i1)–(i3) the edges {1, k}, {2, k} are
forbidden. With n̄ = 6 and therefore n ≥ 8 it follows that node 2 is not adjacent
to node k in (i4).

• Tours in step (i6): in all tours created in (i1)–(i3) there is exactly one node between
node k and node k + 1 and in (i4),(i5) the 2-edges ẽik used here are forbidden.

• Tours in steps (i7), (i8), (i9): the respective single 2-edges do not appear in the
tours (ij) with smaller j.

• Tours in steps (i10), (i11): in all tours created in (i1)–(i9) the nodes n and k are
separated by node k + 1 on the one side and by at least two nodes on the other.

This completes the proof of Claim 2.
Note that (8) holds for C̃ n̄,1

dim∪̇C̃
n̄,2
dim, so by invoking Claim 2 of the proof of Theorem 2.3

we can make use of (L1)–(L8) if these admit tours as realizations that are roots of (14).
Claim 3: For each step (L1)–(L8) there is a tour having node 1 adjacent to node 2
or exactly one node between these two.
Proof of Claim 3. Choose w1, w2, w3 ∈ {3, . . . , n− 2}.

• (L1), (L7): Either {a, b} = {1, 2}, i. e., there is exactly node n − 1 between the
two nodes, or they can be placed next to each other.

• (L2)–(L6): put node 1 next to node 2.

• (L8): If a /∈ {1, 2} put nodes 1,2 next to each other, otherwise force a 2-edge
〈1, n, 2〉.

In comparison to the proof of Theorem 2.3 we create exactly one tour less in the first
step and the same number in steps two and three. This proves Theorem 3.7. �

The idea used for Theorem 3.7 can be extended, see Figure 3.

Theorem 3.8 For n ≥ 6 the inequalities

xij +
∑

ikj∈V 〈3〉,k∈S

yikj +
∑

kil∈V 〈3〉,k,l∈T

ykil ≤ 1 (16)

define facets of PSQTSPn
for all ij ∈ V {2} and for all S ∪T = V \{i, j}, S ∩T = ∅, |S| ≥

1, |T | ≥ 3.
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j i

S

T

Figure 3: One can choose at most one out of this edge (straight line) and the 2-edges
(curved lines).

Proof. We set, w. l. o. g., i = n, j = n − 1 and use the notation T = {t1, . . . , t|T |}, S =
{s1, . . . , s|S|} with |T | ≥ 3, |S| ≥ 1. Roots of (16) satisfy

x{n−1,n} +
∑

〈n−1,k,n〉∈V 〈3〉,k∈S

y〈n−1,k,n〉 +
∑

〈k,n,l〉∈V 〈3〉,k,l∈T

y〈k,n,l〉 = 1.

Thus, either the edge {n − 1, n} is contained in the tour, or there is exactly one node
between nodes n− 1 and n and this node belongs to set S, or n lies between two nodes
which belong to set T . For n = 6, |S| = 1, |T | = 3 we verified the assumption using a
linear algebra package. For n ≥ 7 the proof is similar to the proof of Theorem 2.3, we
use the same notation and only explain the necessary adaptations.
All tours which belong to C n̄,1

dim ∪ C
n̄,2
dim contain the edge {n − 1, n} and therefore it

remains to adapt the third step. Setting {w1, w2, w3} = {t1, t2, t3} steps (L1)–(L4) can
be performed without any problems because node n lies between two nodes belonging
to set T . The next steps (ST1)–(ST6) replace (L5)–(L8) and for |S| ≥ 1, |T | ≥ 3 these
constructions are possible.

(ST1) . . . (n− 1) s1 n a . . . , for a ∈ (S ∪ T ) \ {s1}
(the 2-edge 〈n− 1, s1, n〉 is not used as an eiL),

(ST2) . . . (n− 1) a n s1 . . . , for a ∈ S \ {s1},

(ST3)
{
. . . (n− 1) a n b . . . , for a, b ∈ S \ {s1}, a < b,
. . . (n− 1) a n b . . . , for a ∈ S \ {s1}, b ∈ T,

(ST4) . . . (n− 1) s1 a n b . . . , for a, b ∈ T, {a, b} * {w1, w2, w3}, a < b,

(ST5) . . . s1 (n− 1) a nm . . . , for a ∈ T with m ∈ T,m 6= a,

(ST6)


. . . w1 (n− 1)w2 nw3 . . . ,

. . . w1 (n− 1)w3 nw2 . . . ,

. . . w2 (n− 1)w3 nw1 . . . .
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Because all tours in C n̄,1
dim ∪ C

n̄,2
dim contain the edge {n − 1, n} the underlined 2-edges

of (ST1)–(ST6) have not been used in these steps. Furthermore the eiL of tours built
during one of these steps are in conflict. It remains to show Claim 1.
Claim 1: The 2-edges eiL of step (STj) are not contained in tours in (L1)–(L4) and
(STl), l < j.
Proof of Claim 1.

• Tours in step (ST1): in all tours of (L1)–(L4) node n lies between two of the
nodes w1, w2, w3 ∈ T .

• Tours in step (ST2): in all tours of (L1)–(L4) two nodes lie between n and n− 1
and the tours in (ST1) contain the 2-edge 〈n− 1, s1, n〉.

• Tours in step (ST3): in all tours of (L1)–(L4) node n lies between two of the
nodes w1, w2, w3 ∈ T and the tours in (ST1)–(ST2) contain the 2-edge {s1, n}.

• Tours in step (ST4): in all tours of (L1)–(L4) node n lies between two of the
nodes w1, w2, w3 ∈ T and in the tours in (ST1)–(ST3) node n is adjacent to some
node s ∈ S.

• Tours in step (ST5): in all tours of (L1)–(L4), (ST4) two nodes lie between n and
n− 1, and in the tours of (ST1)–(ST3) a node s ∈ S lies between nodes n− 1, n.

• Tours in step (ST6): in all tours of (L1)–(L4) the 2-edges 〈w1, n−1, w2〉, 〈w1, n−
1, w3〉, 〈w2, n − 1, w3〉 are forbidden explicitly. In all tours of (ST1)–(ST5) node
n− 1 is adjacent to at least one node s ∈ S.

This proves Claim 1.
Claim 2: We build exactly one tour less than in the proof of Theorem 2.3.
Proof of Claim 2. It suffices to compare |C n̄,3

dim| = n2 − 4n+ 3 with the number of tours
created in steps (L1)–(L4), (ST1)–(ST6). The number of tours equals(
n− 4

2

)
︸ ︷︷ ︸

(L1)

+ (1 + 1)︸ ︷︷ ︸
(L2)

+ (n− 5)︸ ︷︷ ︸
(L3)

+ (n− 5)︸ ︷︷ ︸
(L4)

+ (|S| − 1 + |T |)︸ ︷︷ ︸
(ST1)

+ (|S| − 1)︸ ︷︷ ︸
(ST2)

+

[(
|S| − 1

2

)
+ (|S| − 1)|T |

]
︸ ︷︷ ︸

(ST3)

+

[(
|T |
2

)
− 3

]
︸ ︷︷ ︸

(ST4)

+ |T |︸︷︷︸
(ST5)

+ 3︸︷︷︸
(ST6)

= 1
2
n2 − 5

2
n+ 2 + 1

2
(|S|+ |T |︸ ︷︷ ︸

n−2

)2 + 1
2
(|S|+ |T |︸ ︷︷ ︸

n−2

)− 1 = n2 − 4n+ 2 = |C n̄,3
dim| − 1.

This completes the proof. �

In the case |T | = 2 further strengthenings are possible.
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Theorem 3.9 For n ≥ 6 the inequalities

xij +
∑

ikj∈V 〈3〉,k∈S

yikj + yt1it2 + yt1jt2 ≤ 1 (17)

define facets of PSQTSPn
for all ij ∈ V {2} and for all S ∪ T = V \ {i, j}, S ∩ T = ∅,

T = {t1, t2}.

Proof. Validity holds because all edges contained in the inequality are in pairwise con-
flict. We set, w. l. o. g., i = 1, j = 2, T = {n − 1, n}, S = {3, . . . , n − 2}. Roots of (17)
satisfy

x12 +
∑

1k2∈V 〈3〉,k∈S

y1k2 + y(n−1)1n + y(n−1)2n = 1. (18)

Such a tour either contains the edge {1, 2}, or there is exactly one node s ∈ S between
nodes 1,2, or one of the nodes 1,2 lies between the nodes (n − 1) and n. For n = 6, 7
we verified the assumption by means of a linear algebra package and for n ≥ 8 the
proof is similar to the proofs of Theorem 2.3 and Theorem 3.7, so we use the same
notation. We start with setting up an appropriate n̄-permutation block with n̄ = 6. As
in (15), in all tours of this block either node 1 is adjacent to node 2 or exactly one node
s̄ ∈ {3, 4, 5, 6} ⊆ S lies between them and in each case these first six elements are followed
by (n̄ + 1)$n̄ n. Like in the proof of Theorem 3.7, the resulting number of linearly
independent tours is one less than |C n̄,1

dim| of the proof of Theorem 2.3. Furthermore,
the iterative part (i1)–(i11) of the proof of Theorem 3.7 is also applicable here, because
T = {n − 1, n} and so by claims 1 and 2 of the proof of Theorem 3.7 the number of
tours equals |C n̄,2

dim|. It remains to adapt the third step constructing the set C̃ n̄,3
dim.

(S2.1) . . . a (n− 1) b 3n 4 1 2 . . . , for a, b ∈ {5, . . . , n− 2}, a < b

(we do not use the 2-edge 〈3, n, 4〉 as an eiL),

(S2.2)
{
. . . 5 (n− 1) 6 3n 2 1 . . . ,
. . . 5 (n− 1) 6 4n 2 1 . . . ,

(S2.3)
{
. . . a (n− 1) 3 4n 2 1 . . . ,

. . . a (n− 1) 4 3n 2 1 . . . ,
for a ∈ {5, . . . , n− 2},

(S2.4)
{
. . . 6 (n− 1) 4 3n 5 1 2 . . . ,
. . . 6 (n− 1) 3 4n 5 1 2 . . . ,

(S2.5)
{
. . . 2 1 (n− 1) amn o . . . ,

. . . 1 2 (n− 1) amn o . . . ,

{
for a ∈ {3, . . . , n− 2}
with m, o ∈ {3, 4, 5} \ {a},m 6= o,

(S2.6) . . . a n b 1 2 (n− 1) . . . ,

{
for a, b ∈ {3, . . . , n− 2}, a < b,
{a, b} /∈ {{3, 4}, {3, 5}, {4, 5}},

(S2.7) . . . 5n 6 3 (n− 1) 4 1 2 . . . ,
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(S2.8)
{
. . . 2 1n am (n− 1) . . . , for a ∈ {3, . . . , n− 2}
. . . 1 2n am (n− 1) . . . , for a ∈ {5, . . . , n− 2} with m ∈ {3, 4} \ {a}, 3 ∈

{a,m},

(S2.9) . . . (n− 1) a n 1 2 . . . , for a ∈ {3, . . . , n− 2},

(S2.10)
{
. . . 3 (n− 1) 1n 4 . . . ,

. . . 3 (n− 1) 2n 4 . . . ,

(S2.11)
{
. . . n 1 (n− 1) 2 . . . ,

. . . (n− 1) 1n 2 . . . .

For n̄ = 6, n ≥ 8, these yield tours whose incidence vectors satisfy (18). Indeed, the
tours in (S2.1)–(S2.9) contain edge {1, 2} and in (S2.10)–(S2.11) all tours contain the
2-edge 〈n− 1, 1, n〉 or 〈n− 1, 2, n〉.
Claim 1: Each underlined 2-edge eiL has not appeared in previous tours.
Proof of Claim 1. Because n and n− 1 are adjacent in all previous tours, we only have
to show that a 2-edge eiL used in step (S2.j) is not used in tours of steps (S2.l), l < j.

• Tours in step (S2.2): the tours in (S2.1) contain the 2-edge 〈3, n, 4〉.

• Tours in step (S2.3): in the tours of (S2.1), (S2.2) the edges {3, n − 1} and
{4, n− 1} are forbidden.

• Tours in step (S2.4): in (S2.1)–(S2.3) node n is adjacent to two of the nodes
2,3,4.

• Tours in step (S2.5): in all tours in (S2.1)–(S2.4) the edges {1, n− 1}, {2, n− 1}
are forbidden.

• Tours in step (S2.6): in the tours in (S2.1)–(S2.5) only the 2-edges 〈3, n, 4〉,
〈3, n, 5〉, 〈4, n, 5〉 are used.

• Tours in step (S2.7): in the tours in (S2.1)–(S2.6) at least one of the nodes 3,4
is not adjacent to node n− 1.

