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Abstract

Extremal eigenvalues and eigenvectors of the Laplace matrix of a graph form
the core of many bounds on graph parameters and graph optimization problems.
In order to advance the understanding of connections between structural properties
of the graph and these eigenvectors and eigenvalues we study the problem mini-
mizing the difference between maximum and second smallest eigenvalue over edge
weighted Laplacians of a graph. Building on previous work where these eigenvalues
were investigated separately, we show that a corresponding dual problem allows to
view eigenvectors to optimized eigenvalues as graph realizations in Euclidean space,
whose structure is tightly linked to the separator structure of the graph. In par-
ticular, optimal realizations corresponding to the maximum eigenvalue fold towards
the barycenter along separators while for the second smallest eigenvalue they fold
outwards along separators. Furthermore optimal realizations exist in dimension at
most the tree-width of the graph plus one.
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1 Introduction

Let G = (N,E) be a finite, simple, undirected, not necessarily connected graph with node
set N = {1, . . . , n}, n ≥ 3, and nonempty edge set E ⊆ {{i, j} : i 6= j, i, j ∈ N}. For given
edge weights wij (ij ∈ E) the weighted Laplacian Lw =

∑
ij∈E wijEij of G is the weighted

sum of matrices Eij ∈ Rn×n (ij ∈ E) having value 1 at entries (i, i) and (j, j), value −1 at
(i, j) and (j, i) and value zero otherwise. Each Eij is positive semidefinite (Eij � 0) with
smallest eigenvalue zero and a corresponding eigenvector 1 of all ones. Thus, if the edge
weights wij are nonnegative, also Lw is positive semidefinite having eigenvector 1 in the
eigenspace of eigenvalue zero.

The eigenvalues of the (weighted) Laplacian are a classical topic in spectral graph theory
[5, 11, 12, 13, 32, 33, 45] and have been studied with revived interest in the last years
[2, 16, 37, 39, 41, 43]. They found application in various fields, such as in combinatorial
optimization [7, 35], spectral graph partitioning [42], communication networks [1, 38],
theoretical chemistry [17, 22, 23] and their values, products or differences appear in several
bounds on combinatorial graph parameters [24, 34]. There exists close connections to
graph representations, see, e. g., the Lovász ϑ function [14, 21, 28, 29, 31, 36] and the
Sigma Function [5, 6]. An overview over geometric representations of graphs is given in
[30].

This work aims at furthering the understanding of the connections between structural
properties of a graph and the eigenvector and eigenvalues of its Laplacian by investigating
spectral properties of optimized extremal eigenvalues. It builds on [19, 20] and [18] where
the second smallest and the largest eigenvalue of the Laplacian were (separately) optimized
over all nonnegative weight distributions summing up to a given total edge weight. Re-
formulating such an eigenvalue optimization problem as a (primal) semidefinite program
gives rise to a corresponding dual program, whose optimal solutions lie in the eigenspace
of the optimized eigenvalue and may be interpreted as a realization of the graph in Rn.
Such optimal realizations and the relation of their properties to the separator structure
of the underlying graph were the main object of interest in [18, 19]. In [20] the problem
was generalized by introducing positive node parameters s ∈ Rn

++ and nonnegative edge
parameters l ∈ RE

+, that act as node weights and edge lengths in the corresponding graph
realization. The semidefinite primal and dual problems, and the realizations (embeddings)
are listed in Table 1. They differ slightly from the originals in [19, 20] and [18] in that
they are not scaled by the optimal value λ2 (λn) so as to highlight their connection to the
problems investigated here. The aim of this paper is to study the combined problem of
minimizing the difference between the maximum and the second smallest eigenvalue of the
weighted Laplacian scaled by the node parameters via D = Diag(s

−1/2
1 , . . . , s

−1/2
n ),

min{λmax(DLwD)− λ2(DLwD) :
∑
ij∈E

l2ijwij = 1, w ≥ 0}. (1)

The dual of its formulation as a primal semidefinite program may again be interpreted
as, in this case, finding two optimal graph realizations U = [u1, . . . , un] ∈ Rn×n and
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second smallest eigenvalue [19, 20] maximum eigenvalue [18]

Given: graph G = (N,E), si > 0 (i ∈ N), lij ≥ 0 (ij ∈ E), l 6= 0.

D = Diag(s
−1/2
1 , . . . , s

−1/2
n )

P
ri

m
al

min −λ2

subject to∑
ij∈E

wijDEijD + µD−111>D−1 − λ2I � 0,∑
ij∈E

l2ijwij = 1,

λ2, µ ∈ R, w ≥ 0.
(Pλ2)

min λn

subject to
λnI −

∑
ij∈E

wijDEijD � 0,∑
ij∈E

l2ijwij = 1,

λn, w ≥ 0.

(Pλn)

D
u
al

max ξ

subject to
〈I,X〉 = 1,
〈D−111>D−1, X〉 = 0,
−〈DEijD,X〉 − l2ijξ ≥ 0 (ij ∈ E),
ξ ∈ R, X � 0.

(Dλ2)

max ξ

subject to
〈I, Y 〉 = 1,
〈DEijD,Y 〉 − l2ijξ ≥ 0 (ij ∈ E),
ξ ∈ R, Y � 0.

(Dλn)

E
m

b
ed

d
in

g

U = [u1, . . . , un] ∈ Rn×n,
DXD = U>U

max ξ

subject to∑
i∈N

si‖ui‖2 = 1,∑
i∈N

siui = 0,

−‖ui − uj‖2 − l2ijξ ≥ 0 (ij ∈ E),
ξ ∈ R, ui ∈ Rn (i ∈ N).

(Eλ2)

V = [v1, . . . , vn] ∈ Rn×n,
DYD = V >V

max ξ

subject to
n∑
i=1

si‖vi‖2 = 1,

‖vi − vj‖2 − l2ijξ ≥ 0 (ij ∈ E),
ξ ∈ R, vi ∈ Rn (i ∈ N).

(Eλn)

Table 1: Problems of maximizing the second smallest and minimizing the maximum eigen-
value of the weighted Laplacians (see [19, 20] and [18]).
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V = [v1, . . . , vn] ∈ Rn×n, one for λ2 and one for λmax, that assign to node i ∈ N the points
ui and vi subject to constraints on the relative positions of nodes connected by edges,

max ξ
subject to

∑
i∈N

si‖ui‖2 = 1,∑
i∈N

si‖vi‖2 = 1,

‖
∑
i∈N

siui‖2 = 0,

‖vi − vj‖2 − ‖ui − uj‖2 − l2ijξ ≥ 0 (ij ∈ E),
ξ ∈ R, ui, vi ∈ Rn (i ∈ N).

(Eλn−λ2)

Optimal graph realizations U and V provide a geometric interpretation of extremal eigen-
vectors of DLwD for optimal w, because for any h ∈ R the vector D−1UTh (D−1V Th) is
an eigenvector to λ2(DLwD) (λmax(DLwD)), see Rem. 2.

The optimization problems above form the main object of study here. Besides nu-
merous properties of optimal primal and optimal dual solutions, our main results state
connections between feasible (optimal) realizations of the single problems of Table 1 and
feasible (optimal) realizations of the coupled problem. In particular, we show that the
respective realization of any feasible solution (U, V ) of (Eλn−λ2) is also feasible for the
single problems (Eλ2) and (Eλn) and vice versa (for a precise statement see Theorem 14).
For optimal V of (Eλn−λ2) there exists appropriate data s̄ and l̄ such that V is also opti-
mal in (Eλn) (Theorem 15). An almost identical result holds for optimal U of (Eλn−λ2) if
some special graphs are excluded (Theorem 18). The last two theorems allow to transfer
the structural results of [19, 20, 18] linking optimal graph realizations to the separator
structure of the graph: optimal realizations V fold inwards along separators (Theorem 16),
optimal realizations U fold outwards along separators (Theorem 19), and for both there
exist optimal realizations whose dimension is bounded by the tree-width of the graph plus
one (corollaries 17 and 20). Like in [25], the realization interpretation can be carried over
to the eigenvectors of the unweighted Laplacian by optimizing over the edge parameters l,
(theorems 39 and 40).

