THE ALGEBRAIC RICCATI EQUATION WITH TOEPLITZ
MATRICES AS COEFFICIENTS
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Abstract. It is shown that, under appropriate assumptions, the continuous algebraic Riccati
equation with Toeplitz matrices as coefficients has Toeplitz-like solutions. Both infinite and sequences
of finite Toeplitz matrices are considered, and also studied is the finite section method, which consists
in approximating infinite systems by large finite truncations. The results are proved by translating
the problem into C*-algebraic language and by using theorems on the Riccati equation in general
C*-algebras. The paper may serve as another illustration of the usefulness of C*-algebra techniques
in matrix theory.

Key words. Algebraic Riccati equation, Toeplitz matrix, C*-algebra.

AMS subject classifications. 47N70; 15A24, 15B05, 461.89, 47B35, 93C15.

1. Introduction. We consider the (continuous) algebraic Riccati equation in
the form

XDX - XA—A*X —C =0. (1.1)

Suppose the coefficients are infinite Toeplitz matrices generated by continuous func-
tions,

XT(d)X — XT(a) — T(@)X — T(c) = 0. (1.2)

Does equation (1.2) have a solution X which is Toeplitz-like, say X = T(p) + K
with a continuous function ¢ and a compact operator K7 A perhaps more important
situation is the one when the coeflicients are n x n Toeplitz matrices,

X, To(d) X — XnTo(a) — Tn(@) Xy — Tp(c) = 0. (1.3)

Does this equation possess a Toeplitz-like solution X,,? Defining Toeplitz-likeness for
an individual n x n matrix is a delicate matter, but the concept makes perfect sense
for the sequence {X,,}5° ;. Namely, we say that {X,,}°° is a Toeplitz-like sequence
if there exist a continuous function ¢, compact operators K and L, and a sequence
of n x n matrices U,, whose spectral norms ||U,|| go to zero such that

X, =T(p)+ P, KP, + W, LW, + U,, (1.4)
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where P, is the projection onto the first n coordinates and W,, stands for P, followed
by reversal of the coordinates. As the main mass of the matrix of a compact operator
is contained in its upper-left corner, the main mass of the n x n perturbation matrices
P,KP, +W,LW, in (1.4) is concentrated in the upper-left and lower-right corners.

Searching for Toeplitz-like solutions of equations (1.2) and (1.3) is a special case of
the problem of considering equation (1.1) in a C*-algebra A. Thus, given D, A,C € A,
is there a solution X € A? This general question has already been explored, and the
purpose of this paper is to show how these general C'*-algebraic results yield answers
in the case of Toeplitz coefficients in a very quick and elegant way.

The question whether (1.3) has Toeplitz-like solutions was studied in [15], and
that paper was in fact the motivation for the present paper. Paper [15] cites a theorem
from [21], [22], which states that if A is an operator algebra and D, A, A*,C € A then,
under certain assumptions, equation (1.1) has a solution in 4. Accordingly, a special
operator algebra 7Ts, o of so-called almost Toeplitz matrices is constructed in [15]
and the theorem is then applied to A = 75, ,. However, it remains a critical issue
what exactly an operator algebra in this context is [6], and the algebra 7 ,  is quite
complicated. In contrast to this, working with (1.4) as the definition of Toeplitz-
likeness has proven extremely useful since Silbermann’s paper [23]. In [2], it was
observed (and significantly exploited) that the set of all sequences {X,,}°2; of the
form (1.4) is a C*-algebra, and this favorable circumstance has been taken advantage
of since then in many instances; see, for example, [1], [3], [19]. In this light the idea to
invoke results on the Riccati equation in C*-algebras, which are the nicest operator
algebras, in order to treat equations (1.2) and (1.3) emerges very naturally.

The paper is organized as follows. In Section 2 we cite two results on the Riccati
equation in general C*-algebras. These results are then applied to C*-algebras of
Toeplitz matrices in Sections 3 and 4. Theorems 3.2 and 4.2 as well as Corollary 4.3
are our main results. In Section 5 we discuss some additional issues related to Riccati
equations in C*-algebras and W*-algebras.

2. The Riccati equation in C*-algebras. Let A be a unital C*-algebra and
denote the unit by I. The reader is referred to [12] for an introduction to C*-algebras.
We let o(H) stand for the spectrum of H € A. An element H € A is called Hermitian
if H= H*, it is said to be positive, H > 0, if H = H* and o(H) C [0,00), and it is
referred to as a positive definite element, H > 0, if H = H* and o(H) C (0,00). We
write G < H or H > G if G and H are Hermitian and H — G is positive.

