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Abstract. In this paper we consider scalar and vector optimization problems with objective
functions being the composition of a convex function and a linear mapping and cone and geometric
constraints. By means of duality theory we derive dual problems and formulate weak, strong and
converse duality theorems for the scalar and vector optimization problems with the help of some
generalized interior point regularity conditions and consider optimality conditions for a certain scalar
problem.
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1 Introduction
To a certain multiobjective optimization problem one can attach a scalar one whose optimal solution
leads to solutions of the original problem. Different scalarization methods, especially linear scalariza-
tion, can be used to this purpose. Weak and strong duality results and required regularity conditions of
the scalar and vector problem are associated with them. In the book of Boţ, Grad and Wanka (cf. [1])
a broad variety of scalar and vector optimization problems is considered. Related to the investigations
within that book we consider here some different scalar and vector optimization problems associated
with each other and show how the duals, weak and strong duality and some regularity conditions can
be derived.

We assume X ,Y,V and Z to be Hausdorff locally convex spaces, whereas in order to guarantee
strong duality some of the regularity conditions contain the assumption that we have Fréchet spaces.

We consider the scalar optimization problem

(PSΣ) inf
x∈A

{
m∑
i=1

λifi(Ax)
}
, A = {x ∈ S : gi(x) ≤ 0, i = 1, . . . , k},

taking proper and convex functions fi : Y → R := R ∪ {±∞}, i = 1, . . . ,m, weighted by positive
constants λi, i = 1, . . . ,m, further g = (g1, . . . , gk)T : X → Rk, where gi, i = 1, . . . , k, is assumed to be
convex, S ⊆ X is a non-empty convex set and A ∈ L(X ,Y), i.e. a linear continuous operator mapping
from X to Y. Another problem is the scalar one

(PS) inf
x∈A

f(Ax), A = {x ∈ S : g(x) ∈ −C},

which is related to the first one. Here we use the proper and convex function f : Y → R and the
C-convex function g : X → Z and a nontrivial convex cone C ⊆ Z.
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Further we consider two vector optimization problems to which scalar ones may be attached, whose
dual problems are used to formulate duals to the vector optimization problems. This can be seen in
the following sections.

For the space X partially ordered by the convex cone K we denote by X • the space to which a
greatest element +∞K is attached (cf. [1]).

We consider the following vector optimization problem:

(PV m) Min
x∈A

(f1(Ax), . . . , fm(Ax))T , A = {x ∈ S : gi(x) ≤ 0, i = 1, . . . , k}.

Here we assume f = (f1, . . . , fm)T : Y → Rm• to be a proper function with convex functions fi, i =
1, . . . ,m, and gi : X → R, i = 1, . . . , k, to be convex. Further we have S ⊆ X . The problem (PSΣ)
arises by linear scalarization of (PV m). Further we consider the following vector optimization problem
related to the above one:

(PV ) Min
x∈A

f(Ax), A = {x ∈ S : g(x) ∈ −C}.

Here f : Y → V• is a proper and K-convex function and g : X → Z is a C-convex function, using the
nontrivial pointed convex cone K ⊆ V and the nontrivial convex cone C ⊆ Z.

The conjugate dual problems to the scalar and vector optimization problem arise as a combination
of the classical Fenchel and Lagrange duality. It is the so-called Fenchel-Lagrange duality introduced
by Boţ and Wanka (cf. [2], [3], [10]).

For the primal-dual pair one has weak duality, where the values of the dual objective function at
its feasible set do not surpass the values of the primal objective function at its feasible set. Further,
for scalar optimization problems we have strong duality if there exists a solution of the dual problem
such that the objective values coincide, whereas for vectorial ones in case of strong duality we assume
the existence of solutions of the primal and dual problem such that the objective values coincide, and
for converse duality we start with a solution of the dual and prove the existence of a primal solution
such that the objective values coincide.

In order to have strong and converse duality we have to formulate regularity conditions. Since
the classical Slater constraint qualifications (cf. [5] and [9]) are often not fulfilled, we will present
generalized interior point regularity conditions, which are due to Rockafellar (cf. [9]). Conditions for
some dual problems were given by Boţ, Grad and Wanka (cf. [1]). Thus we modify these conditions
and resulting theorems to adopt them to the problems we study in this paper. Further, in [11] also
some vector optimization problems and their duals having a composition in the objective function and
the constraints were considered.

The central aim of this paper is to give an overview of special scalar and vector optimization
problems. In addition, we point out the connections between them as well as the arising interior point
regularity conditions.

The paper is organized as follows. In the following section we introduce some definitions and
notations from the convex analysis we use within the paper. In Sect. 3 we consider two general scalar
optimization problem, calculate the dual ones, give regularity conditions, further formulate weak and
strong duality theorems and give optimality conditions for one of them. Moreover, we consider two
vector optimization problems and also calculate the dual ones and formulate weak, strong and converse
duality theorems, respectively.

2 Notations and Preliminaries
Let X be a Hausdorff locally convex space and X ∗ its topological dual space which we endow with the
weak∗ topology w(X ∗,X ). We denote by 〈x∗, x〉 := x∗(x) the value of the linear continuous functional
x∗ ∈ X ∗ at x ∈ X . For X = Rn we have X = X ∗ and for x = (x1, . . . , xn)T ∈ Rn, x∗ = (x∗1, . . . , x∗n)T ∈
Rn it holds 〈x∗, x〉 = (x∗)Tx =

∑n
i=1 x

∗
i xi.
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For f : X → V and v∗ ∈ V∗ we define the function v∗f : X → R by v∗f(x) := 〈v∗, f(x)〉 for x ∈ X ,
where V is another Hausdorff locally convex space and V∗ its topological dual space.

The zero vector will be denoted by 0, whereas the space we talk about will be clear from the
context. By e we denote the vector (1, . . . , 1)T .

For a set D ⊆ X the indicator function δD : X → R is defined by

δD(x) :=
{

0, x ∈ D,
+∞, otherwise.

When D ⊆ X is non-empty and f : X → R we denote by f∗D : X ∗ → R the function defined by

f∗D(x∗) = (f + δD)∗(x∗) = sup
x∈D
{〈x∗, x〉 − f(x)}.

One can see that for D = X , f∗D becomes the (Fenchel-Moreau) conjugate function of f which we
denote by f∗. We have the so-called Young or Young-Fenchel inequality:

f(x) + f∗(x∗) ≥ 〈x∗, x〉 , ∀x ∈ X ,∀x∗ ∈ X ∗. (1)

The support function σD : X ∗ → R is defined by σD(x∗) = supx∈D 〈x∗, x〉 and it holds σD = δ∗D.
Let K ⊆ X be a nontrivial convex cone. The cone K induces on X a partial ordering 5K defined

for x, y ∈ X by x 5K y ⇔ y− x ∈ K. Moreover, let us define x ≤K y if and only if x 5K y and x 6= y.
The dual cone K∗ ⊆ X ∗ and the quasi interior of the dual cone of K∗, respectively, are defined by

K∗ := {x∗ ∈ X ∗ : 〈x∗, x〉 ≥ 0, ∀x ∈ K},
K∗0 := {x∗ ∈ K∗ : 〈x∗, x〉 > 0, ∀x ∈ K \ {0}}.

A convex cone K is said to be pointed if its linearity space l(K) = K ∩ (−K) is the set {0}. For a set
U ⊆ X the conic hull is

cone(U) =
⋃
λ≥0

λU = {λu : u ∈ U, λ ≥ 0}.