The paper is organized as follows. In Section 2 we formulate the primal and dual
semidefinite programs to (1) and give the connection to (Eλn−λ2). This is followed by
basic properties of optimal solutions and first examples in Section 3. Section 4 presents
our main results, namely the comparison of solutions of the single and coupled problems
and the results exhibiting the connections to the separator structure and the tree-width
of the graph. It also includes a discussion on graphs that have isolated nodes or that
result in optimal weighted Laplacians having more connected components than the graph.
Bipartite graphs and graphs with some symmetries are analyzed in Section 5. At the end,
in Section 6, we offer a geometric interpretation of the eigenspaces of the second smallest
and the maximum eigenvalue of the unweighted Laplacian as optimal solutions to a graph
realization problem.

Our notation is quite standard. We use ‖ ·‖ for the Euclidean norm. The inner product
of matrices A, B ∈ Rn×n is 〈A,B〉 =

∑
ij AijBij. For vectors a, b ∈ Rn we prefer the
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notation a>b = 〈a, b〉. If A − B is positive semidefinite for symmetric matrices A and B,
this is denoted by A � B. For I ⊆ {1, . . . ,m} and a matrix A = [a1, . . . , am] ∈ Rn×m we
denote by AI the set {ai : i ∈ I}.

2 Primal-dual formulation

Let si > 0 (i ∈ N) be node weights, let lij ≥ 0 (ij ∈ E) specify edge lengths and put

D = Diag(s
−1/2
1 , . . . , s

−1/2
n ). The following primal semidefinite program is a formulation of

(1),
min λn − λ2

subject to
∑
ij∈E

wijDEijD + µD−111>D−1 − λ2I � 0,

λnI −
∑
ij∈E

wijDEijD � 0,∑
ij∈E

l2ijwij = 1,

λ2, λn, µ ∈ R, w ≥ 0.

(Pλn−λ2)

Note that, in consequence of the third constraint, problem (Pλn−λ2) is infeasible if and only
if E = ∅ or all lij = 0, so we will always assume E 6= ∅ and lı > 0 for some ı ∈ E. It is,
however, no problem if some of the lij are zero, as we prove next.

Observation 1 For G = (N,E) with E 6= ∅ and data s > 0, 0 6= l ≥ 0, problem (Pλn−λ2)
is strictly feasible, the optimal value is attained and the set of optimal vectors w is compact.

Proof. Choosing λn sufficiently positive and λ2 negative for any feasible w reveals that
(Pλn−λ2) is strictly feasible. Because the dual program

max ξ
subject to 〈I,X〉 = 1,

〈I, Y 〉 = 1,
〈D−111>D−1, X〉 = 0,
〈DEijD, Y 〉 − 〈DEijD,X〉 − l2ijξ ≥ 0 (ij ∈ E),
ξ ∈ R, X, Y � 0.

(Dλn−λ2)

has feasible solutions, semidefinite duality theory [44] asserts that both programs have
a common finite optimal value that is attained in (Dλn−λ2). In order to show primal
attainment, we prove that for any fixed δ > 0 the assumption λmax(Lw) − λ2(Lw) < δ
implies the boundedness of w, which establishes the observation by standard compactness
arguments (the scaling by D � 0 may be neglected in these considerations).

For i, j ∈ N, i < j, define vectors qij = (ei − ej)/
√

2, weighted degrees diw =
∑

ik∈E wik
and values γijw = qTijLwqij = (diw +djw +2wij)/2 (setting wij = 0 for ij /∈ E). Note that each
qij is orthogonal to 1, so by Courant-Fischer λmax(Lw) ≥ maxij γ

ij
w ≥ minij γ

ij
w ≥ λ2(Lw).

By λmax(Lw) − λ2(Lw) < δ we obtain |γijw − γkhw | < δ for any choice of i, j, k, h ∈ N with
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i 6= j, k 6= h. This allows to conclude |diw − djw| ≤ 4δ for any i < j as we prove next. For
k ∈ N \ {i, j},

|γkiw − γijw | < δ ⇒ |dkw − (djw + 2wij − 2wik)| ≤ 2δ,

|γkjw − γijw | < δ ⇒ |dkw − (diw + 2wij − 2wjk)| ≤ 2δ

⇒ |(diw − djw)− 2(wjk − wik)| ≤ 4δ.

Using this, diw > djw + 4δ would imply wjk > wik for all k ∈ N \ {i, j} giving rise to the
contradicting relation djw =

∑
jk∈E wjk >

∑
ik∈E wik = diw, so we obtain |diw − djw| ≤ 4δ as

claimed. Thus, the inequality |γijw − γkhw | < δ yields

|wij − wkh| ≤ 5δ for i, j, k, h ∈ N with i 6= j, k 6= h.

Because of l 6= 0 there is an ij ∈ E with lij > 0 and wij ≤ 1/l2ij by feasibility, so all whk
remain bounded whenever λn(Lw)− λ2(Lw) ≤ δ for some fixed δ > 0.

Expressing in (Dλn−λ2) the semidefinite variablesX and Y by Gram representationsDXD =
U>U , U = [u1, . . . , un] ∈ Rn×n and DYD = V >V , V = [v1, . . . , vn] ∈ Rn×n, we obtain
(Eλn−λ2) as an equivalent nonconvex quadratic program.

Interpreting the vectors ui and vi (i ∈ N) of any feasible solution of (Eλn−λ2) as
vector labelings of the nodes i ∈ N , we get two realizations/embeddings U and V of the
graph in Rn. For these, the node weighted square norms sum up to one (we call this
the normalization constraints), the weighted barycenter of U is at the origin (equilibrium
constraint ; it is convenient to keep the square in view of the KKT conditions (4) below)
and the difference between the squared edge lengths of the two realizations is bounded
below by the weighted variable ξ (distance constraints). In optimal solutions the minimal
weighted difference of the distances over all ij ∈ E with lij > 0 is as large as possible.

One might wonder, whether requiring l > 0 would not lead to more elegant formulations,
after all the effect on the optimal value is small by Observation 1. However, we will see in
Observation 4 below that ξ = 0 in (Eλn−λ2) if and only if G is complete. In consequence,
if l > 0 and G is not complete we might loose characteristic optimal solutions in (Eλn−λ2),
because if G is not complete the distance constraint would not allow vi = vj for any ij ∈ E.

For optimal primal and dual solutions, semidefinite complementarity conditions imply

〈X,DLwD + µD−111>D−1 − λ2I〉 =
∑
ij∈E

wij‖ui − uj‖2 − λ2 = 0 (2)

and
〈Y, λnI −DLwD〉 = λn −

∑
ij∈E

wij‖vi − vj‖2 = 0. (3)

Remark 2 One may view optimal embeddings as a map of eigenvectors of λ2 and λmax

of an optimal DLwD. Indeed, for any h ∈ Rn and optimal embeddings U = [u1, . . . , un]
and V = [v1, . . . , vn] the scaled projections ξ2 = D−1UTh and ξn = D−1V Th onto the
one dimensional subspace spanned by h yield eigenvectors to λ2(DLwD) and λmax(DLwD),
respectively, by complementarity conditions (2) and (3).
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In order to analyze properties of optimal solutions it is sometimes helpful to view optimality
conditions from the perspective of the embedding problem (Eλn−λ2). Without feasibility
and using the Lagrange multipliers λ2, λn, µ, and wij ≥ 0 of (Pλn−λ2), its Karush-Kuhn-
Tucker conditions read

λ2siui =
∑
ij∈E

wij(ui − uj)− µsi
n∑
j=1

sjuj (i ∈ N), (4)

λnsivi =
∑
ij∈E

wij(vi − vj) (i ∈ N), (5)

wij(‖vi − vj‖2 − ‖ui − uj‖2 − l2ijξ) = 0 (ij ∈ E). (6)

Edges ij with weight wij = 0 are of little relevance in optimal solutions. Therefore we will
often restrict considerations to the strictly active and the active subgraph defined next.