• Tours in step (S2.8): in the tours in (S2.1)–(S2.7) node 1 is not adjacent to node
n, in (S2.1), (S2.4)–(S2.7) node 2 is not adjacent to node n and in (S2.2)–(S2.3)
the tours contain the 2-edges 〈2, n, 3〉, 〈2, n, 4〉.

• Tours in steps (S2.9), (S2.10): in the tours in (S2.1)–(S2.8) there are at least
two nodes between nodes n− 1, n.

• Tours in step (S2.11): the tours in step (S2.1)–(S2.9) contain edge {1, 2} and in
(S2.10) the two edges of (S2.11) do not appear.
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1 2 3 4

{1, 2}{1, 3}{1, 4}{2, 3}{2, 4}{3, 4}

Figure 4: The graph G̃ for n = 6 and i = 5, j = 6 with marked solution S = {1}, T =
{2, 3, 4}.

It remains to calculate |C̃ n̄,3
dim|.

|C̃ n̄,3
dim| =

[(
n− 2

2

)
− 1

]
︸ ︷︷ ︸

(S2.1)+(S2.3)+(S2.5)+(S2.7)

+

[(
n− 2

2

)
− 2

]
︸ ︷︷ ︸

(S2.2)+(S2.4)+(S2.6)+(S2.8)

+ (n− 2)︸ ︷︷ ︸
(S2.9)+(S2.10)

+ 2︸︷︷︸
(S2.11)

= n2 − 4n+ 3 = |C n̄,3
dim|

With the introductory considerations Theorem 3.9 follows. �

While (14) and (17) only comprise a polynomial number of inequalities, there are
exponentially many inequalities of type (16) and it is not clear in advance if one can
separate them in polynomial time. The answer to this is given next.

Theorem 3.10 The separation problem for the conflicting edges inequalities (16) can
be solved in polynomial time.

Proof. We are given a fractional solution (x̄, ȳ) of a relaxation of SQTSPn. Fix i, j ∈
V, i 6= j. Then we want to find S, T ⊂ V as in inequality (16) maximizing the sum∑

ikj∈V 〈3〉 : k∈S

ȳikj +
∑

kil∈V 〈3〉 : k,l∈T

ȳkil.

For this purpose we construct two node sets Ṽ1 = V \ {i, j} and Ṽ2 = {{k, l} : k, l ∈
V \ {i, j}, k 6= l} and from this we build an undirected bipartite graph G̃ = (Ṽ , Ẽ) with
node set Ṽ = Ṽ1 ∪ Ṽ2 and edge set Ẽ =

{
{m, {k, l}} : m ∈ {k, l} ∈ Ṽ

}
(see Figure 4 for

an illustration). The selection of node v ∈ Ṽ1 corresponds to the assignment of v to S
and choosing a node {k, l} ∈ Ṽ2 to the assignment of k and l to T . Setting the weight
of each node v ∈ Ṽ1 to ȳivj and of {k, l} ∈ Ṽ2 to ȳkil the separation problem reduces to
the problem of finding a maximum weight independent set in a bipartite graph. This
problem is known to be solvable in polynomial time, see, e. g., [9]. �
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S

Figure 5: Case n = 6, |S| = 3: For this tour, the sum appearing in inequality (20) is
zero.

3.3 The extended subtour elimination constraints

In the description of the formulations for PSQTSPn
, inequalities (3) are the subtour

elimination constraints. These require that any tour has to leave any subset S ⊂ V ,
1 ≤ |S| ≤ n− 1, and may be rewritten, via (2), in terms of y-variables,∑

ijk∈V 〈3〉 :
i∈S,j,k∈V \S

yijk + 2 ·
∑

ijk∈V 〈3〉 :
i,k∈S,j∈V \S

yijk ≥ 2. (19)

In some cases (19) can be improved. E. g., the 2-edges immediately reentering set S after
visiting one exterior node, i. e., yijk, i, k ∈ S, j ∈ V \S, may be considered as not exiting
S after all and may be excluded from the left hand side if |S| < n

2
. The condition |S| < n

2

is needed because in the case of |S| ≥ n
2
some tours over n nodes may visit all exterior

nodes only by such reentering 2-edges (see Figure 5). This leads to Theorem 3.11.

Theorem 3.11 For n ≥ 6 the inequalities∑
ijk∈V 〈3〉 :

i∈S,j,k∈V \S

yijk ≥ 2 (20)

define facets of PSQTSPn
for all S ⊂ V, 2 ≤ |S| < n

2
.

Proof. Any tour must visit at least two nodes outside S consecutively because |S| < n
2
.

The two 2-arcs entering a corresponding exterior segment of the tour show the validity
of the inequality. For S = {i, j} the inequality is facet defining by Theorem 3.7, because∑

ikl∈V 〈3〉,j /∈{k,l}

yikl +
∑

jkl∈V 〈3〉,i/∈{k,l}

yjkl ≥ 2

(2)⇐⇒
∑

ik∈V {2},k 6=j

xik︸ ︷︷ ︸
=2−xij (by (1))

−
∑

ikj∈V 〈3〉
yikj +

∑
jk∈V {2},k 6=i

xjk︸ ︷︷ ︸
=2−xij (by (1))

−
∑

ikj∈V 〈3〉
yikj ≥ 2

⇐⇒ xij +
∑

ikj∈V 〈3〉
yikj ≤ 1.
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S

T = V \ S

Figure 6: The incidence vector of the shown tour fulfills
∑

ijk∈V 〈3〉 : i∈S,j,k∈V \S yijk = 2.
The marked nodes belong to the only block of nodes in V \ S with more than
one node.

Thus we may assume |S| ≥ 3 and n ≥ 7. For n = 7 we verified the statement with a com-
puter algebra system, so let n ≥ 8 and consider, w. l. o. g., T := {t1 = 1, t2 = 2, . . . , t|T | =
|T |}, |T | > n

2
and S := V \T = {s1 = |T |+1, . . . , s|S|−1 = n−1, s|S| = n}. Again, we use

the proof-framework of Theorem 2.3 with its notation and explain the differences only.
An incidence vector of a tour satisfies (20) with equality,

∑
ijk∈V 〈3〉 : i∈S,j,k∈V \S yijk = 2, if

deleting S from the tour decomposes the tour into isolated nodes and exactly one path
consisting of at least two nodes (like in Figure 6), i. e., the tours have the structure︷ ︸︸ ︷

ti1 , ti2 , . . . tim︸ ︷︷ ︸
block of T -nodes

of size m ≥ 2

sj1 , sj2 , . . . sjo︸ ︷︷ ︸
block of S-nodes

of size o ≥ 1

︷ ︸︸ ︷
tim+1 sk1 , sk2 , . . . skp︸ ︷︷ ︸

block of S-nodes

of size p ≥ 1

. . .
︷ ︸︸ ︷
ti|T | sl1 , sl2 , . . . slq︸ ︷︷ ︸

block of S-nodes

of size q ≥ 1

.

Set C n̄,1
dim is constructed for n̄ = 5 in the same way as in the proof of Theorem 2.3.

Because nodes 1 to 5 belong to set T (n ≥ 8, |S| ≥ 3, |S| < n
2
), the desired T -block-

structure is obtained automatically. In the inductive part the same is true for steps
(I1)–(I5) as long as k ∈ T .
It remains to adapt the steps for nodes k ∈ S. We distinguish the two cases k = s1

and k > s1. For k = s1 the three steps (I1)–(I3) can still be used and are then followed
by steps (SEC1.1)–(SEC1.3) below. In this, (SEC1.1) and (SEC1.3) replace (I4),
whereas (SEC1.2) deals with the 2-edges of (I5). They read

(SEC1.1) . . . a b s2$k n 1 s1 . . . , for a, b ∈ T \ {1}, a 6= b
(the 2-edge 〈n, 1, s1〉 in not used as an eik),

(SEC1.2) . . .m o s2$k n a b . . . , for a, b ∈ (T ∪ {s1}), s1 ∈ {a, b}, (a, b) 6= (1, s1), with
m, o ∈ T \ {1}, |{a, b,m, o}| = 4,

(SEC1.3) . . . a b s2$k n s1 . . . , for a, b ∈ T, 1 ∈ {a, b}, a 6= b.

Note that in comparison to (I5) the element 〈n, 1, s1〉 is lost in (SEC1.1),(SEC1.2).
For k = si, 2 ≤ i, k ≤ n − 2 the procedure is almost identical to (I1)–(I5) up to

the splitting of (I4) into the two steps (SECi.4) and (SECi.5) and the modifications
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ensuring the desired structure. To this end, the position of all nodes s ∈ S that are not
mentioned explicitly is represented by S̄ with arbitrary internal order.

(SECi.1) . . . a si 1 si+1 $k n S̄ . . . , for a ∈ {2, . . . , si−1},

(SECi.2) . . . 1 si a si+1 $k n S̄ . . . , for a ∈ {2, . . . , si−1},

(SECi.3) . . . a si b si+1 $k n S̄ . . . , for a, b ∈ {2, . . . , si−1}, a < b,

(SECi.4) . . . a b si+1$k nm S̄ si . . . , for a, b ∈ T, a 6= b, with m ∈ T, |{a, b,m}| = 3

(|S̄| ≥ 1 because s1 ∈ S̄),

(SECi.5) . . . S̄ a b si+1 $k n . . . , for a, b ∈ {1, . . . , si−1}, a 6= b, {a, b} ∩ S 6= ∅,

(SECi.6) . . . S̄ si+1 $k n a b . . . , for a, b ∈ {1, . . . , si}, a 6= b, si ∈ {a, b}.

The tours form roots of (20). The proof that the underlined 2-edges have not been used
before is analogous to the proof of Claim 1 of the proof of Theorem 2.3 and skipped
here. The number of tours of the entire second group is |C n̄,2

dim| − 1.
For the tours in C n̄,3

dim we specify the position of S̄, apart from that the procedure is
identical to (L1)–(L8). Fix w1, w2, w3 ∈ T, |{w1, w2, w3}| = 3.

(LSEC1) . . . a (n− 1) b S̄ w1 nw2 . . . , for a, b ∈ {1, . . . , n− 2} \ {w1, w2}, a < b,

(LSEC2)
{
. . .m (n− 1) o S̄ w1 nw3 . . . ,
. . .m (n− 1) o S̄ w2 nw3 . . . ,

with m, o ∈ T \ {w1, w2, w3}, m 6= o,

(LSEC3) . . . w1 (n− 1) a S̄ w2 nw3 . . . , for a ∈ {1, . . . , n− 2} \ {w1, w2, w3},

(LSEC4) . . . w2 (n− 1) a S̄ w1 nw3 . . . , for a ∈ {1, . . . , n− 2} \ {w1, w2, w3},

(LSEC5) . . . a n b S̄ m (n−1) o . . . , for a, b ∈ {1, . . . , n−2}, a < b, |{a, b}∩{w1, w2, w3}| =
1, with m, o ∈ T, {m, o} * {w1, w2, w3}, |{a, b,m, o}| = 4,

(LSEC6)


. . . nw3 S̄ w1 (n− 1)w2 . . . ,

. . . nw2 S̄ w1 (n− 1)w3 . . . ,

. . . nw1 S̄ w2 (n− 1)w3 . . . ,

(LSEC7) . . . a n b S̄ m (n − 1) . . . , for a, b ∈ {1, . . . , n − 2} \ {w1, w2, w3}, a < b, with
m ∈ {1, . . . , n− 2}, |{a, b,m}| = 3,

(LSEC8) . . . (n− 1) a n S̄ . . . , for a ∈ {1, . . . , n− 2}.

Again, the tours form roots of (20) and, as in Claim 2 of the proof of Theorem 2.3, the
underlined 2-edges have not been used before, so we obtain the same number of tours
|C n̄,3

dim| in this third step.
In total the construction results in |C n̄

dim|− 1 affinely independent tours, which proves
Theorem 3.11. �
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It is well known that (3) can be separated in polynomial time by solving a min-cut-
problem between each pair of nodes [17]. As we will see, the situation changes for the
extended subtour elimination constraints (20).
Given a weighted undirected 2-graph G̃ = (Ṽ , Ẽ, w̃) with node set Ṽ , set of 2-edges Ẽ

and weights w̃e ≥ 0, e ∈ Ẽ (w̃e polynomially bounded in |Ṽ |), the task is to determine
a partition of Ṽ into the sets 2 ≤ |S| < n

2
, S ∩ T = ∅, S ∪ T = Ṽ so that the cut

value is minimized. For the cut value the weights of 2-edges ijk ∈ Ṽ 〈3〉 are counted
if (i ∈ S ∧ {j, k} ⊆ T ) or (k ∈ S ∧ {i, j} ⊆ T ). Note, 2-edges ijk ∈ Ṽ 〈3〉 with
{i, k} ⊆ S, j ∈ T are not counted. We first consider a more general problem, the (st1t2-
cut)-problem, where such a minimum cut is sought for S ⊂ Ṽ without the cardinality
constraints but under the condition that three special nodes {s, t1, t2} ⊂ Ṽ are fixed in
advance with s ∈ S and t1, t2 ∈ T .