In the case where A = CV*¥  the Riccati equation arises from optimal control
as follows; see, e.g., [16], [20]. Let A, B,C, R € CV*¥ and suppose B > 0 and R > 0.
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The control u(t) of the system & = Az + Bu which minimizes the cost functional

/ (z*Cx +u"Ru)dt (2.1)
0
is given by u(t) = —R™!B* X, x(t) where X, is the maximal Hermitian solution of
the equation

XBR'B*X - XA—-A*X - C=0. (2.2)

A Hermitian solution X of (2.2) is said to be maximal if X > X for every Hermitian
solution X of (2.2). Clearly, D := BR~!B* is positive. Notice also that the feedback
input u = —Fx + v transforms the system & = Ax + Bu into the new system & =
(A— BF)z + Bo.

Now let A be a general unital C*-algebra, let D, A,C € A, and suppose D > 0,
C > 0. The pair (A4, D) is called stabilizable in A if there exists an F' € A such that
(A — DF) is contained in the open left half-plane C_. Given a Hilbert space H, we
denote by B(H) the C*-algebra of all bounded linear operators on H. It is well known
that every C*-algebra A may be identified with a C*-subalgebra of B(H) for some H.
Bunce [4] (see also [14, Corollary 3.3]) showed that if the pair (A, D) is stabilizable in
B(H), then it is automatically stabilizable in A. A solution X, € A of equation (1.1)
is called maximal in A if X is Hermitian and X, > X for every Hermitian solution
X € A of (1.1). Dobovisek [14, pp. 74-75] observed that if X; € A is a maximal
solution in A, then in fact X; > X for every Hermitian solution X € B(H). Thus,
stabilizability and maximality do not depend on the algebra A and we therefore omit
the “in A”. Curtain and Rodman [9] proved that if the pair (A, D) is stabilizable, then
equation (1.1) has a maximal solution X, € B(H) and this solution is positive. The
big problem is whether this solution X, is in .4 or not. The following two theorems
provide us with partial answers.

THEOREM 2.1. (Bunce [4]) If D > 0, C = I, and (A, D) is stabilizable, then
equation (1.1) has a mazimal solution Xy € A and this solution is positive.

Note that the restriction to C = I means that all state variables in (2.1) are
considered to have equal rights.

THEOREM 2.2. (Dobovisek [14, Theorem 3.7]) If D > 0, C > 0, (A, D) is
stabilizable, and o(A) does not intersect the imaginary axis, then equation (1.1) has
a mazimal solution X € A and this solution is positive.

In [4], [14] it is shown that under the hypotheses of Theorems 2.1 or 2.2 the
spectrum of A — DX is a subset of C_, that is, X € A stabilizes (A, D).



4 A. Bottcher

3. Infinite Toeplitz matrices. Let T be the complex unit circle and let C(T)
be the C*-algebra of all continuous complex-valued functions on T. We abbreviate
C(T) to C. Given f € C with Fourier coefficients

2m
fr = € fe®)e *dy, ke Z,
2m Jo

we consider the infinite Toeplitz matrix T'(f) := (fj_k)jo.,ok:l. The function f is called
the generating function or the symbol of T'(f). It is well known that T'(f) induces
a bounded linear operator on ¢? := (?(N). Moreover, |T(f)|| = ||f]lcc, Where || - |loo
is the L* norm. A classical result by Gohberg says that the spectrum of T'(f) is
the union of the range f(T) and the points in C\ f(T) whose winding number with
respect to f(T) is nonzero; see, e.g., [3, Theorem 1.17]. In particular, if f(T) C C_,
then T'(f) is invertible.

We denote by 7 the smallest closed subalgebra of B := B(¢?) which contains the
set T(C) := {T(f) : f € C}. The algebra T is a C*-algebra and it turns out that
the set K := K(£2) of all compact operators is a subset and thus a closed two-sided
ideal of 7. Coburn [5] showed that 7 /K is isometrically *-isomorphic to C, the map
f = T(f)+K being an isometric *-isomorphism of C onto 7 /K. Thus, an operator X
belongs to 7 if and only if X = T'(f)+ K with f € C and K € K. This decomposition
is unique, that is, T(C) N K = {0}.