Definition 3 Given a graph G = (N,E) and data s > 0, 0 6= l ≥ 0, let U = [u1, . . . , un],
V = [v1, . . . , vn] and ξ be an optimal solution of (Eλn−λ2) and let w be a corresponding
optimal solution of (Pλn−λ2). The edge set EU,V,ξ,l = {ij ∈ E : ‖vi − vj‖2 − ‖ui − uj‖2 =
l2ijξ} gives rise to the active subgraph GU,V,ξ,l = (N,EU,V,ξ,l) of G with respect to U , V
and ξ. The strictly active subgraph Gw = (N,Ew) of G with respect to w has edge set
Ew = {ij ∈ E : wij > 0}.

3 Basic Properties and Examples

We start by discussing the special case of optimal solution value 0.

Observation 4 For any data s > 0, 0 6= l ≥ 0, problem (Pλn−λ2) has optimal value 0 if
and only if G = Kn. In this case, wij = sisj/

∑
k<h l

2
khsksh, 1 ≤ i < j ≤ n, is optimal.

Proof. Any feasible solution w with λn = λ2 =: λ satisfies w 6= 0 and λ > 0. Because µ
only serves to shift the trivial eigenvalue 0 of the Laplacian, there is also a solution with
µ = λ/‖D−11‖2 = λ/

∑
si and we use this solution in the following. Then

λI � DLwD + µD−111TD−1 � λI ⇔ Lw + µD−211TD−2 = λD−2.

For i < j this forces wij = µsisj 6= 0, therefore the graph must be complete. These
values also satisfy the requirements of the i-th diagonal element,

∑
j∈N,j 6=iwij + µs2

i =

µsi
∑

j∈N sj = λsi. The constraint 1 =
∑

i<j l
2
ijwij = µ

∑
i<j l

2
ijsisj determines µ and λ.

Next we describe some optimal dual realizations for G = Kn. In this and in the sequel it
will be convenient to abbreviate the sum of the node weights for some subset N ′ ⊆ N by
s̄(N ′) =

∑
i∈N ′ si.
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Example 5 (complete graphs) Let G be the complete graph Kn with given data s >
0 and 0 6= l ≥ 0. By Observation 4 and strong duality, any optimal solution ξ, U =
[u1, . . . , un] and V = [v1, . . . , vn] of (Eλn−λ2) fulfills ξ = 0. Because all wij are positive,
complementarity implies ‖ui − uj‖ = ‖vi − vj‖ for all i, j ∈ N .

An optimal d-dimensional realization of (Dλn−λ2) (1 ≤ d ≤ n − 1) is given by taking
M ⊆ N , where |M | = d+ 1 and

ξ = 0, Xkl = Ykl =
1

ds̄(M)


s̄(M \ {k}) for k, l ∈M, k = l,

−√sksl for k, l ∈M, k 6= l,

0 otherwise.

Note, the n− d− 1 nodes of N \M are embedded in the origin.

If the strictly active subgraph is not connected, the problem almost decomposes into sub-
problems (Pλn) on the components. More precisely, the value of λ2 is zero and the min-
imization of the maximum eigenvalue leads to an identical maximum eigenvalue on each
component consisting of at least two nodes. In order to state and prove this result in de-
tail, we denote by LN

′
w the principal submatrix of the weighted Laplacian Lw with indices

i ∈ N ′ ⊆ N .

Observation 6 Given G = (N,E 6= ∅) and data s > 0, 0 6= l ≥ 0, let λ2, λn, w be optimal
for (Pλn−λ2) and let the strictly active subgraph Gw consist of k connected components
Gi = (Ni, Ei), i = 1, . . . , k. Then
(i) k > 1 if and only if λ2 = 0,
(ii) for each component i = 1, . . . , k, λn = λmax(DLNi

w D) if and only if Ei 6= ∅.

Proof. (i) was already observed by Fiedler [12], but the argument is short: Suppose
k ≥ 2, then q = D−1( 1

s̄(N1)

∑
i∈N1

ei − 1
s̄(N2)

∑
i∈N2

ei) is an eigenvector to λ2 = 0, because

DLwDq = 0 and 1TD−1q = 0. The other direction follows, e. g., by applying Perron-
Frobenius to (1 + max{L{i}w : i ∈ N})I − Lw.

For (ii), we know λn > 0 by Obs. 4. Because Lw consists of independent principal
submatrices corresponding to the connected components, there is at least one block Ni

with λn = DViLVi
wD

Vi . Suppose Ek̄ = ∅ for some k̄, then the component is an isolated node,

|Nk̄| = 1, and 0 = L
Nk̄
w , so λn > λmax(DNk̄L

Nk̄
w DNk̄). If there is a connected component

(Nk̄, Ek̄ 6= ∅) with λn > λmax(DNk̄L
Nk̄
w DNk̄), then slightly increasing the weights wij for

ij ∈ Ek̄ and decreasing the weights of all components with λn = λmax(DNiLNi
w D

Ni) allows
to preserve feasibility and to improve the solution at the same time, so this contradicts
optimality.

Remark 7 By Observation 6 and its proof, the number of components of the strictly ac-
tive subgraph with at least one edge is a lower bound on the dimension of the eigenspace
corresponding to the maximum eigenvalue λn of DLwD.
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By summing the KKT conditions (5) over all nodes of the graph, or alternatively over
the nodes of each connected component, it follows that with respect to optimal V the
equilibrium constraint holds automatically for each connected component.

Observation 8 Given G = (N,E 6= ∅) and data s > 0, 0 6= l ≥ 0, let ξ, U , V =
[v1, . . . , vn] be optimal for (Eλn−λ2) and λ2, λn, w be optimal for (Pλn−λ2). For any con-
nected component (Ni, Ei) of the strictly active subgraph, of the active subgraph, or of the
graph itself, the weighted barycenter with respect to V is in the origin, i. e.,

∑
i∈Ni

sivi = 0.

Considering the U -embedding, the barycenter of the entire graph is explicitly constrained
to lie in the origin. This, however, does not extend to the connected components. In fact,
whenever the strictly active subgraph is not connected, the optimal U -embeddings of each
component collapse to single points.

Observation 9 Given G = (N,E 6= ∅) and data s > 0, 0 6= l ≥ 0, let U = [u1, . . . , un]
be optimal for (Eλn−λ2) and λ2, w be optimal for (Pλn−λ2). The strictly active subgraph
Gw = (N,Ew) is not connected if and only if ui = uj for ij ∈ Ew if and only if λ2 = 0.

Proof. The claim follows from semidefinite complementarity (see (2)) and Obs. 6(i), i. e.,
λ2 = 0 if and only if Gw is not connected.

If G itself is not connected there exists an optimal one-dimensional U (independent of an
optimal V ). To see this, split the graph into two disjoint node sets such that no edges
connect nodes in distinct sets. Each set is mapped onto a separate coordinate so that the
normalization constraint and the equilibrium constraint are satisfied.

If G is connected but its strictly active subgraph Gw is not, no optimal one dimensional
realizations U need to exist, because the distance constraints of inactive edges may cause
problems. This is illustrated by the following example.

1

2 3

Figure 1: There may be no one-dimensional embedding U even if Gw is not connected.

Example 10 Consider the graph of Figure 1 with data s = 1 and l = 1. The edges in the
dashed triangle have optimal weight zero and the strictly active subgraph is not connected.
In an optimal embedding U , each component is mapped onto one point. Computing an
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optimal V one obtains an optimal solution with ‖vi− vj‖2 ≈ 0.7140 (ij ∈ {12, 23, 13}) and
optimal ξ ≈ 4/9. Hence, ‖ui − uj‖2 ≤ 0.7410 − 4/9 ≈ 0.2965 (ij ∈ {12, 23, 13}). There
is no optimal one-dimensional embedding ui = xih (i ∈ N) with h ∈ Rn, ‖h‖ = 1 and
xi ∈ R (i ∈ N), because it would have to satisfy the following infeasible system,

equilibrium constraint 4x1 + 4x2 + 4x3 = 0,
normalization constraint 4x2

1 + 4x2
2 + 4x2

3 = 1,
distance constraints (xi − xj)2 ≤ 0.2965 (ij ∈ {12, 23, 13}).

