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Abstract. The authors study linear ill-posed operator equations
in Hilbert space. Such equations become conditionally well-posed
by imposing certain smoothness assumptions, often given relative
to the operator which governs the equation. Usually this is done
in terms of general source conditions. Recently smoothness of an
element was given in terms of properties of the distribution func-
tion of this element with respect to the self-adjoint associate of
the underlying operator. In all cases the original ill-posed problem
becomes well-posed, and properties of the corresponding modulus
of continuity are of interest, specifically whether this is a concave
function. The authors extend previous concavity results of a func-
tion related to the modulus of continuity, and obtained for com-
pact operators in B. Hofmann, P. Mathé, and M. Schieck, Modulus

of continuity for conditionally stable ill-posed problems in Hilbert

space, J. Inverse Ill-Posed Probl. 16 (2008), no. 6, 567–585, to
the general case of bounded operators in Hilbert space, and for
recently introduced smoothness classes. This paper is dedicated to
the 70th anniversary of the Corresponding-Member of the Russian
Academy of Sciences Vladimir V. Vasin (Yekaterinburg).

1. Introduction

The focus of this note is on linear ill-posed problems that can be
written as operator equations

(1) Ax = y, x ∈ X, y ∈ Y,

where A : X → Y is a bounded injective linear mapping between
infinite-dimensional separable Hilbert spaces X and Y endowed with
inner products 〈 · , · 〉 and norms ‖ · ‖. We associate A with the positive
self-adjoint operator

(2) H := A∗A : X → X

and set a := ‖H‖ = ‖A‖2 such that a is the maximum value of the
spectrum σ(H) of H and zero the corresponding minimum value which
moreover represents an accumulation point of σ(H) in the ill-posed

1



2 BERND HOFMANN AND PETER MATHÉ

case. Following the notation of [14] for the ill-posedness of (1) charac-
terized by a non-closed range R(A) of A we distinguish between the
ill-posedness of type I where A is non-compact and of type II where A
is compact, for more details see also [3, 7].
The solution theory of ill-posed problems is preferably based on the

fact that these problems become conditionally well-posed after impos-
ing certain smoothness assumptions by restricting the admissible solu-
tions to a set M. Then the severity of the ill-posedness phenomenon in
solving a problem (1) depends on the interplay between the smoothing
properties of the operator A and the smoothness of potential solutions
x ∈ M ⊂ X . The solution theory may be considered element-wise and,
as this is traditionally done, uniformly for smoothness classes.
For the analysis of ill-posed problems solution smoothness is most

often measured relative to the operator A governing the equation (1),
precisely its self-adjoint associate H . First, one can quantify the indi-
vidual smoothness of an element x ∈ X with respect to H by using the
point-wise spectral information, i.e., the distribution function

(3) F 2
x (t) := ‖Etx‖2 := 〈χ(0,t](H) x, x〉 = ‖χ(0,t](H)x‖2, 0 < t <∞,

where χ(0,t] is the characteristic function on the interval (0, t]. This
idea goes back to [15, 16] and it was further explored in [2], This
non-decreasing and right-continuous function F 2

x , which satisfies the
limit condition lim

t→0
F 2
x (t) = 0 as a consequence of the ill-posedness, can

be rewritten as F 2
x (t) =

t
∫

0

d‖Esx‖2 for t > 0, where Et = Et(H),

0 ≤ t ≤ a, denotes the spectral resolution of the operator H . Note
that

‖h(H)x‖2 =
a

∫

0

h2(t) d‖Etx‖2 =
a

∫

0

h2(t) dF 2
x (t)

holds for any bounded measurable real function h. We refer to [1,
Sect. 2.3] and [18, Chapt. 12] for details on spectral theory of bounded
and self-adjoint linear operators in Hilbert space.
The most prominent, and traditional way of quantifying solution

smoothness uses smoothness classes in terms of source sets M = Mϕ,R

defined as

(4) Mϕ,R := {x ∈ X : x = ϕ(H) v, v ∈ X, ‖v‖ ≤ R}, R > 0.