If we assume that X is partially ordered by the convex cone K, we denote by +∞K the greatest
element with respect to 5K and by X • the set X ∪ {+∞K}. For any x ∈ X • it holds x 5K +∞K and
x ≤K +∞K for any x ∈ X . On X • we consider the following operations and conventions (cf. [1]):
x+(+∞K) = (+∞K)+x := +∞K ,∀x ∈ X ∪{+∞K}, λ·(+∞K) := +∞K ,∀λ ∈ (0,+∞], 0·(+∞K) :=
+∞K . Note that we define +∞R+ =: +∞ and further 5R+=:≤ and ≤R+=:<.

By BX (x, r) we denote the open ball with radius r > 0 and center x in X defined by BX (x, r) =
{y ∈ X : d(x, y) < r}, where d : X × X → R is the metric induced by the topology in X if X is
metrizable.

The prefixes int, ri, icr, sqri and core are used for the interior, the relative interior, the relative
algebraic interior (or intrinsic core), the strong quasi relative interior and the algebraic interior or
core of a set U ⊆ X , respectively, where

core(U) = {x ∈ X : ∀y ∈ X , ∃δ > 0 such that ∀λ ∈ [0, δ] : x+ λy ∈ U},
ri(U) = {x ∈ aff(U) : ∃ε > 0 : BX (x, ε) ∩ aff(U) ⊆ U},

icr(U) = {x ∈ X : ∀y ∈ aff(U − U), ∃δ > 0 s.t. ∀λ ∈ [0, δ] : x+ λy ∈ U},

sqri(U) =
{

icr(U), if aff(U)is a closed set,
∅, otherwise,

and in case of having a convex set U ⊆ X we have

core(U) = {x ∈ U : cone(U − x) = X},
sqri(U) = {x ∈ U : cone(U − x) is a closed linear subspace}.
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It holds core(U) ⊆ sqri(U) and aff(U) is the affine hull of the set U ,

aff(U) =
{

n∑
i=1

λixi : n ∈ N, xi ∈ U, λi ∈ R,
n∑
i=1

λi = 1, i = 1, . . . , n
}
.

We assume V to be a Hausdorff locally convex space partially ordered by the nontrivial convex
cone C ⊆ V.

The effective domain of a function f : X → R is dom(f) = {x ∈ X : f(x) < +∞} and we will say
that f is proper if dom(f) 6= ∅ and f(x) > −∞, ∀x ∈ X . The domain of a vector function f : X → V•
is dom(f) = {x ∈ X : f(x) 6= +∞C}. When dom(f) 6= ∅ the vector function f is called proper.

While a proper function f : X → R is called convex if for all x, y ∈ X and all λ ∈ [0, 1] it holds
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), a vector function f : X → V• is said to be C-convex if for all
x, y ∈ X and all λ ∈ [0, 1] it holds f(λx+ (1− λ)y) 5C λf(x) + (1− λ)f(y) (cf. [1]).

A function f : X → R is called lower semicontinuous at x ∈ X if lim inf
x→x

f(x) ≥ f(x), while a
function f : X → V• is star C-lower semicontinuous at x ∈ X if (v∗f) is lower semicontinuous at x for
all v∗ ∈ C∗. The latter notion was first given in [6].

For f : X → R and a ∈ R we call leva(f) := {x ∈ X : f(x) ≤ a} the level set of f at a.
By L(X ,Y) we denote the set of linear continuous operators mapping from X into Y. For A ∈

L(X ,Y) one can define the adjoint operator, A∗ : Y∗ → X ∗ by

〈A∗y∗, x〉 = 〈y∗, Ax〉 , ∀y∗ ∈ Y∗, x ∈ X .

In the following we write min and max instead of inf and sup if we want to express that the
infimum/supremum of a scalar optimization problem is attained.

Definition 2.1 (infimal convolution). For the proper functions f1, . . . , fk : X → R, the function
f1� · · ·�fk : X → R defined by

(f1� · · ·�fk)(p) = inf
{ k∑
i=1

fi(pi) :
k∑
i=1

pi = p

}
is called the infimal convolution of fi, i = 1, . . . , k.

In order to state a theorem for the infimal convolution of conjugate functions we introduce addi-
tionally to a classical condition (RCΣ

1 ) the following generalized interior point regularity conditions
(RCΣ

i ), i ∈ {2, 3, 4}:

(RCΣ
1 ) ∃x′ ∈ ∩ki=1 dom(fi) such that a number of k − 1 functions

of the functions fi, i = 1, . . . , k, are continuous at x′, (2)

(RCΣ
2 )

X is Fréchet space, fi is lower semicontinuous, i = 1, . . . , k,
and 0 ∈ sqri

(
Πk
i=1 dom(fi)−∆Xk

)
,

(3)

(RCΣ
3 )

X is Fréchet space, fi is lower semicontinuous, i = 1, . . . , k, and
0 ∈ core

(
Πk
i=1 dom(fi)−∆Xk

)
,

(RCΣ
4 )

X is Fréchet space, fi is lower semicontinuous, i = 1, . . . , k, and
0 ∈ int

(
Πk
i=1 dom(fi)−∆Xk

)
,

where for a set M ⊆ X we define ∆Mk := {(x, . . . , x) ∈ X k : x ∈ M}. The following theorem holds
(cf. [1, Theorem 3.5.8]):
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Theorem 2.2. Let f1, . . . , fk : X → R be proper and convex functions. If one of the regularity
conditions (RCΣ

i ), i ∈ {1, 2, 3, 4}, is fulfilled, then it holds for all p ∈ X ∗(
k∑
i=1

fi

)∗
(p) = (f∗1� · · ·�f∗k )(p) = min

{ k∑
i=1

f∗i (pi) :
k∑
i=1

pi = p

}
. (4)

Remark 2.3. For X = Rn formula (4) holds if fi, i = 1, . . . , k, is proper and convex and
∩ki=1 ri(dom(fi)) 6= ∅, i.e. we do not need one of the conditions (RCΣ

i ), i ∈ {1, 2, 3, 4} (cf. [8, Theorem
20.1]).

The function f : X → V• is called C-epi closed if its C-epigraph, namely epiC f = {(x, y) ∈ X ×V :
f(x) 5C y}, is a closed set (cf. [7]). For a real valued function f : X → R and C = R+ we have
epi f = epiC f and the following theorem holds (cf. [1, Theorem 2.2.9]):

Theorem 2.4. Let the function f : X → R be convex. Then the following statements are equivalent:

(i) f is lower semicontinuous,
(ii) epi f is closed,

(iii) the level set leva(f) = {x ∈ X : f(x) ≤ a} is closed for all a ∈ R.

3 Some Dual Optimization Problems
In this section we consider the optimization problems (PS) and (PV ). These are related problems,
the first one a scalar, the latter one a vectorial, having as objective function a composition of a convex
(vector) function and a linear continuous operator and cone and geometric constraints. For these we
formulate dual problems and state weak, strong and converse duality theorems under some classical
and generalized interior point regularity conditions. Further, we consider two problems (PSΣ) and
(PV m) related to the above ones and derive the same things.

For the whole section we assume that X ,Y,Z and V are Hausdorff locally convex spaces, Z and V
are assumed to be partially ordered by the nontrivial convex cone C ⊆ Z and the nontrivial pointed
convex cone K ⊆ V, respectively. Further, let S ⊆ X be a non-empty convex set and A ∈ L(X ,Y).