The next observation provides a bound on the length of vectors of optimal realizations
of (Eλn−λ2).

Observation 11 Given G = (N,E 6= ∅) and data s > 0, 0 6= l ≥ 0, let ξ, U = [u1, . . . , un],
V = [v1, . . . , vn] be optimal for (Eλn−λ2) and put l̂ = (max{‖ui − uj‖2 + l2ijξ : ij ∈ E})1/2.

Then ‖ui‖ < s
−1/2
i and ‖vi‖ < min{s−1/2

i , l̂} for i ∈ N .

Proof. The bound concerning the ui is a direct consequence of the normalization con-
straint. The same argument works for the term s

−1/2
i of the bound concerning the vi.

The proof for l̂ is as follows: Suppose, for contradiction, that there is a node k ∈ N
with ‖vk‖ = l̂ + ε ≥ l̂. Then we show that there is another feasible realization V ′ (and
U) with no smaller objective value having the barycenter of V ′N outside the origin, which
contradicts the optimality of V by Obs. 8.

Note that l̂ > 0 because l 6= 0 and, by Obs. 4 and Ex. 5, ξ > 0 or ‖ui − uj‖2 > 0 for

at least one ij ∈ E. By the first part, i. e., sk‖vk‖2 < 1, the bounds 0 ≤ sk(2l̂ε + ε2) < 1
hold. Because of Obs. 8 there is a vector h ∈ Rn, with ‖h‖ = 1, that is orthogonal to VN .
Thus a new realization V ′ may be defined by

v′i =
1√

1− sk(2l̂ε+ ε2)

{
vi i ∈ N \ {k}
l̂h i = k.

In words, we first embed the vector vk in the new direction h and if ε > 0 we shorten it.
Then, if ε > 0, we lengthen all the vectors, such that the weighted square norms sum up
to one again.

In consequence, the lengths of edges not including k do not decrease. For ik ∈ E we
have

‖v′i − v′k‖2 ≥ ‖vi − l̂h‖2 = ‖vi‖2 + l̂2 ≥ l̂2 ≥ ‖ui − uk‖2 + l2ikξ.

Thus ξ, U and V ′ is a feasible and optimal solution of (Eλn−λ2). But the barycenter of
V ′N is not in the origin as only node k has a nonzero contribution in direction h. This
contradicts Obs. 8.

The following example illustrates that the bounds of Observation 11 cannot be improved.
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Example 12 Let s = c1 with c > 0, l = 1. For n > 2 consider the graph G = (N,E) =
({1, . . . , n}, {2k : k ∈ N \ {1, 2}}), i. e., it consists of two components: an isolated node
and a star. Let h ∈ Rn, ‖h‖ = 1. Optimal realizations of (Pλn−λ2) and (Eλn−λ2) are given
by

λ2 = 0, λn =
n− 1

c(n− 2)
, µ = 0, wij =

1

n− 2
(ij ∈ E)

and

ξ =
n− 1

c(n− 2)
, ui =


√

n−1
cn
h for i = 1,

−
√

1
cn(n−1)

h otherwise,
vi =


0 for i = 1,√

n−2
c(n−1)

h for i = 2,

−
√

1
c(n−2)(n−1)

h otherwise.

Because ui = uj (ij ∈ E) the bounds are l̂ =
√
ξ > c−1/2 = s

−1/2
i (i ∈ N).

For n → ∞ we obtain l̂ → c−1/2 = s
−1/2
i (i ∈ N), ‖u1‖2 → c−1/2 and ‖v2‖2 → c−1/2.

Thus, the bounds cannot be improved.

Remark 13 The embeddings of complete graphs described in Example 5 allow to construct
a sequence of problems and solutions with the property that l̂ → 0 in Observation 11.
Indeed, the analysis of the embedding yields ‖vi‖2 = ‖ui‖2 = d−1(s−1

i − s̄(M)−1) and
d−1(s−1

i − s̄(M)−1) < s−1
i for i ∈M . In addition,

l̂2 = max{0, ‖ui‖2 (i ∈M), ‖ui − uj‖2 = d−1(s−1
i + s−1

j ) (i, j ∈M)}
= max{d−1(s−1

i + s−1
j ) : i, j ∈M}.

For s = c1, c > 0 and d > 2 we have s−1
i = c−1 > l̂2 = 2(dc)−1 (i ∈ N) and for, e. g.,

d = n− 1 and n→∞ we obtain l̂→ 0.

4 Properties common to (Eλn−λ2) and (Eλ2) or (Eλn)

Graph realizations induced by optimal solutions of (Eλ2) and (Eλn) are tightly linked to the
separator structure of the graph, see [20] and [18]. The aim of this section is to investigate
which of the properties of the single problems can be saved for the combined problem
(Eλn−λ2). The first theorem states that for appropriate choices of ξ feasible solutions
remain feasible. While feasibility is preserved, optimality may be lost.

Theorem 14 Given G = (N,E 6= ∅) and data s > 0, 0 6= l ≥ 0, there exist appropriate
values for the respective ξ variables so that feasible realizations U of (Eλ2) and V of (Eλn)
are feasible realizations (U, V ) of (Eλn−λ2) and vice versa.

Proof. For feasible solutions ξ2, U of (Eλ2) (ξ2 may be negative) and ξn, V of (Eλn)
the normalization constraints and the equilibrium constraint are satisfied. As ξ = ξn + ξ2

fulfills the distance constraints, ξ, U, V is feasible for (Eλn−λ2) with data s and l.

11



On the other hand let ξ, U , V be feasible for (Eλn−λ2). By choosing

ξ2 = max
lij 6=0

{
ξ − ‖vi − vj‖

2

l2ij

}
and ξn = min

lij 6=0

{
‖ui − uj‖2

l2ij
+ ξ

}
U , ξ2 is feasible for (Eλ2) and V , ξn is feasible for (Eλn).

Next we consider optimal realizations. It turns out that optimal realizations V of (Eλn−λ2)
for data s > 0 and 0 6= l ≥ 0 are optimal for (Eλn) for data that are adapted appropriately.

Theorem 15 (Optimal V ) Given G = (N,E 6= ∅) and data s > 0, 0 6= l ≥ 0, let V be
an optimal realization of (Eλn−λ2). There exist data 0 6= l̄ ≥ 0 so that V is optimal for
(Eλn) with data s and l̄. Furthermore, if G is not complete and l > 0, also l̄ > 0.

Proof. Let U , V and ξ be an optimal solution of (Eλn−λ2) and w an optimal solution of
(Pλn−λ2). Set l̄2ij = ‖vi−vj‖2 ≥ 0 (ij ∈ E). The proof is given in three steps: first we show
l̄ 6= 0, then feasibility and third optimality of V in (Eλn) with data s and l̄.

In the first step we have to consider two cases: G is not complete and G is complete.
Let G be not complete then ξ > 0 by Obs. 4. For each edge ij ∈ E with lij > 0 (there is at
least one by 0 6= l) the distance constraint yields l̄2ij = ‖vi− vj‖2 ≥ l2ijξ > 0. Thus, if l > 0,
also l̄ > 0. If G is complete, l̄ = 0 is equivalent to vi = vj (i, j ∈ N). The latter, however,
is impossible, because the normalization constraint requires vi 6= 0 for some i ∈ N and by
optimality and Obs. 8 the barycenter lies in the origin. Hence 0 6= l̄ ≥ 0.

V , ξ̂ = 1 is feasible for (Eλn) with data s and l̄ because of the feasibility of V for
(Eλn−λ2) and the special choice of l̄ and ξ̂.