Above, the functions ϕ : (0, a] → (0,∞) are derived from variable
Hilbert scales and called index functions ; these are assumed to be in-
creasing with lim

t→+0
ϕ(t) = 0. Here we follow the concept of [12, 13] or
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more recently [5, 11]. Source sets express the solution smoothness with
respect to the spectrum of H in an integral manner, since we have that

x ∈ Mϕ,R if and only if

a
∫

0

1

ϕ2(t)
d‖Etx‖2 ≤ R2.

Alternatively, and as this was recently suggested and roughly discussed
in [4], one can assign smoothness classes by considering, in analogy to
(4), the level sets M = Eψ,E defined as

(5) Eψ,E := {x ∈ X : F 2
x (t) ≤ E2 ψ2(t), 0 < t ≤ a}, E > 0,

for index functions ψ : (0, a] → (0,∞). It is easy to see and was
established in [4, Prop. 9] that Mψ,E ⊂ Eψ,E if ϕ and ψ in (4) and (5)
coincide.
The following structural properties of both the source and the level

sets are given next.

Proposition 1. Let the operator A be as in (1) with associate H,
see (2). Then the following properties hold true:

(1) For arbitrary index functions ϕ and ψ the sets Mϕ,R and Eψ,E
are centrally symmetric and convex.

(2) If the operator A is compact then the sets Mϕ,R and Eψ,E are
compact.

Proof. The central symmetry is evident by definition. Also the convex-
ity ofMϕ,R is clear since this set is a linear transformation of a ball. For
x ∈ Eψ,E one has that ‖χ(0,t](H)x‖ = Fx(t) ≤ E ψ(t) for all 0 < t ≤ a.
Therefore the convexity follows from the fact that the inequalities un-
der consideration remain valid for convex linear combinations of the
elements x.
We turn to the second assertion. The compactness of the sets Mϕ,R

was established in [5, Lemma 2.8], and it follows from the fact that
Mϕ,R is the image of a closed convex set under a compact operator.
Closedness of the sets Eψ,E is immediate from (5). Also, it is clear
that the set Eψ,E is bounded, by letting t := a in (5). To see the
relative compactness, let us denote by s1 ≥ s2, · · · > 0 the eigenvalues
and by u1, u2, . . . the corresponding eigenelements of the non-negative
operator H . With this notation we can write

F 2
x (t) = ‖χ(0,t](H)x‖2 =

∑

sj≤t

|〈x, uj〉|2 ≤ E2ψ2(t)

for elements x ∈ Eψ,E and for each 0 < t ≤ a. But this yields

that for any index function ψ the tails
∑∞

j=k |〈x, uj〉|
2 tend to zero as
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k → ∞ uniformly for all x ∈ Eψ,E . This gives the compactness, see [10,
Chapt. II], and completes the proof. �

For source sets and level sets representing M ⊂ X the best possible
error for reconstruction of the solution x ∈ M based on noisy data yδ,
satisfying ‖yδ − y‖ ≤ δ instead of the exact right-hand side y ∈ R(A),
is given by

(6) ω̃(A,M, δ) := sup {‖x1 − x2‖ : x1, x2 ∈ M, ‖A(x1 − x2)‖ ≤ δ} .
For ellipsoidal sets M := {x ∈ X : x = Gv, ‖v‖ ≤ 1} with some
bounded linear operator G : X → X this function coincides with the
modulus of continuity

(7) ω (A,M, δ) := sup {‖x‖ : x ∈M, ‖Ax‖ ≤ δ} , δ > 0,

of the inverse operator A−1 restricted to M. This modulus acts as
a measure of ill-posedness pre-estimating the reconstruction error in
solving (1) for given δ > 0.
The mathematical school of Sverdlovsk/Yekaterinburg, see the mono-

graph [9] by Ivanov, Vasin and Tanana, very early studied such
moduli in connection with the development of the method of quasi-
solutions. In the last decades Vladimir V. Vasin continued, ex-
tended and improved such studies on regularization methods for the
stable approximate solution of ill-posed operator equations, see for ex-
ample [20, 21, 22].
In Section 2 we collect some properties of the modulus of continuity

ω (A,M, δ), in particular with respect to the source sets and level sets.
Our main result presented in Section 3 is to show the concavity of
the associated function ω2(A,M,

√
δ) for both classes. The paper will

be completed with some remarks on upper and lower bounds for the
modulus of continuity.