Lemma 3.12 The problem (st1t2-cut) on a weighted undirected 2-graph as described
above is NP-complete.

Proof. We prove the statement by reduction from MAX-2-SAT. Given a 2-SAT-formula
with m variables and |C| clauses, the task is to find a truth assignment for the variables
maximizing the number of fulfilled clauses. Consider a 2-graph G̃ = (Ṽ , Ẽ) with node set
Ṽ = {s, t1, t2} ∪ {xi,¬xi : i = 1, . . . ,m}. The idea is to include 2-edges in G̃ so that an
optimal solution of (st1t2-cut) corresponds to an optimal MAX-2-SAT solution where
literals belonging to S are set to true and literals belonging to T are set to false. To this
end we encode a clause (a∨ b), a, b ∈ {xi,¬xi : i = 1, . . . ,m} with a 2-edge 〈s,¬a,¬b〉 as
the clause is false if and only if both literals are set to false. These 2-edges are assigned
costs of value one. In order to ensure that, for each i ∈ {1, . . . ,m}, exactly one literal
of xi and ¬xi, is contained in T we add the 2-edges 〈s, xi,¬xi〉, 〈s,¬xi, xi〉 with costs
|C|+1. Similarly for set S we introduce 2-edges 〈xi, t1, t2〉, 〈¬xi, t1, t2〉 with costs |C|+1.
All transformations are possible in polynomial time, so it remains to show correctness.

Let S be a solution of (st1t2-cut). For each i ∈ {1, . . . ,m} at least one of the 2-edges
〈s, xi,¬xi〉, 〈s,¬xi, xi〉, 〈xi, t1, t2〉 and 〈¬xi, t1, t2〉 is contained in the cut and causes costs
of |C| + 1. Because |{xi,¬xi} ∩ S| = 1 if and only if exactly one of those 2-edges is
contained in the cut, any solution corresponding to a proper assignment of the variables
(i. e., ∀ i ∈ {1, . . . ,m} : |{xi,¬xi}∩S| = 1) has costs at most (|C|+ 1) ·m+ |C| whereas
the cut value of any other solution is at least (|C|+ 1) · (m+ 1). Therefore any optimal
solution S∗ corresponds to a proper assignment with as few 2-edges 〈s,¬a,¬b〉 as possible
contained in the cut. Its objective value (|C| + 1) ·m + k corresponds to a solution of
MAX-2-SAT with all literals in S∗ \ {s} set to true and k unsatisfied clauses.
For the converse direction we observe that for any 2-SAT assignment we can construct

a solution of (st1t2-cut) with costs exactly (|C| + 1) ·m + k where k is the number of
unsatisfied clauses by setting S := {s} ∪ {xi : xi = true} ∪ {¬xi : xi = false}. This
completes the proof. �

Lemma 3.12 is needed to prove Theorem 3.13 where the weight of a 2-edge is the
value of the corresponding coordinate of a point contained in a relaxation of SQTSPn

fulfilling (1), (2), xij ∈ [0, 1] for all ij ∈ V {2} and yijk ∈ [0, 1] for all ijk ∈ V 〈3〉.
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Theorem 3.13 The problem of finding a maximally violated extended subtour elimina-
tion constraint (20) for points (x̄, ȳ) satisfying equality constraints (1), (2), xij ∈ [0, 1]
for all ij ∈ V {2} and yijk ∈ [0, 1] for all ijk ∈ V 〈3〉 is NP-complete.

Proof. We prove this statement by reduction from (st1t2-cut). Let G = (V ,E) be an
undirected 2-graph with node set V , |V | = n, and E the set of weighted undirected 2-
edges with weights we ≥ 0 polynomially bounded in n for all e ∈ E. The set V contains
three marked nodes s, t1, t2 ∈ V . We construct a 2-graph G′ = (V ′, E ′) with node set

V ′ = V ∪ T ′ ∪ {s1, s2} ∪ (V × {1, 2, 3})

where T ′ is a set of artificial nodes to be introduced later and E ⊂ E ′. The inclusion of
additional 2-edges in E ′ will ensure that in any optimal solution (T ′ ∪ {t1, t2}) ⊂ T and
{s, s1, s2} ⊂ S. The challenge is to guarantee that all cost coefficients fulfill the degree
constraints (1) and the flow constraints (2). As in (6) these can be transformed to∑

ijk∈V ′〈3〉
wijk = 1, for all j ∈ V ′, (21)

and ∑
kij∈V ′〈3〉

wkij =
∑

ijk∈V ′〈3〉
wijk, for all ij ∈ V ′{2}, (22)

using only variables, here weights, corresponding to V ′〈3〉. We denote by

d(v) :=
∑

uvw∈V ′〈3〉
wuvw

the node degree of v ∈ V ′.
The node set T ′ and the 2-edge set E ′ are constructed by putting

T ′ := {0T , 1T , . . . , (18n− 1)T}

and by successively adding 2-edges (and weights) to E ′. In this construction, some
2-edges may be added more than once. In this case their weights are summed up.

(S1) In order to enforce T ′ ⊂ T , add 2-edges

ET ′ :=
⋃

k=0,6,...,18n−6

{
〈a, b, c〉 : a, b, c ∈ {(kmod 18n)T , . . . , (k + 11mod 18n)T},

|{a, b, c}| = 3

}
with weights we = 4

∑
f∈E wf + 1 =: D for all e ∈ ET ′ . Note, each k adds a

complete 2-graph on the corresponding two successive blocks of 6 nodes, thereby
forming a tightly linked giant cycle on these blocks of T ′. This being done, all
nodes in T ′ have a node degree 100D.
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(S2) Let 〈i, j, k〉 ∈ E, i < k, w〈i,j,k〉 > 0. In order to ensure (22) for these original edges
we complete them to a 2-cycle C0 by inserting the 2-edges 〈j, k, s1〉, 〈k, s1, s2〉,
〈s1, s2, 0T 〉, 〈s2, 0T , 1T 〉, 〈0T , 1T , 2T 〉, . . . , 〈(18n−3)T , (18n−2)T , (18n−1)T 〉, 〈(18n−
2)T , (18n − 1)T , i〉, 〈(18n − 1)T , i, j〉, each with weight w〈i,j,k〉. In order to ensure
the correct dependence of the objective value on the assignment of i, j, k to S or T
two additional 2-cycles are needed:

1. Add C1 = {〈i, j, s1〉, 〈j, s1, s2〉, 〈s1, s2, i〉, 〈s2, i, j〉}, each with weight w〈i,j,k〉
2

2. and C2 = {〈j, k, 0T 〉, 〈k, 0T , 1T 〉, 〈0T , 1T , 2T 〉, . . . , 〈(18n−3)T , (18n−2)T , (18n−
1)T 〉, 〈(18n− 2)T , (18n− 1)T , j〉, 〈(18n− 1)T , j, k〉}, each with weight w〈i,j,k〉

2
.

Claim (S2).1 In any assignment of the nodes of V ′ to S and T with T ′ ⊂
T, s1, s2 ∈ S the weights of the artificial 2-edges of (S2) in the cut sum up to
3w〈i,j,k〉.
Proof of Claim (S2).1. Note that 〈s2, 0T , 1T 〉 ∈ C0 contributes w〈i,j,k〉 to each cut,
so it remains to consider the other 2-edges.

• i, j, k ∈ S : The 2-edges 〈i, (18n − 1)T , (18n − 2)T 〉 ∈ C0 and 〈j, (18n −
1)T , (18n−2)T 〉, 〈k, 0T , 1T 〉 ∈ C2 have weight w〈i,j,k〉+

w〈i,j,k〉
2

+
w〈i,j,k〉

2
= 2w〈i,j,k〉.

• i, j ∈ S, k ∈ T : 〈i, (18n − 1)T , (18n − 2)T 〉 ∈ C0 and 〈j, (18n − 1)T , (18n −
2)T 〉, 〈j, k, 0T 〉 ∈ C2 have weight w〈i,j,k〉 +

w〈i,j,k〉
2

+
w〈i,j,k〉

2
= 2w〈i,j,k〉.

• i, k ∈ S, j ∈ T : 〈i, (18n−1)T , (18n−2)T 〉 ∈ C0, 〈k, j, (18n−1)T 〉, 〈k, 0T , 1T 〉 ∈
C2 have weight w〈i,j,k〉 +

w〈i,j,k〉
2

+
w〈i,j,k〉

2
= 2w〈i,j,k〉.

• i ∈ S, j, k ∈ T : 〈i, (18n−1)T , (18n−2)T 〉, 〈s1, k, j〉 ∈ C0 have weight w〈i,j,k〉+
w〈i,j,k〉 = 2w〈i,j,k〉.

• j, k ∈ S, i ∈ T : 〈j, i, (18n−1)T 〉 ∈ C0 and 〈j, (18n−1)T , (18n−2)T 〉, 〈k, 0T , 1T 〉 ∈
C2 have weight w〈i,j,k〉 +

w〈i,j,k〉
2

+
w〈i,j,k〉

2
= 2w〈i,j,k〉.

• k ∈ S, i, j ∈ T : 〈s2, i, j〉, 〈s1, j, i〉 ∈ C1 and 〈k, j, (18n− 1)T 〉, 〈k, 0T , 1T 〉 ∈ C2

have weight w〈i,j,k〉
2

+
w〈i,j,k〉

2
+

w〈i,j,k〉
2

+
w〈i,j,k〉

2
= 2w〈i,j,k〉.

• j ∈ S, i, k ∈ T : 〈j, i, (18n−1)T 〉 ∈ C0 and 〈j, (18n−1)T , (18n−2)T 〉, 〈j, k, 0T 〉 ∈
C2 have weight w〈i,j,k〉 +

w〈i,j,k〉
2

+
w〈i,j,k〉

2
= 2w〈i,j,k〉.

• i, j, k ∈ T : 〈s1, k, j〉 ∈ C0 and 〈i, j, s1〉, 〈s2, i, j〉 ∈ C1 have weight w〈i,j,k〉 +
w〈i,j,k〉

2
+

w〈i,j,k〉
2

= 2w〈i,j,k〉.

(S3) t1, t2 ∈ T, s, s1, s2 ∈ S is enforced for optimal solutions by adding the 2-edges of
the following 2-cycles, each 2-edge with weight D,

• 〈t1, 0T , 1T 〉, 〈0T , 1T , 2T 〉, . . . , 〈(18n− 2)T , (18n− 1)T ), t1〉, 〈(18n− 1)T ), t1, 0T 〉
and 〈t2, 0T , 1T 〉, 〈0T , 1T , 2T 〉, . . . , 〈(18n−2)T , (18n−1)T ), t2〉, 〈(18n−1)T ), t2, 0T 〉,
• 2-triangles for {s, t1, s1}, i. e., 〈s, t1, s1〉, 〈t1, s1, s〉, 〈s1, s, t1〉, and {s, t2, s2},
• a 2-triangle for each {s1, s2, v} with v ∈ V ′ \ {s1, s2}.

(S4) It remains to fulfill condition (21), i. e., all node degrees need to have the same
value K, so that dividing all weights by K yields (21) in the end. For this purpose,
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the artificial nodes V × {1, 2, 3} were introduced. These will allow to compensate
differences in degree via further 2-cycles. Currently, the node degrees read

node current node degree
s < D︸︷︷︸

E and (S2)

+ 3D︸︷︷︸
(S3)

t1, t2 < D︸︷︷︸
E and (S2)

+ 3D︸︷︷︸
(S3)

v ∈ V \ {s, t1, t2} < D︸︷︷︸
E and (S2)

+ D︸︷︷︸
(S3)

v ∈ (V × {1, 2, 3}) = D︸︷︷︸
(S3)

s1, s2 = 3
2
·
∑
f∈E

wf︸ ︷︷ ︸
(S2)

+D + 22 · n ·D︸ ︷︷ ︸
(S3)

v ∈ T ′ = 100D︸ ︷︷ ︸
(S1)

+ 3
2
·
∑
f∈E

wf︸ ︷︷ ︸
(S2)

+ 2D +D︸ ︷︷ ︸
(S3)

For n ≥ 5 the node degrees of s1, s2 which we denote by K = 3
2
·
∑

f∈E wf +

D + 22 · n · D are the highest ones. We increase the degree of v ∈ V by 2-
cycles of length four with 〈v, (v, 1), (v, 2)〉, 〈(v, 1), (v, 2), (v, 3)〉, 〈(v, 2), (v, 3), v〉,
〈(v, 3), v, (v, 1)〉. Then the degree of nodes in (V × {1, 2, 3}) can be filled up by
2-triangles for {(v, 1), (v, 2), (v, 3)}, v ∈ V . In the end, a 2-cycle over all elements
in T ′ with weight K−(100D+ 3

2
·
∑

f∈V 〈3〉 wf +2D+D) completes the construction
of G′.