Theorems 2.1 and 2.2 are applicable to A = 7 and show that, under their hy-
potheses, equation (1.1) with D; A, C' € 7 has a maximal solution X, € 7. To be
more specific, we consider the equation

X(T(d) + T(b)T‘l(r)T(B))X — XT(a) - T@X — T(c) = 0. (3.1)

Note that the adjoint of T'(f) is just T(f) where f(t) = f(t) and the bar on the
right stands for complex conjugation. We also write T~1(r) := [T'(r)]~!. If b = 0,
then (3.1) becomes (1.2), while if d = 0, equation (3.1) takes the form

XTH)T () TB)X — XT(a) — T(@)X — T(c) =0,

which is (2.2) in Toeplitz matrices. In what follows, if f € C then f > 0 means that f
is a positive definite element of C, that is, f is real-valued and f(¢) > 0 for all ¢t € T.
Analogously, we write f > 0 if f is real-valued and f(¢) > 0 for all t € T.

LEMMA 3.1. Let b,r € C and suppose r > 0. Then
TOT )T ®) =T(bf*r ) + L

with some compact operator L > 0.
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Proof. Suppose first that r is smooth. Then r has a Wiener-Hopf factorization
r = ry74+ with a function r; € C such that 7’;1 € C and all Fourier coeflicients
with negative indices of . and 7"_7_1 vanish; see, e.g, [3, Theorem 1.14]. Standard
computations with Toeplitz matrices, [3, Section 1.5], give

TOTH()TO) =T (b)T(Tll)T(Hl)T(EN) T(bri)T(7'D)

=T(|bl*r™") + H(g)H(g) = T(b]*r~") + L,

where g = bri’, f is defined by f(t) := f(1/t) for t € T, and H(f) is the Hankel
operator induced by the matrix (fj4+x-1)3%—;. Since H(g) is the adjoint operator of
H(g), the operator L is positive, and since g is continuous, the operator L is compact.

An arbitrary continuous function r > 0 may be approximated uniformly by
smooth functions r, > 0. Then T7!(r,) and T(|b|*r;!) converge in the norm to
T=Y(r) and T(|b|>r~1), respectively. Since T'(b)T 1 (r,)T(b) — T(|b|?r; ') was shown
to be positive and compact, so also is T'(b)T~1(r)T(b) — T(|b|*>r~1). O

We denote the real part of a function f and an operator H by Re f and Re H.

THEOREM 3.2. Let a,b,c,d,r € C with d > 0, r > 0 and suppose one of the
following conditions is satisfied:

(i) d+b)*r~t >0 and c = 1;
(ii) d+b]*r~!' >0, ¢ > 0, and Rea > 0;
(iii) ¢ > 0 and Rea < 0.

Then equation (3.1) has a mazimal solution Xy € T, this solution is positive, and
X+ =T(p) + K where o € C, ¢ > 0, and K = K* is compact. Furthermore, ¢
satisfies the equation

(d+ b)*r Hp? = (a+a)p — c=0. (3.2)

Proof. First of all, C := T(c) > 0 and D := T(d) + T(b)T~*(r)T(b) > 0. Put
A :=T(a). If (iii) holds, then Re A < 0 and hence (4, D) is trivially stabilizable. So
assume (i) or (ii) is in force. Then d + |b|?*r~% > 0. From Lemma 3.1 we infer that if
v € (0,00) is any constant, then

Re (A —~D) =T(Rea —~(d+ [b]*r™1)) =L,

and choosing 7 large enough we can achieve that Re (A — D) is negative definite
as the sum of a negative definite operator and a negative operator. Thus, (4, D) is
stabilizable. The spectrum of T'(a) is in the left and right open half-planes if Rea < 0
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and Rea > 0, respectively. Theorem 2.1 now yields a maximal and positive solution
X4 € T under the hypothesis (i), while Theorem 2.2 does this if (ii) or (iii) is satisfied.
Writing X = T'(¢) + K and taking into account that passage from 7 to 7 /K = C
preserves positivity, we conclude that ¢ = ® > 0 and hence K = K*. Inserting
Xy = T(p) + K in (3.1), and considering the resulting equation modulo compact
operators we get

() (T(d) + TOT (1)) T() = T(#)T(a) ~ T@T() ~ T(c) € K.

Taking into account that T=!(r) — T'(r~!) is compact (Lemma 3.1 with b = 1) and
that T(f)T(g) — T(fg) is compact for arbitrary f,g € C (Coburn), we obtain that

T((d+ b]*r1e? — (a+a)p —c) € K.