3.1 The Scalar Optimization Problem (PS)
In this first subsection we consider a general scalar optimization problem. Therefore we assume the
function f : Y → R to be proper and convex and the vector function g : X → Z to be C-convex,
fulfilling A−1(dom(f))∩g−1(−C)∩S 6= ∅. Consider the following primal scalar optimization problem:

(PS) inf
x∈A

f(Ax), A = {x ∈ S : g(x) ∈ −C}.

We derive here a dual problem which is called the Fenchel-Lagrange dual problem to (PS). For this
purpose we consider the perturbation function ΦFL : X × Y × Z → R, given by

ΦFL(x, y, z) =
{
f(Ax+ y), x ∈ S, g(x) ∈ z − C,
+∞, otherwise, (5)
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where X is the space of feasible variables and Y and Z are the spaces of perturbation variables. First
we calculate to ΦFL the conjugate function (ΦFL)∗ : X ∗ × Y∗ ×Z∗ → R:

(ΦFL)∗(x∗, y∗, z∗)
= sup

(x,y,z)∈S×Y×Z
g(x)−z∈−C

{〈x∗, x〉+ 〈y∗, y〉+ 〈z∗, z〉 − f(Ax+ y)} (6)

= sup
(x,r,s)∈S×Y×−C

{〈x∗, x〉+ 〈y∗, r −Ax〉+ 〈z∗, g(x)− s〉 − f(r)}

= δ−C∗(z∗) + sup
(x,r)∈S×Y

{〈x∗ −A∗y∗, x〉+ 〈y∗, r〉+ (z∗g)(x)− f(r)}

= δ−C∗(z∗) + sup
x∈S
{〈x∗ −A∗y∗, x〉+ (z∗g)(x)}+ sup

r∈Y
{〈y∗, r〉 − f(r)}. (7)

It follows

−(ΦFL)∗(0, y∗, z∗) = −δ−C∗(z∗)− (−z∗g)∗S(−A∗y∗)− f∗(y∗).

The dual problem becomes (cf. [1] and take z∗ := −z∗):

(DSFL) sup
(y∗,z∗)∈Y∗×Z∗

(−(ΦFL)∗(0, y∗, z∗))

= sup
(y∗,z∗)∈Y∗×Z∗

(−δ−C∗(z∗)− (−z∗g)∗S(−A∗y∗)− f∗(y∗))

= sup
(y∗,z∗)∈Y∗×C∗

(−(z∗g)∗S(−A∗y∗)− f∗(y∗)). (8)

We denote by v(PS) and v(DSFL) the optimal objective value of (PS) and (DSFL), respectively. Then
weak duality holds by construction (cf. [1]), i.e. v(PS) ≥ v(DSFL). In order to have strong duality
we introduce some regularity conditions.

For a general optimization problem given by

(P ) inf
x∈X

Φ(x, 0),

depending on the perturbation function Φ : X ×Y → R we introduce the following so-called generalized
interior point regularity conditions, where we assume that Φ is a proper and convex function fulfilling
0 ∈ PrY(dom(Φ)) and PrY : X ×Y → Y, defined for (x, y) ∈ X ×Y by PrY(x, y) = y, is the projection
operator on Y. Further, X is the space of feasible variables and Y is the space of perturbation variables
(cf. [1]). The conditions have the following form:

(RCΦ
1 ) ∃x′ ∈ X such that (x′, 0) ∈ dom(Φ) and Φ(x′, ·) is continuous at 0,

(RCΦ
2 ) X and Y are Fréchet spaces, Φ is lower semicontinuous

and 0 ∈ sqri(PrY(dom(Φ))), (9)

(RCΦ
3 ) X and Y are Fréchet spaces, Φ is lower semicontinuous and

0 ∈ core(PrY(dom(Φ))),

(RCΦ
4 ) X and Y are Fréchet spaces, Φ is lower semicontinuous and

0 ∈ int(PrY(dom(Φ))).

If X and Y are Fréchet spaces and Φ is lower semicontinuous, it holds

(RCΦ
1 )⇒ (RCΦ

4 )⇔ (RCΦ
3 )⇒ (RCΦ

2 ), (10)

i.e. the second is the weakest one (see also [1]).
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If (RCΦ
1 ) is fulfilled, the condition 0 ∈ PrY(dom(Φ)) holds since it is equivalent with ∃x′ ∈ X :

(x′, 0) ∈ dom(Φ). If (RCΦ
i ), i ∈ {2, 3, 4}, is fulfilled this obviously also holds since the sqri, core and

int of PrY(dom(Φ)) are subsets of the set PrY(dom(Φ)).
We have to ensure that the perturbation function ΦFL is proper and convex. The convexity follows

by the convexity of f, g and S. Further, ΦFL is proper since f is proper and A−1(dom(f)) ∩ S ∩
g−1(−C) 6= ∅. These properties will be maintained in the following (sub)sections.

For the given perturbation function ΦFL it holds

(y, z) ∈ PrY×Z(dom(ΦFL))
⇔ ∃x ∈ X : ΦFL(x, y, z) < +∞
⇔ ∃x ∈ S : Ax+ y ∈ dom(f), g(x) ∈ z − C
⇔ ∃x ∈ S : (y, z) ∈ (dom(f)−Ax)× (C + g(x))

⇔ (y, z) ∈ (dom(f)× C)−
⋃
x∈S

(Ax,−g(x))

⇔ (y, z) ∈ (dom(f)× C)− (A×−g)(∆S2).

The lower semicontinuity of ΦFL is equivalent with the closeness of epi ΦFL (see Theorem 2.4) and it
holds

epi ΦFL = {(x, y, z, r) ∈ X × Y × Z × R : (Ax+ y, r) ∈ epi f}
∩ {S × Y × Z × R} ∩ {(x, y, z, r) ∈ X × Y × Z × R : (x, z) ∈ epiC g}.

The closeness of this set is guaranteed if X ,Y and Z are Fréchet spaces, f is lower semicontinuous, S
is closed and g is C-epi closed. The regularity condition (RCΦ

2 ) becomes:

(RC2,FL)
X ,Y and Z are Fréchet spaces, f is lower semi-
continuous, S is closed, g is C-epi closed and
0 ∈ sqri((dom(f)× C)− (A×−g)(∆S2).

(11)

Analogously one can rewrite the stronger conditions (RCΦ
3 ) and (RCΦ

4 ) using core and int, respectively,
instead of sqri and get (RC3,FL) and (RC4,FL).

The regularity condition (RCΦ
1 ) becomes under usage of the perturbation function ΦFL in formula

(5):

(RC1,FL) ∃x′ ∈ A−1(dom(f)) ∩ S such that f is continuous at
Ax′ and g(x′) ∈ − int(C). (12)

We state now the following strong duality theorem:

Theorem 3.1 (strong duality). Let the spaces X ,Y and Z, the cone C, the functions f and g,
the set S and the linear mapping A be assumed as at the beginning of the (sub)section and further
A−1(dom(f)) ∩ g−1(−C) ∩ S 6= ∅.

If one of the regularity conditions (RCi,FL), i ∈ {1, 2, 3, 4}, is fulfilled, then v(PS) = v(DSFL) and
the dual has an optimal solution.

Remark 3.2. If the function f is continuous and the primal problem (PS) has a compact feasible set
A, then there exists an optimal solution x to (PS).