It remains to show correctness. Recall, a 2-edge 〈i, j, k〉 ∈ V ′〈3〉 contributes its weight,
if ((i ∈ S ∧ j, k ∈ T ) ∨ (k ∈ S ∧ i, j ∈ T )).
First observe that for any feasible solution S ⊂ V ′ with 3 ≤ |S| < |V ′|/2, (T ′ ∪
{t1, t2}) ⊆ T, {s, s1, s2} ⊆ S, (V ×{1, 2, 3}) ⊆ S and V \{s, t1, t2} partitioned arbitrarily,
the objective value is less than or equal to 4 ·

∑
f∈E wf . Indeed, a constant offset of

3 ·
∑

f∈V 〈3〉 wf is caused by (S2) as proven in Claim (S2).1, all other artificial 2-edges do
not contribute to the cut. For each node v ∈ V the three nodes {v}×{1, 2, 3}may jointly
belong either to S or, if v ∈ T , to T . In both cases no costs arise. For solutions observing
this structure the cut value is minimal for an optimal (st1t2-cut) solution on V . Let
zs,t1,t2 be the optimal value of (st1t2-cut) and denote by z = zs,t1,t2 + 3 ·

∑
f∈E wf < D

the value of a corresponding solution constructed within G′. We need to show that all
solutions having not the described structure have higher objective value.

• T ′ ⊆ T : Consider a solution having a nonempty subset Ts ⊂ T ′ with Ts ⊂ S. Then
there is a k ∈ {0, 6, . . . , 18n− 6} so that some of the nodes of Tk := {k, . . . , k+ 5}
lie in S, i. e., Tk∩S 6= ∅. If |Tk∩S| ≤ 4 then costs of at least D > 4 ·

∑
f∈E wf arise

and this cannot be optimal. So consider the case |Tk ∩S| > 4. As Tk is completely
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2-edge connected to T(k+6 mod 18n) we may assume |T(k+6 mod 18n) ∩ S| > 4 by the
same argument. In the end we get |Tk∩S| > 4 for all k ∈ {0, 6, . . . , 18n−6} which
contradicts |S| < |V ′|

2
. So we have T ′ ⊂ T for any feasible solution with objective

value less than D.

• s1, s2 ∈ S : Assume s1, s2 ∈ T then costs of at least D arise because s1, s2 are
connected via triangles to all other nodes by (S3) and there has to be at least one
node v ∈ V ′ with v ∈ S. So, w. l. o. g., the case s1 ∈ S, s2 ∈ T remains. But this
entails costs of at least D (and much higher) as s1, s2 are connected via triangles
to all nodes v ∈ T ′. This proves s1, s2 ∈ S.

• t1, t2 ∈ T : Assume, w. l. o. g., t1 ∈ S. Because 0T , 1T ∈ T , the 2-edge 〈t1, 0T , 1T 〉
produces costs of D by (S3) and this cannot be optimal.

• s ∈ S : Assume s ∈ T . Because s1 ∈ S, t1 ∈ T , the 2-edge 〈s1, s, t1〉 produces costs
of D by (S3) and this cannot be optimal.

Thus, any solution with objective value at most z has the desired structure and z is
therefore the optimal value. Conversely, given an optimal solution with value z∗ for G′
the optimal value of (st1t2-cut) is z∗s,t1,t2 = z∗ − 3 ·

∑
f∈E wf . �

Until now we have only considered subtour elimination constraint (19) for the case
|S| < n

2
. If |S| ≥ n

2
, inequality (20) fails to be valid for those tours that visit all external

vertices via reentering 2-edges. Thus, to make (20) valid for all tours it suffices to add all
reentering 2-edges over one fixed external node with weight 2. Alternatively, this may
be viewed as a strengthening of (19), because all reentering 2-edges except for those
running over one special vertex are dropped.

Theorem 3.14 For n ≥ 6 the inequalities∑
ijk∈V 〈3〉 :

i∈S,j,k∈V \S

yijk + 2 ·
∑

it̄k∈V 〈3〉 :
i,k∈S

yit̄k ≥ 2 (23)

define facets of PSQTSPn
for all S ⊂ V, n

2
≤ |S| ≤ n− 3, t̄ ∈ V \ S.

Proof. Validity holds, because for tours that visit two nodes of V \ S consecutively the
first sum yields at least 2 while all other tours use one of the 2-edges in the second
sum when visiting t̄. Theorem 3.2 proves the statement for |S| = n − 3, because for
V \ S = {i, j, t̄ = k}∑

m∈S

[ymij + ymji + ymik + ymki + ymjk + ymkj] + 2
∑

mko∈V 〈3〉 : m,o∈S

ymko︸ ︷︷ ︸
2(1−

∑
m∈S [ymki+ymkj ]−yikj) by (6)

≥ 2

⇐⇒
∑
m∈S

[ymij + ymji]︸ ︷︷ ︸
2xij−yjik−yijk by (1)

+
∑
m∈S

[ymik − ymki]︸ ︷︷ ︸
xik−yjik−xik+yikj

+
∑
m∈S

[ymjk − ymkj]︸ ︷︷ ︸
−yijk+yikj

−2yikj ≥ 0

⇐⇒ 2xij − 2yjik − 2yijk ≥ 0 ⇐⇒ xij ≥ ykij + yijk.
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We first consider the case n
2
≤ |S| ≤ n − 5 and defer the case |S| = n − 4 to the

end of the proof. Set, w. l. o. g., S = {s1 = n − |S| + 1, . . . , s|S|−1 = n − 1, s|S| =
n}, V \ S = T = {1 = t1, 2 = t2, . . . , t|T |−1, t|T | = t̄}. Deleting S in a tour corresponding
to a root of inequality (23) decomposes the tour into isolated nodes in T and at most
one path in T that must contain t̄. We use the same proof structure and notation as
in the proofs of Theorem 2.3 and Theorem 3.11. In particular, |T | ≥ 5 so we may use
the same n̄-permutation block with n̄ = 5. As long as k ∈ T in the iterative steps,
(I1)–(I5) may be used without modification. The steps have to be adapted for k ∈ S,
starting with a specific ordering for k = s1 which is then followed by the usual iterative
scheme for k = si, 2 ≤ i < |S| − 1. The case k = s1 proceeds along (I1)–(I3) and
(SEC1.1)–(SEC1.3) but the positioning of node t̄ requires additional care.

(SUB1.1) . . . a s1 1 s2$k n . . . , for a ∈ T \ {1},
(the 2-edge 〈s1, 1, s2〉 is not used as an eik.),

(SUB1.2) . . . 1 s1 a s2$k n . . . , for a ∈ T \ {1, t̄}
(the missing 〈s1, t̄, s2〉 is compensated later in (SUBt̄1)),

(SUB1.3) . . . a s1 b s2$k n . . . , for a, b ∈ T \ {1}, a > b (this ensures t̄ in the T -path),

(SUB1.4) . . . a b s2$k n 1 s1 . . . , for a, b ∈ T \ {1}, a 6= b
(the 2-edge 〈n, 1, s1〉 is not used as an eik and is the one 2-edge that is lost),

(SUB1.5) . . .m o s2$k n a s1 . . . , for a ∈ T \ {1, t̄} with m, o ∈ T \ {1}, |{a,m, o}| = 3
(the missing 〈n, t̄, s1〉 is compensated later in (SUBt̄1)),

(SUB1.6) . . .m o s2$k n s1 a . . . , for a ∈ T with m, o ∈ T \ {1}, |{a,m, o}| = 3,

(SUB1.7) . . . a b s2$k n s1 . . . , for a, b ∈ T, 1 ∈ {a, b}, a 6= b.

For k = si, 2 ≤ i < |S| − 1 the structure follows (SECi.1)–(SECi.6) of the proof of
Theorem 3.11 with the same S̄ defined there:

(SUBi.1) . . . a si 1 si+1$k n S̄ . . . , for a ∈ {2, . . . , si−1},

(SUBi.2) . . . 1 si a si+1$k n S̄ . . . , for a ∈ {2, . . . , si−1} \ {t̄}
(the missing 〈si, t̄, si+1〉 is compensated later in (SUBt̄1)),

(SUBi.3)
{
. . . a si b si+1$k n S̄ . . . , for a, b ∈ {2, . . . , si−1} \ {t̄}, a < b,
. . . t̄ si a si+1$k n S̄ . . . , for a ∈ {2, . . . , si−1} \ {t̄},

(SUBi.4) . . . a b si+1$k nm S̄ si . . . , for a, b ∈ T, a 6= b, withm ∈ T \{t̄}, |{a, b,m}| = 3,

(SUBi.5) . . . S̄a b si+1$k n . . . , for a, b ∈ {1, . . . , si−1} \ {t̄}, a 6= b, {a, b} ∩ S 6= ∅
(the missing 〈sj, t̄, si+1〉, 1 ≤ j < i, is compensated later in (SUBt̄1) and
〈t̄, sj, si+1〉, 1 ≤ j < i, is compensated in (SUBi.7)),
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(SUBi.6) . . .m S̄ si+1$k n a b . . . , for a, b ∈ {1, . . . , si}, a 6= t̄, a 6= b, si ∈ {a, b} with
m ∈ T \ {t̄}, |{a, b,m}| = 3
(the missing 〈n, t̄, si〉, 1 ≤ j < i, is compensated later in (SUBt̄1)),

(SUBi.7) . . . t̄ a si+1$k n S̄ . . . , for a ∈ {s1, . . . , si−1}.

For the nodes n − 1, n we have specific steps that are organized close to (L1)–(L8)
((L5) and (L7) are subsumed in (SUBL5) and so (L8) corresponds to (SUBL7)). Fix
w1, w2, w3 ∈ S \ {n− 1, n}, |{w1, w2, w3}| = 3.

(SUBL1)


. . . a (n− 1) b S̄ w1 nw2 . . . , for a, b ∈ T, a > b,

. . . a (n− 1) b S̄ w1 nw2 . . . , for a, b ∈ S \ {w1, w2, n− 1, n}, a > b,

. . . a (n− 1) b S̄ w1 nw2 . . . , for a ∈ T, b ∈ S \ {w1, w2, n− 1, n}
(the 2-edge 〈w1, n, w2〉 is not used as an eiL),

(SUBL2)
{
. . . t1 (n− 1) t2 S̄ w1 nw3 . . . ,
. . . t1 (n− 1) t2 S̄ w2 nw3 . . . ,

(SUBL3) . . . a (n− 1)w1w2 nw3 S̄ . . . , for a ∈ {1, . . . , n− 2} \ {w1, w2, w3},

(SUBL4) . . . a (n− 1)w2w1 nw3 S̄ . . . , for a ∈ {1, . . . , n− 2} \ {w1, w2, w3},

(SUBL5)


. . . a n b S̄ (n− 1) . . . , for a, b ∈ T, a > b,
. . . a n b S̄ (n− 1) . . . , for a, b ∈ S \ {n− 1, n}, {a, b} 6⊂ {w1, w2, w3}, a > b,
. . . a n b S̄ (n− 1) . . . , for a ∈ T, b ∈ S \ {n− 1, n},

(SUBL6)


. . . nw3w1 (n− 1)w2 S̄ . . . ,

. . . nw2w1 (n− 1)w3 S̄ . . . ,

. . . nw1w2 (n− 1)w3 S̄ . . . ,

(SUBL7) . . . (n− 1) a n S̄ . . . , for a ∈ {1, . . . , n− 2} \ {t̄}
(the missing 〈n− 1, t̄, n〉, 1 ≤ j < i, is compensated later in (SUBt̄1)).

The only 2-edges missing in these lists in comparison to the proof of Theorem 3.11
are the 2-edges 〈si, t̄, sj〉 for 1 ≤ i < j ≤ |S|, i. e., those that require tours with no
two consecutive T -nodes in order to form roots of (23). As none of these 2-edges have
appeared in the tours above, the construction of this case is completed by the following
last step.

(SUBt̄1) si t̄ sj ωij for 1 ≤ i < j ≤ |S| where ωij denotes an appropriately completed
alternating sequence of the remaining nodes in T \ {t̄} and in S \ {si, sj}.

The construction above generates |C n̄
dim| − 1 affinely independent tours, that are roots

of (23), and proves the statement for the case n
2
≤ |S| ≤ n− 5.