Using that the only compact Toeplitz operator is the zero operator, we finally arrive
at (3.2). O

4. Finite Toeplitz matrices. For f € C, we denote by T,,(f) the n x n Toeplitz
matrix (fj—x)} ;- It is well known that if Re f < 0 or Re f > 0, then T,(f) is
invertible for all n > 1,

sup 1T () < oo, (4.1)

and T, 1(f) — T71(f) strongly as n — oo; see, e.g., [3, Proposition 2.17]. Here and
throughout what follows, || - || is always the operator norm on 2 (= spectral norm in
the case of matrices).

Let B denote the set of all sequences F = {F,}2°; such that F,, € C"*™ and

IEl = sup [ Fnll < oo (4.2)

We henceforth abbreviate {F,,}22, to {F,}. With termwise operations, {F,} +
{Gn} = {Fu + Gu}, of{Fn} = {aFn}, {FoH{Gn} = {FuGn}, {Fa}" = {F}},
and with the norm (4.2), B is a C*-algebra. We denote by By the elements {F,,} € B
for which ||F,|| — 0 as n — oo. Clearly, By is a closed two-sided ideal of B. Let P,
and W,, be the operators

P, :0? =% {r1,20,...} = {x1,...,2,,0,0,...},
Wy 02 = 02, {x1,29,... = {z,,...,21,0,0,...}.
Note that W,, = W, — 0 weakly, so that W, KW,, — 0 strongly whenever K is

compact. For H € B(¢?), we think of P, HP, and W,,HW,, as n X n matrices. Let
S be the smallest closed subalgebra of B which contains the set {{T,,(f)}: f € C}.
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One can show that S is a C*-algebra and that actually S coincides with the set of all
sequences {F,} of the form

with f € C, K € K, L € K, {U,} € By; see [2] or [3, Proposition 2.33]. Moreover, the
set J of all sequences {F,} of the form F,, = P,KP, + W, LW, + U, with K € K,
L e K, {U,} € By (that is those of the form (4.3) with f = 0) is closed two-sided
ideal of S and the map f — {T,,(f)}+J is an isometric *-isomorphism of C onto B/J.

Using Theorems 2.1 and 2.2 with A = S, we get results for the Riccati equa-
tion (1.1) with D = {D,}, A = {4,}, C = {C,}, X = {X,,} is S. We illustrate
things for the equation

X, (Tn(d) + T ()T (1) T (B))Xn — X, Tn(a) — Tp(@) X — Tn(c) = 0. (4.4)

LEMMA 4.1. Ifb,r € C and r > 0 then

T,(0)T, ()T, (b) = T, (|b)*r~ ") + P,K' P, + W, L'W,, + U},

n

with compact operators K' > 0 and L' > 0 and Hermitian matrices U] such that
|UL]] — 0 as n — oo.

Proof. By virtue of (4.1), {T,,(r)} is invertible in B and thus also in S. We
therefore have

T,(0)T; ()T, (b) = Tp(s) + P.K' P, + W, L'W,, + U/, (4.5)

with s € C, K' e K, L' € K, {U],} € By. Passing to the strong limit n — oo in (4.5)
we obtain T'(b)T~*(r)T(b) = T(s) + K’, and Lemma 3.1 now implies that s = || 1
and that K’ is positive and compact. Multiplying (4.5) from the left and the right by

W, taking into account that W, T,,(f)W,, = T,,(f), and then passing to the strong

limit n — oo we arrive at the equality T'(b)T~*(7)T'(b) = T(3) + L'. Lemma 3.1
shows again that L’ is positive and compact. It is then immediate from (4.5) that the
matrices U,, are Hermitian. 0.