3.2 The Scalar Optimization Problem (PSΣ)
A multiobjective optimization problem with objective functions fi, i = 1, . . . ,m, can be handled by
weighting the functions and consider the sum of it, which is a linear scalarization. The arising problem
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is the subject of this subsection. Similar perturbations of the primal problem can be found in [4],
where the authors consider an optimization problem having also cone constraints but still a weighted
sum of convex functions without the composition with a linear continuous mapping.

Assume the functions fi : Y → R, i = 1, . . . ,m, to be proper and convex and g = (g1, . . . , gk)T :
X → Rk to be C-convex, C = Rk+. Further, let λ be the fixed vector λ = (λ1, . . . , λm)T ∈ int(Rm+ ).
Let A ∈ L(X ,Y) and A−1(

⋂m
i=1 dom(fi)) ∩ g−1(−Rk+) ∩ S 6= ∅. We consider the scalar optimization

problem

(PSΣ) inf
x∈A

{
m∑
i=1

λifi(Ax)
}
, A = {x ∈ S : gi(x) ≤ 0, i = 1, . . . , k},

and the following perturbation function ΦΣ
FL : X ×Y × . . .×Y ×X × . . .×X → R in order to separate

the conjugate functions of fi, i = 1, . . . ,m, and the conjugate functions of gi, i = 1, . . . , k, in the dual:

ΦΣ
FL(x, y1, . . . , ym, z1, . . . , zk) =


m∑
i=1

λifi(Ax+ yi), x ∈ S, gi(x+ zi) ≤ 0, i = 1, . . . , k,

+∞, otherwise.

The conjugate function (ΦΣ
FL)∗ : X ∗ × Y∗ × . . .× Y∗ ×X ∗ × . . .×X ∗ → R is given by

(ΦΣ
FL)∗(x∗, y1∗, . . . , ym∗, z1∗, . . . , zk∗)

= sup
x∈S,

yi∈Y,i=1,...,m,
zi∈X ,i=1,...,k,
gi(x+zi)≤0,
i=1,...,k

{
〈x∗, x〉+

m∑
i=1

〈
yi∗, yi

〉
+

k∑
i=1

〈
zi∗, zi

〉
−

m∑
i=1

λifi(Ax+ yi)
}
.

By setting Ax+ yi =: ri ∈ Y, i = 1, . . . ,m, and x+ zi =: si ∈ X , i = 1, . . . , k, we get:

− (ΦΣ
FL)∗(0, y1∗, . . . , ym∗, z1∗, . . . , zk∗)

= − sup
x∈S,

ri∈Y,i=1,...,m,
si∈X ,i=1,...,k,
gi(si)≤0,i=1,...,k

{
m∑
i=1

〈
yi∗, ri −Ax

〉
+

k∑
i=1

〈
zi∗, si − x

〉
−

m∑
i=1

λifi(ri)
}

= − sup
x∈S

{
−

m∑
i=1

〈
yi∗, Ax

〉
−

k∑
i=1

〈
zi∗, x

〉}
−

m∑
i=1

sup
ri∈Y

{〈
yi∗, ri

〉
− λifi(ri)

}
−

k∑
i=1

sup
si∈X ,
gi(si)≤0

〈
zi∗, si

〉

= −δ∗S

(
−A∗

m∑
i=1

yi∗ −
k∑
i=1

zi∗

)
−

m∑
i=1

(λifi)∗ (yi∗)−
k∑
i=1

sup
si∈X ,
gi(si)≤0

〈
zi∗, si

〉
.

We have (λifi)∗(yi∗) = λif
∗
i

(
yi∗

λi

)
since λi > 0 for all i = 1, . . . , k, and by setting yi∗ := yi∗

λi
, i =
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1, . . . , k, we get the following dual problem to (PSΣ):

(DSΣ
FL) sup

(y1∗,...,ym∗,z1∗,...,zk∗)
∈Y∗×...×Y∗×
X∗×...×X∗

{
−(ΦΣ

FL)∗(0, y1∗, . . . , ym∗, z1∗, . . . , zk∗)
}

= sup
(y1∗,...,ym∗,z1∗,...,zk∗)
∈Y∗×...×Y∗×
X∗×...×X∗

{
− δ∗S

(
−A∗

m∑
i=1

yi∗ −
k∑
i=1

zi∗

)
−

m∑
i=1

(λifi)∗ (yi∗)−
k∑
i=1

sup
si∈X ,
gi(si)≤0

〈
zi∗, si

〉}

= sup
(y1∗,...,ym∗,

z1∗,...,zk∗)
∈Y∗×...×Y∗×
X∗×...×X∗

{
− δ∗S

(
−A∗

m∑
i=1

λiy
i∗ −

k∑
i=1

zi∗

)
−

m∑
i=1

λif
∗
i (yi∗)−

k∑
i=1

sup
si∈X ,
gi(si)≤0

〈
zi∗, si

〉}
. (13)

The following theorem holds according to the general approach described in Subsect. 3.1 and because
of the previous calculations.

Theorem 3.3 (weak duality). Between (PSΣ) and (DSΣ
FL) weak duality holds, i.e. v(PSΣ) ≥

v(DSΣ
FL).

In order to formulate a strong duality theorem we consider the regularity conditions given in Sect.
3.1. The continuity of ΦΣ

FL(x′, ·, . . . , ·) at 0 is equivalent with the continuity of fi at Ax′, i = 1, . . . , k,
further g(x′) ∈ − int(Rk+) and the continuity of g at x′ (which is equivalent with the continuity of
gi, i = 1, . . . , k, at x′). So the first regularity condition becomes:

(RCΣ
1,FL)

∃x′ ∈ A−1
(
m⋂
i=1

dom(fi)
)
∩ S such that fi is

continuous at Ax′, i = 1, . . . ,m, gi is continuous at x′,
i = 1, . . . , k, and g(x′) ∈ − int(Rk+).

(14)

We further have, using the definition of the level set:

(y1, . . . , ym, z1, . . . , zk) ∈ PrY×...×Y×X×...×X (dom(ΦΣ
FL))

⇔ ∃x ∈ X : ΦΣ
FL(x, y1, . . . , ym, z1, . . . , zk) < +∞,

⇔ ∃x ∈ S : Ax+ yi ∈ dom(fi), i = 1, . . . ,m, gi(x+ zi) ≤ 0, i = 1, . . . , k,
⇔ ∃x ∈ S : yi ∈ dom(fi)−Ax, i = 1, . . . ,m, x+ zi ∈ lev0(gi), i = 1, . . . , k,

⇔ ∃x ∈ S : (y1, . . . , ym, z1, . . . , zk) ∈
m

Π
i=1

(dom(fi)−Ax)×
k

Π
i=1

(lev0(gi)− x) ,

⇔ ∃x ∈ S : (y1, . . . , ym, z1, . . . , zk) ∈
m

Π
i=1

dom(fi)×
k

Π
i=1

lev0(gi)− (Ax, . . . , Ax, x, . . . , x),

⇔ (y1, . . . , ym, z1, . . . , zk) ∈
m

Π
i=1

dom(fi)×
k

Π
i=1

lev0(gi)−
(
m

Π
i=1

A×
k

Π
i=1

idX
)

(∆Sm+k). (15)

The lower semicontinuity of ΦΣ
FL, we need for the further regularity conditions, is equivalent with the

closeness of epi ΦΣ
FL (see Theorem 2.4) and it holds:
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Lemma 3.4. The set

epi ΦΣ
FL =

{
(x, y1, . . . , ym, z1, . . . , zk, r) ∈ X × Y × . . .× Y × X × . . .×X × R :

m∑
i=1

λifi(Ax+ yi) ≤ r
}
∩ {S × Y × . . .× Y × X × . . .×X × R}

k⋂
i=1
{(x, y1, . . . , ym, z1, . . . , zk, r) ∈ X × Y × . . .× Y × X × . . .×X × R :

x+ zi ∈ lev0(gi)}

is closed if X and Y are Fréchet spaces, fi is lower semicontinuous, i = 1, . . . ,m, S is closed and
lev0(gi) is closed, i = 1, . . . , k.