For the remaining case |S| = n− 4 we verified the case n = 8 by means of a computer
algebra system and consider n ≥ 9 in the following. For |T | = 4 the approach with
an initial permutation block having n̄ = 5 can still be applied, but the block has to be
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set up with care so as to ensure that all generated tours are indeed roots of (23). In
particular, using the same notation as before, the permutations having s1 in the middle
as well as the permutations (t̄, s1, ti, tj, tk) and (ti, tj, tk, s1, t̄) with i, j, k ∈ {1, 2, 3},
|{i, j, k}| = 3 may not be used. This reduces the rank by 3 to 51. In exchange, the
iterative process may start with (SUBi.1)–(SUBi.7) immediately, because the switch
to the first element of S is already covered by the initial permutation block. As before
the construction is completed by (SUBL1)–(SUBL7) and (SUBt̄1) without further
modifications. In counting the number of tours, we may use the formulas of Claim 3 of
the proof of Theorem 2.3 if we reassign the 2-edges of (SUBt̄1) to the corresponding
steps where they were omitted. The latter is possible for all except the 2-edges 〈s1, t̄, s2〉
and 〈s1, t̄, n〉 omitted in the missing initial iterative step for s1, so we assign them to rn̄.
All in all we obtain for n̄ = 5

1
2
n3 − 2n2 + 1

2
n+ 2 + (2 + 51)− 1

2
53 + 3

2
5 = 1

2
n3 − 2n2 + 1

2
n = f(n)

affinely independent tours, which completes the proof. �

The facets of Theorem 3.11 and Theorem 3.14 were originally derived from the subtour
elimination constraints of PSTSPn by a strengthening approach that can be applied
to any valid inequality of PSTSPn with nonnegative coefficients. It is based on the
following simple concept which we state here for the current setting (there is an obvious
generalization for arbitrary coefficients and arbitrary combinatorial problems).

Definition 3.15 For a given E ′ ⊆ V {2}, a family F = {(F 2
e , F

3
e )}e∈E′ of pairs of sets

F 2
e ⊆ V {2}, F 3

e ⊆ V 〈3〉 for e ∈ E ′ is E ′-dominated if for any tour C ∈ Cn there is a tour
C̄ ∈ Cn with

∑
f∈F 2

e
xCf +

∑
f∈F 3

e
yCf ≤ xC̄e for all e ∈ E ′. It is improving, if e ∈ F 2

e for
e ∈ E ′ and there is an e ∈ E ′ with F 2

e 6= {e} or F 3
e 6= ∅.

Given a valid inequality of PSTSPn with nonnegative coefficients any improving support-
dominated family gives rise to a strengthened valid inequality for PSQTSPn

.

Observation 3.16 Suppose
∑

e∈E′ aexe ≤ b is a valid inequality for PSTSPn with ae ≥
0, e ∈ E ′ and let F = {(F 2

e , F
3
e )}e∈E′ be E ′-dominated. Then the inequality∑
e∈E′

ae(
∑
f∈F 2

e

xf +
∑
f∈F 3

e

yf ) ≤ b

is valid for PSQTSPn
.

Proof. For any C ∈ Cn, there is, by Definition 3.15, a C̄ ∈ Cn so that∑
e∈E′

ae(
∑
f∈F 2

e

xCf +
∑
f∈F 3

e

yCf ) ≤
∑
e∈E′

aex
C̄
e ≤ b.

�

The facets of Theorem 3.11 make use of the following family.
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Observation 3.17 Given E ′ ⊂ V {2}, suppose |V (E ′)| < n
2
. Then

F =
{

(F 2
ij := {ij}, F 3

ij := {ikj ∈ V 〈3〉 : ik /∈ E ′, kj /∈ E ′})
}
ij∈E′

is E ′-dominated. It is improving whenever E ′ 6= ∅.

Proof. If F is E ′-dominated with E ′ 6= ∅, it is improving because any node k ∈ V \V (E ′)
gives rise to a 2-edge ikj ∈ F 3

ij for each ij ∈ E ′. It remains to show that F is E ′-
dominated.

For E ′ = ∅ there is nothing to show, so we may assume E ′ 6= ∅ and thus n ≥ 5.
Given a tour C ∈ Cn, we have to show the existence of a tour C̄ ∈ Cn satisfying the
requirements of Definition 3.15.
For this let FC

2 = E ′∩C{2} and FC
3 = {ij ∈ E ′ : F 3

ij∩C 6= ∅}. By the requirements on
F and n ≥ 5 we have FC

2 ∩FC
3 = ∅ (only for n = 3 a tour may contain the subsequences

ij as well as ikj). Furthermore, for each ij ∈ FC
3 there is a unique node kij with

〈i, kij, j〉 ∈ C. We know
kij /∈ V (FC

2 ) for ij ∈ FC
3 , (24)

because {i, kij} ∈ FC
2 ⊆ E ′ or {j, kij} ∈ FC

2 ⊆ E ′ contradicts 〈i, kij, j〉 ∈ F 3
ij.

Next, consider the graph GC
F = (V, FC

2 ∪ FC
3 ) and note that all its components are

isolated nodes or paths. Indeed, consider a fixed node i appearing in C within the
subsequence . . . a b i c d . . . , then only the two edges bi, ic and the two 2-edges abi, icd
can give rise to edges ij ∈ FC

2 ∪ FC
3 . However, by (24) at most one of ai and bi and at

most one of ic and id can be contained in FC
2 ∪ FC

3 , so the degree of i in GC
F is at most

two. Furthermore, i cannot lie on a cycle, because this would induce a subcycle of the
tour C of length at most 2|V (FC

2 ∪FC
3 )| < n as V (FC

2 ∪FC
3 ) ⊂ V (E ′). Thus, by adding

edges appropriately we may complete FC
2 ∪ FC

3 to a tour C̄ with FC
2 ∪ FC

3 ⊂ C̄{2}.
This tour C̄ satisfies the requirements of Definition 3.15. Indeed, suppose there is an

ij ∈ E ′ with ξij :=
∑

f∈F 2
ij
xCf +

∑
f∈F 3

ij
yCf > 0, then ξij = 1 because by n ≥ 5 either

ij ∈ C{2} or ikj ∈ C for a unique k. In both cases ij ∈ FC
2 ∪ FC

3 ⊂ C̄{2}, therefore
ξij = xC̄ij. �

The facets of Theorem 3.14 arise from the next family.

Observation 3.18 Given E ′ ⊂ V {2}, suppose |V (E ′)| ≥ n
2
with some t̄ ∈ V \ V (E ′).

Then

F =
{

(F 2
ij := {ij}, F 3

ij := {ikj ∈ V 〈3〉 : k 6= t̄, ik /∈ E ′, kj /∈ E ′})
}
ij∈E′

is E ′-dominated. It is improving if and only if the graph Ḡ = (V \ {t̄}, (V \ {t̄}){2} \E ′)
has a component that is not a clique. In particular, it is improving if |V (E ′)| ≤ n− 2.

Proof. We first show that F is E ′-dominated. The statement holds for E ′ = {e} for
some e ∈ V {2} because for any C ∈ Cn we have

∑
f∈F 2

e
xCf +

∑
f∈F 3

e
yCf ≤ 1 by the choice

of F 2
e and F 3

e and so any tour C̄ with e ∈ C̄{2} suffices for Definition 3.15. |E ′| ≥ 2
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requires n ≥ 4 and for n = 4 we have F = {(e, ∅)}e∈E, so each C ∈ C4 serves as its own
C̄ in Definition 3.15.

For n ≥ 5 the proof is almost identical to the proof of Observation 3.17 and we use the
same notation. Given a tour C ∈ Cn we may construct the graph GC

F = (V, FC
2 ∪ FC

3 )
and prove that all its nodes have degree at most two in exactly the same way. This
time, however, GC

F cannot contain a cycle, because it would induce a subcycle of C that
does not visit t̄ as t̄ /∈ V (F 3

ij) for ij ∈ E ′. From this point on the proof of F being
E ′-dominated can be completed as for Observation 3.17.
By definition, F is improving if and only if there is an edge ij ∈ E ′ and a node

k ∈ V \ {t̄} with ik /∈ E ′ and jk /∈ E ′. Such an edge ij does not exist if and only if any
two nodes i, j ∈ V (Ḡ) that are connected by a path of length two in Ḡ are adjacent in
Ḡ. The latter property holds if and only if every component of Ḡ is a clique. �

We illustrate this technique for the comb-inequalities [7, 13, 14, 15], which are a large
class of valid inequalities of PSTSPn known to be facet defining in many cases. They are
defined as follows.

k∑
i=0

∑
l1,l2∈Wi

xl1l2 ≤ |W0|+
k∑

i=1

(|Wi| − 1)−
⌈
k
2

⌉
(25)

with Wi ⊆ V , i = 0, 1, . . . , k, satisfying

|W0 ∩Wh| ≥ 1, h = 1, . . . , k,

|Wh \W0| ≥ 1, h = 1, . . . , k,

|Wh ∩Wm| = 0, 1 ≤ h < m ≤ k,

k odd.

The inequality remains valid if the first condition is changed to |W0 ∩ Wh| = 1, h =
1, . . . , k, and the third condition may be dropped in this case. For the support

E ′ = {ij ∈ V {2} : ∃h ∈ {0, 1, . . . , k} with i, j ∈ Wh}

and |
⋃k

h=0Wh| < n
2
Observation 3.17 gives rise to the strengthened valid inequality

k∑
h=0

∑
ij∈W {2}h

xij +
k∑

h=0

∑
ij∈W {2}h ,m∈V \Wh :

im,mj /∈E′

yimj ≤ |W0|+
k∑

h=1

(|Wh| − 1)−
⌈
k
2

⌉
(26)

and for |
⋃k

h=0Wh| ≥ n
2
, t̄ ∈ V \ (

⋃k
h=0 Wh) Observation 3.18 results in

k∑
h=0

∑
ij∈W {2}h

xij +
k∑

h=0

∑
ij∈W {2}h ,m∈V \{Wh∪{t̄}} :

im,mj /∈E′

yimj ≤ |W0|+
k∑

h=1

(|Wh| − 1)−
⌈
k
2

⌉
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ū v̄ w̄

u v w

edges counted in
comb-inequalities
(25)

types of 2-edges that can be added
to all comb-inequalities (see (26))

types of 2-edges
added in the special
case of Theorem 3.19

Figure 7: Visualization of the edges and the types of the 2-edges whose values are counted
in Theorem 3.19

in all cases described above for the comb-inequalities. For k = 1, |W0| = 1 they are
equivalent to the extended subtour elimination constraints (20) and (23). The same
relation is known to hold between comb-inequalities and subtour elimination constraints.
Even for rather small comb-inequalities, however, this strengthening may not be suf-

ficient to preserve the property of being facet defining. Theorem 3.19 illustrates a case
where further strengthenings are required as visualized in Figure 7.

Theorem 3.19 For n ≥ 13 the inequalities

3∑
h=0

∑
ij∈W {2}h

xij +
3∑

h=0

∑
ij∈W {2}h ,m∈V \Wh :

im,mj /∈E′

yimj

+ (yūvw̄ + yūwv̄ + yv̄uw̄) + (yūv̄w̄ + yūw̄v̄ + yv̄ūw̄)

+ (yuv̄w̄ + yuw̄v̄ + yvūw̄ + yvw̄ū + ywūv̄ + ywv̄ū) ≤ 4 (27)

define facets of PSQTSPn
for all W = {u, v, w, ū, v̄, w̄} ⊂ V,W0 = {u, v, w},W1 =

{u, ū},W2 = {v, v̄},W3 = {w, w̄}, |{u, v, w, ū, v̄, w̄}| = 6 with E ′ = {uv, uw, vw, uū,
vv̄, ww̄}. For 7 ≤ n ≤ 12 the inequality remains valid if we replace m ∈ V \ Wh by
m ∈ V \ {Wh ∪ t} with t ∈ V \W in the fourth summation symbol.

Proof. We first show validity. Put E+
1 := {ūvw̄, ūwv̄, v̄uw̄}, E+

2 := {ūv̄w̄, ūw̄v̄, v̄ūw̄},
E+

3 := {uv̄w̄, uw̄v̄, vūw̄, vw̄ū, wūv̄, wv̄ū}, E+ := E+
1 ∪E+

2 ∪E+
3 . For tours not using the

2-edges of E+, validity follows from Observation 3.16 and Observation 3.17 (Observa-
tion 3.18). In discussing the other possibilities we will only consider relevant configura-
tions, i. e., in the given tour segments the number of elements appearing in (27) cannot
be increased by simple exchange operations.
If a tour C ∈ Cn contains a 2-edge of E+

1 , w. l. o. g. ūvw̄, this excludes all 2-edges
of E+

2 . A tour with ūvw̄ ∈ C can include at most one 2-edge of E+
3 . Consider,

w. l. o. g., the case ūv̄w ∈ C, then the relevant configurations are . . . u [kuw]w v̄ ū v w̄ . . .