2. Basic properties of the modulus of continuity

We are going to study the modulus of continuity (7) with focus on
the sets Mϕ,R and Eψ,E . At the beginning we recall the following
proposition formulated and proved in [6, Thm. 2.1] that characterizes
the main properties of such modulus. Below we shall set

UM := {z ∈ Z : z = U x, x ∈ M},
for linear operators U : X → Z and some Hilbert space Z. In that
sense, we use KM := {x ∈ X : x = K x̃, x̃ ∈ M} for constants
K > 0 by identifying the constant K with the multiple KI of the unit
operator.

We state the following useful results.
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Proposition 2. For centrally symmetric and convex sets M, which
means that with x1, x2 ∈ M also the elements −x2 and (x1 − x2)/2
belong to M, the following properties hold for the moduli of continuity
from (7):

(a) If M is bounded then ω (A,M, δ) is a finite, positive and
non-decreasing function for δ > 0 and it is constant for
δ ≥ δ̄ := sup

x∈M
‖Ax‖.

(b) If M is relatively compact then lim
δ→0

ω (A,M, δ) = 0.

(c) ω (A,KM, δ) = K ω (A,M, δ/K) for K > 0.
(d) ω (A,M, Cδ) ≤ Cω (A,M, δ) for C > 1.
(e) ω (A,KM, Cδ) ≤ max{C,K}ω (A,M, δ) for C,K > 0.
(f) the decay rate of ω (A,M, δ) → 0 as δ → 0 is at most linear.

We add a result on the behavior of the modulus of continuity with
respect to unitary transformations.

Proposition 3.

(i) Let A and H be as in (1) and (2). Then we have that

ω (A,M, δ) = ω
(

H1/2,M, δ
)

, δ > 0.

(ii) If B = UGU∗ : Z → Z for some unitary operator U : X → Z
mapping into the Hilbert space Z with norm ‖ · ‖∗ and some
bounded linear operator G : X → X, then

ω (G,M, δ) = ω (B,UM, δ) , δ > 0.

Proof. The first assertion (i) is an immediate consequence of ‖Ax‖ =
‖H1/2x‖ for x ∈ X . To prove (ii), let B = UGU∗. Then we have with
v := Ux and ‖v‖∗ = ‖x‖

ω (G,M, δ) = sup {‖x‖ : x ∈ M, ‖Gx‖ ≤ δ}
= sup {‖U∗v‖ : U∗v ∈ M, ‖GU∗v‖ ≤ δ}
= sup {‖v‖∗ : v ∈ UM, ‖Bv‖∗ ≤ δ}
= ω (B,UM, δ) .

This completes the proof. �

We established in Proposition 1 that the sets Mϕ,R and Eψ,E are cen-
trally symmetric and convex. Therefore Proposition 2 applies. Within
the traditional setup when smoothness is given in terms of source sets
with power type index function ϕ then it is known that the modulus of
continuity is concave and that ω (A,M, δ) ∼ δκ with 0 < κ < 1. This
also holds for the logarithmic case ω (A,M, δ) ∼ (log(1/δ))−κ with
κ > 0 if δ > 0, and the concavity of the modulus of continuity seems
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to be typical. However, not necessarily the functions ω (A,M, δ) are
convex for any classes M =Mϕ,R and M = Eψ,E . Nevertheless, we can

show that the associated function ω2(A,M,
√
δ) is convex in any case

for both of the classes and for all δ > 0. Because of Proposition 2(c)
and because Mϕ,R = RMϕ,1 it is sufficient to consider the case R = 1
and the set Mϕ := Mϕ,1. Similar holds for Eψ,E and we let Eψ := Eψ,1.

3. Concavity of the modulus on smoothness classes

Based on results from [8], see also [13, Thm. 1], it was proved in
[6, Rem. 3.6] that for compact operators A, and under a rather weak
additional condition on ϕ, the function

(8) τ(A,M, δ) := ω2(A,M,
√
δ), δ > 0,

is for M = Mϕ a concave linear spline, or more precisely the small-
est concave index function that interpolates points defined by spectral
properties of A and their interplay with the function ϕ. Later in [6,
Prop. 3.5] the authors have proved the concavity of τ withM = Mϕ for
compact A, i.e., for ill-posedness of type II. The following Theorem 3
extends this result to ill-posedness of type I, thus covering the case of
multiplication operators with multiplier functions having an essential
zero. Moreover we can prove concavity of τ for all δ > 0 also in the
case M = Eψ.
We start with the following preliminary discussion, and we recall the

spectral theorem for bounded self-adjoint linear operators in Hilbert
space, see [23, Chapt. VII.1] and [17, Chapt. VII].