Proof. Let the sequence (xn, y1
n, . . . , y

m
n , z

1
n, . . . , z

k
n, rn) ∈ epi(ΦΣ

FL) converge to
(x, y1, . . . , ym, z1, . . . , zk, r) ∈ X × Y × . . . × Y × X × . . . × X × R. We show that it holds
(x, y1, . . . , ym, z1, . . . , zk, r) ∈ epi(ΦΣ

FL) in order to get the closeness of epi(ΦΣ
FL).

We have
∑m
i=1 λifi(Axn + yin) ≤ rn. Further it holds xn ∈ S and xn + zin ∈ lev0(gi) and we get by

the lower semicontinuity of fi, i = 1, . . . ,m,
m∑
i=1

λifi(Ax+ yi) ≤ lim inf
n→∞

m∑
i=1

λifi(Axn + yin) ≤ lim inf
n→∞

rn = r.

Since x ∈ S, which follows by the closeness of S, and lim
n→∞

(xn + zin) = x+ zi ∈ lev0(gi), which follows
by the closeness of lev0(gi), the assertion follows.

Remark 3.5. The fact that lev0(gi), i = 1, . . . , k, is closed is implied by the lower semicontinuity of
gi, i = 1, . . . , k.

With this lemma we get (cf. formula (9)):

(RCΣ
2,FL)

X and Y are Fréchet spaces, fi is lower semicontinuous,
i = 1, . . . ,m, S is closed, lev0(gi) is closed, i = 1, . . . , k, and

0 ∈ sqri
(
m

Π
i=1

dom(fi)×
k

Π
i=1

lev0(gi)−
(
m

Π
i=1

A×
k

Π
i=1

idX
)

(∆Sm+k)
)
.

(16)

The conditions (RCΣ
3,FL) and (RCΣ

4,FL) can be formulated analogously using core and int instead of
sqri. Then the following theorem holds:

Theorem 3.6 (strong duality). Let the spaces X ,Y and Z = Rk, the cone C = Rk+, the functions
fi, i = 1, . . . ,m, and gi, i = 1, . . . , k, and the linear mapping A be assumed as at the beginning of the
(sub)section and further A−1(

⋂m
i=1 dom(fi)) ∩ g−1(−C) ∩ S 6= ∅.

If one of the regularity conditions (RCΣ
i,FL), i ∈ {1, 2, 3, 4}, is fulfilled, then v(PSΣ) = v(DSΣ

FL)
and the dual has an optimal solution.

Here Remark 3.2 also holds.

Remark 3.7. The dual problem (DSΣ
FL) given in formula (13) contains terms of the form

− sup
si∈X ,gi(si)≤0

〈
zi∗, si

〉
= inf
si∈X ,gi(si)≤0

〈
−zi∗, si

〉
.

We use now Lagrange duality. In case of having strong duality it holds

inf
si∈X ,gi(si)≤0

〈
−zi∗, si

〉
= sup
µi∗≥0

inf
si∈X
{−
〈
zi∗, si

〉
+ µi∗gi(si)} = sup

µi∗≥0

(
−(µi∗gi)∗(zi∗)

)
. (17)
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In order to have strong duality the following regularity condition has to be fulfilled for i = 1, . . . , k (cf.
[1, Subsection 3.2.3]):

(RCiL) ∃x′ ∈ X : gi(x′) < 0.

Assuming that (RCΣ
i,FL), i ∈ {1, 2, 3, 4}, is fulfilled we additionally only have to ask (RCiL), i = 1, . . . , k,

to be fulfilled in order to get the following dual problem (cf. formula (13)) and strong duality between
(PSΣ) and (DSΣ′

FL):

(DSΣ′
FL)

sup
(y1∗,...,ym∗,

z1∗,...,zk∗)
∈Y∗×...×Y∗×
X∗×...×X∗

{
− δ∗S

(
−A∗

m∑
i=1

λiy
i∗ −

k∑
i=1

zi∗

)
−

m∑
i=1

λif
∗
i (yi∗) +

k∑
i=1

sup
µi∗≥0

(
−(µi∗gi)∗(zi∗)

)}

= sup
(y1∗,...,ym∗,

z1∗,...,zk∗,µ1∗,...,µk∗)
∈Y∗×...×Y∗×

X∗×...×X∗×R+×...×R+

{
− δ∗S

(
−A∗

m∑
i=1

λiy
i∗ −

k∑
i=1

µi∗zi∗

)
−

m∑
i=1

λif
∗
i (yi∗)−

k∑
i=1

µi∗g∗i (zi∗)
}
. (18)

The last equality holds by the following consideration. In case of µi∗ > 0 we have (µi∗gi)∗(zi∗) =
µi∗g∗i

(
zi∗

µi∗

)
and take zi∗ := zi∗

µi∗ such that the term becomes µi∗g∗i (zi∗) for i = 1, . . . , k. For µi∗ = 0 it
holds

(0 · gi)∗(zi∗) =
{

0, zi∗ = 0,
+∞, otherwise.

Consequently we can always use µi∗g∗i (zi∗) (notice the conventions 0·(+∞) := +∞ and 0·(−∞) := −∞
(cf. [1])).

In analogy with Theorem 3.3 between (PSΣ) and (DSΣ′
FL) weak duality holds, i.e. v(PSΣ) ≥

v(DSΣ′
FL). Further we have:

Theorem 3.8 (strong duality). Let the spaces X ,Y and Z = Rk, the cone C = Rk+, the functions
fi, i = 1, . . . ,m, and gi, i = 1, . . . , k, and the linear mapping A be assumed as at the beginning of the
(sub)section and further A−1(

⋂m
i=1 dom(fi)) ∩ g−1(−C) ∩ S 6= ∅.

If one of the regularity conditions (RCΣ
i,FL), i ∈ {1, 2, 3, 4}, is fulfilled and (RCiL) is fulfilled for

i = 1, . . . , k, then v(PSΣ) = v(DSΣ′
FL) and the dual has an optimal solution.

With respect to the fact mentioned in the above remark, the following theorem providing optimality
conditions holds.