36



and . . . w v̄ ū v w̄ u . . . where the notation [.] marks potential replacements for the direct
edge between predecessor and successor. Both contain at most four elements of (27)
(including v̄ūv and vw̄u), so we may assume E+ ∩ C = {ūvw̄}. In a relevant tour
of this type v̄ has to be next to, w. l. o. g., ū in order to keep the element v̄ūv (in all
other configurations v̄ does not contribute or by E+ ∩ C = {ūvw̄} tours containing
the 2-edge uv̄w can have at most 3 elements in (27)), so the only relevant cases are
. . . v̄ ū v w̄ [kw̄w]w [kwu]u . . ., . . . u v̄ ū v w̄ [kw̄w]w . . ., and . . . w [kwu]u v̄ ū v w̄ . . ., each of
them having at most 4 elements in (27). In the following we may assume C ∩ E+

1 = ∅.
Next suppose C ∩ E+

2 6= ∅, then, w. l. o. g., {ūv̄w̄} = C ∩ E+
2 . In this case only the

elements wūv̄, v̄w̄u of E+
3 may be in C, as well. If both are active, then, w. l. o. g.,

. . . w ū v̄ w̄ u [kuv] v . . . is the only relevant configuration giving a count of at most 4.
Suppose next, w. l. o. g., only v̄w̄u ∈ C, then the relevant configurations are, w. l. o. g.,
. . . ū v̄ w̄ u [kuw]w [kwv] v . . ., and . . . v ū v̄ w̄ u [kuw]w . . ., both yielding at most 4 elements
of (27). So consider C ∩ E+ = {ūv̄w̄}. If v is next to, w. l. o. g., ū then in view of the
previous case the remaining relevant cases are, w. l. o. g., . . . u [kuv] v ū v̄ w̄ [kw̄w]w . . . and
. . . w [kwu]u [kuv] v ū v̄ w̄ . . .. If v is neither next to ū nor to w̄, the remaining relevant cases
are, w. l. o. g., . . . ū v̄ w̄ [kw̄w]w [kwv] v [kvu]u . . . and . . . u [kuū] ū v̄ w̄ [kw̄w]w [kwv] v . . .. Each
of these induces at most 4 elements of (27).

Finally, suppose C∩(E+
1 ∪E+

2 ) = ∅ and assume, w. l. o. g., ūv̄w ∈ C. All other elements
of E+

3 are then excluded from C. By C∩E+
2 = ∅, w̄ is not next to ū, so first suppose v is

next to ū, then the relevant configuration is . . . u [kuv] v ū v̄ w [kww̄] w̄ . . . (w̄ v ū ∈ E+
1 may

not be used). If u is next to ū we have the relevant configurations . . . v w̄ u [kuū] ū v̄ w . . .
and . . . v [kvu]u [kuū] ū v̄ w [kww̄] w̄ . . .. In the last case, none of these nodes is next to ū, so
the remaining relevant configurations are . . . ū v̄ w [kwv] v w̄ u . . . and . . . ū v̄ w [kwu]u w̄ v . . ..
In all cases the number of elements of (27) is at most 4, which completes the proof of
validity.
The proof that (27) is facet defining for n ≥ 13 follows the structure and uses the

notation of Theorem 2.3. We set, w. l. o. g., u = 1, v = 2, w = 3, ū = 4, v̄ = 5, w̄ = 6
and use an n̄-permutation block with roots of (27) for n̄ = 9. This results in r9 = 349,
so due to the comb-structure the rank is reduced by one in comparison to Theorem 2.3.
The iterative steps creating the set C n̄,2

dim need to be adapted so that the subsequences
can indeed be completed to roots of (27), i. e., we will show afterwards that there are
realizations containing exactly four of the edges or 2-edges of inequality (27). Up to the
exchange 1 ↔ 7 and the generation sequence, the steps cover exactly the same 2-edges
as (I1)–(I5) and read

(IC-1) . . . a k 7 (k + 1)$k n . . . , for a ∈ {8, . . . , k − 1}
(the 2-edge 〈k, 7, k + 1〉 is not used as an eik),

(IC-2) . . . 7 k a (k + 1)$k n . . . , for a ∈ {8, . . . , k − 1},

(IC-3) . . . a k b (k + 1)$k n . . . , for a, b ∈ {8, . . . , k − 1}, a < b,

(IC-4) . . .m k a b (k + 1)$k n . . . , for a, b ∈ {7, . . . , k − 1} with m ∈ {7, . . . , k − 1},
|{a, b,m}| = 3,
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(IC-5) . . . a k b (k + 1)$k n . . . , for a ∈ {1, . . . 6}, b ∈ {7, . . . , k − 1},

(IC-6) . . .m o (k+1)$k nS a k b S
′ . . . , for a, b ∈ {1, . . . , 6}, a < b, withm, o ∈ {7, . . . , k−

1},m 6= o, S, S ′ ⊂ {1, . . . , 6}\{a, b}, S 6= ∅, S ′ 6= ∅, S∩S ′ = ∅, |S∪S ′∪{a, b}| = 6,

(IC-7) . . . k a (k + 1)$k n . . . , for a ∈ {1, . . . 6},

(IC-8) . . . a b (k + 1)$k nmo . . . , for a, b ∈ {1, . . . , k − 1}, {a, b} ∩ {1, . . . , 6} 6= ∅, with
m, o ∈ {1, . . . , k − 1}, |{a, b,m, o}| = 4,

(IC-9) . . . (k + 1)$k n a b . . . , for a, b ∈ {1, . . . , k}, a 6= b, k ∈ {a, b}.

Because n̄ = 9 and n ≥ 13 we have |{7, . . . , k − 1}| ≥ 3, so the constructions of steps
(IC-1)–(IC-9) are possible for all n̄ + 1 ≤ k ≤ n − 2. The rules ensure that each
underlined 2-edge has not appeared in any tour constructed earlier. It remains to show
that tours can be chosen so as to yield roots of (27).

(Case 1) If k is not supposed to be adjacent to any node of {1, . . . , 6}, we may place the
subsequence 4 1 2 3 6 5 (= ū u v w w̄ v̄) anywhere in the free area. This applies
to tours in steps (IC-1)–(IC-4), and step (IC-9) with a, b ∈ {7, . . . , k}.

(Case 2) If only one node q ∈ {1, . . . , 6} is supposed to be adjacent to a node p ∈
{7, . . . , k} and there are no further requirements on the continuation of the
tour in the region beyond q, the nodes of {1, . . . , 6} can be arranged consec-
utively with q in first or last position (see the marked node below).

Thus, there are appropriate tours for step (IC-5), step (IC-8) with a ∈
{1, . . . , 6}, b ∈ {7, . . . , k − 1} and in step (IC-9) with a = k, b ∈ {1, . . . , 6}.

(Case 3) In step (IC-6) node k is required to be adjacent to at least two nodes of
{1, . . . , 6} on either side. This is possible for any 2-edge akb with a, b ∈
{1, . . . , 6} as illustrated by the marked 2-edge below.

(Case 4) If a node q ∈ {1, . . . , 6} is supposed to lie between two nodes in V \ {1, . . . , 6}
but on one side the continuation of the tour is free, the remaining nodes
{1, . . . , 6}\{q} can be arranged on the free side as follows (node q is marked).
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Thus, appropriate tours are available in step (IC-7), in step (IC-8) with
a ∈ {7, . . . , k−1}, b ∈ {1, . . . , 6} and in step (IC-9) with a ∈ {1, . . . , 6}, b = k.

(Case 5) Finally, in step (IC-8) with a, b ∈ {1, . . . , 6}, it is required to provide the
ordered pair ab with one side being free for any continuation. For each required
pair the graphs below depict an appropriate ordering (ab is marked), that
allows to arrange the nodes {1, . . . , 6} \ {a, b} in an appropriate sequence on
this free side.

Next, using the same arguments, the steps (L1)–(L8) are adapted so that for fixed
w1, w2, w3 ∈ {7, . . . , n− 2}, |{w1, w2, w3}| = 3 all required tours of C n̄,3

dim can be realized
as roots of (27); in some cases the distance between nodes n − 1 and n needs to be
increased. The possible situations are similar to the ones for steps (IC-1)–(IC-9).

• Tours in (L1): There are three cases.

– a, b ∈ {7, . . . , n− 2}: We can place the subsequence 4 1 2 3 6 5 right to w2, see
(Case 1).

– a ∈ {1, . . . , 6}, b ∈ {7, . . . , n−2}: The continuation of the left side of a is free
and can be done according to the sequences in (Case 2).

– a, b ∈ {1, . . . , 6}: The situation equals (Case 3). With adapted tours
. . . S a (n− 1) b S ′w1 nw2 . . . , S, S

′ ⊂ {1, . . . , 6} \ {a, b}, |S| = 1, |S ′| = 3, S ∩
S ′ = ∅, S ∪ S ′ ∪ {a, b} = {1, . . . , 6} according to (Case 3) we get tours that
are roots of (27) and there are still at least two nodes between n− 1 and n.

• Tours in (L2): Using m, o ∈ {7, . . . , n − 2} \ {w1, w2, w3},m 6= o we place the
subsequence 4 1 2 3 6 5 right to w3.

• Tours in (L3), (L4), (L5): There are two cases. Note, in (L5) b /∈ {1, . . . , 6} by
a < b and definition of w1, w2, w3.

– a ∈ {7, . . . , n− 2}: We can place the subsequence 4 1 2 3 6 5 left to a.

– a ∈ {1, . . . , 6}: The continuation of the tour on the left side of a is free and
so we can use one of the subsequences presented in (Case 2).

• Tours in (L6): We can place the subsequence 4 1 2 3 6 5 to the left of n, see (Case
1).

• Tours in (L7): There are three cases.
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– a, b ∈ {7, . . . , n− 2}: We set m = w1 and place the subsequence 4 1 2 3 6 5 to
the right of n− 1.

– a ∈ {1, . . . , 6}, b ∈ {7, . . . , n − 2}: We set m = w1 and continue the tour on
the left side of a according to the sequences presented in (Case 2).

– a, b ∈ {1, . . . , 6}: With adapted tours
. . . S a n b S ′(n − 1) . . . , S, S ′ ⊂ {1, . . . , 6} \ {a, b}, |S| = 1, |S ′| = 3, S ∩ S ′ =
∅, S ∪ S ′ ∪ {a, b} = {1, . . . , 6} according to (Case 3) we get tours that are
roots of (27) and there are still at least two nodes between n− 1 and n.

• Tours in (L8): There are two cases.

– a ∈ {7, . . . , n− 2}: We can place the subsequence 4 1 2 3 6 5 to the right of n.

– a ∈ {1, . . . , 6}: The continuation on both sides of the tour is free and so we
can use one of the subsequences presented in (Case 2) on an arbitrary side.

In summary, we created exactly one tour less than in the proof of Theorem 2.3, hence
Theorem 3.19 follows. �

4 Computational results

In order to provide some evidence that the new inequalities are indeed worth consid-
eration in practical cutting plane approaches, we present a few computational results
for random nonnegative costs, for random Angle-TSP in the plane and for randomly
generated reload cost instances. We used the SCIP branch-and-cut framework [2] with
CPLEX 12.1 [1] as linear solver on an Intel Core i7 CPU 920 with 2.67 GHz and 12
GB RAM in single processor mode. The basic relaxation (indicated by (I) in the tables
below) is obtained by exact separation of the standard subtour elimination constraints
(3) for the xij variables (we use the separator of SCIP). This is then extended to (II) by
separating (10), (11), (17), (16) (this includes (14)) and, whenever a violated subtour
inequality (3) is found, by adding the corresponding strengthened variants (20) or (23)
instead of (3). For exact separation of inequalities (16) we solve the linear program-
ming formulation using CPLEX by taking advantage of the total unimodularity of the
corresponding constraint matrix and the warm-start-properties of the simplex-algorithm
because the cost coefficients only change slightly if i is fixed and j varies.
We tested random instances for 5 ≤ n ≤ 25. For general nonnegative cost instances,

integral costs ce, e ∈ V 〈3〉, were chosen uniformly at random between 0 and 10000.
Random Angle-TSP instances in the plane were generated by choosing points uniformly
at random out of {0, . . . , 1000}2. Here the costs cijk, ijk ∈ V 〈3〉, are computed by

cijk =

⌊
18000

π
arccos

((
vj − vi
‖vj − vi‖

)T (
vk − vj
‖vk − vj‖

))⌋
(28)

with vi ∈ R2 denoting the coordinate vector of point i. In order to give a visual impres-
sion of such instances, the optimal solution of one such random instance with 30 points
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is displayed in Figure 8 together with an optimal solution for squared costs c2
ijk instead

of cijk, which penalizes sharp turns even more.

Figure 8: An optimal solution for a random Angular-Metric TSP instance on 30 nodes
for costs equal to the change in direction (28) and the same costs squared.