In the last step assume, for contradiction, that V and ξ̂ is not optimal in (Eλn) with
data s and l̄, i. e., there exist feasible V ′ and ξ′ = 1 + ε > ξ̂. Then for ij ∈ E the distance
constraints read ‖v′i − v′j‖2 ≥ l̄2ijξ

′ = ‖vi − vj‖2(1 + ε) ≥ ‖vi − vj‖2. Therefore V ′, U and
ξ is also feasible and optimal for (Eλn−λ2) with data l. Note that ‖v′i − v′j‖2 > ‖vi − vj‖2

whenever vi 6= vj. In consequence, for V ′ and ij ∈ E with vi 6= vj, the corresponding
distance constraint of (Eλn−λ2) is inactive and has, by complementarity, a zero multiplier
wij = 0. Thus, for ij ∈ E we have vi = vj or wij = 0. The contradiction now follows from
semidefinite complementarity (3), because λn > 0.

An immediate consequence is that all structural properties observed in [18] for optimal
solutions of (Eλn) also hold for optimal V of (Eλn−λ2) whenever these do not depend on
certain constraints being active or strictly active. In particular, we obtain the following
two corollaries.

Corollary 16 (Sunny Side) Given a graph G = (N,E 6= 0) and data s > 0, 0 6= l ≥ 0,
let U , V = [v1, . . . , vn] be an optimal solution of (Eλn−λ2). For any two disjoint nonempty
subsets A and S of N such that each edge of the corresponding active subgraph GU,V,ξ,l

leaving A ends in S, the barycenter v̄(A) = 1
s(A)

∑
i∈A sivi is contained in S = aff(VS) −

cone(VS).

12



Proof. Th. 15 above and [18](Th. 9).

Corollary 17 Given a graph G = (N,E 6= 0) and data s > 0, 0 6= l ≥ 0, let U , V be
an optimal solution of (Eλn−λ2). There exists, for the same U , an optimal solution V ′ of
(Eλn−λ2) of dimension at most 1 if the tree-width of G is one and of dimension tree-width
of G plus one otherwise.

Proof. Th. 15 above and [18](Th. 12; note, in its proof the transformations preserve all
distances ‖vi − vj‖ for ij ∈ E).

There is an almost analogue result for (Eλ2) and optimal U whenever the strictly active
subgraph is connected, i. e., whenever λ2(Lw) > 0 for some optimal w of (Pλn−λ2). The
proof is almost identical to that of Theorem 15, so we refrain from repeating it here.

Theorem 18 (Optimal U) Given G = (N,E 6= ∅) and data s > 0, 0 6= l ≥ 0, let U be an
optimal realization of (Eλn−λ2) and suppose there is an optimal w for (Pλn−λ2) resulting in
a connected strictly active subgraph Gw. There exist data 0 6= l̄ ≥ 0 such that U is optimal
for (Eλ2) with data s and l̄.

Again, we obtain two corollaries for structural properties observed in [20].

Corollary 19 (Separator-Shadow) Given G = (N,E 6= ∅) and data s > 0, 0 6= l ≥ 0,
let U be an optimal realization of (Eλn−λ2) and suppose there is an optimal w for (Pλn−λ2)
resulting in a connected strictly active subgraph Gw. Let S be a separator in Gw giving rise
to a partition N = S ∪ C1 ∪ C2 where there is no edge in Ew between C1 and C2. For at
least one Cj with j ∈ {1, 2}

conv{0, ui} ∩ conv{us : s ∈ S} 6= ∅ ∀i ∈ Cj. (7)

In words, the straight line segments conv{0, ui} of all nodes i ∈ Cj intersect the convex
hull of the points in S.

Proof. Th. 18 above and [20](Th. 1.4; note, its proof in [20] also works for l ≥ 0).

Corollary 20 Given G = (N,E 6= ∅) and data s > 0, 0 6= l ≥ 0, suppose there is an
optimal w for (Pλn−λ2) resulting in a connected strictly active subgraph Gw. There exists
an optimal embedding U of (Eλn−λ2) of dimension at most the tree-width of G plus one.

Proof. Th. 18 above and [20](Th. 1.5; note, in its proof the transformations preserve all
distances ‖ui − uj‖ for ij ∈ E).

The condition of an optimal w giving rise to a connected strictly active subgraph in
Theorem 18 is essential. The following example provides an instance of (Eλn−λ2) with an
optimal U so that U is not the optimal solution of (Eλ2) for any choice of s > 0 and l ≥ 0.
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Figure 2: Graph G and optimal embedding U for (Eλn−λ2) with data s = 1 and l = 1, the
strictly active subgraph is not connected.

Example 21 Consider the graph G of Figure 2 and let s = 1 and l = 1 be given data. The
strictly active subgraph Gw is not connected, because dashed edges 34 and 47 have optimal
weight zero. The plot on the right hand side of Figure 2 depicts a two-dimensional optimal
embedding U = [u1, . . . , u9] of G for (Eλn−λ2). There, each component is embedded into a
separate point, i. e., u1 = u2 = u3 =: u′1, u4 = u5 = u6 =: u′s and u7 = u8 = u9 =: u′2 with
u′s /∈ conv{0, u′1} and u′s /∈ conv{0, u′2}. For (Eλ2) the Separator Shadow Theorem 1.5 of
[20] holds, as noted above, for all connected graphs with data s > 0 and l ≥ 0. Because
S = {4, 5, 6} is a separator in G separating C1 = {1, 2, 3} from C2 = {7, 8, 9}, it requires
conv{0, ui} ∩ conv{us : s ∈ S} 6= ∅ for all i ∈ Cj for at least one j ∈ {1, 2}. So there are
no choices of data s > 0 and l ≥ 0 rendering U optimal for (Eλ2).

As an immediate consequence of Observation 9, optimal solutions of (Pλn−λ2) are also
optimal for (Pλn) whenever the strictly active subgraph is not connected.

Observation 22 Given G = (N,E 6= ∅) and data s > 0, 0 6= l ≥ 0, let ξ, U , V be optimal
for (Eλn−λ2) and λ2, λn, µ and w be optimal for (Pλn−λ2). If the strictly active subgraph
Gw is not connected then ξ, V is optimal for (Eλn) and λn, w is optimal for (Pλn) with
data s and l.

Remark 23 If for a graph G = (V,E 6= ∅) whose strictly active subgraph is not connected,
the connected components can be identified in advance, problem (Pλn) ( (Eλn) respectively)
can be solved by first computing the solution for each single component with the same data
(disregarding isolated nodes) and by then combining these to an optimal solution of G via
scaling, see Observation 6.

Isolated nodes are a special case when considering connected components. In [18] it is
shown, that in (Eλn) with data s > 0 and l = 1 a node is embedded in the origin if and
only if it is isolated in the strictly active subgraph. It is no problem to generalize this for
data l = c1 by scaling. This is summarized together with another characterization in the
next result.
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Observation 24 Let s > 0 and l = c1 with c > 0 be given data for a graph G with at
least one edge. For k ∈ N and optimal solutions w of (Pλn) and V of (Eλn) the following
are equivalent,
(i) vk = 0,
(ii) k is an isolated node of G,
(iii) k is an isolated node of the strictly active subgraph Gw.

Proof. (i) ⇒ (ii): Let vk = 0 then k is isolated because of the analogous result in [18] for
c = 1 with an additional scaling argument.

(ii) ⇒ (iii): If k is isolated in G, it is also isolated in the strictly active subgraph by
definition.

(iii)⇒ (i): Let k be an isolated node in the strictly active subgraph and first suppose it
is not isolated in G. Then vk = 0 follows from the KKT condition for (Eλn) corresponding
to (5), because λnvk =

∑
ik∈E wik(vk−vi), wik = 0 for ik ∈ E, and λn 6= 0 (because E 6= ∅).

It remains to consider the case of an isolated node k in the strictly active subgraph,
that is also isolated in G. Assume for contradiction, that vk 6= 0. Then we construct
another feasible solution V ′ by setting v′k = 0 and inflating the remaining graph such that
the normalization constraint is satisfied again. Hence, all edge lengths are increased and
we can improve the objective value which contradicts optimality of V .