Theorem 3.9. (a) If one of the regularity conditions (RCΣ
i,FL), i ∈ {1, 2, 3, 4}, is fulfilled, (RCiL) is

fulfilled for i = 1, . . . , k, and (PSΣ) has an optimal solution x, then (DSΣ′
FL) has an optimal solution

(y1∗, . . . , ym∗, z1∗, . . . , zk∗, µ1∗, . . . , µk∗) ∈ Y∗ × . . . × Y∗ × X ∗ × . . . × X ∗ × R+ × . . . × R+ such that
the following optimality conditions are fulfilled:

(i) fi(Ax) + f∗i (yi∗)−
〈
yi∗, Ax

〉
= 0, i = 1, . . . ,m,

(ii) µi∗gi(x) = 0, i = 1, . . . , k,
(iii) µi∗(g∗i (zi∗)−

〈
zi∗, x

〉
) = 0, i = 1, . . . , k,

(iv)
m∑
i=1

λi
〈
yi∗, Ax

〉
+

k∑
i=1

µi∗
〈
zi∗, x

〉
= inf
x∈S

{
m∑
i=1

λi
〈
yi∗, Ax

〉
+

k∑
i=1

µi∗
〈
zi∗, x

〉}
.
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(b) Let x be feasible to (PSΣ) and (y1∗, . . . , ym∗, z1∗, . . . , zk∗, µ1∗, . . . , µk∗) ∈ Y∗ × . . . × Y∗ × X ∗ ×
. . . × X ∗ × R+ × . . . × R+ be feasible to (DSΣ′

FL) fulfilling the optimality conditions (i) − (iv). Then
x is an optimal solution for (PSΣ), (y1∗, . . . , ym∗, z1∗, . . . , zk∗, µ1∗, . . . , µk∗) is an optimal solution for
(DSΣ′

FL) and v(PSΣ) = v(DSΣ′
FL).

Proof. (a) Since (PSΣ) has an optimal solution x ∈ S, one of the conditions (RCΣ
i,FL), i ∈ {1, 2, 3, 4},

is fulfilled and (RCiL) is fulfilled for i = 1, . . . , k, Theorem 3.8 guarantees the existence of an optimal
solution for (DSΣ′

FL), namely (y1∗, . . . , ym∗, z1∗, . . . , zk∗, µ1∗, . . . , µk∗), such that

v(PSΣ) = v(DSΣ′
FL)

⇔
m∑
i=1

λifi(Ax) = −
m∑
i=1

λif
∗
i (yi∗)−

k∑
i=1

µi∗g∗i (zi∗)− δ∗S

(
−A∗

m∑
i=1

λiy
i∗ −

k∑
i=1

µi∗zi∗

)

⇔
m∑
i=1

λi
[
fi(Ax) + f∗i (yi∗)−

〈
yi∗, Ax

〉]
+

m∑
i=1

λi
〈
yi∗, Ax

〉
+

k∑
i=1

µi∗
[
g∗i (zi∗) + gi(x)−

〈
zi∗, x

〉]
−

k∑
i=1

µi∗gi(x)

+
k∑
i=1

µi∗
〈
zi∗, x

〉
+ δ∗S

(
−A∗

m∑
i=1

λiy
i∗ −

k∑
i=1

µi∗zi∗

)
= 0.

By applying Young’s inequality (cf. formula (1)) and having µi∗ ≥ 0 and gi(x) ≤ 0, this sum which is
equal to zero consists of m+ 2k+ 1 nonnegative terms. Thus the inequalities have to be fulfilled with
equality and we get the following equivalent formulation:

(i) fi(Ax) + f∗i (yi∗)−
〈
yi∗, Ax

〉
= 0, i = 1, . . . ,m,

(ii) µi∗gi(x) = 0, i = 1, . . . , k,
(iii) µi∗(g∗i (zi∗) + gi(x)−

〈
zi∗, x

〉
) = 0, i = 1, . . . , k,

(iv)
m∑
i=1

λi
〈
yi∗, Ax

〉
+

k∑
i=1

µi∗
〈
zi∗, x

〉
+ δ∗S

(
−A∗

m∑
i=1

λiy
i∗ −

k∑
i=1

µi∗zi∗
)

= 0,

⇔


(i) fi(Ax) + f∗i (yi∗)−

〈
yi∗, Ax

〉
= 0, i = 1, . . . ,m,

(ii) µi∗gi(x) = 0, i = 1, . . . , k,
(iii) µi∗(g∗i (zi∗)−

〈
zi∗, x

〉
) = 0, i = 1, . . . , k,

(iv)
m∑
i=1

λi
〈
yi∗, Ax

〉
+

k∑
i=1

µi∗
〈
zi∗, x

〉
= inf
x∈S

{
m∑
i=1

λi
〈
yi∗, Ax

〉
+

k∑
i=1

µi∗
〈
zi∗, x

〉}
.

(b) All calculations in part (a) can be carried out in reverse direction.

3.3 The Vector Optimization Problem (PV )
In this subsection we consider a vector optimization problem with an objective function being the com-
position of a convex function f and a linear continuous operator A and cone and geometric constraints
in analogy with the scalar problem in Sect. 3.1.

The properties of the spaces and sets were defined at the beginning of the section. Assume
the function f : Y → V• to be proper and K-convex and g : X → Z to be C-convex, fulfilling
A−1(dom(f)) ∩ g−1(−C) ∩ S 6= ∅.

By Min(V,K) we denote the set of minimal points of V , where y ∈ V ⊆ V is said to be a minimal
point of the set V if y ∈ V and there exists no y′ ∈ V such that y′ ≤K y. The set Max(V,K) of
maximal points of V is defined analogously.
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We consider the following vector optimization problem:

(PV ) Min
x∈A

f(Ax), A = {x ∈ S : g(x) ∈ −C}.

We investigate a duality approach with respect to properly efficient solutions in the sense of linear
scalarization (cf. [1]), that are defined as follows:

Definition 3.10 (properly efficient solution). An element x ∈ A is said to be a properly efficient
solution to (PV ) if x ∈ A−1(dom(f)) and ∃v∗ ∈ K∗0 such that 〈v∗, f(Ax)〉 ≤ 〈v∗, f(Ax)〉 , ∀x ∈ A.

Further, we define efficient solutions:

Definition 3.11 (efficient solution). An element x ∈ A is said to be an efficient solution to (PV )
if x ∈ A−1(dom(f)) and f(Ax) ∈ Min((f ◦ A)(A−1(dom(f)) ∩ A),K). This means that if x ∈
A−1(dom(f)) ∩ A then for all x ∈ A−1(dom(f)) ∩ A from f(Ax) 5K f(Ax) follows f(Ax) = f(Ax).

Depending on the perturbation function ΦFL, the dual problem to (PV ) can be given by (cf. [1,
Section 4.3.1]):

(DVFL) Max
(v∗,y∗,z∗,v)∈BFL

v,

where

BFL = {(v∗, y∗, z∗, v) ∈ K∗0 × Y∗ × Z∗ × V : 〈v∗, v〉 ≤ −(v∗ΦFL)∗(0,−y∗,−z∗)}.

Here we consider the perturbation function ΦFL : X ×Y ×Z → V•, analogously as given in the scalar
case in Sect. 3.1:

ΦFL(x, y, z) =
{
f(Ax+ y), x ∈ S, g(x) ∈ z − C,
+∞K , otherwise. (19)

The formula for the conjugate function of v∗ΦFL : X ∗ × Y∗ × Z∗ → R follows from the calculations
above (cf. formulas (6) and (7)):

− (v∗ΦFL)∗(x∗, y∗, z∗) = −(−z∗g)∗S(x∗ −A∗y∗)− (v∗f)∗(y∗)− δ−C∗(z∗).