Proposition 4. For every bounded self-adjoint linear operator
H : X → X mapping in the the separable Hilbert space X there
exist a measurable space (Ω,A, µ), a unitary transformation U : X →
Z := L2(Ω,A, µ), and a measurable function f : Ω → σ(H) \ {0} ⊆
(0, ‖H‖] ⊂ R such that Mf := UHU∗ is a multiplication operator de-
fined as

[Mf h](ω) := f(ω) h(ω), ω ∈ Ω,

and mapping Z into itself. Moreover we have η(H) = U∗Mη(f)U for
bounded measurable functions η.

We can apply this result for the non-negative operatorH = A∗A, and
thus find a non-negative function f together with a unitary mapping U
such that H = U∗MfU , where we shall abbreviate ‖g‖∗ := ‖g‖L2(Ω,A,µ).
By Proposition 3 we find that

(9) ω (A,M, δ) = ω
(

H1/2,M, δ
)

= ω
(

Mf1/2 , UM, δ
)

, δ > 0.
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It is thus interesting to determine the analogs of Mϕ,R and Eψ,E in the
multiplication context, i.e., the images UMϕ,R and UEψ,E , respectively.
We state the following without proof.

Lemma 1. We have that

UMϕ,R = {g ∈ Z : g = ϕ(f)h, ‖h‖∗ ≤ 1} .

and

UEψ,E =











g ∈ Z :

∫

0<f(ω)≤t

|g(ω)|2 dµ(ω) ≤ E2ψ2(t), 0 < t ≤ a











.

The main result is the following.

Theorem. For every bounded linear operator A : X → Y with non-
closed range R(A) and arbitrary index functions ϕ and ψ defined on
the interval (0, ‖A‖2] the functions τ(A,M, δ), δ > 0, from (8) are
concave for the classes M := Mϕ and M := Eψ.

Proof. We first carry out the proof for M := Mϕ, and we use (9)

together with Lemma 1. By introducing the function Θ(t) :=
√
t ϕ(t),

0 < t ≤ a, we find that

τ(A,Mϕ, δ) = sup
{

‖g‖2∗ : g = ϕ(f)h, ‖h‖∗ ≤ 1, ‖
√

fg‖2∗ ≤ δ
}

= sup
{

‖ϕ(f)h‖2∗ : ‖h‖∗ ≤ 1, ‖Θ(f)h‖2∗ ≤ δ
}

.

Consider arbitrarily chosen 0 < δ1 < δ < δ2 and δ = λδ1+(1−λ)δ2 for
some appropriate 0 < λ < 1. With given ε > 0 we can find elements
h1, h2 ∈ L2(Ω,A, µ), ‖h1‖∗ ≤ 1, ‖h2‖∗ ≤ 1, satisfying the conditions

a
∫

0

Θ2(f(ω))h21(ω) dµ(ω) ≤ δ1,

a
∫

0

ϕ2(f(ω))h21(ω) dµ(ω) ≥ τ(A,Mϕ, δ1)−ε

and

a
∫

0

Θ2(f(ω))h22(ω) dµ(ω) ≤ δ1,

a
∫

0

ϕ2(f(ω))h22(ω) dµ(ω) ≥ τ(A,Mϕ, δ2)−ε.

We let h be chosen such that

(10) h2(ω) := λh21(ω) + (1− λ)h22(ω), ω ∈ Ω.
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Plainly, ‖h‖∗ ≤ 1. Also we have that
∫ a

0

Θ2(f(ω))h2(ω) dµ(ω)

= λ

∫ a

0

Θ2(f(ω))h21(ω) dµ(ω) + (1− λ)

∫ a

0

Θ2(f(ω))h22(ω) dµ(ω)

≤ λδ1 + (1− λ)δ2 = δ.