Almost the same results hold for (Eλn−λ2).

Observation 25 (isolated nodes - dual) Given G = (N,E 6= ∅) and data s > 0, 0 6=
l ≥ 0, let ξ, U and V = [v1, . . . , vn] be an optimal solution of (Eλn−λ2) and let w be optimal
for (Pλn−λ2). A node k ∈ N that is isolated in the strictly active subgraph Gw is embedded
in the origin.

Proof. If vk 6= 0, shift it into the origin and inflate the remaining graph such that the
normalization constraint is satisfied. The distances between all nodes in N \ {k} increase,
thus all the edge lengths increase and we may increase ξ without changing U .

The converse implication is not true in general, see the complete graph of Example 5. On
the other hand one can find graphs G 6= Kn and data 0 6= l ≥ 0, such that a node k ∈ N
that is not isolated in the strictly active subgraph is forced to the origin in V . Because of
Observation 24 we conjecture that this is not possible whenever l = c1 for some c > 0 and
G 6= Kn. For bipartite graphs we are able to prove this, see Observation 31.

Observation 26 (isolated nodes - primal) Let s > 0 and l = c1, c > 0 be given data
for a graph G with at least one edge and let w be optimal for (Pλn−λ2). A node k ∈ N is
isolated in G if and only if k is isolated in the strictly active subgraph Gw.

Proof. Because Ew ⊆ E a node k is isolated in Gw if it is isolated in G. It remains to
consider the case of k being isolated in Gw. Because Gw is not connected, it suffices to
invoke Obs. 22 and 24 to complete the proof.
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Again, Observation 26 does not hold for arbitrary 0 6= l ≥ 0, in general. If we choose
appropriate l, nodes that are not isolated in G may be isolated in Gw.

If G is connected, any optimal solution of (Pλ2) yields a connected strictly active
subgraph. So for connected graphs, a non connected strictly active subgraph indicates
a dominance of (Pλn) over (Pλ2). While the optimal value of (Pλ2) is related to the
connectivity of the graph — it is referred to as absolute algebraic connectivity of G in
[12, 13] — k-connectivity cannot ensure connectedness of the strictly active subgraph in
(Pλn−λ2).

Example 27 (k-edge-connected graphs) For k ≥ 1, s = 1 and l = 1 let G be a graph
on 12k nodes with edge set E = {ij : i, j ∈ {1, . . . , 3k}, i 6= j} ∪ {ij : i ∈ {1 + rk, . . . , k +
rk}, j ∈ {1 + 3k(r + 1), . . . , 3k + 3k(r + 1)}, r ∈ {0, 1, 2}}. So the core of G consists of
a complete graph on 3k nodes and for each of the core’s three node disjoint subgraphs Kk

further 3k independent nodes are fully linked to it (see Figure 3). Because there are k edge

Kk

. . .
3 · k

Kk

. . .
3 · k

Kk

. . .
3 · k

K3·k

Figure 3: A k-edge-connected graph may have a disconnected strictly active subgraph (see
Example 27).

disjoint paths between any two nodes i, j ∈ V , G is k-edge-connected.
Put ω = 2

3(7k2−k)
. We prove in the following that an optimal solution with λ2 = 0, µ = 0

and λn = 4kω is obtained by setting wij = 0 for edges ij that connect the three Kk (the
dashed edges in Figure 3) and wij = ω for the other edges (ω normalizes the sum of these
weights to 1). Note that the strictly active subgraph (V,Ew) consists of three connected
components, so λ2 = 0 by Observation 6. In order to see that indeed λmax(Lw) = 4kω it
suffices to consider the Laplacian block L̄w ∈ R4k×4k of a single component. Let the first k
columns and rows belong to the complete subgraph Kk. Then

x>(λnI−L̄w)x = ωx>(4kI−L̄)x = ω

( 4k∑
i=1

xi

)2

+
∑

k+1≤i<j≤4k

(xi − xj)2

 ≥ 0 ∀x ∈ R4k

and L̄w � 0 yields feasibility. To show optimality it suffices to construct a feasible dual
solution with identical objective value.
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By Observation 9, in any optimal U of (Dλn−λ2) the nodes of each of the three compo-
nents are mapped onto a single point. Because of the equilibrium constraint the three points
form a regular triangle having its barycenter in the origin. Together with the normalization
constraint this yields

‖ui‖2 =
1

12k
, ‖ui − uj‖2 =

{
0 ij ∈ E \ Ew,
1
4k

ij ∈ Ew.

In an optimal V of (Dλn−λ2) each component results in a regular (k+ 1)-simplex where the
3k independent nodes are mapped onto a common vertex. We call the straight line segment
connecting this special vertex to the barycenter of the remaining k vertices the height of
the simplex. Observe that — due to the 3k nodes assigned to the special vertex — the
barycenter of the vertex weighted simplex splits the height into segments of relative length
1 : 3. The requirement of identical primal and dual objective values forces the squared
distances of the vertices to ξ = λn = 4kω. The length h of the height satisfies h2 = k+1

2k
ξ.

By Obs. 8 the barycenter must coincide with the origin, resulting in the distances

‖vi‖2 =

{
25k−7

8
ω i ∈ {1, . . . , 3k}

k+1
8
ω i ∈ {3k + 1, . . . , 12k}

, ‖vi − vj‖2 = 4kω (ij ∈ Ew).

Finally, the distance constraints also need to hold for the zero-weighted-edges ij ∈ E\Ew, so
the corresponding distances should be as long as possible. For this, arrange the components
heights in a common plane (they intersect in the components barycenters, which is in the
origin) so that pairwise they enclose an angle of 2π/3 and rotate the components around
this height such that the affine subspaces spanned by the Kk are pairwise perpendicular and
also perpendicular to the plane spanned by the heights (this is possible, because we do not
restrict the dimension of the realization). Then for all edges in E \ Ew one obtains the
same length,

‖vi − vj‖2 =
59k − 5

8
ω > ξ for ij ∈ E \ Ew.

Therefore these realizations are feasible and optimality is proven. Note, that the above
construction yields a (3k − 1)-dimensional realization.

For k = 2 Figure 4 shows the graph, an optimal U and a three dimensional projection
of an optimal V .

It seems unlikely that there is a simple structural property characterizing connected graphs
whose strictly active subgraph is not connected for (Pλn−λ2) or even (Pλn). In order to shed
some light on the embedding properties underlying the loss of connectedness, consider for
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Figure 4: A 2-connected graph whose strictly active subgraph is disconnected (left), a
corresponding optimal U (center) and a projection of an optimal V (right).

some given γ ≥ 0 the primal dual pair of programs

min λn − γλ2

subject to
∑
ij∈E

wijDEijD + µD−111>D−1 − λ2I � 0,

λnI −
∑
ij∈E

wijDEijD � 0,∑
ij∈E

l2ijwij = 1,

λ2, λn, µ ∈ R, w ≥ 0.

(Pλn−γλ2)

max ξ
subject to

∑
i∈N

si‖ui‖2 = γ,∑
i∈N

si‖vi‖2 = 1,

‖
∑
i∈N

siui‖2 = 0,

‖vi − vj‖2 − ‖ui − uj‖2 − l2ijξ ≥ 0 (ij ∈ E),
ξ ∈ R, ui, vi ∈ Rn (i ∈ N).

(Eλn−γλ2)

Note that the set of optimal solutions w to (Pλn−γλ2) is compact by the same arguments
leading to Observation 1. Given a connected graph G, whose strictly active subgraph is not
connected for γ = 0, consider the development of optimal U in (Eλn−γλ2) while increasing
γ until the strictly active subgraph Gw,γ becomes connected. At first Gw,γ consists of
components Gh

w,γ = (Nh
w,γ, E

h
w,γ) and, by Observation 9, each node i of component h is

embedded in a point ūh, i. e., ui = ūh for i ∈ Nh
w,γ. As γ is increased, the values ‖ūh‖

have to increase due to the normalization constraint for U . By the equilibrium constraints
the distances ‖ūh − ūh′‖ have to increase for at least two distinct components h and h′

that are connected in G, so the distance constraint corresponding to an edge connecting
the two components will become strictly active eventually, thereby reducing the number of
components in the strictly active subgraph until only one connected component remains.
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This intuitive explanation provides a geometric interpretation for the next result, whose
proof is actually much simpler.