THEOREM 4.2. Let a,b,c,d,r € C with d > 0, r > 0 and let at least one of the
following conditions be satisfied:

(i) d+b)*r=t >0 and c = 1;
(i) d+|b]*r=!' >0, ¢ > 0, and Rea > 0;

(iii) ¢ > 0 and Rea < 0.
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Then there is an ng such that for every n > ng equation (4.4) has a mazimal solution
X,F € C™". This solution is positive and there exist p € C, ¢ > 0, K = K* € K,
L=L*eK, U,=U; e C"™", |U,| — 0 such that

X =T,(p)+ P,KP, + W,LW, + U, (4.6)
for n > ng. Moreover, ¢ satisfies the equation

(d+b*r Hp? = (a+a)p —c=0. (4.7)

Proof. Put D := {Tn(d) +Tn(b)Trjl(r)Tn(g)}7 A= {Tn(a)}v C = {Tn(c)}
Obviously, D > 0 and C > 0. It is clear that Re A < 0 if (iii) holds. So consider the
cases (ii) and (iii), where d + |b|?>r~! > 0. By Lemma 4.1,

Re (A — D) = {T,(Rea — y(d + |b]*r ")) — P, K'P,, — YW, L'W,, — U’}

for each constant v € (0,00), and hence Re (A — vD) < —2I —~{U]} for all n > 1 if
only = is sufficiently large. Since the matrices U}, are Hermitian and ||U/, || — 0, there
is an ng such that —27 — U], < —I for all n > ng. Thus, considering only sequences
of the form {F),}72,, and denoting the corresponding C*-algebras by B(ng), Bo(no),
S(no), we see that (A, D) is stabilizable in S(ng). Clearly, o({T),(a)}) does not
intersect the imaginary axis if Rea < 0 or Rea > 0. From Theorems 2.1 and 2.2 we
now deduce that equation (1.1) has a positive maximal solution X = {X;7}>°  in

S(’I’Lo)

The reasoning of the previous paragraph is applicable to each individual number
n > ng, that is, D,, > 0, C,, > 0, (A, D,,) is stabilizable, and o (7T, (a)) has no points
on the imaginary axis in the cases (ii) and (iii). Consequently, equation (4.4) has a
positive maximal solution X, for each n > ng. We want to show that X,, = X,I. The
matrix X,, can be obtained by an iterative procedure such as in [16]. This procedure
yields Hermitian matrices X,(LI),XT(?),... satisfying Xr(ll) > X,(LQ) > ... > X, and
X,Sk) — X, as k — oo. In particular, X, < X,gl). We have

X0 = / T AP (2D, 4 )t An ) iy,
0

There is a constant M < oo such that ||D,| < M (due to (4.1)) and ||Cy|| < M
(obvious). As Re (A, —vD,,) < —I, it follows that

| XM < 2M/ e 2t dt = M.
0

Consequently, ||X,[ < M for n > ng, which implies that {X,};2,, is a Hermitian
solution of equation (1.1) in B(ng). As noted in Section 2, we then necessarily have
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(X}, < AXF12,,, that is X, < X for all n > ng. As X, is the maximal
solution of the nth equation and X! is a Hermitian solution of that equation, we also
have X,V < X,,. Thus, X,, = X, for n > no.

As components of an element in S(no), the matrices X, are of the form (4.6)
with p € C, K € K, L € K, {U,} € Bg(ng). We also know that X, > 0. As n — oo,
the strong limit of (4.6) is T'(¢)+ K. This is positive operator if and only if p =% > 0
and K = K* (recall the proof of Theorem 3.2). Multiplying (4.6) from the left and
the right by W,, and passing to the strong limit n — oo, we obtain analogously that
L=1L* AsT,(¢), K, L are Hermitian, so also is U,.

Finally, passing in (4.4) to the strong limit n — oo, we arrive at (3.1). Theo-
rem 3.2 therefore implies that ¢ must satisfy (4.7). O

The following result on the finite section method for equation (3.1) is immediate
from Theorems 3.2 and 4.2. We silently already used it in the last paragraph of the
previous proof to establish (4.7).

COROLLARY 4.3. Under the hypotheses of Theorems 3.2 and 4.2, equations (4.4)
have (unique) positive mazimal solutions X, for all sufficiently large n, and X, P,
converges strongly to the (unique) positive mazimal solution Xy of equation (3.1).

5. Additional remarks.

5.1. Newton’s method. Let A be a C*-algebra and let D, A, C' be arbitrary
elements of A. Newton’s method for equation (1.1) consists in choosing an initial
element Xy € A and in determining successive approximations as the solutions of the
Sylvester equations

Xi+1(A = DXy) + (A" = Xy D) Xp1 = =X DXy, — C

see, for instance, [13], [18], [24]. The separation of —A and A* is defined as the
number sep(—A, A*) :=1/||S~!|| where S is the Lyapunov operator

S:A—-A X— XA+AX.