Therefore we conclude that

τ(A,Mϕ, δ) ≥
∫ a

0

ϕ2(f(ω))h2(ω) dµ(ω)

= λ

∫ a

0

ϕ2(f(ω))h21(ω) dµ(ω) + (1− λ)

∫ a

0

ϕ2(f(ω))h22(ω) dµ(ω)

≥ λ τ(A,Mϕ, δ1) + (1− λ) τ(A,Mϕ, δ2)− ε.

Letting ε → 0 this proves the required concavity assertion for the source
set Mϕ.
For the level set Eψ the proof is similar. We start from

τ(A, Eψ, δ) = sup











‖g‖2∗ :
∫

0<f(ω)≤t

|g(ω)|2 dµ(ω) ≤ ψ2(t), 0 < t ≤ a











.

Again we choose h1, h2 such that

‖h1‖2∗ ≥ τ(A, Eψ, δ1)− ε and ‖h2‖2∗ ≥ τ(A, Eψ, δ2)− ε,

together with
∫

0<f(ω)≤t

|h1(ω)|2 dµ(ω) ≤ ψ2(t), 0 < t ≤ a,

and
∫

0<f(ω)≤t

|h2(ω)|2 dµ(ω) ≤ ψ2(t), 0 < t ≤ a.

The same choice of h as in (10) allows us to complete the proof, and
we leave the details to the reader. �

Note that due to the identity (c) in Proposition 2 the proven concav-

ity carries over to the functions ω2(A,Mϕ,R,
√
δ) and ω2(A, Eψ,E,

√
δ),

respectively, for all δ > 0 and R > 0.
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4. Rates on smoothness classes

The modulus of continuity is a benchmark for the reconstruction
error of regularization schemes, see the discussion in Section 1. There-
fore its decay rate to zero as δ → 0 is of interest. In the compact case
such rates for the classes Mϕ,R and Eψ,E are well studied. In particu-
lar, sharp bounds for smoothness given in terms of source sets Mϕ,R

are obtained by interpolation techniques. However, up to a factor 2
such upper bounds can be obtained by analyzing specific regulariza-
tion techniques. It was mentioned in Section 2 that Mψ,E ⊂ Eψ,E, and
upper bounds for the level sets provide also upper bounds for the source
sets. But for level sets Eψ,E upper bounds for the regularization error
are easily obtained by noticing that the distribution function F 2

x (t) is
the square of the profile function (regularization error in the noise-free
case) for spectral cut-off, we refer to [2]. This gives:

Proposition 5. Let the operator A be as in (1), and let ψ be an index
function, with associated function Θ(t) :=

√
tψ(t), 0 < t ≤ a. Then

ω (A, Eψ,E, δ) ≤ 2E ψ(Θ−1(δ/E)), 0 < δ ≤ Θ(a),(11)

and

ω (A, Eψ,E, δ) ≥ E ψ(Θ−1(δ/E)), δ2/E2 ∈ σ(Hψ2(H)).(12)

Proof. We use the spectral cut-off regularization, i.e., when

xδα := gα(H)A∗yδ with gα(t) :=

{

1/t, t ≥ α,

0, t < α,

determines the regularized solutions xδα. As already mentioned we have
in this case that ‖x− gα(H)Hx‖2 = F 2

x (α). For x ∈ Eψ,E we have that

‖x− xδα‖ ≤ ‖x− gα(H)Hx‖+ ‖gα(H)Hx− gα(H)A∗yδ‖

≤ Fx(α) + ‖gα(H)A∗‖‖Ax− yδ‖ ≤ Fx(α) +
δ√
α

= Eψ(α) +
δ√
α
.

The choice of α = α(δ) as solution to Θ(α) = δ/E allows to complete
the proof of inequality (11).
By Mψ,E ⊂ Eψ,E we have that ω (A, Eψ,E, δ) ≥ ω (A,Mψ,E, δ). On

the other hand, ω (A,Mψ,E , δ) ≥ E ψ(Θ−1(δ/E)) is valid for δ2/E2 ∈
σ(Hψ2(H)), see [19, Theorem 2.5], which yields (12) and completes the
proof of the proposition. �
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