For these two classes of random instances Figure 9 gives, for each n, the average of
the root gap (c∗ − crelax)/crelax over 10 instances.
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Figure 9: Average root gaps of random and random angular instances

For the reload cost instances we generated random graphs G̃ = (Ṽ , Ẽ) by including
each edge e ∈ Ẽ independently with some fixed probability p ∈ [0, 1] and randomly
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coloring these edges with colors D = {1, . . . , d}. Two types of costs are used for the
instances. In the instances RI1 each color change causes costs of one, and in RI2 the color
change between two colors i, j ∈ D, i 6= j, causes costs dij with dij chosen uniformly at
random in {1, . . . , 10}. Because each color change causes costs of at least one, the 2-graph
either contains a monochromatic Hamiltonian cycle (these have cost 0, so optimality gaps
are meaningless) or the optimal value is at least two. Table 1 shows, for each choice of
parameters, the average of optimal value and relaxation value over ten random instances
(infeasible instances are skipped) for the two separation modes described above. In
total we generated 360 instances, 349 of them were feasible. Via exploiting the special
integrality property of these instances, approach (I) allowed to prove optimality of the
solutions of 175 instances within the root node in comparison to 205 instances in case
of approach (II).

RI1 RI2

p d n opt. (I) (II) p d n opt. (I) (II)

1
2

5
10 6.000 6.000 6.000

1
2

5
10 26.300 26.175 26.300

15 4.400 3.966 4.126 15 16.200 14.801 15.976
20 4.100 2.378 2.988 20 11.400 6.021 7.077

10
10 6.000 6.000 6.000

10
10 25.889 25.889 25.889

15 7.500 7.250 7.458 15 24.200 23.348 23.608
20 6.900 5.771 6.201 20 22.900 19.327 21.096

20
10 8.000 8.000 8.000

20
10 34.000 34.000 34.000

15 8.900 8.900 8.900 15 30.200 27.553 29.361
20 9.700 9.328 9.430 20 28.700 23.733 25.597

1

5
10 2.000 1.471 1.742

1

5
10 5.800 2.862 4.563

15 1.800 0.000 0.000 15 2.400 0.000 0.000
20 0.800 0.000 0.000 20 0.200 0.000 0.000

10
10 3.400 3.368 3.400

10
10 10.900 8.426 9.684

15 3.100 1.404 1.952 15 6.100 2.094 3.151
20 2.700 0.062 0.247 20 4.500 0.000 0.275

20
10 5.000 5.000 5.000

20
10 12.900 11.330 12.350

15 5.900 4.937 5.262 15 12.300 7.886 9.075
20 5.000 2.881 3.603 20 10.500 5.092 5.936

Table 1: Average optimal and relaxation values for random reload cost instances with
edge-probability p, d colors and n nodes

A natural next step is to investigate the quality of semidefinite relaxations. First ex-
periments indicate that in many cases semidefinite approaches improve the lower bounds
resp. gaps significantly. A detailed investigation, however, exceeds the current scope and
will be the topic of a separate study.
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5 Appendix

Theorem 5.1 The inequalities (12) define facets of PSQTSPn
for all 2-cycles C ⊂ V 〈3〉

with |C| = 5 if n ≥ 5.

Proof. For 5 ≤ n ≤ 9 we verified the statement be means of a linear algebra package. For
n ≥ 10 the proof is similar to the proof of Theorem 2.3. We use the same notation and
consider, w. l. o. g., the 2-cycle C = {123, 234, 345, 154, 215}. For n ≥ 10 a tour satisfies∑

e∈C{2} xe −
∑

e∈C ye = 2 if and only if the intersection of its edges with C{2} results
in at least two unconnected paths of at least one edge. Requiring this structure for the
tours of the initial n̄-permutation block with n̄ = 5 yields r5 − 1 affinely independent
tours for C̃ n̄,1

dim. In the construction of sets C̃ n̄,2
dim and C̃ n̄,3

dim (C̃ n̄
dim = C̃ n̄,1

dim∪C̃
n̄,2
dim∪C̃

n̄,3
dim) the

existence of tours with this structure can be ensured by the following slight adaptations
of steps (I1)–(I5) for n̄ < k < n− 1 and (L1)–(L8) with w1, w2, w3 ∈ {6, . . . , n− 2}.

• Tours in (I1): There are three cases (once again, 〈k, 1, k+ 1〉 is not used as an eik).

1. For 6 ≤ a ≤ k − 1 we use the tours (note that 3 is followed by 5 and not 4)

. . . a k 1 (k + 1)$k n 2 3 5 4 . . .

2. For nodes a ∈ {2, 5} adjacent to node 1 in C, we construct tours

. . . 3 2 k 1 (k + 1)$k n 4 5 . . . resp. . . . 4 5 k 1 (k + 1)$k n 3 2 . . .

3. For nodes a ∈ {3, 4} not adjacent to node 1 in C, we construct tours

. . . 2 3 k 1 (k + 1)$k n 4 5 . . . resp. . . . 5 4 k 1 (k + 1)$k n 3 2 . . .

• Tours in (I2): For a ∈ {2, . . . , 5} we use the same technique as for (I1) above with
the roles of node 1 and node a interchanged. For a ∈ {6, . . . , k − 1} appropriate
tours are

. . . 2 1 k a (k + 1)$k n 4 3 5 . . .

• Tours in (I3): Whenever {a, b}∩{1, . . . , 5} 6= ∅ we can adapt the approach of (I1)–
(I2) above by exchanging the roles of the nodes. In all other cases the following
tours contain exactly two nonincident edges of C{2},

. . . a k b (k + 1)$k n 1 2 4 5 3 . . .

• Tours in (I4): The situations that appear for {a, b} 6⊂ {1, . . . , 5} have been dis-
cussed before. If {a, b} ∈ C{2} we place the nodes {1, . . . , 5}\{a, b} next to node n
in arbitrary order. The remaining cases satisfy a, b ∈ {1, . . . , 5} with {a, b} /∈ C{2}.
The desired structure is obtained for, w. l. o. g., a = 1, b = 3 by tours

. . . k 2 1 3 (k + 1)$k n 4 5 . . .
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• Tours in (I5), (L1)–(L4), (L6), (L8): We can adapt the techniques above.

• Tours in (L5): We can use the techniques above setting m ∈ {w1, w2, w3} \ {b}.

• Tours in (L7): If {a, b} ∈ C{2}, w. l. o. g., for a = 1, b = 2 the tour

. . . 4 5 1n 2 3 (n− 1) . . .

contains exactly two edges 45, 23 ∈ C{2}. If {a, b} /∈ C{2}, w. l. o. g., for a = 1, b = 3
the tour

. . . 4 5 1n 3 2 (n− 1) . . .

contains exactly the edges 45, 23 ∈ C{2}, too.

This construction results in exactly one affinely independent tour less than in the proof
of Theorem 2.3, and with the considerations therein, Theorem 5.1 follows. �

Theorem 5.2 The inequalities (13) define facets of PSQTSPn
for all S ⊂ V with odd

|S| = h ≥ 3 and n ≥ 3
2
(h+ 1).

Proof. Theorem 3.3 proves the case h = 3, so let h ≥ 5 be odd with n ≥ 3
2
(h+ 1). The

proof is similar to the proof of Theorem 2.3. We use the same notation and consider,
w. l. o. g., S = {2} ∪ {i, i + 1: i = 1 + 3k, k = 1, . . . , h−1

2
}. A tour gives rise to a root

of (13) if and only if the intersection of its edges with S{2} results in h−1
2

unconnected
paths of at least two nodes. In this case either one node of S is isolated or exactly
one of the h−1

2
paths contains three nodes; paths containing more than three nodes

of S cannot arise from roots. To guarantee this structure for the tours, each edge
{i, i+ 1}, i = 1 + 3k, k = 2, . . . , h−1

2
, lies between two nodes not in S. Starting with the

set C n̄,1
dim we use n̄ = 5 for the permutation block. Fulfilling (13) with equality requires

that exactly one or two of the three edges {2, 4}, {2, 5}, {4, 5} have to be present in tours
of the block. Due to this structure the rank of the initial block is reduced by one in
comparison to Theorem 2.3.

In the inductive part with n̄ < k < n− 1 we have to distinguish four cases.

1. k ∈ V \S with (k+1) ∈ V \S: We can use steps (I1)–(I5) without any modifications
of the decisive parts. We will show in Claim 2 below that the desired structure of
the tours can be achieved easily.

2. k ∈ V \S with (k+ 1) ∈ S: For nodes of this type we use steps (I1)–(I5), but (I4)
needs to be restricted to a, b ∈ {1, . . . , k − 1}, a 6= b, {a, b} 6⊂ S, because otherwise
we would have a path formed by four nodes of S. In order to build tours for the
missing 2-edges 〈a, b, k+1〉, a, b ∈ {1, . . . , k−1}∩S, a 6= b, the node k+1 needs to
be separated from k + 2, so all these will be built in an extra step (C.14) within
the next iteration. Furthermore, in order to guarantee the existence of appropriate
tours for (I4), the distance of node k and k + 1 needs to be increased by one via
inserting a suitable node, see also Claim 3 below.
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3. k ∈ {i = 5+3l, l = 1, 2, . . . , h−1
2
−1}: For nodes of this type we use steps (I1)–(I5)

without any modifications of the decisive parts. By Claim 4 below the desired
structure can be achieved easily.

4. k ∈ {i = 4+3l, l = 1, 2, . . . , h−1
2
−1}: For these nodes we split the tour construction

into many steps so as to simplify the exposition of appropriately constructed tours
afterwards. The correspondence of this list of steps to (Type-I1)-(Type-I4) is
explained in Claim 1, the existence of appropriate tours in Claim 5 below. Note,
we have 5, k, (k + 1) ∈ S.
(C.1) . . . a k 5 (k + 1)$k n . . . , for a ∈ {1, . . . , k − 1} \ S

(the 2-edge 〈k, 5, k + 1〉 is not used as an eik),

(C.2) . . .m 5 k a (k + 1)$k n . . . , for a ∈ {1, . . . , k − 1} \ S with m ∈ {1, . . . , k −
1} \ S,m 6= a,

(C.3) . . .m k 5 a b (k + 1)$k n . . . , for a, b ∈ {1, . . . , k − 1} \ S, a 6= b, with m ∈
{1, . . . , k − 1} \ S, |{a, b,m}| = 3,

(C.4) . . .m 5 k a b (k + 1)$k n . . . , for a ∈ {1, . . . , k − 1} \ S, b ∈ ({1, . . . , k − 1} ∩
S) \ {5} with m ∈ {1, . . . , k − 1} \ S,m 6= a,

(C.5) . . .m 5 k o p a b (k + 1)$k n . . . , for a ∈ ({1, . . . , k − 1} ∩ S), b ∈ {1, . . . , k −
1}\S withm, o ∈ {1, . . . , k−1}\S, p ∈ ({1, . . . , k−1}∩S), |{a, b,m, o, p, 5}| =
6,

(C.6) . . .m 5 k o a b (k + 1)$k n . . . , for a, b ∈ ({1, . . . , k−1}∩S)\{5}, a 6= b, with
m, o ∈ {1, . . . , k − 1} \ S,m 6= o,

(C.7) . . .m k 5 a (k + 1)$k n . . . , for a ∈ {1, . . . , k − 1} \ S with m ∈ {1, . . . , k −
1} \ S,m 6= a,

(C.8) . . .m 5 k a o p (k + 1)$k n . . . , for a ∈ ({1, . . . , k − 1} ∩ S) with m, o ∈
{1, . . . , k − 1} \ S, p ∈ {1, . . . , k − 1} ∩ S, |{a,m, o, p, 5}| = 5,

(C.9) . . .m a k b o (k+1)$k n . . . , for a ∈ ({1, . . . , k−1}∩S)\{5}, b ∈ {1, . . . , k−
1} \ S, with m ∈ {1, . . . , k − 1} \ S, o ∈ {1, . . . , k − 1} ∩ S, a 6= o, b 6= m,

(C.10) . . . a k bm (k + 1)$k n . . . , for a, b ∈ {1, . . . , k − 1} \ S, a < b with m ∈
{1, . . . , k − 1} ∩ S, |{a, b,m}| = 3,

(C.11) . . .m o k a 5 (k + 1)$k n . . . , for a ∈ {1, . . . , k− 1} \S with m ∈ {1, . . . , k−
1} \ S, o ∈ {1, . . . , k − 1} ∩ S,m 6= a, o 6= 5,

(C.12) . . .m o k p a 5 (k + 1)$k n . . . , for a ∈ {1, . . . , k − 1} ∩ S, a 6= 5 with m, p ∈
{1, . . . , k − 1} \ S, o ∈ {1, . . . , k − 1} ∩ S, |{a,m, o, p, 5}| = 5,

(C.13) . . .m o k p 5 a (k + 1)$k n . . . , for a ∈ {1, . . . , k−1}∩S withm, p ∈ {1, . . . , k−
1} \ S, o ∈ {1 . . . , k − 1} ∩ S, |{a,m, o, p, 5}| = 5,

(C.14) . . .m k a b o p (k + 1)$k n . . . , for a, b ∈ {1, . . . , k − 2} ∩ S with m, o ∈
{1, . . . , k − 1} \ S,m 6= o, p ∈ {1, . . . , k − 1} ∩ S, |{a, b, p}| = 3,
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(C.15) . . .m a k b o 5 (k+1)$k n . . . , for a, b ∈ {1, . . . , k−1}∩S, a < b, with m, o ∈
{1, . . . , k − 1} \ S, |{a, b,m, o, 5}| = 5,

(C.16) . . .m k a (k + 1)$k n . . . , for a ∈ ({1, . . . , k − 1} ∩ S) \ {5} with m ∈
{1, . . . , k − 1} \ S.