From this formula, the dual problem of (PV ) can be deduced. It is given by

(DVFL) Max
(v∗,y∗,z∗,v)∈BFL

v, (20)

where

BFL = {(v∗, y∗, z∗, v) ∈ K∗0 × Y∗ × Z∗ × V : 〈v∗, v〉 ≤ −(v∗ΦFL)∗(0,−y∗,−z∗)}
= {(v∗, y∗, z∗, v) ∈ K∗0 × Y∗ × C∗ × V : 〈v∗, v〉 ≤ −(v∗f)∗(−y∗)− (z∗g)∗S(A∗y∗)}.

Weak duality follows from [1, Theorem 4.3.1]:

Theorem 3.12 (weak duality). There is no x ∈ A and no (v∗, y∗, z∗, v) ∈ BFL such that f(Ax) ≤K v.

To formulate a strong and converse duality theorem we have to state a regularity condition. The
conditions (RC1,FL) and (RC2,FL) from above (cf. formula (11) and (12)) (as well as (RC3,FL) and
(RC4,FL)) can, under some small modifications, be applied for the vectorial case. It holds (see [1,
Remark 4.3.1]):

Remark 3.13. For having strong duality we only have to assume that for all v∗ ∈ K∗0 the scalar
optimization problem infx∈X (v∗ΦFL)(x, 0, 0) is stable.

This can be guaranteed by assuming that X and the spaces of perturbation variables, Y and Z, are
Fréchet spaces, f is star K-lower semicontinuous, S is closed, g is C-epi closed and 0 ∈ sqri((dom(f)×
C)− (A×−g)(∆S2)) since dom(f) = dom(v∗f). This follows by Theorem 3.1.
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Further, this fact can be seen in the proof of the strong and converse duality Theorem 3.15. We
have:

(RCV1,FL) ∃x′ ∈ A−1(dom(f)) ∩ S such that f is continuous at Ax′ and g(x′) ∈ − int(C),

which is identical with (RC1,FL) (cf. formula (12)) and

(RCV2,FL) X ,Y and Z are Fréchet spaces, f is star K-lowersemicontinuous, S is closed,
g is C-epi closed and 0 ∈ sqri((dom(f)× C)− (A×−g)(∆S2)).

Analogously we formulate (RCV3,FL) and (RCV4,FL) by using core and int instead of sqri.
Before we proof a strong and converse duality theorem we want to formulate the following prelim-

inary result (in analogy with [1, Theorem 4.3.3], to which we also refer for the proof):

Lemma 3.14. Assume that BFL is non-empty and that one of the regularity conditions (RCVi,FL), i ∈
{1, 2, 3, 4}, is fulfilled. Then

V \ cl
(
(f ◦A)(A−1(dom(f)) ∩ A) +K

)
⊆ core(h(BFL)),

where h : K∗0 × Y∗ × C∗ × V → V is defined by h(v∗, y∗, z∗, v) = v.

Now we get the following theorem (in analogy with [1, Theorem 4.3.7]):

Theorem 3.15 (strong and converse duality). (a) If one of the conditions (RCVi,FL), i ∈ {1, 2, 3, 4},
is fulfilled and x ∈ A is a properly efficient solution to (PV ), then there exists (v∗, y∗, z∗, v) ∈ BFL,
an efficient solution to (DVFL), such that f(Ax) = v.

(b) If one of the conditions (RCVi,FL), i ∈ {1, 2, 3, 4}, is fulfilled, (f ◦A)(A−1(dom(f))∩A) +K is
closed and (v∗, y∗, z∗, v) is an efficient solution to (DVFL), then there exists x ∈ A, a properly efficient
solution to (PV ), such that f(Ax) = v.

The following proof of the theorem will be done in analogy with the one of [1, Theorem 4.3.2 and
4.3.4]:

Proof. (a) Since x ∈ A is a properly efficient solution, there exists v∗ ∈ K∗0 such that x is an optimal
solution to the scalarized problem

inf
x∈A
〈v∗, f(Ax)〉 .

Using that one of the regularity conditions (RCVi,FL), i ∈ {1, 2, 3, 4}, is fulfilled we can apply Theorem
3.1. Therefore we have to show that the problem infx∈A 〈v∗, f(Ax)〉 with the assumptions given by
(RCVi,FL) fulfills the regularity condition (RCi,FL) for fixed i ∈ {1, 2, 3, 4}.

Let us consider (RCVi,FL), i ∈ {2, 3, 4}. Since f is assumed to be star K-lower semicontinuous, v∗f
is lower semicontinuous by definition. The assumptions regarding X ,Y,Z, S and g hold analogously.
Further, we have dom(v∗f) = dom(f) and therefore

sqri((dom(v∗f)× C)− (A×−g)(∆S2)) = sqri((dom(f)× C)− (A×−g)(∆S2))

and analogously for core and int. Thus the conditions (RCi,FL), i ∈ {2, 3, 4}, hold.
The continuity of v∗f follows by the continuity of f and since dom(v∗f) = dom(f) the fulfillment

of (RC1,FL) follows by assuming (RCV1,FL).
From the mentioned theorem it follows that there exist z∗ ∈ C∗ and y∗ ∈ Y∗ such that 〈v∗, f(Ax)〉 =

−(v∗f)∗(−y∗)− (z∗g)∗S(A∗y∗). It follows that for v = f(Ax) the element (v∗, y∗, z∗, v) is feasible to the
dual problem (DVFL). By weak duality, that was given in Theorem 3.12, it follows that (v∗, y∗, z∗, v)
is an efficient solution.

(b) Assume that v /∈ (f ◦ A)
(
A−1(dom(f)) ∩ A)

)
+ K. From Lemma 3.14 it follows that v ∈

core(h(BFL)). By definition of the core for k ∈ K \{0} there exists λ > 0 such that vλ := v+λk ≥K v
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and vλ ∈ h(BFL). This contradicts the fact that (v∗, y∗, z∗, v) is an efficient solution for (DVFL) since
vλ is in the image set of (DVFL) and vλ ≥K v.

Thus we have v ∈ (f◦A)
(
A−1(dom(f)) ∩ A

)
+K, which means that there exists x ∈ A−1(dom(f))∩

A and k ∈ K such that v = f(Ax)+k. By Theorem 3.12 there is no x ∈ A and no (v∗, y∗, z∗, v) ∈ BFL
such that f(Ax) ≤K v and hence it holds k = 0. Consequently we have f(Ax) = v and x is a properly
efficient solution to (PV ) which follows by the following calculation. It holds

〈v∗, f(Ax)〉 = 〈v∗, v〉 ≤ −(v∗f)∗(−y∗)− (z∗g)∗S(A∗y∗) = −(v∗ΦFL)∗(0,−y∗,−z∗) ≤ inf
x∈A
〈v∗, f(Ax)〉 .

Here the last inequality follows by weak duality for the scalarized problem (cf. Sect. 3.1) and thus x
turns out to be a properly efficient solution to (PV ) by Definition 3.10 fulfilling v = f(Ax).

3.4 The Vector Optimization Problem (PV m)
We assume that the spaces V and Z are finite dimensional, especially V = Rm,K = Rm+ ,Z = Rk

and C = Rk+. Further, let the functions fi : Y → R, i = 1, . . . ,m, be proper and convex and
g = (g1, . . . , gk)T : X → Rk be Rk+-convex, fulfilling A−1(

⋂m
i=1 dom(fi)) ∩ g−1(−Rk+) ∩ S 6= ∅. We

consider the following vector optimization problem:

(PV m) Min
x∈A

 f1(Ax)
...

fm(Ax)

 , A = {x ∈ S : gi(x) ≤ 0, i = 1, . . . , k}.