If S is not invertible, one puts sep(—A4, A*) = 0. It follows from the results of
Stewart [24] and Demmel [13] that if Xy = 0 and

Cl D 1
lenipy_ 1 -
sep(—A4,A*)2 4
then X}, converges in the norm of A to some solution X, € A of equation (1.1) and
that this equation has no other solution X € A satisfying || X || < [|Xooll-
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It is well known that if o(A) is contained in the open left half-plane, then
STy = / et yet dt.
0

In the case where Re A < —&I for some ¢ > 0, this implies that sep(—A, A*) > 2e.
Thus, by (5.1), Newton’s method delivers a solution X, € A whenever

IChID) < €. (5.2)
In the case of Toeplitz matrices as coefficients, we arrive at the following.

THEOREM 5.1. Let a,b,c,r €C,r>9§ >0, Rea < —e<0. If
lelloo(lldlloo + (2/8)[1B]12%) < €2, (5.3)

then equations (3.1) and (4.4) (for every n > 1) have a solution X and X2°, re-
spectively. These solutions are of the form Xo = T(p) + K and

X =Tw(p)+ P, KP, + W, LW, + U,

where @ € C satisfies equation (3.2), K and L are compact, and ||U,|| — 0, they are
the limit in the norm of the iterates obtained by Newton’s method with Xy = 0, and the
equations have no other solutions X and X,, with || X|| < || Xl and || X,| < | X2°||.
If, in addition, ¢ > 0 and d > 0, then X and X2° are positive and the maximal
solutions of the equations.

Proof. We use what was said above with A =7 and A = S. We have ||T,(c¢)|| <
IT(c)]] < |l¢lloo, and by the Brown-Halmos theorem (see, e.g., [3, Proposition 2.17]),
|T=1(r)|| < 2/8 and || T, (r)|| < 2/6. Consequently.

ICHIDI < llelloo (oo + (2/8)1b13,)-

If Rea < —¢, then ReT(a) < —el and ReT,(a) < —el. Thus, (5.3) implies (5.2),
and it follows that Newton’s method converges to a solution in A.

If ¢ > 0 and d > 0, we have case (iii) of Theorems 3.2 and 4.2. Thus, the equation
has a positive maximal solution. In [16], this solution was shown to be the limit of
Newton’s method starting with Xy = 0. Therefore the maximal solution coincides
with X . 0

5.2. The Riccati equation in W*-algebras. By the Gelfand—Naimark the-
orem, every C*-algebra A is isometrically *-isomorphic to a closed and selfadjoint
subalgebra of B(H) for some Hilbert space H. If that subalgebra is closed in the
strong (= pointwise) operator topology for some H, then A is called a W*-algebra
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or a von Neumann algebra. Known constructive procedures for solving Riccati equa-
tions [9], [16] yield the solution as the strong limit of iterates belonging to .A. This
makes W*-algebras a convenient terrain for Riccati equations. We remark that finite-
dimensional C*-algebras, L>°(T), B(H), B are W*-algebras, whereas C(T), T, K(H)
with dimH = oo, and S are C*-algebras but not W*-algebras.

THEOREM 5.2. (Curtain and Rodman [9]) Let A be a unital W*-algebra and
DA Ce A IfD>0,C >0, and (A, D) is stabilizable, then equation (1.1) has a
mazimal solution Xy € A and this solution is positive.

Unfortunately, this is of limited use for our purposes because, as said, 7 and S
are not W*-algebras.

If J is a closed two-sided ideal of some unital C*-algebra A, then
CI+J:={al+J:aeC,JeJ}

is a unital C*-subalgebra of A. For example, CI + K(H) is a unital C*-subalgebra of
B(H). Here is a result on the Riccati equation in such C*-subalgebras.

THEOREM 5.3. Let A be a unital C*-algebra and let J C A be a proper closed
two-sided ideal. Suppose D, A,C are in CI +J, D > 0, C > 0 (sic!), and (A, D)
is stabilizable. If X € A is a positive solution of equation (1.1), then necessarily
XeCl+J.

Proof. We abbreviate ol to a. Thus,let D =d+ Kp, A=a+ K4, C =c+ K¢
with d,a,c € C and Kp,K4,Kc € J. We claim that ¢ > 0. To see this, assume
¢ <0. Then 0 < —cI < K¢, and since ideals of C*-algebras are hereditary (see, e.g.,
[12, Theorem 1.5.3]), it follows that —cI € J. If ¢ < 0, this implies I € J and thus
J = A, which contradicts our assumption that J is proper. Hence ¢ = 0 and thus
C = K¢ > 0, which means that K¢ is invertible and therefore again leads to the
contradiction J = A. Consequently, ¢ > 0. Analogously one can show that d > 0.