After these steps we perform (I5). Note, (C.14) is only completing (I4) of the
preceding iteration k − 1, therefore it is also not counted in Claim 1.

Claim 1: In steps (C.1)–(C.13), (C.15)–(C.16), (I5) we build exactly 3
2
k2 − 3

2
k − 1

tours for k ∈ {i = 4 + 3l, l = 1, 2, . . . , h−1
2
− 1}.

Proof of Claim 1. We compare the underlined 2-edges with the 2-edges of (Type-I1)-
(Type-I4) in the proof of Theorem 2.3

• (Type-I1): We get all 2-edges 〈a, k, b〉, a, b ∈ {1, . . . , k − 1}, a 6= b, in steps (C.1),
(C.8)–(C.10), (C.15).

• (Type-I2): The role of node 1 and node 5 changed. Apart from that we get
all 2-edges 〈k, a, k + 1〉, a ∈ {1, . . . , k − 1} \ {5} (in contrast to 〈k, a, k + 1〉, a ∈
{1, . . . , k − 1} \ {1}) in steps (C.2) and (C.16).

• (Type-I3): We get all 2-edges 〈a, b, k + 1〉, a, b ∈ {1, . . . , k − 1}, a 6= b, in steps
(C.3)–(C.7), (C.11)–(C.13).

• (Type-I4): Because we use step (I5) we get all the 2-edges of that type.

This proves Claim 1.
It remains to prove that in all four cases above the desired structure can be achieved,

i. e., exactly h−1
2

unconnected paths of at least two nodes in S are present in each tour.
To disconnect the nodes of a subset S ′ ⊂ S in the desired way we need at least b|S ′|/2c−1
nodes v ∈ V \S; starting with two nodes of S ′ we place, next to them, one node of V \S,
then again two nodes of S ′, one of V \ S and so on until in the end there may be three
nodes of S ′ next to each other.
Claim 2: The desired structure described above can be achieved in (I1)–(I5) for
nodes k ∈ V \ S with (k + 1) ∈ V \ S, n̄ < k < n− 1.
Proof of Claim 2. By definition of S it follows S = S ∩ {1, . . . , k − 1} and |{1, . . . , k −
1} \ S| ≥ k

3
. It suffices to consider the case k ∈ V \ S, (k + 1) ∈ V \ S, (k − 1) ∈ S

because if there are more nodes in V \ S we can simply place them next to each other.
Thus, let k = 3 + 3h−1

2
.

• Tours in (I1): If a ∈ V \S there remain h−1
2
−1 nodes in {1, . . . , k}\ (S∪{1, a, k})

that are not fixed to a position. With these nodes we can force h−1
2

unconnected
paths of nodes in S (exactly one of these contains three nodes). In the case a ∈ S
we can either force a 2-edge 〈m, o, a〉 with m ∈ {1, . . . , k − 1} \ S, o ∈ S, o 6= a
or force a 2-edge 〈m, a, k〉 with m ∈ {1, . . . , k − 1} \ S, followed by alternating an
edge e ∈ S{2} and a node in {1, . . . , k − 1} \ S.
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• Tours in (I2), (I3), (I5): We are in a similar situation as in (I1), at most one
node s ∈ S has to lie between two nodes in V \ S and we have enough nodes in
{1, . . . , k − 1} \ S to force the desired structure.

• Tours in (I4): If a, b ∈ S one of the desired edges is formed and next to node k we
use the alternating order of edges in S{2} and nodes in {1, . . . , k − 1} \ S. In the
case {a, b} 6⊂ S the situation equals (I1) with a ∈ {2, . . . , k − 1} \ S apart from
that an isolated node in S is forced if {a, b} ∩ S 6= ∅.

Claim 3: The desired structure described above can be achieved for nodes k ∈ V \S
with (k + 1) ∈ S, n̄ < k < n− 1.
Proof of Claim 3. As in Claim 2, there are at least k

3
nodes available in {1, . . . , k−1}\S

to separate S ∩ {1, . . . , k − 1} into k
3
− 1 unconnected paths of at least two nodes each

(and possibly one isolated node). So, except for (I4) with a, b ∈ {1, . . . , k − 1} ∩ S of
this case, the same arguments as in Claim 2 prove this claim as well as the following two
claims. Step (I4) cannot be performed for a, b ∈ {1, . . . , k − 1} ∩ S for this k because
a, b, k + 1, k + 2 would be four consecutive nodes in S, so the construction is delayed to
step (C.14) for k + 1.
Claim 4: The desired structure described above can be achieved for nodes k ∈ {i =
5 + 3l : l = 1, 2, . . . , h−1

2
− 1}, n̄ < k < n− 1.

Proof of Claim 4. The set {1, . . . , k−1} contains exactly k+1
3

nodes that belong to V \S
and (k + 1) ∈ V \ S. Therefore we have as many separating nodes as in the proof of
Claim 2. In view of (k + 1), n ∈ V \ S only slight structural adaptations are needed to
compensate k ∈ S, we skip the details here.
Claim 5: The desired structure described above can be achieved for nodes k ∈ {i =
4 + 3l : l = 1, 2, . . . , h−1

2
− 1}, n̄ < k < n− 1.

Proof of Claim 5. The set {1, . . . , k−1} contains exactly k+2
3

nodes that belong to V \S
and may thus serve to separate the nodes of S ∩ {1, . . . , k + 1} into k−1

3
unconnected

paths of at least two nodes each (and possibly one isolated node if there is no path of
length three). Note that k + 2 ∈ V \ S and that for each tour of (C.1)–(C.16) the
specified part starts with a node v ∈ {1, . . . , k − 1} \ S (in (C.1) and (C.10) this is a,
otherwise it is m) and ends with n ∈ V \ S. Hence, the unspecified region can be filled
up correctly whenever the number of nodes in {1, . . . , k − 1} \ S within the specified
segment from and including this node v to node k + 2 exceeds the count of S-paths
of at least 2 nodes within this segment by at most 2. Table 2 lists the forced isolated
nodes in S, the edges in S{2} and 2-edges in S〈3〉 within these critical segments of steps
(C.1)-(C.16). The requirements hold in all cases and are tight only for (C.3). Step (I5)
can be treated in the same way as in Claims 2–4. This proves Claim 5.
It remains to adapt the concluding steps (L1)–(L8). How to do this depends on

whether (n − 1) /∈ S or (n − 1) ∈ S. In both cases n /∈ S, because by assumption
n ≥ 3

2
(h+ 1) = 2 + 3h−1

2
+ 1.

Claim 6: If (n − 1) /∈ S the desired structure can be achieved within (L1)–(L8) for
w1 = 2, w2 = 4, w3 = 5 by restricting some of the open choices.
Proof of Claim 6. In this case n > 3

2
(h + 1), in particular |V \ S| ≥ 1

2
(h + 3) + 1. To

separate the h−1
2

paths of at least two nodes of S we need at least h−1
2

nodes in V \ S.

49



step isolated nodes of S edges of S{2} 2-edges of S〈3〉 nodes of V \ S
(C.1) 〈k, 5, k + 1〉 a
(C.2) k + 1 {k, 5} m, a
(C.3) k + 1 {k, 5} m, a, b
(C.4) {k, 5}, {b, k + 1} m, a
(C.5) k + 1 {k, 5}, {p, a} m, o, b
(C.6) {k, 5} 〈a, b, k + 1〉 m, o
(C.7) k + 1 {k, 5} m, a
(C.8) {p, k + 1} 〈5, k, a〉 m, o
(C.9) {a, k}, {o, k + 1} m, b
(C.10) k {m, k + 1} a, b
(C.11) {o, k}, {5, k + 1} m, a
(C.12) {o, k} 〈a, 5, k + 1〉 m, p
(C.13) {o, k} 〈5, a, k + 1〉 m, p
(C.14) {p, k + 1} 〈k, a, b〉 m, o
(C.15) {5, k + 1} 〈a, k, b〉 m, o
(C.16) 〈k, a, k + 1〉 m

Table 2: Specified edges and 2-edges of S and nodes of V \ S in steps (C.1)–(C.16)

Therefore the structure can be achieved if at most three nodes in V \ S are not used as
separating nodes, i. e., these may lie next to a further node in V \ S, and one isolated
node belonging to S may lie between them. These rules can be satisfied in (L1)–(L8).

• For (L1): If b ∈ S the nodes n− 1 and n separate the path bw1 of S, if b /∈ S then
n− 1, b and n are three nodes embracing an isolated node w1 ∈ S.

• For (L2) choose o ∈ S \ {w1, w2, w3}, then n− 1 and n separate the path ow1 of S.

• Because {w1, w2, w3} ⊂ S, (L3),(L4),(L6),(L8) are not critical for any choice.

• For (L5) choose o ∈ S \ {w1, w2, w3, a, b} (one of a or b is in {w1, w2, w3}, so this
is feasible), then at most three nodes of a, n, b and m are not in S and they may
separate one isolated node of S.

• For (L7) choose m = w1. If b ∈ S the path bw1 of S is separated, otherwise a, n
and b are at most three nodes in V \ S separating the isolated node w1 of S.

Claim 7: If (n − 1) ∈ S the desired structure can be achieved by appropriate
adaptations of steps (L1)–(L8) with w1 = 1, w2 = 2, w3 = 3.
Proof of Claim 7. We know that |V \ S| = 1

2
(h + 3). To separate the h−1

2
paths of at

least two nodes of S we need at least h−1
2

nodes in V \ S. Therefore the structure can
be achieved if at most two nodes in V \ S are not used as separating node, i. e., these
may lie next to a further node in V \ S and one isolated node belonging to S may lie
between them. To achieve this, several adaptations are required in (L1)–(L8).
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• Tours in (L1): There are four cases.

– a, b ∈ V \S: We use tours . . . a (n−1) bmow1 nw2 . . . withm, o ∈ ({1, . . . , n−
2} ∩ S) \ {w2},m 6= o. These have the isolated node n − 1 ∈ S between
a, b ∈ V \ S and two adjacent nodes w1, n ∈ V \ S, so these tours can be
extended to the required structure.

– a ∈ V \ S, b ∈ S: We use tours . . . a (n − 1) bw1 nw2 . . . with two adjacent
nodes w1, n ∈ V \ S.

– a ∈ S, b ∈ V \S: We use tours . . . a (n−1) bw1 nw2 . . ., these can be completed
to have the three adjacent nodes b, w1, n ∈ V \ S but no isolated nodes.

– a, b ∈ S: We use tours . . . a (n − 1) bw1 nw2 . . . with two adjacent nodes
w1, n ∈ V \ S and a (n− 1) b the only path of three nodes of S.

• Tours in (L2): Choose m ∈ V \ (S ∪{w1, w3, n}) and o ∈ S \ {n− 1, w2}, then the
first row has three adjacent nodes w1, n, w3 ∈ V \S and can be completed without
isolated nodes of S, while the second row has two adjacent nodes n,w3 ∈ V \ S
and (n− 1) ow2 as the only path of three nodes of S.

• Tours in (L3): We use the tours . . . a (n− 1)w1mw2 nw3 . . . , a ∈ {1, . . . , n− 2}\
({w1, w2, w3}),m ∈ S \ {w2, a, n − 1} with adjacent nodes n,w3 ∈ V \ S and, if
a /∈ S, the isolated node n− 1 between nodes a, w1 ∈ V \ S.

• Tours in (L4): There are three adjacent nodes w1, n, w3 ∈ V \ S and, if a ∈ S, the
three nodes a (n− 1)w2 form the only path of three nodes of S.

• Tours in (L5): Choose m ∈ S \ {n− 1, a, b}, o ∈ V \ (S ∪ {n, a, b}, then for b ∈ S
the path bm (n − 1) is the only path of three nodes of S. For b /∈ S there are at
most three adjacent nodes a, n, b ∈ V \ S and no isolated nodes of S are needed.

• Tours in (L6): The tours . . . nw3w1 (n− 1)w2 . . . and . . . nw1w2 (n− 1)w3 . . .
may be used as before. Modifying the remaining tour to . . . nw2 4w1 (n− 1)w3 . . .
yields one isolated node n− 1 ∈ S between w1, w3 ∈ V \ S.

• Tours in (L7): Set m = w2, then this may induce at most three adjacent nodes
a, n, b ∈ V \ S or bm (n− 1) as the only path of three nodes of S.

• Tours in (L8) require at most two adjacent nodes a, n ∈ V \ S.

All in all we build exactly one tour less than in Theorem 2.3. This proves Theorem 5.2.�
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