The perturbation function ΦmFL : X × Y × . . .×Y ×X × . . .×X → Rm• is similar to the one in Sect.
3.2 in order to separate the conjugate functions of fi, i = 1, . . . ,m, and the conjugate functions of
gi, i = 1, . . . , k, in the dual problem:

ΦmFL(x, y1, . . . , ym, z1, . . . , zk)

=
{

(f1(Ax+ y1), . . . , fm(Ax+ ym))T , x ∈ S, gi(x+ zi) ≤ 0, i = 1, . . . , k,
+∞, otherwise.

Thus the dual problem becomes by taking v := (v1, . . . , vm)T ∈ Rm and v∗ = (v∗1 , . . . , v∗m)T ∈ int(Rm+ )
(cf. formula (20)):

(DV mFL) Max
(v∗,y∗,z∗,v)∈Bm

FL

v,

where

BmFL =
{

(v∗, y1∗, . . . , ym∗, z1∗, . . . , zk∗, v) ∈ int(Rm+ )× Y∗ × . . .× Y∗ ×X ∗ × . . .×X ∗ × Rm :

vT v∗ ≤ −(v∗ΦmFL)∗(0,−y1∗, . . . ,−ym∗,−z1∗, . . . ,−zk∗)
}
.

Especially it holds

− (v∗ΦmFL)∗(0,−y1∗, . . . ,−ym∗,−z1∗, . . . ,−zk∗)

= − sup
x∈S,

yi∈Y,i=1,...,m,
zi∈X ,i=1,...,k,

gi(x+zi)≤0,i=1,...,k

{
−

m∑
i=1

v∗i fi(Ax+ yi)−
m∑
i=1

〈
yi∗, yi

〉
−

k∑
i=1

〈
zi∗, zi

〉}

= −δ∗S

(
A∗

m∑
i=1

v∗i y
i∗ +

k∑
i=1

zi∗

)
−

m∑
i=1

v∗i f
∗
i (−yi∗)−

k∑
i=1

sup
si∈X ,
gi(si)≤0

〈
−zi∗, si

〉
,
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which arises from formula (13). The dual becomes:

(DV mFL) Max
(v∗,y1∗,...,yk∗,z1∗,...,zk∗,v)∈Bm

FL

v, (21)

where

BmFL =
{

(v∗, y1∗, . . . , ym∗, z1∗, . . . , zk∗, v) ∈ int(Rm+ )× Y∗ × . . .× Y∗ ×X ∗ × . . .×X ∗ × Rm :

vT v∗ ≤ −δ∗S

(
A∗

m∑
i=1

v∗i y
i∗ +

k∑
i=1

zi∗

)
−

m∑
i=1

v∗i f
∗
i (−yi∗)−

k∑
i=1

sup
si∈X ,
gi(si)≤0

〈
−zi∗, si

〉}
.

The following weak duality theorem holds:

Theorem 3.16 (weak duality). Between (PV m) and (DV mFL) weak duality holds, i.e. there is no
x ∈ A and no (v∗, y1∗, . . . , ym∗, z1∗, . . . , zk∗, v) ∈ BmFL such that f(Ax) ≤K v.

In order to formulate a strong and converse duality theorem, we have to state some regularity
conditions. Therefore let us first consider the following lemma:

Lemma 3.17. Let be f = (f1, . . . , fm)T : Y → Rm•. If fi, i = 1, . . . ,m, is lower semicontinuous, then
f is star K-lower semicontinuous, where K = Rm+ .

Proof. Let be v∗ = (v∗1 , . . . , v∗m)T ∈ K = Rm+ . If we assume that fi, i = 1, . . . ,m, is lower semicon-
tinuous then 〈v∗, f〉 =

∑m
i=1 v

∗
i fi is lower semicontinuous since it is a sum of lower semicontinuous

functions and v∗i ≥ 0, i = 1, . . . ,m (cf. [1, Prop. 2.2.11]). This means by definition that f is star
K-lower semicontinuous.

As mentioned in the last subsection it is possible to apply the regularity conditions given in the
scalar case under some modifications. So formulas (14) and (16) become:

(RCV m1,FL) ∃x
′ ∈ A−1

(
m⋂
i=1

dom(fi)
)
∩ S such that fi is continuous at Ax′, i = 1, . . . ,m,

gi is continuous at x′, i = 1, . . . , k, and g(x′) ∈ − int(Rk+),
(22)

(RCV m2,FL)

X and Y are Fréchet spaces, fi is lower semicontinuous,
i = 1, . . . ,m, S is closed, lev0(gi) is closed, i = 1, . . . , k, and

0 ∈ sqri
(
m

Π
i=1

dom(fi)×
k

Π
i=1

lev0(gi)−
(
m

Π
i=1

A×
k

Π
i=1

idX
)

(∆Sm+k)
)
.

(23)

The conditions (RCV m3,FL) and (RCV m4,FL) can be formulated analogously using core and int instead
of sqri. The following theorem holds:

Theorem 3.18. (a) If one of the conditions (RCV mi,FL), i ∈ {1, 2, 3, 4}, is fulfilled and x ∈ A is
a properly efficient solution to (PV m), then there exists (v∗, y1∗, . . . , ym∗, z1∗, . . . , zk∗, v) ∈ BmFL, an
efficient solution to (DV mFL), such that f(Ax) = v.
(b) If one of the conditions (RCV mi,FL), i ∈ {1, 2, 3, 4}, is fulfilled, (f ◦A)(A−1(

⋂m
i=1 dom(fi))∩A)+K is

closed and (v∗, y1∗, . . . , ym∗, z1∗, . . . , zk∗, v) is an efficient solution to (DV mFL), then there exists x ∈ A,
a properly efficient solution to (PV m), such that f(Ax) = v.

Remark 3.19. Remark 3.7 can be applied here which leads to the dual problem (cf. formula (18))

(DV m
′

FL) Max
(v∗,y1∗,...,yk∗,z1∗,...,zk∗,µ1∗,...,µk∗,v)∈Bm

FL

v, (24)
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where

BmFL =
{

(v∗, y1∗, . . . , ym∗, z1∗, . . . , zk∗, µ1∗, . . . , µk∗, v)

∈ int(Rm+ )× Y∗ × . . .× Y∗ ×X ∗ × . . .×X ∗ × R+ × . . .× R+ × Rm :

vT v∗ ≤ −δ∗S

(
A∗

m∑
i=1

viy
i∗ −

k∑
i=1

µi∗zi∗

)
−

m∑
i=1

vif
∗
i (−yi∗) +

k∑
i=1

µi∗g∗i (−zi∗)
}
.

Further, weak duality holds by construction and Theorem 3.18 holds analogously under the assumption
that one of the regularity conditions (RCV mi,FL), i ∈ {1, 2, 3, 4}, is fulfilled and (RCiL) is fulfilled for
i = 1, . . . , k.
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[11] G. Wanka, R.I. Boţ, and E. Vargyas. Conjugate duality for multiobjective composed optimization
problems. Acta Mathematica Hungarica, 116(3):117–196, 2007.

17


	Introduction
	Notations and Preliminaries
	Some Dual Optimization Problems
	The Scalar Optimization Problem 
	The Scalar Optimization Problem 
	The Vector Optimization Problem 
	The Vector Optimization Problem 