For Z € A, we denote by Z™ the coset Z+J € A/J. Since (4, D) is stabilizable,
there is an F' = f + Kr € CI + J such that 0(A — DF) C C_, which implies that
o(A"—=D"F™) C C_. AsA™—D"F™ = a—df +J, it follows that a —df € C_. This
is impossible if d and Re a are both zero. Therefore one of d and Re a is nonzero. We
put £ :=c¢/(a+a) if d =0, and

_ _\ 2
a+a a-+a
=gt ( 2d ) +

¢
d
if d > 0. Then

d¢* — (a+a) —c=0. (5.5)
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We may write X = £+ V with V € A. Our aim is to show that V' € J. Equivalently,
we want to prove that v := V7™ is the zero in A/J.

Inserting X = £+ V in (1.1) and passing to the quotient algebra A/7, we obtain
d(€ +v)* = (a+a)(E+v) —c=0,
and taking into account (5.5) we get
dv? + (2d¢€ — a — @)v = 0. (5.6)

If d = 0 and hence a + @ # 0, this implies v = 0, as desired. So assume d > 0.
Then (5.6) reads

dv<v+2§—aza> =0.

Due to (5.4),

2% —

a+a a+a
=2
=y

and thus, v(v + 2p) = 0. We can decompose v as v = vy —v_ with vy >0, v_ >0,
viv— = v_vy = 0. It follows that (vy —v_)(vy — v_ + 2p) = 0, whence

v} + 02 +2(vp —v_) =0, (5.7)

Since ’Ui >0, v2 >0, o> 0, we conclude from (5.7) that v, —v_ < 0. Consequently,
0 < vy < v_. Multiplying this from the left and the right by v;, we see that
0 < v} <wiv_vy =0, that is, v3 = 0. We may think of v} as a positive operator
and thus of multiplication by a function ¥ > 0. The equality vf_ = 0 shows that
¥3 = 0, which gives ¢ = 0 and thus vy = 0. Now (5.7) becomes v_(v_ — 2p) = 0.
We have 0 < X™ = ¢ + v = ¢ —v_ and therefore v_ < . Thus,

a+a
vo—20<€—-20=—+—+0—20

2d
_ata  [fa+a 2+E<0
2 2d d =7
which shows that v_ — 2p is invertible. As v_(v_ —2p) = 0, we arrive at the desired

equality v_ =0. 0

We remark that Theorem 5.3 is no longer true if instead of C' > 0 we require
only that C' > 0. To see this, consider A = ¢*° (bounded sequences) and J = cg
(sequences converging to zero) with termwise operations. Clearly, CI 4+ J is the
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algebra of all convergent sequences. Take D = A = {1,1,...} and C = {0,0,...}.
Then X = {0,2,0,2,...} is a positive solution of equation (1.1), but X is obviously
not in CI + J. Note that the set of all solutions is the set of all sequences {X,,}
with X, € {0,2}. Consequently, all solutions are positive. A solution is in CI + J
if and only if X, eventually stabilizes. Thus, there are countably many solutions in
CI + J but uncountably many solutions in A\ (CI + 7). The maximal solution
Xy ={2,2,...} is of course in CI + 7, as it should be by virtue of Theorem 2.2.

COROLLARY 5.4. Let A be a unital W*-algebra and J C A be a proper closed
two-sided ideal. Suppose D, A,C are in CI + J, D > 0, C > 0, and (A, D) is
stabilizable. The equation (1.1) has a mazimal solution X, in CI+J and X4 > 0.

Proof. The existence of X, € A and the positivity of X, are ensured by Theo-
rem 5.2, while Theorem 5.3 shows that actually Xy € CI 4+ J. 0O

Corollary 5.4 is in particular applicable to A = B(H) and J = K(H). The
corollary is not applicable to A = B (which is a W*-algebra) and the set J introduced
in Section 4, because J is not an ideal of B. Let B. C B denote the set of all {F},} € B
for which F,,, F, W, F,W,,, W, FxW,, have strong limits. The set J is a closed two-
sided ideal of B,; this was discovered by Silbermann [23], and a proof is also in [3,
Lemma 2.21]. However, B, is not a W*-algebra, its strong closure being all of B, so
that Corollary 5.4 is again not applicable. But using Theorem 5.3 with A = B, and
J = J, we arrive at the following conclusion: if, under the hypothesis of the theorem,
X ={X,} = {X]} is a positive solution of equation (1.1), then either X € CI +J
or X ¢ B.. The latter means that X,, or W, X,,W,, (or both) do not have a strong
limit as n — oo.