Observation 28 For any connected graph G = (N,E) and data s > 0, 0 6= l ≥ 0 there is
a γ ≥ 0 so that for all optimal w of (Pλn−γλ2) with γ > γ the strictly active subgraph Gw

is connected.

Proof. Take some w̄ > 0 with
∑

ij∈E l
2
ijw̄ij = 1, then λ2(Lw̄) > 0 (see the proof of

Obs. 6(i)) and put γ = λmax(Lw̄)/λ2(Lw̄). For γ > γ the value of (Pλn−γλ2) is negative for
this feasible w̄, and because λn > 0 for all feasible w we must have λ2 > 0 for all optimal
w of (Pλn−γλ2). The result now follows from Obs. 6 (i).

The size of the smallest such γ(s, l) may be interpreted as representing the dominance of
λn over λ2 for data s and l. Again, it does not seem easy to determine this value on basis
of structural properties of the graph.

At the end of this section we give some examples where optimal solutions of the coupled
problem (Pλn−λ2) coincide with optimal solutions of just one, of both or of none of the single
problems (Pλ2) and (Pλn).

Example 29 Let G be a graph consisting of two cycles of length n and additional edges
{ij : j = n + i, j = n + 1 + ((i + 2) mod n), i = 1, . . . , n} among them (see Figure 5).
Let s = 1 and l = 1. Let λ2, λn, µ, wij (ij ∈ E) be optimal for (Pλn−λ2). For

• n = 5 an optimal solution of (Pλn−λ2) is optimal for (Pλ2) and optimal for (Pλn) for
the same data s and l,

• n = 6 none of the single problems dominate the solution of (Pλn−λ2), i. e., λ2, µ,
wij (ij ∈ E) is not optimal for (Pλ2) and λn, wij (ij ∈ E) is not optimal for (Pλn)
for the same data s and l,

• n = 7 an optimal solution of (Pλ2) dominates that of (Pλn−λ2), i. e., λ2, µ, wij (ij ∈
E) is optimal for (Pλ2) and λn, wij (ij ∈ E) is not optimal for (Pλn) for the same
data s and l,

• n = 9 an optimal solution of (Pλn) dominates that of (Pλn−λ2), i. e., λ2, µ, wij (ij ∈
E) is not optimal for (Pλ2) and λn, wij (ij ∈ E) is optimal for (Pλn) for the same
data s and l.

5 Special graph classes

In [18] bipartite graphs turned out to play a special role because for these graphs there
always exist one-dimensional optimal realizations. It is therefore natural to look at optimal
realizations V of (Eλn−λ2) for bipartite graphs first. Indeed, the existence of an optimal
one-dimensional V -embedding for bipartite graphs is a direct consequence of Theorem 15
above and Theorem 12 in [18].
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Figure 5: Graph G of Example 29 for n = 6.

Observation 30 Let s > 0 and 0 6= l ≥ 0 be given data and G a bipartite graph with at
least one edge. There is a one-dimensional optimal realization V of (Eλn−λ2).

Let G = (N1 ∪ N2, E ⊆ {ij : i ∈ N1, j ∈ N2}) be bipartite with at least one edge, s > 0,
0 6= l ≥ 0 be given data and V = [v1, . . . , vn] an optimal embedding of (Eλn−λ2). A
one-dimensional optimal embedding corresponding to Observation 30 may be constructed
via

v′i =

{
‖vi‖h for i ∈ N1,

−‖vi‖h for i ∈ N2

(8)

with h ∈ Rn and ‖h‖ = 1. This is used in the next observation, which is closely related to
Observation 25.

Observation 31 Let G be a bipartite graph with at least one edge and given data s > 0
and l > 0. In an optimal realization V of (Eλn−λ2) a node is embedded in the origin if and
only if it is isolated in the strictly active subgraph.

Proof. Because of Obs. 25 it remains to show that for the optimal one-dimensional
realization V = [v1, . . . , vn] ∈ R1×N of (Eλn−λ2) constructed by (8) with h = e1 any node
k ∈ N with vk = 0 is isolated in the strictly active subgraph. It suffices to consider,
w.l.o.g., k ∈ N2 with at least one neighbor in G. For this k the KKT condition (5) reads
0 =

∑
kj∈E wkjvj. By construction vj ≥ 0 (kj ∈ E) thus the condition requires every

single summand to be zero. Suppose, for contradiction, that there is a neighbor j of k
in the strictly active subgraph. Then also vj = 0 and, by complementarity, the distance
constraint corresponding to jk is active and reads −‖uj − uk‖2 − l2jk(λn − λ2) = 0, thus

λ2 = λn + l−2
ij ‖uj − uk‖2. But λ2 ≥ λn is possible only for complete graphs. The only

complete graph that is bipartite is K2 and v1 = v2 = 0 contradicts the normalization
constraint. Thus, k is isolated in the strictly active subgraph.

Note that the restriction concerning data l cannot be dropped. If zero values are allowed
there exist bipartite graph instances having a node embedded in the origin without the
node being isolated in the strictly active subgraph.
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For l > 0 the only reason for the existence of higher dimensional realizations V are the
possibilities to rotate the connected components of the strictly active subgraph.

Observation 32 Let G be a bipartite graph with at least one edge and given data s > 0
and l > 0. In an optimal realization V of (Eλn−λ2) each connected component of the strictly
active subgraph is one-dimensional.

Proof. Consider an arbitrary optimal solution U , V , ξ of (Eλn−λ2), a corresponding
(optimal) one-dimensional realization V ′ as defined in (8) and an optimal solution λ2, λn,
w of (Pλn−λ2). For ij ∈ Ew complementarity implies ‖ui − uj‖2 + l2ijξ = ‖vi − vj‖2 =
‖v′i−v′j‖2 = (‖v′i‖−‖v′j‖)2 = (‖vi‖−‖vj‖)2. Together with Obs. 31 this asserts that vi 6= 0
and vj 6= 0 are linearly dependent. Because a component is connected, all corresponding
nodes are linearly dependent. Hence any component of Gw is one-dimensional.

In the remainder of this section we consider properties of optimal solutions connected to
the symmetry of the underlying graph. Considering symmetry in semidefinite programming
is profitable in general (see, e. g., [3, 4, 8, 9, 10, 15, 26, 27, 40]) and much of the following
is directly implied by the more general theory. Still it seems to be worth to highlight a few
basic properties in a short and self contained exposition.

An automorphism ϕ of a graph G = (N,E) is a permutation of the vertices N that
leaves the edge set E invariant, i. e., ϕ : N → N and ij ∈ E if and only if ϕ(i)ϕ(j) ∈
E. For simplicity, we write ϕ(ij) instead of ϕ(i)ϕ(j). If there are given node weights
si (i ∈ N) and edge weights lij (ij ∈ E) then we extend the definition by requiring that
ϕ : N → N is an automorphism of G with weights s and l if ij ∈ E if and only if
ϕ(ij) ∈ E, sk = sϕ(k) (k ∈ {i, j}), and lij = lϕ(ij) (see also [4]). It is well known that the
set of all automorphisms of G forms the automorphism group Aut(G). The same holds
for the automorphisms of G with weights s and l. We denote this group by Aut(G, s, l).
Note that Aut(G, s, l) ⊆ Aut(G) and Aut(G, cs1, cl1) = Aut(G) for cs, cl ∈ R. The orbits
E1, . . . , Ek of the edge set E under the action of Aut(G, s, l) give rise to a partition of E.
Furthermore if the edges e1, e2, e3, e4 (not necessarily different) lie in the same orbit, then
|{ϕ ∈ Aut(G, s, l) : ϕ(e1) = e2}| = |{ϕ ∈ Aut(G, s, l) : ϕ(e3) = e4}| 6= 0. We assign to each
orbit Er (r = 1, . . . , k) the number of automorphisms ar = |{ϕ ∈ Aut(G, s, l) : ϕ(e) = e′}|
with e, e′ ∈ Er. This leads to the following observation (which may also be seen as a direct
consequence of Lagrange’s theorem in group theory).

Observation 33 Let G be a graph with weights s and l, Aut(G, s, l) its automorphism
group and E1, . . . , Ek the orbits of the edge set E. Then |Aut(G, s, l)| = ar · |Er| for
r = 1, . . . , k.

Proof. Enumerate the edges, E = {e1, . . . , em}, and let e1 ∈ Er for some r ∈ {1, . . . , k}.
|Aut(G, s, l)| =

∑
ϕ∈Aut(G,s,l)

1 =
∑
ei∈E

∑
ϕ∈Aut(G,s,l)

ϕ(e1)=ei

1 =
∑
ei∈Er

∑
ϕ∈Aut(G,s,l)

ϕ(e1)=ei

1 =
∑
ei∈Er

ar = ar · |Er|.

An automorphism of a graph does not change the graph’s structure, so the next observation
about optimal primal solutions of (Pλn−λ2) follows immediately.
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Observation 34 Given G = (N,E 6= ∅) and data s > 0, 0 6= l ≥ 0, let ϕ ∈ Aut(G, s, l)
and let λ2, λn, µ and wij (ij ∈ E) be optimal for (Pλn−λ2). Then λ2, λn, µ and wϕ(ij) (ij ∈
E) is also optimal for (Pλn−λ2).

Because any convex combination of optimal solutions is again optimal, there is a special
primal optimal solution with the property that all edges within the same orbit of the
automorphism group have the same weight. So this solution is invariant under the group
action (see, e. g., [10, 15, 40]).

Observation 35 Given G = (N,E 6= ∅) and data s > 0, 0 6= l ≥ 0, let E1, . . . , Ek be the
orbits of the edge set E under the action of the automorphism group Aut(G, s, l). There
exists an optimal solution of (Pλn−λ2) with wij = cr ≥ 0 for ij ∈ Er (r = 1, . . . , k).

Proof. Let λ2, λn, µ and wij (ij ∈ E) be optimal in (Pλn−λ2). For ϕ ∈ Aut(G, s, l) the
solution λ2, λn, µ and wϕ(ij) (ij ∈ E) is optimal by Obs. 34. Using Obs. 33 define new
weights ŵij for ij ∈ Er (r ∈ {1, . . . , k}) via

|Aut(G, s, l)|ŵij =
∑
ϕ

wϕ(ij) =
∑
xy∈E

∑
ϕ(ij)=xy

wϕ(ij) =
∑
xy∈Er

∑
ϕ(ij)=xy

wxy = ar ·
∑
xy∈Er

wxy. (9)

As this is a convex combination of optimal solutions, it is optimal, too.

Remark 36 The same arguments yield analogous results for (Pλn) and (Pλ2).

A graph G = (N,E) whose automorphism group consists of only one orbit is called edge
transitive, i. e., for e1, e2 ∈ E there is an automorphism ϕ ∈ Aut(G) such that ϕ(e1) = e2.

Observation 37 (edge transitive graphs, see also [3]) Let G = (N,E) be edge tran-
sitive with at least one edge and s = cs1 > 0, l = cl1 > 0 be given data. There is an optimal
solution of (Pλn−λ2), of (Pλn) and of (Pλ2) with edge weights wij = 1

|E|c2l
(ij ∈ E).

Proof. Because Aut(G) = Aut(G, cs1, cl1) and because the single orbit is the entire edge
set E, Obs. 33 asserts |Aut(G)| = a1 · |E|. With this, (9) of Obs. 35 yields the result.

Observation 38 Let G = (N,E) be edge transitive, s = cs1 > 0 and l = cl1 > 0 given
data. Then optimal λ2 of (Pλ2) and optimal λn of (Pλn) are also optimal in (Pλn−λ2).

6 Variable edge length parameters

In order to interpret the eigenvectors of the unweighted Laplace matrix of a graph in
terms of the graph realization results, it is helpful to consider (Eλn−λ2) with s = 1 but
with variable edge length parameters l2ij (ij ∈ E) subject to a normalization constraint
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∑
ij∈E l

2
ij ≥ 1. Some normalization is needed, because otherwise the problem would be

unbounded.

ξ∗ = max ξ
subject to

∑
i∈N
‖ui‖2 = 1,∑

i∈N
‖vi‖2 = 1,

‖
∑
i∈N

ui‖2 = 0,∑
ij∈E

l2ij ≥ 1,

‖vi − vj‖2 − ‖ui − uj‖2 − l2ijξ ≥ 0 (ij ∈ E),
ξ ∈ R, ui, vi ∈ Rn (i ∈ N), l2ij ≥ 0 (ij ∈ E).

(Eλn−λ2,l)

The l2ij may be viewed as simple nonnegative variables, so (Eλn−λ2,l) is again a nonconvex
quadratic program. By exploiting the fact that ξ∗ > 0 whenever G 6= Kn, the bilinear
terms l2ijξ can be eliminated by dividing all constraints by ξ so as to obtain an equivalent
semidefinite problem in analogy to (Dλn−λ2). Using the scaled variables X̄ = X/ξ and
Ȳ = Y/ξ, the maximization of ξ then corresponds to minimizing 〈I, X̄〉. For G 6= Kn, this
results in the semidefinite program

1
ξ∗

= min 〈I, X̄〉,
subject to 〈I, X̄〉 − 〈I, Ȳ 〉 = 0,

〈11>, X̄〉 = 0,
〈Eij, Ȳ 〉 − 〈Eij, X̄〉 − l2ij ≥ 0 (ij ∈ E),∑
ij∈E

l2ij ≥ 1,

X̄, Ȳ � 0, l2ij ≥ 0 (ij ∈ E).

(Dλn−λ2,l)

Its dual, i. e., the problem corresponding to the primal (Pλn−λ2), reads

max ρ
subject to (1− λ)I − µ11> +

∑
ij∈E

wijEij � 0,

λI −
∑
ij∈E

wijEij � 0,

ρ− wij = 0 (ij ∈ E),
λ, µ ∈ R, w ≥ 0, ρ ≥ 0.

(Pλn−λ2,l)

Due to the constraints ρ = wij for ij ∈ E this problem reduces to finding λ and µ so as to
maximize ρ with

(λ− 1)I � ρL(G)− µ11> � λI.

Like in [25] we obtain the following theorems exhibiting the direct relation between optimal
solutions of (Eλn−λ2,l) and the eigenvectors of λ2(L(G)) and λmax(L(G)) whenever G is not
complete. The proofs are almost identical to those in [25] and are therefore omitted.
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Theorem 39 Given a graph G = (N,E) that is not complete, let U = [u1, . . . , un], V =
[v1, . . . , vn] be an optimal solution of (Eλn−λ2,l). Then ξ∗ = λmax(L(G))−λ2(L(G)) and for
h ∈ Rn the vector U>h is an eigenvector of λ2(L(G)) and the vector V >h is an eigenvector
of λmax(L(G)).

Theorem 40 Given a graph G = (N,E) that is not complete, let u ∈ Rn, ‖u‖ = 1, be
an eigenvector of λ2(L(G)) and let v ∈ Rn, ‖v‖ = 1 be an eigenvector of λmax(L(G)). An
optimal solution of (Dλn−λ2,l) is X̄ = 1

λmax(L(G))−λ2(L(G))
uu>, Ȳ = 1

λmax(L(G))−λ2(L(G))
vv>

and l2ij =
(vi−vj)2−(ui−uj)2

λmax(L(G))−λ2(L(G))
, ij ∈ E.
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[18] F. Göring, C. Helmberg, and S. Reiss. Graph Realizations Associated with Minimizing the
Maximum Eigenvalue of the Laplacian. Math. Program., online first, 2010.
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