5.3. The Riccati equation with Laurent matrices as coefficients. The
Laurent matrix L(f) generated by a function f € C is the doubly-infinite Toeplitz ma-
trix (fj—k)7%=—oo- This matrix induces a bounded operator on (?(Z) and is unitarily
equivalent to the operator of multiplication by f on L?(T). The Riccati equation (1.1)
in Laurent matrices reads

XL(d)X — XL(a) — L(@X — L(c) = 0. (5.8)

The smallest closed subalgebra of B(¢?(Z)) which contains the set L(C) := {L(f) :
f € C} is in fact L(C) itself, it is a (commutative) unital C*-algebra, and the map
f— L(f) is an isometric *-isomorphism of C onto L(C). Using Theorems 2.1 and 2.2,
we see that if d,a,c € C and at least one of the conditions (i) d > 0 and ¢ = 1, (ii)
d>0,c>0,and Rea > 0, (iii) ¢ > 0 and Rea < 0 is satisfied, then equation (5.8)
has a maximal solution X, € L(C), and this solution is actually X, = L(y) where
p€C,p>0,and dp? — (a +a)p — c = 0. The finite section method for equation
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(5.8) consists in passing to the equations

Yo Lo (d)Yy, — YL (a) — Ln(@)Y; — Lu(c) = 0. (5.9)
where L, (f) := (fi—1)}j=_p and Y, = (y§z))zk:7n. Define the projection P, on

(2(Z) by (Pox); = a; if |j| < n and (P,z); = 0 if |j| > n.

THEOREM 5.5. Under the hypotheses of the preceding paragraph, equations (5.9)
have (unique) positive mazimal solutions Y, for all sufficiently large n, and Y,' P,

converges strongly to the (unique) positive mazimal solution Xy = L(p) of equa-
tion (5.8).

Proof. Clearly, equation (5.9) is nothing but equation (1.3) with n replaced by
2n + 1, that is,

Xont1Ton+1(d) Xont1 — Xont1Ton41(a) — Tons1(@) Xons1 — Tong1(c) = 0. (5.10)

Theorem 4.2 shows that, under the hypotheses of the preceding paragraph, the max-
imal solutions X, ; of (5.10) are of the form

X1 = Tons1(9) + Pony1 K Popi1 + Wan1 LWap 1 + Conga (5.11)

with compact operators K and L on £2(N) and ||Ca,41|| — 0. Let U : (2(Z) — (*(Z)
be the forward shift, (Uz); = z;_1. If M = (mjk)?’};% isa(2n+1)x (2n+1)
matrix which is thought of as an operator on ¢2(IN), then U " Py, 1 M Py, 1 ;U™ may
be identified with the matrix (m;j4n k+n)} -, regarded as an operator on (%(Z).

This implies that the maximal solution of (5.9) is
Y =U"Paps1Xq, 1 Pony U™ (5.12)

Since Po,11U™ and Wa,,+1U™ converge weakly to zero and K and L are compact, it
follows that U ™" Poyp 11 K Pop1U™ — 0 and U™ "Way 1 LWa,, 1 1U™ — 0 strongly. We
also have U™ Pap11Ton+1(¢) Pont1U™ = Lyu(¢). Thus, combining (5.11) and (5.12)
we arrive at the conclusion that YnJrISn converges strongly to the maximal solution
X4+ = L(yp) of equation (5.8). O

Interesting problems for equation (5.8) arise when d, a, ¢ are taken from a subset
W of C and one is interested in the question whether special (e.g. maximal) solutions
of the equation are of the form X = L(p) with ¢ € W. Usually W is characterized
by decay properties of the Fourier coefficients, and an important case is where W is
a weighted Wiener algebra (which is not a C*-algebra). More generally, one takes
d,a,c from WN*N_ the N x N matrix functions with entries from W, and looks for
solutions of equation (5.8) of the form X = L(y) with ¢ € WN*N_ Note that in this
case even the problem pdy — pa — a*p — ¢ = 0 is non-commutative. For results in
this field of research, we refer to [7], [8], [10], [11], [17], for example.
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